Science.gov

Sample records for sber olevi kull

  1. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Eyjafjallajökull Volcano Plume Heights     View ... and stereo plume   Iceland's Eyjafjallajökull volcano produced its second major ash plume of 2010 beginning on May 7. Unlike ...

  2. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Eyjafjallajökull Volcano Ash Plume Particle Properties     ... satellite flew over Iceland's erupting Eyjafjallajökull volcano on April 19, 2010, its Multi-angle Imaging SpectroRadiometer (MISR) ...

  3. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... Eyjafjallajökull Ash Continues to Disrupt Air Traffic     View Larger Image ... Terra spacecraft on May 16, 2010, once again disrupted air traffic over Europe with the closure of major airports in the United Kingdom ...

  4. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... 1 Right: Figure 2   After a brief pause in eruptions that occurred in late March 2010, the Eyjafjallajökull Volcano in ... travelers around the world. The particles contained in volcanic ash clouds can cause significant damage to jet engines and the outside ...

  5. KULL Simulations of OMEGA Radiation Flow Experiments

    NASA Astrophysics Data System (ADS)

    Kallman, J.; MacLaren, S.; Baker, K.; Amala, P.; Lewis, K.; Zika, M.

    2012-10-01

    The problem of radiation flow in a right circular cylinder is of interest for the verification and validation of radiation codes, which utilize several mechanisms for determining radiation transport (diffusion, discrete ordinates, and Monte Carlo). This flow is analogous to free molecular flow in a similar geometry.footnotetextE. Garelis and T.E. Wainwright. Phys. Fluids. 16, 4 (1973) A series of experiments were conducted on the OMEGA laser in cases with a low-density heated cylindrical wall. The experiments consisted of a 1.6 mm diameter gold hohlraum containing an on-axis 700 μm diameter SiO2 cylinder contained in an 80 μm thick carbon foam tube. Five shots panning three test cases were used: the nominal geometry described above (heated wall), the carbon tube replaced with solid gold, and a gold cap placed on the laser end of the cylinder assembly to block axial radiation flow. Simulations of each experimental target type were run with the KULL radiation code, and were used to compare the different radiation transport packages in KULL by employing synthetic diagnostics to match the experimental DANTE cavity radiation temperature time history and soft x-ray images taken by a streak camera imaging the far end of the hohlraum.

  6. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code

    SciTech Connect

    Rathkopf, J. A.; Miller, D. S.; Owen, J. M.; Zike, M. R.; Eltgroth, P. G.; Madsen, N. K.; McCandless, K. P.; Nowak, P. F.; Nemanic, M. K.; Gentile, N. A.; Stuart, L. M.; Keen, N. D.; Palmer, T. S.

    2000-01-10

    KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under development at Lawrence Livermore National Laboratory. A part of the U.S. Department of Energy's Accelerated Strategic Computing Initiative (ASCI), KULL's purpose is to simulate the physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility, where ICF experiments will be conducted, and ASCI are part of the experimental and computational components of DOE's Stockpile Stewardship Program. This paper provides an overview of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of simulating radiative transfer. Particular emphasis is given to the parallelization techniques essential to obtain the performance required of the Stockpile Stewardship Program and to exploit the massively parallel processor machines that ASCI is procuring.

  7. KULL Simulations of OMEGA Radiation Flow Experiments

    NASA Astrophysics Data System (ADS)

    Kallman, J.; MacLaren, S.; Baker, K.; Brunner, T.; Lewis, K.; Zika, M.

    2013-10-01

    The problem of radiation flow in a right circular cylinder is of interest for the verification and validation of radiation codes since the flow is analytically analogous to diffusive free molecular flow in a similar geometry. Experiments were conducted on the OMEGA laser utilizing a low-density heated-cylindrical-wall target. The targets consisted of a 1.6 mm diameter gold hohlraum containing an on-axis 700 μm diameter SiO2 cylinder inside an 80 μm thick Ta2O5 aerogel tube. The FY13 targets also feature ``light-pipe'' diagnostics to measure the progression of the radiation front inside the foam. Simulations were run with the KULL multi-physics code, employing a new laser ray-tracing package. Comparisons of synthetic diagnostics derived from code results to x-ray measurements of drive temperature and heat front propagation provide a methodology to constrain simulation models. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Observation of Eyjafjallajökull volcano ash over Poland

    NASA Astrophysics Data System (ADS)

    Zielinski, T.; Petelski, T.; Makuch, P.; Kowalczyk, J.; Rozwadowska, A.; Drozdowska, V.; Markowicz, K.; Malinowski, S.; Kardas, A.; Posyniak, M.; Jagodnicka, A. K.; Stacewicz, T.; Piskozub, J.

    2010-05-01

    The plume of Eyjafjallajökull volcano ash has been identified over Poland using three instruments (two lidars and a ceilometer) stationed in two locations: Sopot in northern Poland and Warsaw in central-eastern Poland. The observations made it possible to establish the base of the ash layer. However ash concentration could not be determined.

  9. Earthshots: Satellite images of environmental change – Breiðamerkurjökull Glacier, Iceland

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    In these false color Landsat images, vegetated land surfaces appear red. Snow and ice are white. The Vatnajökull glacier is the bright white area in the upper left. Outlet glaciers streak away from it toward the Atlantic Ocean in the lower right. Breiðamerkurjökull is the largest glacial tongue on Vatnajökull and is featured in the center of these images.

  10. Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland

    NASA Astrophysics Data System (ADS)

    Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur

    2016-09-01

    Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.

  11. Low-frequency earthquakes at the Torfajökull volcano, south Iceland

    NASA Astrophysics Data System (ADS)

    Soosalu, Heidi; Lippitsch, Regina; Einarsson, Páll

    2006-05-01

    Torfajökull is a large rhyolitic volcanic edifice with a 12-km-diameter caldera and abundant high-temperature geothermal activity. It is located in the neovolcanic zone in south Iceland, at the junction of the eastern rift zone and a transform zone with the intraplate volcanic flank zone of south Iceland. The latest eruption at Torfajökull occurred about 500 years ago. Torfajökull is a source of persistent small-scale seismicity, where two types of earthquakes occur. High-frequency events are concentrated in the western part of the caldera and low-frequency events cluster in the south. Small low-frequency earthquakes have been observed at Torfajökull since the installation of a local analogue seismograph station in 1985. They typically occur in swarms; up to 300 earthquakes per day have been observed. The low-frequency events have a frequency content of about 1-3 Hz, and are difficult to locate, because of the emergent nature of their phases. The 160 events located during the years 1994-2000 using the permanent Icelandic seismic network cluster in the southern part of the Torfajökull caldera. A closer study of low-frequency events was carried out between May and October 2002, with a dense network of twenty Güralp 6TD broadband seismometers in the Torfajökull area. No distinct swarm activity was observed during this period, but small low-frequency events occurred almost on a daily basis. About 330 low-frequency events were detected during the study period. They are located in the southern part of the caldera, between two small glaciers. Areas of intensive geothermal activity surround the cluster of low-frequency events. It is argued that these earthquakes are associated with active magma in the south part of the Torfajökull caldera, possibly a rising cryptodome.

  12. New START, Eyjafjallajökull, and Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2010-11-01

    On 8 April 2010, U.S. president Barack Obama and Russian president Dmitry Medvedev signed the Treaty Between the United States of America and the Russian Federation on Measures for the Further Reduction and Limitation of Strategic Offensive Arms, committing the United States and Russia to reducing their nuclear arsenals to levels less than 5% of the maximum during the height of the cold war in the 1980s. This treaty is called “New START,” as it is a follow-on to the 1991 Strategic Arms Reductions Treaty (START). On 14 April 2010 the Eyjafjallajökull volcano in Iceland began an explosive eruption phase that shut down air traffic in Europe for 6 days and continued to disrupt it for another month. What do these two events have in common? Nuclear weapons, when targeted at cities and industrial areas, would start fires, producing clouds of sooty smoke. Volcanic eruptions emit ash particles and sulfur dioxide (SO2), which forms sulfate aerosols in the atmosphere. Thus, both the use of nuclear weapons and volcanic eruptions produce particles that can be transported large distances from the source and can affect weather and climate.

  13. April-May 2010 Eyjafjallajökull volcanic fallout over Rimini, Italy

    NASA Astrophysics Data System (ADS)

    Rossini, Paolo; Molinaroli, Emanuela; De Falco, Giovanni; Fiesoletti, Federica; Papa, Stefano; Pari, Elena; Renzulli, Alberto; Tentoni, Pierpaolo; Testoni, Alessio; Valentini, Laura; Matteucci, Gabriele

    2012-03-01

    Located at a distance of approximately 3200 km from Iceland, where the Eyjafjallajökull volcano erupted, Italy was affected by volcanic ash transported by middle altitude air masses across Europe. Volcanic emissions from the Eyjafjallajökull eruption in April 2010 were detected in Rimini (44° 2' 28" N, 12° 34' 3" E) (Italy) by means of in-situ measurements (sampling of bulk depositions). Sampling was carried out during the period April-August 2010, and the following parameters were determined: grain size, TSP, mineralogy, particle morphology and chemical content in terms of Br -, Cl -, F -, SO42-, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, Li, Lu, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Tb, Te, Ti, Tl, U, V, Y, Zn and Zr. Information from the Hysplit-NOAA back trajectory helped to identify the origin of the air mass. The results obtained from the observations are in good agreement with similar studies carried out by other European scientists, confirming that the Eyjafjallajökull ash plume also had a surface impact in Italy. The findings of our study support observations made by researchers of the CNR-IMAA Atmospheric Observatory at the EARLINET station in Southern Italy and enlarge the geographical area known to have been affected by fallout from the April-May 2010 eruption of the Eyjafjallajökull volcano.

  14. The Drangajökull ice cap, northwest Iceland, persisted into the early-mid Holocene

    NASA Astrophysics Data System (ADS)

    Schomacker, Anders; Brynjólfsson, Skafti; Andreassen, Julie M.; Gudmundsdóttir, Esther Ruth; Olsen, Jesper; Odgaard, Bent V.; Håkansson, Lena; Ingólfsson, Ólafur; Larsen, Nicolaj K.

    2016-09-01

    Most glaciers and ice caps in Iceland experienced rapid deglaciation in the early Holocene, reaching a minimum extent during the Holocene Thermal Maximum. Here we present evidence of the Holocene glacial history from lake sediment cores retrieved from seven threshold lakes around the Drangajökull ice cap in the Vestfirðir peninsula, NW Iceland. The sediment cores show on/off signals of glacial meltwater activity, as minerogenic material deposited from glacial meltwater alternates with organic-rich material (gyttja) deposited without glacial meltwater. We base the chronology of the sediment cores on 14C ages and geochemical identification of key tephra layers with known ages. A 25-cm thick layer of the Saksunarvatn tephra in Lake Skorarvatn indicates that the northern part of the ice cap had reached a similar size as today or was smaller already by 10.2 cal kyr BP. However, 14C ages of lake sediment cores from the highlands southeast of Drangajökull suggest that this part of the ice cap was larger than today until 7.8-7.2 cal kyr BP. Even today, the Drangajökull ice cap has a different behavior than the main ice caps in Iceland, characterized by a very low glaciation limit. Because palaeoclimatic proxies show an early-mid Holocene temperature optimum in this part of Iceland, we suggest that the persistence of Drangajökull into the early Holocene and, possibly, also the entire Holocene was due to high winter precipitation.

  15. Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Zalzal, Kate

    2016-12-01

    The status of Icelandic ice caps during the early Holocene provides important constraints on North Atlantic climate and the mechanisms behind natural climate variability. A recent study postulates that Drangajökull on Vestfirðir, Iceland, persisted through the Holocene Thermal Maximum (HTM, 7.9-5.5 ka) and may be a relic from the last glacial period. We test this hypothesis with a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's modern margin. Distal lakes document rapid early Holocene deglaciation from the coast and across the highlands south of the glacier. Sediment from Skorarvatn, a lake to the north of Drangajökull, shows that the northern margin of the ice cap reached a size comparable to its contemporary limit by ∼10.3 ka. Two southeastern lakes with catchments extending well beneath modern Drangajökull confirm that by ∼9.2 ka, the ice cap was reduced to ∼20% of its current area. A continuous 10.3ka record of biological productivity from Skorarvatn's sediment indicates local peak warmth occurred between 9 and 6.9 ka. The combination of warm and dry summers on Vestfirðir suggests that Drangajökull very likely melted completely shortly after 9.2 ka, similar to most other Icelandic ice caps.

  16. Mapping the Variability of Winter Accumulation on the Hofsjökull Ice Cap, Central Iceland

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Th.; Jóhannesson, T.; Einarsson, B.; Gunnarsson, A.; Kjartansson, V.; Sigurðsson, O.

    2016-09-01

    The poster presents results from the mapping of winter accumulation on the Hofsjökull ice cap, Central Iceland, using a ground penetrating radar. The data are used to correct biases in older mass-balance data with more limited spatial coverage.

  17. Precise Hypocenter Relocation of Microearthquakes in the Torfajökull Volcanic System, Iceland

    NASA Astrophysics Data System (ADS)

    Lippitsch, R.; White, R. S.; Soosalu, H.

    2003-12-01

    The Torfajökull volcanic system is one of about 30 active volcanoes comprising the neovolcanic zones of Iceland. It is located at the rift-transform junction between the Eastern Volcanic Zone and the South Iceland Seismic Zone. The central volcanic part of the system is the largest silicic centre in Iceland with a caldera of about 12 km diameter. It's high-temperature geothermal system is one of the most powerful in Iceland. Torfajökull is the source of persistent seismicity, where both high- and low-frequency earthquakes occur. To study the microseismicity of the volcanic area in detail a temporary array of 20 broad-band seismic stations was deployed between May and November 2002. These temporary stations were embedded in the permanent South Iceland Lowland (SIL) network, and data from nine adjacent SIL-stations were included in the study. A 'minimum one-dimensional velocity model' with station corrections was computed for earthquake relocation by inverting manually picked P- and S- wave arrival times from events occurring in the Torfajökull volcanic centre, beneath Myrdalsjökull glacier south of the temporary array, and in the South Iceland Seismic Zone in the west. High-frequency earthquakes from the Torfajökull volcanic centre were then relocated using the program NonLinLoc, which calculates a non-linear, probabilistic solution to the earthquake location problem. From several hundred earthquakes in the Torfajökull area, 122 were well locatable (gap < 180 degrees, more than 10 observations). Subsequently, we correlated the waveforms of this sub-dataset (around 2000 obseravtions) to define linked events, calculated the relative travel time difference between event pairs, and solved for the hypocentral separation between these events with HypoDD. The resulting high-resolution pattern shows a tighter clustering in epicenter and focal depth when compared to original locations. All earthquakes are located beneath the caldera with hypocenters between 1 and 6 km

  18. The Morsárjökull rock avalanche in the southern part of the Vatnajökull glacier, south Iceland

    NASA Astrophysics Data System (ADS)

    Sæmundsson, Şorsteinn; Sigurősson, Ingvar A.; Pétursson, Halldór G.; Decaulne, Armelle; Jónsson, Helgi P.

    2010-05-01

    On the 20th of March 2007 a large rock avalanche fell on Morsárjökull, one of the outlet glaciers from the southern part of the Vatnajökull ice cap, in south Iceland. This is considered to be one of the largest rock avalanches which have occurred in Iceland during the last decades. It is believed that it fell in two separate stages, the main part fell on the 20th of March and the second and smaller one, on the 17th of April 2007. The Morsárjökull outlet glacier is about 4 km long and surrounded by up to 1000 m high valley slopes. The outlet glacier is fed by two ice falls which are partly disconnected to the main ice cap of Vatnajökull, which indicates that the glacier is mainly fed by ice avalanches. The rock avalanche fell on the eastern side of the uppermost part of the Morsárjökull outlet glacier and covered about 1/5 of the glacier surface, an area of about 720,000 m2. The scar of the rock avalanche is located on the north face of the headwall above the uppermost part of the glacier. It is around 330 m high, reaching from about 620 m up to 950 m, showing that the main part of the slope collapsed. It is estimated that about 4 million m3 of rock debris fell on the glacier, or about 10 million tons. The accumulation lobe is up to 1.6 km long, reaching from 520 m a.s.l., to about 350 m a.s.l. Its width is from 125 m to 650 m, or on average 480 m. The total area which the lobe covers is around 720.000 m2 and its mean thickness 5.5 m. The surface of the lobe shows longitudinal ridges and grooves and narrow flow-like lobes, indicating that the debris mass evolved down glacier as a mixture of a slide and debris flow. The debris mass is coarse grained and boulder rich. Blocks over 5 to 8 m in diameter are common on the edges of the lobe up to 1.6 km from the source. No indication was observed of any deformation of the glacier surface under the debris mass. The first glaciological measurements of Morsárjökull outlet glacier were carried out in the year 1896

  19. A preliminary geomorphological map from the Múlajökull drumlin field, Iceland

    NASA Astrophysics Data System (ADS)

    Jonsson, S. A.; Schomacker, A.; Benediktsson; Johnson, M.; Ingolfsson, O.

    2012-12-01

    The drumlin field in front of Múlajökull, a surge-type, outlet glacier from Hofsjökull in Iceland, is the only known active drumlin field (Johnson et al., 2010). The aim of this study is to further explore the distribution and formation of drumlins and drumlin fields in a modern glacial environment. We use data from Digital Elevation Models (DEMs), aerial imagery and field mapping. Here we present a preliminary geomorphological map based on remote sensing and fieldwork in 2010 and 2011. Geomorphological mapping of the drumlin field both with DEMs and ground proofing has revealed over 100 drumlins and a number of drumlinized ridges. The drumlins furthest from the present ice margin are broader and have lower relief than those closer to the ice. We suggest that this reflects an evolution of the drumlin form during recurrent surging. The drumlins farther away from the ice have experienced fewer surges than those that have just been uncovered due to present retreat of the ice margin. During successive surges, the drumlins become narrower and develop a higher relief. Reference: Johnson, M.D., Schomacker, A., Benediktsson, Í. Ö., Geiger, A. J., Ferguson, A. and Ingólfsson, Ó. 2010, Active drumlin field revealed at the margin of Múlajökull, Iceland: A surge-type glacier: Geology v. 38, p. 943-946.

  20. The Eyjabakkajökull glacial landsystem, Iceland: Geomorphic impact of multiple surges

    NASA Astrophysics Data System (ADS)

    Schomacker, Anders; Benediktsson, Ívar Örn; Ingólfsson, Ólafur

    2014-08-01

    A new glacial geomorphological map of the Eyjabakkajökull forefield in Iceland is presented. The map covers c. 60 km2 and is based on high-resolution aerial photographs recorded in August 2008 as well as field checking. Landforms are manually registered in a geographical information system (ArcGIS) based on inspection of orthorectified imagery and digital elevation models of the area. We mapped subglacially streamlined landforms such as flutes and drumlins on the till plain, supraglacial landforms such as ice-cored moraine, pitted outwash, and concertina eskers, and ice-marginal landforms such as the large, multi-crested 1890 surge end moraine and smaller single-crested end moraines. The glaciofluvial landforms are represented by outwash plains, minor outwash fans, and sinuous eskers. Extramarginal sediments were also registered and consist mainly of old sediments in wetlands or locally weathered bedrock. Eyjabakkajökull has behaved as a surge-type glacier for 2200 years; hence, the mapped landforms originate from multiple surges. Landforms such as large glaciotectonic end moraines, hummocky moraine, long flutes, crevasse-fill ridges, and concertina eskers are characteristic for surge-type glaciers. The surging glacier landsystem of Eyjabakkajökull serves as a modern analog to the landsystems of terrestrial paleo-ice streams.

  1. The landscape architecture of the forefield of Eyjabakkajökull, a surge-type glacier in Iceland

    NASA Astrophysics Data System (ADS)

    Schomacker, A.; Benediktsson

    2012-12-01

    A new geomorphological map of the forefield of the Eyjabakkajökull surge-type glacier in Iceland is presented. The map is based on field mapping and aerial photography from 2008 that covers c. 58 km2, including the Eyjabakkajökull glacier tongue and its entire forefield. When viewed in the context of glacial landsystems, the map identifies landforms that can be regarded as characteristic of glacier surging; in particular, crevasse-fill ridges, concertina eskers, long flutings, hummocky and ice-cored moraines, pitted outwash plains, and glaciotectonic end moraines. In addition, landforms that are common for many glacial environments but less typical of surging, were also identified and mapped; specifically, kames, sinuous eskers, sandar, braided channels, and outwash fans. Eyjabakkajökull has experienced surges every 21-40 years during the past 2200 years; hence, the large-scale landscape architecture is likely a result of dozens of surges. However, the glacial sediments and landforms presently identified in the forefield result from the most recent and historically known surges of Eyjabakkajökull in 1890, 1931, 1938 and 1972. The association of sediments and landforms in the Eyjabakkajökull forefield is diagnostic of glacier surging and may serve as a modern analogue in palaeoglaciological reconstructions.

  2. Albedo changes on Vatnajökull associated with dust events, Iceland

    NASA Astrophysics Data System (ADS)

    Dragosics, Monika; Thorsteinsson, Throstur; Pálsson, Finnur

    2015-04-01

    Deposition of aerosols on the glacier surface changes the albedo, thus enhances melt rates and affects the glacier mass balance. There are extensive sources for particles in Iceland; volcanic sandy deserts and glacial outwash plains cover more than 22% of the country. (Arnalds et al., 2001) Particles from these sources get airborne and transported on to the ice caps in several dust storms in most years, causing changes in albedo and surface energy balance. Long-term observations of atmospheric dust over the last 60 years show a high frequency of dust events in Iceland, with more than 34 dust days per year (Dagsson-Waldhauserova et al., 2013). Volcanoes are sources of large quantities of particles during an eruption, and for some years (even decades or centuries) after, due to re-suspension. Volcanic eruptions are frequent in Iceland, often with subsequent deposition of volcanic tephra on glaciers. The most recent are the eruptions of Eyjafjallajökull and Grímsvötn in 2010 and 2011. The evolution of surface albedo is measured with in-situ automatic weather stations (AWS), during summer, on a few locations on icelandic ice-caps. To detect dust events on Brúarjökull outlet (NE Vatnajökull ice-cap), drops in albedo are compared with energy balance results from the measured values of the AWSs, temperature, dust storm occurrence (recorded at manned weather stations in the lowlands), and visible changes on satellite observations (MODIS images) as in-situ samples. A dust deposition event is detected by comparing the MODIS images of 20 May and 28 May 2012 and explains a drop in albedo on 21 May, lasting to June 4 from 0.86 to 0.51. The in-situ samples are: snow surface samples from Vatnajökull with impurities collected in October 2013, representing the deposition of one summer over the ice cap; and two firn cores of about 8 meters depth from Brúarjökull, taken in June 2014. The firn cores were analysed to detect dust layers and to measure mass, volume, density of

  3. The geomorphology and ground penetrating radar survey results of the Múlajökull and Þjórsárjökull surge-type glaciers, central Iceland

    NASA Astrophysics Data System (ADS)

    Karušs, Jānis; Lamsters, Kristaps; Běrziņš, Dāvids

    2015-04-01

    Múlajökull and Þjórsárjökull are surge-type outlet glaciers of the Hofsjökull ice cap, central Iceland (Björnsson et al., 2003). The forefield of Múlajökull comprises the active drumlin field of more than 110 drumlins (Johnson et al., 2010; Jónsson et al., 2014) and therefore is an excellent area for studies of glacial geomorphology, subglacial topography and ice structures. This work describes preliminary results obtained during the expedition to Múlajökull and Þjórsárjökull glaciers in August, 2014. In the research ground penetrating radar (GPR) Zond 12-e was used. GPR measurements were performed on both outlet glaciers using 38 MHz and 75 MHz antenna systems. During data acquisition 2000 ns time window was used, while length of profiles was determined using GPS device Garmin GPS-76. In total approximately 3 km of GPR profiles were recorded. GPR signals propagation speed in glacier ice was determined using reflections from internal meltwater channels of glacier. In obtained radarogramms it was possible to trace reflections from the glacier bed till depth of approximately 144 m as well as numerous prominent reflections from internal meltwater channels of glacier. In one of the obtained radarogramms possible subglacial channel below Múlajökull glacier was identified. Also feature of subglacial topography that resembles drumlin was identified. The area of abundant infiltrated water was distinguished close to the ice margin in the radarogramm obtained on Þjórsárjökull suggesting successive supraglacial meltwater infiltration towards glacier margin. During the field work numerous radial crevasses, supraglacial channels and moulins were observed in the marginal zone of Múlajökull. The forefield of Múlajökull mainly consist of subglacial landforms (drumlins, flutes and crevasse-fill ridges), end moraines and sandur plains. Flutes and crevasse-fill ridges were found superimposed on drumlins in places. Till macrofabric was measured close to the

  4. Active drumlin field revealed at the margin of Múlajökull, Iceland: a surge-type glacier

    NASA Astrophysics Data System (ADS)

    Schomacker, A.; Johnson, M. D.; Benediktsson, I.; Ingolfsson, O.; Geiger, A. J.; Ferguson, A.

    2010-12-01

    Recent marginal retreat of Múlajökull, a surge-type, outlet glacier of the Hofsjökull ice cap, central Iceland, has revealed a drumlin field consisting of over 50 drumlins. The drumlins are 90-320 m long, 30-105 m wide, 5-10 m in relief, and composed of multiple beds of till deposited by lodgement and bed deformation. The youngest till layer truncates the older units with an erosion surface that parallels the drumlin form. Thus, the drumlins are built up and formed by a combination of subglacial depositional and erosional processes. Field evidence suggests each till bed to be associated with individual, recent surges. We consider the drumlin field to be active in the sense that the drumlins are shaped by the current glacial regime. The Múlajökull field is the only known active drumlin field and is, therefore, a unique analogue to Pleistocene drumlin fields.

  5. Coupling of Activity at Neighbouring Volcanoes in Iceland: Ground Deformation and Activity at the Bárðarbunga-Tungnafellsjökull and Eyjafjallajökull-Katla Volcano Pairs

    NASA Astrophysics Data System (ADS)

    Parks, M.; Heimisson, E. R.; Sigmundsson, F.; Hooper, A. J.; Ofeigsson, B.; Vogfjord, K. S.; Arnadottir, T.; Dumont, S.; Drouin, V.; Bagnardi, M.; Spaans, K.; Hreinsdottir, S.; Friðriksdóttir, H. M.; Jonsdottir, K.; Guðmundsson, G.; Hensch, M.; Hjaltadottir, S.; Hjartardottir, A. R.; Einarsson, P.; Gudmundsson, M. T.; Hognadottir, T.; Lafemina, P.; Geirsson, H.; Sturkell, E.; Magnússon, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) techniques are used to generate a time series of high-resolution deformation measurements, in the vicinity of two pairs of closely spaced volcanoes in Iceland: Bárðarbunga and Tungnafellsjökull, as well as Eyjafjallajökull and Katla. Following the declaration of Icelandic Volcanoes as a Permanent Geohazard Supersite in 2013, a considerable amount of SAR data was made available for both past and future satellite acquisitions, including new X-band images and historic C-band images. InSAR time series have been formed using these data and compared to other geodetic and microseismic measurements to determine the most likely processes responsible for recently observed deformation and/or seismicity. A comprehensive network of seismometers and continuous GPS stations are already deployed at these volcanoes and a series of campaign GPS measurements have been undertaken since 2010. We present an overview of the temporal variation in InSAR observations and these complementary field based measurements at Bárðarbunga and Tungnafellsjökull from 2014-2015 (covering the recent eruption at Holuhraun and contemporaneous slow collapse of the Bárðarbunga caldera), and Eyjafjallajökull and Katla volcanoes from 2010 onwards, after the 2010 explosive eruption of Eyjafjallajökull. We undertake a joint InSAR-GPS inversion using a Markov-chain Monte Carlo approach. The best-fit source geometries responsible for both the inflation of a 50 km long dyke and simultaneous deflation of the Bárðarbunga central volcano during the 2014-2015 unrest and eruption are found. Using these we calculate the stress changes associated with the Bárðarbunga deformation events and compare our results to the location of earthquake swarms in the vicinity of neighbouring Tungnafellsjökull, where seismic activity increased significantly following the onset of unrest at Bárðarbunga in August 2014. We also determine the optimal source parameters for

  6. Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Aðalgeirsdóttir, G.; Guðmundsson, S.; Björnsson, H.; Pálsson, F.; Jóhannesson, T.; Hannesdóttir, H.; Sigurðsson, S. Þ.; Berthier, E.

    2011-11-01

    The Little Ice Age maximum extent of glaciers in Iceland was reached about 1890 AD and most glaciers in the country have retreated during the 20th century. A model for the surface mass balance and the flow of glaciers is used to reconstruct the 20th century retreat history of Hoffellsjökull, a south-flowing outlet glacier of the ice cap Vatnajökull, which is located close to the southeastern coast of Iceland. The bedrock topography was surveyed with radio-echo soundings in 2001. A wealth of data are available to force and constrain the model, e.g. surface elevation maps from ~1890, 1936, 1946, 1989, 2001, 2008 and 2010, mass balance observations conducted in 1936-1938 and after 2001, energy balance measurements after 2001, and glacier surface velocity derived by kinematic and differential GPS surveys and correlation of SPOT5 images. The approximately 20% volume loss of this glacier in the period 1895-2010 is realistically simulated with the model. After calibration of the model with past observations, it is used to simulate the future response of the glacier during the 21st century. The mass balance model was forced with an ensemble of temperature and precipitation scenarios derived from 10 global and 3 regional climate model simulations using the A1B emission scenario. If the average climate of 2000-2009 is maintained into the future, the volume of the glacier is projected to be reduced by 30% with respect to the present at the end of this century. If the climate warms, as suggested by most of the climate change scenarios, the model projects this glacier to almost disappear by the end of the 21st century. Runoff from the glacier is predicted to increase for the next 30-40 yr and decrease after that as a consequence of the diminishing ice-covered area.

  7. Charge Structure and Charging Mechanisms in the Plume of Eyjafjallajökull

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; Krehbiel, P. R.; Rison, W.; Edens, H. E.

    2012-12-01

    Three dimensional lightning mapping observations have been made of volcanic lightning during the magmatic phase of the 2010 eruption of Eyjafjallajökull in Iceland. From this data the charge structure in the plume has been inferred, providing insight into the charging mechanisms. During the magmatic phase (3-20 May) lightning was only observed from 11-20 May, except for a scant amount detected on the 6th of May. The observations from this period showed temporal variations in the charge structure, but at times a dipolar structure (negative over positive) was observed. Nearly all lightning discharges initiated low in altitude, between the positive charge layer and ground, and some may have initiated at the vent of the volcano itself. Of interest in volcanic lightning studies is the degree to which silica-based and water-based charging mechanisms influence electrification in volcanic plumes. In the case of the magmatic phase of the Eyjafjallajökull eruption the two charging mechanisms appear to have been complementary. During this part of the eruption charging on silicate particles due to the eruption process is not expected to have been as strong as it was in previous studies of Augustine and Redoubt volcanoes and water-based charging mechanisms like those involved in thunderstorms may have enhanced the electrification. Observations of the temporal variation of the atmospheric temperature structure around Eyjafjallajökull showed that colder temperatures in the latter part of May could have been a key to turning on the lightning activity. A simple charge structure model has been constructed that shows how water-based charging mechanisms could intensify the existing electrification from silicate particles and still allow for discharges to initiate below the lower charge layer. Overall the observations indicate that silica-based charging may not have been enough to initiate lightning during the magmatic phase and water-based charging mechanisms could have provided

  8. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland

    NASA Astrophysics Data System (ADS)

    Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas

    2017-03-01

    Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of

  9. Kull ALE: I. Unstructured Mesh Advection, Interface Capturing, and Multiphase 2T RHD with Material Interfaces

    SciTech Connect

    Anninos, P

    2002-02-11

    Several advection algorithms are presented within the remap framework for unstructured mesh ALE codes. The methods discussed include a generic advection scheme based on a finite volume approach, and three groups of algorithms for the treatment of material boundary interfaces. The interface capturing algorithms belong to the Volume of Fluid (VoF) class of methods to approximate material interfaces from the local fractional volume of fluid distribution in arbitrary unstructured polyhedral meshes appropriate for the Kull code. Also presented are several schemes for extending single material radiation diffusion solvers to account for multi-material interfaces.

  10. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland.

    PubMed

    Marteinsson, Viggó Thór; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G; Gaidos, Eric

    2013-02-01

    Subglacial lakes beneath the Vatnajökull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3-v5 and v4-v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4-v6 libraries are 3-8 times higher than in corresponding v3-v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajökull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome.

  11. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash

    PubMed Central

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s−1 in each storm with gusts up to 38.7 m s−1. Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m−1 during the most intense storm event with a rate of 1,440 kg m−1 hr−1 for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions. PMID:23409248

  12. Impact of the Eyjafjallajökull ash cloud: A newspaper perspective

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Gurioli, Lucia; Hughes, Elizabeth E.; Lagreulet, Sandra

    2012-09-01

    We carried out a content analysis of eight national newspapers published during a 10-day period spanning Eyjafjallajökull's 2010 air space closure. Our intent was to understand the amount and type of material published, and the contribution of volcanologists and emergency responders to this material. We selected the best selling broadsheets and tabloids from the UK, France, Italy and USA. A total area of 135,000 cm2 was devoted to Eyjafjallajökull. Of this, 33% dealt with social themes, followed by volcanological (24%), economic (17%), response (13%) and airline (8%) issues. If, however, we examine the sources providing information we find a very different situation. Altogether, 669 sources were cited as giving quotes, of which 33% were credited to the air industry, followed by public (22%), politicians (12%), volcanologists (9%), responders (8%) and economists (2%). We also recorded all word descriptors for the ash cloud and its effects, with a total of 5380 words being logged. Negative words were the most common, with stranded having the highest frequency (180); chaos appearing 57 times. Coverage, thus, tended to feature quotes from the air industry, and carry a negative air; at times being confusing and contradictory. This, coupled with the fact that volcanological pieces tended to be placed well down the reporting order, meant that the message was of a chaotic situation and response, the performance of those who could be ascribed blame, i.e., responsible government agencies, thus likely being perceived in a negative light.

  13. Sulfur Budget of the 2010 Eyjafjallajökull Eruption Derived From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Wang, J.; Yang, K.; Krotkov, N. A.

    2010-12-01

    We evaluate the sulfur budget of the 2010 Eyjafjallajökull eruption using satellite remote sensing observations of sulfur dioxide (SO2) emissions and chemical-transport modeling (CTM). Daily, global ultraviolet (UV) measurements by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite provide a unique insight into volcanic SO2 emissions owing to their sensitivity to lower tropospheric plumes. Thus, OMI was able to quantify SO2 burdens throughout the entire eruptive cycle at Eyjafjallajökull, beginning in March 2010 during the Fimmvörduháls basaltic fissure eruption, and continuing through the explosive, phreatomagmatic phase in mid-April to a period of continuous emissions that waned in late May. Simultaneous OMI measurements of SO2 and volcanic ash, the latter using the UV Aerosol Index (AI), indicate distinct emission regimes as the eruption progressed: (1) March 20 - mid-April: weak SO2 emissions without detectable ash at Fimmvörduháls; (2) April 15-19: low SO2 burdens (<5000 tons) and high ash concentrations in the phreatomagmatic Eyjafjallajökull eruption clouds that dispersed over mainland Europe; (3) April 20 - May 3: a period of generally increasing SO2 emissions with much reduced ash production (coinciding with the emplacement of a lava flow on the Gígjökull glacier); (4) May 4-18: an abrupt increase in SO2 emissions (>30 kilotons) and ash production in plumes that dispersed predominantly over the North Atlantic; (5) May 19-24: cessation of significant ash production and a decline in SO2 emissions. We interpret some of these variations in the proportion of SO2 and ash as a reflection of variable interaction between magma and glacial meltwater at the eruption vent, which sequestered SO2 and significantly reduced atmospheric SO2 loading during the phreatomagmatic phase below that expected from volatile-rich Icelandic magmas (also apparent during eruptions of Grimsvötn). The fate of the magmatic sulfur, e.g., dissolution of SO2 in

  14. Vatnajökull meltwater discharge variability: a Holocene climate sensor in the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Striberger, J.; Björck, S.; Ingólfsson, Ó.; Kjær, K.; Sandgren, P.; Snowball, I.

    2009-04-01

    The Holocene glacial history of Vatnajökull and its many outlet glaciers is rather poorly known, even though it is one of the largest ice caps outside Antarctica and Greenland. Vatnajökull is positioned in the centre of the Nordic Seas, the region for North Atlantic Deep Water formation and it is influenced by humid-bearing cyclone systems from the southwest. Thus, it can be regarded as a sensor for a combination of different climatic driven processes. Lake Lögurinn (53 km2, 20 m a.s.l), situated northeast of Vatnajökull, is part of the drainage system of Eyjabakkajökull, one of the most conspicuous surging outlet glaciers of the ice cap. In addition to glacial meltwater, the lake also receives discharge from rivers that drain non-glaciated catchments. The mix of glacial and non-glacial suspension makes the sediments suitable for analyses of how the fluvial regime has varied over time and how this relates to meltwater discharge, fluvial discharge and general changes in climate and hydrology. A total of 17.8 m of sediment was obtained from the central part of the northernmost sub-basin in Lake Lögurinn at water depths of 38 and 16 m, respectively. The sediments are laminated in most parts of the sequence. 137Cs analyses of the surface core have confirmed that the laminated couplets are varves. Tephra horizons have been used as time markers throughout the sediments, and X-ray fluorescence and X-ray analyses as well as visual observations have been used in order to identify varves in the uppermost 3.8 m of the sequence. This section covers the time period AD 1262-2005. The sediment contains 610 varves for the periods AD 1262-1476 and AD 1603-2005 (a total of 618 years). A significant change in sedimentation rate is observed between AD 1477-1602 (from 5.9 mm/yr to 1.2 mm/yr). For this period only 18 varves are found. This abrupt change is likely related to a lower discharge rate, or to more turbulent conditions in the lake. The sedimentation rate of the

  15. Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajökull ice cap, Iceland

    NASA Astrophysics Data System (ADS)

    Pagli, Carolina; Sigmundsson, Freysteinn

    2008-05-01

    Global warming causes retreat of ice caps and ice sheets. Can melting glaciers trigger increased volcanic activity? Since 1890 the largest ice cap of Iceland, Vatnajökull, with an area of ~8000 km2, has been continuously retreating losing about 10% of its mass during last century. Present-day uplift around the ice cap is as high as 25 mm/yr. We evaluate interactions between ongoing glacio-isostasy and current changes to mantle melting and crustal stresses at volcanoes underneath Vatnajökull. The modeling indicates that a substantial volume of new magma, ~0.014 km3/yr, is produced under Vatnajökull in response to current ice thinning. Ice retreat also induces significant stress changes in the elastic crust that may contribute to high seismicity, unusual focal mechanisms, and unusual magma movements in NW-Vatnajökull.

  16. Health effects following the Eyjafjallajökull volcanic eruption: a cohort study

    PubMed Central

    Carlsen, Hanne Krage; Hauksdottir, Arna; Valdimarsdottir, Unnur Anna; Gíslason, Thorarinn; Einarsdottir, Gunnlaug; Runolfsson, Halldor; Briem, Haraldur; Finnbjornsdottir, Ragnhildur Gudrun; Gudmundsson, Sigurdur; Kolbeinsson, Thorir Björn; Thorsteinsson, Throstur; Pétursdóttir, Gudrun

    2012-01-01

    Objectives The study aimed to determine whether exposure to a volcanic eruption was associated with increased prevalence of physical and/or mental symptoms. Design Cohort, with non-exposed control group. Setting Natural disasters like volcanic eruptions constitute a major public-health threat. The Icelandic volcano Eyjafjallajökull exposed residents in southern Iceland to continuous ash fall for more than 5 weeks in spring 2010. This study was conducted during November 2010–March 2011, 6–9 months after the Eyjafjallajökull eruption. Participants Adult (18–80 years of age) eruption-exposed South Icelanders (N=1148) and a control population of residents of Skagafjörður, North Iceland (N=510). The participation rate was 72%. Main outcome measures Physical symptoms in the previous year (chronic), in the previous month (recent), General Health Questionnaire (GHQ-12) measured psychological morbidity. Results The likelihood of having symptoms during the last month was higher in the exposed population, such as; tightness in the chest (OR 2.5; 95% CI 1.1 to 5.8), cough (OR 2.6; 95% CI 1.7 to 3.9), phlegm (OR 2.1; 95% CI 1.3 to 3.2), eye irritation (OR 2.9; 95% CI 2.0 to 4.1) and psychological morbidity symptoms (OR 1.3; 95% CI 1.0 to 1.7). Respiratory symptoms during the last 12 months were also more common in the exposed population; cough (OR 2.2; 95% CI 1.6 to 2.9), dyspnoea (OR 1.6; 95% CI 1.1 to 2.3), although the prevalence of underlying asthma and heart disease was similar. Twice as many in the exposed population had two or more symptoms from nose, eyes or upper-respiratory tract (24% vs 13%, p<0.001); these individuals were also more likely to experience psychological morbidity (OR 4.7; 95% CI 3.4 to 6.5) compared with individuals with no symptoms. Most symptoms exhibited a dose–response pattern within the exposed population, corresponding to low, medium and high exposure to the eruption. Conclusions 6–9 months after the Eyjafjallajökull

  17. Using the Schur Complement to Reduce Runtime in KULL's Magnetic Diffusion Package

    SciTech Connect

    Brunner, T A; Kolev, T V

    2010-12-15

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the full system. Significant improvements in the solution time are observed for several test problems.

  18. Chemical conversion of sulphur dioxide on Eyjafjallajökull's volcanic ash from the 2010 eruption

    NASA Astrophysics Data System (ADS)

    Dupart, Yoan; Burel, Laurence; Delichere, Pierre; George, Christian; D'Anna, Barbara

    2013-04-01

    Volcanic eruptions induce important climatic and weather modifications. When volcanic ashes are emitted into the atmosphere they can travel for several weeks according to their size distribution and altitude of the emission. Eyjafjallajökull eruption, between April 14th and May 23th, is considered as a medium-size eruption. The upper level winds advected ashes over the UK and continental Europe. During volcanic eruptions high amounts of SO2 were injected into the atmosphere (from 50 to 200 ppbv)[1]. Previous works showed that SO2 could be convert into sulfate on mineral dust surfaces under dark conditions[2]. However, no conversion has been studied with real volcanic ashes and under day conditions (light exposure). For this study, real Eyjafjallajökull's ashes samples, collected on the 2010.04.18 at Seljavellir, were used. The ashes were deposited on a horizontal cylindrical coated-wall flow tube reactor surrounded by 5 fluorescent lamps (340-420 nm). The kinetic studies revealed that the presence of UV-A irradiation enhanced the conversion of SO2 on ashes samples. Moreover chemical analyses as XPS, Ion Chromatography and SEM were performed on volcanic ashes before and after exposition to SO2. XPS and ion chromatography analyzes showed that the presence of light increase the SO2 uptake on ashes surfaces and convert it into ions sulphate. Beside SEM analyses disclosed that the conversion takes place systematically on an iron oxide site . By combining kinetics and chemical analysis we are able to propose a new mechanism for the SO2 conversion on mineral surfaces under light conditions. 1. Self, S., et al., Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 2006. 248(1-2): p. 518-532. 2. Zhang et al., Heterogeneous Reactions of Sulfur Dioxide on Typical Mineral Particles, J. Phys. Chem. B, 2006

  19. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland

    PubMed Central

    Thór Marteinsson, Viggó; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G; Gaidos, Eric

    2013-01-01

    Subglacial lakes beneath the Vatnajökull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3–v5 and v4–v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4–v6 libraries are 3–8 times higher than in corresponding v3–v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajökull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome. PMID:22975882

  20. Numerical modeling of Drangajökull Ice Cap, NW Iceland

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug

    2016-04-01

    Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier extents. We apply our model to the Drangajökull ice cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-ice-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) ice surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical ice velocities. The modeled vertical ice velocities and ice surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier extent. Our results are placed in context with local lacustrine and marine climate proxies as well

  1. Stratigraphy and Morphology of Drumlins within the Múlajökull Active Drumlin Field, Iceland

    NASA Astrophysics Data System (ADS)

    Benediktsson, I. O.; Jonsson, S. A.; Schomacker, A.; Johnson, M. D.; Ingolfsson, O.

    2014-12-01

    Our current understanding of drumlin formation is largely based on investigations of individual drumlins either within Pleistocene drumlin fields or within the forefields of contemporary glaciers, showing variable composition and structure resulting in different models for drumlin genesis. The stratigraphy and morphology of drumlins within the active drumlin field at the Múlajökull surge-type piedmont glacier, Iceland, have been studied in order to shed light on their formation. A total of 110 drumlins where mapped and measured and their internal stratigraphy and composition were documented in three exposures. The exposures all revealed several till units where the youngest till truncates the older ones on the flanks of the drumlins and at the proximal side. A geomorphological study shows that drumlins within the 1992 surge end moraine are relatively long and narrow whilst drumlins further away from the current ice margin are wider and slightly shorter. Three models are proposed to explain the stratigraphy and morphological evolution of the drumlins within the Múlajökull drumlin field. Firstly, we suggest that radial crevasses in the glacier terminus lead to spatial differences in normal pressure at the base so that deposition is favoured beneath and erosion in between the crevasses and, consequently, the crevasse pattern of the glacier controls the location of the drumlins. Secondly, sediment accumulating beneath the crevasses acts as an obstacle to the ice, which decreases the ice flow and facilitates sedimentation. Simultaneously and subsequently, the accumulation of sediments is shaped by the ice flow into a drumlin. Thirdly we conclude that the drumlins are evolving from being wide and low to in the distal part to narrow and high in the proximal part. The drumlins are then maintained and their relief increases as the glacier erodes the sides and the proximal end of the drumlin and drapes new till layer over the landform.

  2. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption.

    PubMed

    Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Hooper, Andrew; Arnadóttir, Thóra; Pedersen, Rikke; Roberts, Matthew J; Oskarsson, Níels; Auriac, Amandine; Decriem, Judicael; Einarsson, Páll; Geirsson, Halldór; Hensch, Martin; Ofeigsson, Benedikt G; Sturkell, Erik; Sveinbjörnsson, Hjörleifur; Feigl, Kurt L

    2010-11-18

    Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.

  3. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    SciTech Connect

    Weeratunga, S K

    2008-11-06

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can be easily shared between these two code frameworks and concludes with a set of recommendations for its development.

  4. Precise hypocentre relocation of microearthquakes in a high-temperature geothermal field: the Torfajökull central volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Lippitsch, Regina; White, Robert S.; Soosalu, Heidi

    2005-01-01

    The Torfajökull volcanic system is one of approximately 30 active volcanoes comprising the neovolcanic zones of Iceland. The central volcano of the system is the largest silicic centre in Iceland with a caldera of approximately 12 km diameter. Its high-temperature geothermal system is one of the most powerful in Iceland. Torfajökull is a source of persistent seismicity, where both high- and low-frequency earthquakes occur. To study this microseismicity in detail, a temporary array of 20 broad-band seismic stations was deployed between 2002 June and November. These temporary stations were embedded in the permanent South Iceland Lowland (SIL) network and data from nine adjacent SIL stations were included in this study. A minimum one-dimensional (1-D) velocity model with station corrections was computed for earthquake relocation by inverting manually picked P- and S-wave arrival times from events occurring in the Torfajökull volcanic centre and its surroundings. High-frequency earthquakes from the Torfajökull volcanic centre were then relocated calculating a non-linear, probabilistic solution to the earthquake location problem. Subsequently, we correlated the waveforms of these 121 events (~2000 observations) to define linked events, calculated the relative traveltime difference between event pairs and solved for the hypocentral separation between these events. The resulting high-resolution pattern shows a tighter clustering in epicentre and focal depth when compared with original locations. Earthquakes are mainly located beneath the caldera with hypocentres between 1 and 6 km depth and lie almost exclusively within the geothermal system. A sharp cut-off in seismicity at 3 km suggests either that there is a marked temperature increase or that this is a structural boundary. No seismic activity was observed in the fissure swarms to the northeast (NE) and southwest (SW) of the volcanic centre.

  5. Observing the Calving Dynamics of Breiðamerkurjökull, Iceland, with Repeat UAV Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Jarosch, A. H.

    2014-12-01

    Since the summer of 2014, a cost-effective, fixed-wing UAV platform is used to map changes at the calving front of Breiðamerkurjökull, one of the largest outlet-glaciers of Vatnajökull, Iceland. The utilized wide angle camera (21 mm equivalent) delivers aerial images with a ground pixel resolution of approximately 18 cm, which are subsequently combined to digital elevation models (DEMs) mapping the calving front. Ground control points in the study area, measured with L1 phase GNSS receivers, are used to geo-locate the produced DEMs and ensure high quality co-registration between subsequent data sets. The 2 m wing span UAV platform is capable of 40 - 60 minutes of autonomous flight, guided by an open-source, open-hardware autopilot system (pixhawk.org) and thus can map rather large areas of the calving glacier. I will present results from the 2014 field season during which the calving front of Breiðamerkurjökull has been mapped repeatedly with data acquisition intervals ranging from hours to weeks. A lidar dataset from 2011 of the study region is used to validate the acquired DEM data and accuracy/precision statistics will be presented. I will also detail the UAV platform design, including instrumentation and flight mission planning.

  6. Array observations of seasonal seismic noise variations induced by glacier-fed rapids near Vatnajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Möllhoff, Martin; Eibl, Eva P. S.; Bean, Christopher J.; Vogfjörd, Kristin S.

    2016-04-01

    We analyse semi-continuous noise observed in seismic data from an array installed close to Lakagigar southwest of the Vatnajökull ice cap in Iceland. The noise appears in several distinct frequencies bands between 1 and 10 Hz. The bands have different spectral widths suggesting that several sources are acting simultaneously. The back azimuths obtained from array fk-analysis suggest that the observed noise originates mainly from rapids and waterfalls in Hverfisfljot, a glacial river originating from the glacial tongue Sidujökull in the southwest of Vatnajökull. This observation is supported by stream gauge measurements. The seismic noise is only observed between May and September when the water level exceeds a threshold value that lies above the relatively constant lower water level during the winter months. A more detailed analysis of noise back azimuth, noise slowness and the correlation between seismic noise and river level are expected to improve the understanding of water-flow induced seismic noise. This noise source has to be kept in mind when searching for suitable array locations as this overlaps the typical frequency band of e.g. volcanic or flood related tremor. Additionally the observations demonstrate that seismic array data can be useful to infer river states remotely.

  7. The drumlin field and the geomorphology of the Múlajökull surge-type glacier, central Iceland

    NASA Astrophysics Data System (ADS)

    Jónsson, Sverrir Aðalsteinn; Schomacker, Anders; Benediktsson, Ívar Örn; Ingólfsson, Ólafur; Johnson, Mark D.

    2014-02-01

    Here we present a new geomorphological map of the active drumlin field and the forefield of Múlajökull, a surge-type outlet glacier, Iceland. The map is based on aerial photographs taken in 1995 and LiDAR data recorded in 2008. Mapping was done using ArcGIS 10 software on orthorectified imagery, LiDAR data and digital elevation models. The mapped landforms were initially identified on the aerial imagery and LiDAR and then ground-checked in the field. We mapped subglacial, supraglacial, ice-marginal, periglacial, and glaciofluvial landforms. The geomorphology of the Múlajökull forefield is similar to that of the forefields of other surge-type glaciers in Iceland: with a highly streamlined forefield, crevasse-fill ridges, and series of glaciotectonic end moraines. However, the large number (i.e., 110) of drumlins forming the drumlin field is unique for modern Icelandic surge-type glaciers and, as yet, unique for contemporary glaciers in general. Also apparent is that the drumlins are wider and shorter in the distal part of the drumlin field and narrower and longer in the proximal part. Hence, the mapping reveals a development of the drumlins toward a more streamlined shape of the proximal landforms that have experienced more surges. The drumlins in the drumlin field are active, i.e., they form during the modern surges of Múlajökull.

  8. The impacts of the Öræfajökull eruption in AD 1362 and climate change on cultural landscape dynamics in the province of Öræfi south of Vatnajökull glacier, Iceland

    NASA Astrophysics Data System (ADS)

    Sigurmundsson, F.; Gísladóttir, G.; Erlendsson, E.

    2013-12-01

    Environmental changes can be attributed to both natural processes and human influences. The aim of this study is to examine the effects of volcanism and climate change on the development of land quality and cultural landscapes in the province of Öræfi in the Austur-Skaftafellssýsla district, south of Vatnajökull glacier, over the last 1100 years. Few areas in Iceland are as vulnerable to climate changes and volcanic eruptions as the region south of Vatnajökull glacier. The region has been repeatedly affected by tephra fallout from explosive eruptions, most notably the Öræfajökull eruption in AD 1362. This research employs historical written sources to investigate changes in the cultural and natural landscape. Historical and palaeoenvironmental data will be accumulated and stored in a database designed for the research, allowing data to be analyzed and presented on maps. Preliminary results show that from the onset of the settlement in the late 9th century until AD 1362 Öræfi was a wealthy, densely populated farming society, with many large farm estates and large number of livestock (cattle and sheep) sustained by the natural vegetation. The farm estates were 40 by the mid 14th century and the churches were four. The first records of land ownership show that the Church had accumulated the most valuable holdings in Öræfi shortly before the Öræfajökull volcanic eruption in AD 1362. Out of the 40 farm estates 12 belonged to the Church and on a national scale the churches in Öræfi were richer in livestock, sacramentals and missals compared to churches in other parts of Iceland. The Öræfajökull volcanic eruption in AD 1362 had devastating long term impact on the settlement and terrestrial ecosystem in Öræfi. The area was abandoned following the eruption and in the early 15th century only eight out of the 40 farm estates prior to the eruption were settled. The values of the estates shrunk dramatically as did the arable land. The number of churches

  9. The Eyjafjallajökull 2010 eruptions: Correlation study of volcanic tremor and infrasound

    NASA Astrophysics Data System (ADS)

    Jonsdottir, K.; Bean, C.; Vogfjord, K.; Ripepe, M.

    2012-04-01

    Volcanic far-field seismic tremor recorded at 7-20 km from the Eyjafjallajökull 2010 eruptions is investigated. Over a two months period, two very different eruptions occurred separated by 9 km and two days; an effusive flank eruption and later a highly explosive summit eruption. We observed high amplitude seismic tremor during the explosive eruption while the flank eruption produced very low amplitude tremor. Infrasound data collected for a few days during the summit eruption, as well as other data including plume height is also compared to the seismic tremor amplitude. We find that tremor amplitude does not scale with the plume height. However, in line with similar studies, the infrasound data, characterized by pressure pulses from the volcanic explosions, is seen to correlate temporally (0.55-0.6) with the seismic tremor data, characterized by repeating low frequency events. A high correlation in amplitude (0.8) is also found between these datasets. The analysis reveals a time lag of 15-20 seconds, where seismic low frequency events are seen prior to the infrasound events. This is consistent with co-located seismic tremor and infrasound sources at the eruptive crater, and a surface wave velocity of 1350-1500 m/s. Singlestation three component analyses (undertaken for several stations) of the seismic low frequency events further confirms that they contain Rayleigh wave energy.

  10. Aerosol formation in basaltic lava fountaining: Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Martin, Robert S.; Oppenheimer, Clive

    2012-10-01

    A short-lived episode of basaltic lava fountaining at Eyjafjallajökull volcano (March - April 2010) produced a low-altitude, ash-poor plume. We measured the composition of aerosol particles (sampled using a cascade impactor and filter packs), gases (sampled using filter packs), and volatile species scavenged by scoria and external water in order to investigate the formation and speciation of near-source aerosol (<2 min from emission). Samples were analyzed for volatile species (S, Cl and F) and metals (Na, K, Ca and Mg). The aerosol mass showed two unusual features: the prevalent size mode was finer than typically found in volcanic plumes (˜0.2μm, compared to >0.4 μm), and its composition was dominated by chloride rather than sulfate. We used two thermodynamic equilibrium models (E-AIM and HSC Chemistry v5.1) to show that the formation of particulate Cl- by condensation of HCl gas is more responsive to changes in ambient temperature than the oxidation of SO2 to SO42-, so that a low SO42-/Cl- ratio in aerosol particles is characteristic of volcanic emissions in cold climates. Field measurements suggested that the efficiency of SO2 to SO42- conversion inside the vent increased with lower explosivity. Volatiles adsorbed on the surface of scoria had significantly higher SO42-/halogen molar ratios than the aerosol samples. Several potential explanations for these differences are discussed.

  11. In-situ observations of Eyjafjallajökull ash particles by hot-air balloon

    NASA Astrophysics Data System (ADS)

    Petäjä, T.; Laakso, L.; Grönholm, T.; Launiainen, S.; Evele-Peltoniemi, I.; Virkkula, A.; Leskinen, A.; Backman, J.; Manninen, H. E.; Sipilä, M.; Haapanala, S.; Hämeri, K.; Vanhala, E.; Tuomi, T.; Paatero, J.; Aurela, M.; Hakola, H.; Makkonen, U.; Hellén, H.; Hillamo, R.; Vira, J.; Prank, M.; Sofiev, M.; Siitari-Kauppi, M.; Laaksonen, A.; lehtinen, K. E. J.; Kulmala, M.; Viisanen, Y.; Kerminen, V.-M.

    2012-03-01

    The volcanic ash cloud from Eyjafjallajökull volcanic eruption seriously distracted aviation in Europe. Due to the flight ban, there were only few in-situ measurements of the properties and dispersion of the ash cloud. In this study we show in-situ observations onboard a hot air balloon conducted in Central Finland together with regional dispersion modelling with SILAM-model during the eruption. The modeled and measured mass concentrations were in a qualitative agreement but the exact elevation of the layer was slightly distorted. Some of this discrepancy can be attributed to the uncertainty in the initial emission height and strength. The observed maximum mass concentration varied between 12 and 18 μg m -3 assuming a density of 2 g m -3, whereas the gravimetric analysis of the integrated column showed a maximum of 45 μg m -3 during the first two descents through the ash plume. Ion chromatography data indicated that a large fraction of the mass was insoluble to water, which is in qualitative agreement with single particle X-ray analysis. A majority of the super-micron particles contained Si, Al, Fe, K, Na, Ca, Ti, S, Zn and Cr, which are indicative for basalt-type rock material. The number concentration profiles indicated that there was secondary production of particles possibly from volcano-emitted sulfur dioxide oxidized to sulfuric acid during the transport.

  12. Tropospheric impacts of volcanic halogen emissions: first simulations of reactive halogen chemistry in the Eyjafjallajökull eruption plume

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda

    2013-04-01

    Volcanic plumes are regions of high chemical reactivity. Instrumented research aircraft that probed the 2010 Icelandic Eyjafjallajökull eruption plume identified in-plume ozone depletion and reactive halogens (Cl, BrO), the latter also detected by satellite. These measurements add to growing evidence that volcanic plumes support rapid reactive halogen chemistry, with predicted impacts including depletion of atmospheric oxidants and mercury deposition. However, attempts to simulate volcanic plume halogen chemistry and predict impacts are subject to considerable uncertainties. e.g. in rate constants for HOBr reactive uptake (see this session: EGU2013-6076), or in the high-temperature initialisation. Model studies attempting to replicate volcanic plume halogen chemistry are restricted by a paucity of field data that is required both for model tuning and verification, hence reported model 'solutions' are not necessarily unique. To this end, the aircraft, ground-based and satellite studies of the Eyjafjallajökull eruption provide a valuable combination of datasets for improving our understanding of plume chemistry and impacts. Here, PlumeChem simulations of Eyjafjallajökull plume reactive halogen chemistry and impacts are presented and verified by observations for the first time. Observed ozone loss, a function of plume strength and age, is quantitatively reproduced by the model. Magnitudinal agreement to reported downwind BrO and Cl is also shown. The model predicts multi-day impacts, with reactive bromine mainly as BrO, HOBr and BrONO2 during daytime, and Br2 and BrCl at night. BrO/SO2 is reduced in more dispersed plumes due to enhanced partitioning to HOBr, of potential interest to satellite studies of BrO downwind of volcanoes. Additional predicted impacts of Eyjafjallajökull volcanic plume halogen chemistry include BrO-mediated depletion of HOx that reduces the rate of SO2 oxidation to H2SO4, hence the formation of sulphate aerosol. The model predicts NOx is

  13. THE 1890 SURGE END MORAINE AT EYJABAKKAJÖKULL, ICELAND: A RE-ASSESSMENT OF A CLASSIC GLACIOTECTONIC LOCALITY

    NASA Astrophysics Data System (ADS)

    Benediktsson, I.; Schomacker, A.; Lokrantz, H.; Ingolfsson, O.

    2009-12-01

    This study reveals the glaciotectonic architecture and sequential evolution of the Eyjabakkajökull 1890 surge end moraines in Iceland. Based on morphological, geological and geophysical data from terrain cross-profiles, cross-sections and ground penetrating radar profiles, we demonstrate that three different models are required to explain the genesis of the Eyjabakkajökull moraines. Firstly, a narrow, single crested moraine ridge at the distal end of a marginal sediment wedge formed in response to decoupling of the subglacial sediment from the bedrock and associated downglacier sediment transport. Secondly, large lobate end-moraine ridges with multiple, closely spaced, narrow asymmetric crests formed by proglacial piggy-back thrusting. Thirdly, a new model shows that moraine ridges with different morphologies may reflect different members of an end-moraine continuum. This is true for the eastern and western parts of the Eyjabakkajökull moraines as they show similar morphological and structural styles which developed to different degrees. The former represents an intermediate member with décollement at 4-5 m depth and 27-33% shortening through multiple open anticlines that are reflected as moderately spaced symmetric crests on the surface. The latter represents an end member with décollement at about 27 m depth and 39% horizontal shortening through multiple high amplitude, overturned and overthrusted anticlines, appearing as broadly spaced symmetric crests. We propose that the opposite end member would be a moraine of multiple symmetric, wide open anticlinal crests of low amplitude. Our data suggest that the glacier coupled to the foreland to initiate the end-moraine formation when it had surged to within 70-190 m of its terminal position. This indicates a time frame of 2-6 days for the formation of the end moraines.

  14. Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud

    NASA Astrophysics Data System (ADS)

    Dacre, H. F.; Grant, A. L. M.; Johnson, B. T.

    2013-02-01

    The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4-18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

  15. Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud

    NASA Astrophysics Data System (ADS)

    Dacre, H. F.; Grant, A. L. M.; Johnson, B. T.

    2012-09-01

    The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4-18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small (<30 m diameter) particles. NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of <10 m diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

  16. Dynamics of three outlet glaciers on the Vatnajökull ice cap reconstructed through landsystem analysis

    NASA Astrophysics Data System (ADS)

    Maclachlan, John; Lee, Rebecca; Eyles, Carolyn

    2016-04-01

    Landsystem analysis uses genetically related landform-sediment assemblages, known as landsystem tracts, as evidence in the reconstruction of the geomorphic evolution of a landscape and subsequently provides further insight into the morphogenetic record. When used in conjunction with sedimentological data, results from this methodology are used to inform models of the subglacial conditions through the movement characteristics of the overriding glacier. Ultimately landsystem analysis allows modern systems to be used as analogues for ancient systems, which in turn facilitates more accurate paleoenvironmental reconstruction of ancient glacial sediments. The proglacial till plains, consisting of subglacial, proglacial and supraglacial sediments and landforms of three outlet glaciers of the Vatnajökull Ice Cap in southeast Iceland were explored using a combination of remote sensing techniques, geospatial analysis and field investigations. The three glaciers selected for study (Svínafellsjökull, Skaftafellsjökull and Morsárjökull) are separated by small mountain ridges but lie within close spatial proximity, limiting climatic variability on their behavior but allowing for variability in local influences such as variability in valley morphology. Although the three glaciers are sourced by the same ice cap and are within close proximity there are wide variations in the type, distribution and scale of landforms in the proglacial region including the presence of streamlined features, the relative relief of the landforms, and sediment types. Initial mapping of the proglacial region of each glacier was performed using geospatial software to explore and analyze LiDAR data and aerial imagery obtained from the Icelandic Meteorological Office. A high-resolution digital elevation model (DEM) of the proglacial region of each glacier was created from these remotely sensed data to illustrate the spatial distribution and scale of landforms. These features were ground-checked using

  17. The magmatic system beneath Torfajökull volcano, Iceland: A combination of radar and seismic interferometric analysis

    NASA Astrophysics Data System (ADS)

    Martins, J.; Hooper, A. J.; Draganov, D.; Ruigrok, E.; Hanssen, R. F.; White, R. S.; Soosalu, H.

    2013-12-01

    Torfajökull is the largest silicic volcanic centre in Iceland; it erupts infrequently, with only two eruptions in the last 1200 years, the latest of which was over 5 centuries ago. However, ongoing seismicity, deformation and geothermal activity within its large caldera (18x12 km diameter) indicate the continued presence of a long-lasting magma chamber. Using radar interferometry (InSAR) time series we analyse the area covering Torfajökull volcano. In addition to displacements related to the tectonic spreading of the area, we detect a pattern of subsidence in the SW region of Torfajökull's caldera, on-going since at least 1993, at rates of up to ~13 mm yr-1. The data can be fit reasonably well using a model of a NE-SW oriented spheroidal body at ~5 km depth, undergoing a pressure decrease that is uniform in space and time. One potential interpretation for this deformation is therefore that it is due to the presence of a cooling magma chamber. The estimated surface displacements from InSAR can be used to constrain the pressure change. However, because the resolution of the inferred magma chamber is poor and the elastic/rheological properties are not known, we do not have a unique solution. More insight into the geometry and rock properties can be gained using seismic interferometry (SI); cross-correlation of natural signals can be used to generate seismic records that simulate active sources, allowing tomographic analysis. For the SI processing we use seismic data acquired during 2005 at 30 stations sparsely distributed around the Torfajökull area. We divide the ambient noise recorded at two stations in portions of 1h, cross-correlate the corresponding portions and then sum the correlated results. The result is a retrieved surface-wave part of the Green's function between the two stations. This is repeated between all pairs of stations. Careful assessment of the quality of the retrieved Green's functions for small time windows allows analysis of the microseism

  18. On-land distribution and modes of deposition of the Eyjafjallajökull 2010 tephra

    NASA Astrophysics Data System (ADS)

    Larsen, G.; Thordarson, T.; Hoskuldsson, A.; Gudmundsson, M. T.; Sverrisdottir, G.; Oddsson, B.; Oskarsson, B. V.; Jonsdottir, I.; Oladottir, B.; Thorsteinsson, T.; Hartley, M. E.; Meara, R.

    2010-12-01

    The 14 April-22 May 2010 eruption at the Eyjafjallajökull volcano, Iceland, unexpectedly caused widespread disruption to aviation in Europe. The principal reason for this disruption was the large proportion of fine ash generated by the eruption coupled with the atmospheric conditions at the time. Although plume dispersal could be depicted by atmospheric dispersal models, modelling of ash concentration and grain size distribution in the plume was difficult due to poorly defined input (i.e. source) parameters and limited knowledge of atmospheric ash-removal rates. Mapping and sampling of the eruption products is an essential undertaking for quantitative determination of critical eruption parameters (e.g. erupted magma volume, magma discharge) and underpin other research on an eruption. Three main phases are distinguished during the 39 day-long 2010 summit eruption: a) an initial subglacial phase followed by subaerial explosive activity on April 14, lasting about four days and featuring semi-continuous phreatomagmatic explosions; b) a two-week-long (19 April-3 May) phase of weak magmatic explosions and lava emission; and c) a renewed moderately intense, sustained Vulcanian-type activity lasting 21 days. The erupted magma was trachy-andesite. In the initial phase fragmentation was intense, with about 50% of the tephra falling 20-55 km from the vents being ash finer than 63 µm in diameter. This near-field deposition of extremely fine ash was induced by ash aggregation and hail-formation within the plume. In the second phase the tephra fallout was minor, characterized by highly vesicular contorted platy pumices ranging in size from coarse ash to medium lapilli. Phase 3 was marked by renewed generation of extremely fine ash, although significantly less than in the initial phase. The heaviest tephra fall was limited to the Eyjafjallajökull ice cap where maximum measured thickness of the tephra blanket outside of the vent ramparts is close to seven metres. The lowlands

  19. Pressure and temperature estimates of the 2010 Eyjafjallajökull eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Keiding, J. K.; Sigmarsson, O.

    2010-12-01

    The Eyjafjallajökull volcano, Iceland, began erupting March 20 2010, following almost 200 years of quiescence. The eruption, which was preceded by 4 months of precursory activity, evolved from an initial phase of effusive activity at the pass of Fimmvörduháls through an explosive phase underneath the Eyjafjallajökull glacier, until the cessation of activity in late May. Eruptive products indicate pervasive magma mingling between two endmembers: An early mildly alkaline basalt and a late-stage trachyandesite with 46 wt% and approximately 60 wt% SiO2, respectively. Phenocryst compositions vary greatly with olivines ranging from Fo80 to Fo46, feldspars vary from An69 to An9, and Mg-number of clinopyroxene range from 72 down to 19. We examine mineral and co-existing melt compositions from tephra samples to place preliminary constraints on magma storage depths and crystallization temperatures during the eruption. P-T estimates were computed from the pyroxene + liquid and plagioclase + liquid thermobarometers of Putirka (2008). To avoid crystal-whole-rock pairs unlikely to yield valid P-T estimates, several data filters were employed. Preliminary results show that the early basaltic eruptions at Fimmvörduháls have magmatic temperatures of 1160 (± 25°C) and a narrow temperature range (< 30°C) at any given depth. In contrast, trachyandesite products crystallized at lower temperatures (1020-1060°C) deduced from the most primitive melt-mineral compositions ranging down to 950 °C (± 25°C) for the most evolved plagioclase compositions (An9). Pressure estimates based on clinopyroxene geobarometry (Putirka, 2008) yield an average pressure of 5.1 kbar (± 1.1 kbar) for the basaltic tephra and lower pressure (3.8 kbar) for the trachyandesite. However, the trachyandesite shows larger scatter in calculated pressures ranging down to 1 kbar. The maximum pressure calculated here from the basaltic tephra is consistent with MELTS modelling pointing towards pressures about or

  20. SEVIRI 4D-var assimilation analysing the April 2010 Eyjafjallajökull ash dispersion

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2016-04-01

    We present first results of four dimensional variational (4D-var) data assimilation analysis applying SEVIRI observations to the Eulerian regional chemistry and aerosol transport model EURAD-IM (European Air Pollution Dispersion - Inverse Model). Optimising atmospheric dispersion models in terms of volcanic ash transport predictions by observations is especially essential for the aviation industry and associated interests. Remote sensing satellite observations are instrumental for ash detection and monitoring. We choose volcanic ash column retrievals of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) because as infrared instrument on the geostationary satellite Meteosat Second Generation it delivers measurements with high temporal resolution during day and night. The retrieval method relies on the reverse absorption effect. In the framework of the national initiative ESKP (Earth System Knowledge Platform) and the European ACTRIS-2 (Aerosol, Clouds, and Trace gases Research InfraStructure) project, we developed new modules (forward and adjoint) within the EURAD-IM, which are able to process SEVIRI ash column data as observational input to the 4D-var system. The focus of the 4D-var analysis is on initial value optimisation of the volcanic ash clouds that were emitted during the explosive Eyjafjallajökull eruption in April 2010. This eruption caused high public interest because of air traffic closures and it was particularly well observed from many different observation systems all over Europe. Considering multiple observation periods simultaneously in one assimilation window generates a continuous trajectory in the phase space and ensures that past observations are considered within their uncertainties. Results are validated mainly by lidar (LIght Detection And Ranging) observations, both ground and satellite based.

  1. Eyjafjallajökull ash concentrations derived from both lidar and modeling

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Bocquet, Marc; Royer, Philippe; Winiarek, Victor; Raut, Jean-Christophe; Labazuy, Philippe; Gouhier, Mathieu; Lardier, MéLody; Cariou, Jean-Pierre

    2012-10-01

    Following the eruption of the Icelandic volcano Eyjafjallajökull on the 14 April 2010, ground-based N2-Raman lidar (GBL) measurements were used to trace the temporal evolution of the ash plume from 16 to 20 April 2010 above the southwestern suburb of Paris. The nighttime overpass of the Cloud-Aerosol LIdar with Orthogonal Polarization onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite (CALIPSO/CALIOP) on 17 April 2010 was an opportunity to complement GBL observations. The plume shape retrieved from GBL has been used to assess the size range of the particles size. The lidar-derived aerosol mass concentrations (PM) have been compared with model-derived PM concentrations held in the Eulerian model Polair3D transport model, driven by a source term inferred from the SEVIRI sensor onboard Meteosat satellite. The consistency between model and ground-based wind lidar and CALIOP observations has been checked. The spatial and temporal structures of the ash plume as estimated by each instrument and by the Polair3D simulations are in agreement. The ash plume was associated with a mean aerosol optical thickness of 0.1 ± 0.06 and 0.055 ± 0.053 for GBL (355 nm) and CALIOP (532 nm), respectively. Such values correspond to ash mass concentrations of ˜400 ± 160 and ˜720 ± 670 μg m-3, respectively, within the ash plume, which was lower than 0.5 km in width. The relative uncertainty is ˜75% and mainly due to the assessment of the specific cross-section assuming an aerosol density of 2.6 g cm-3. The simulated ash plume is smoother leading to integrated mass of the same order of magnitude (between 50 and 250 mg m-2).

  2. Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment

    PubMed Central

    Gislason, S. R.; Hassenkam, T.; Nedel, S.; Bovet, N.; Eiriksdottir, E. S.; Alfredsson, H. A.; Hem, C. P.; Balogh, Z. I.; Dideriksen, K.; Oskarsson, N.; Sigfusson, B.; Larsen, G.; Stipp, S. L. S.

    2011-01-01

    On April 14, 2010, when meltwaters from the Eyjafjallajökull glacier mixed with hot magma, an explosive eruption sent unusually fine-grained ash into the jet stream. It quickly dispersed over Europe. Previous airplane encounters with ash resulted in sandblasted windows and particles melted inside jet engines, causing them to fail. Therefore, air traffic was grounded for several days. Concerns also arose about health risks from fallout, because ash can transport acids as well as toxic compounds, such as fluoride, aluminum, and arsenic. Studies on ash are usually made on material collected far from the source, where it could have mixed with other atmospheric particles, or after exposure to water as rain or fog, which would alter surface composition. For this study, a unique set of dry ash samples was collected immediately after the explosive event and compared with fresh ash from a later, more typical eruption. Using nanotechniques, custom-designed for studying natural materials, we explored the physical and chemical nature of the ash to determine if fears about health and safety were justified and we developed a protocol that will serve for assessing risks during a future event. On single particles, we identified the composition of nanometer scale salt coatings and measured the mass of adsorbed salts with picogram resolution. The particles of explosive ash that reached Europe in the jet stream were especially sharp and abrasive over their entire size range, from submillimeter to tens of nanometers. Edges remained sharp even after a couple of weeks of abrasion in stirred water suspensions. PMID:21518890

  3. Glacier retreat and projected river regime changes in the hydrologically highly-coupled Virkisjökull catchment, Iceland

    NASA Astrophysics Data System (ADS)

    Flett, Verity; Kirkbride, Martin; Black, Andrew; Everest, Jez; MacDonald, Alan

    2016-04-01

    Virkisjökull, an outlet glacier of the Oræfajökull icecap in SE Iceland, currently has 60% glacier cover, though this is reducing due to glacier retreat. Intensive monitoring over the last 4 years includes measurement of measuring ice ablation, proglacial discharge, dye-tracing of flow pathways, and deployment of three automatic weather stations at altitudes up to 880 m. These data calibrate a distributed hydrological model (WaSIM) to project potential river regime during stages of glacier retreat. Results show: (1) glacier hypsometry sensitises the catchment to a disproportionately rapid increase in runoff as the snowline rises onto a gentle ice cap resulting in in a potential annual increase in river discharge of up to 37% (2) a dominantly channelized glacial drainage system in all seasons with a rapid runoff response to melt: englacial flow of 0.58 m s-1 is comparable to the proglacial river velocity; and (3) longer-term, reduced glacier cover and snow storage will lead to a discharge regime dominated by short-term precipitation events in all seasons, and a reduced influence of the seasonal meltwater discharge peak. The study demonstrates the importance of glacier hypsometry above the present ELA as an influence on catchment hydrological response to potential climate warming.

  4. Effects of Eyjafjallajökull Volcanic Ash on Innate Immune System Responses and Bacterial Growth in Vitro

    PubMed Central

    Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.

    2013-01-01

    Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268

  5. 3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Lupi, Matteo; Mordret, Aurélien; Jakobsdóttir, Steinunn S.; Miller, Stephen A.

    2016-05-01

    From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6 km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8 s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6 km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5 km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5 km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5 km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.

  6. Smectites and zeolites in ash from the 2010 summit eruption of Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Paque, M.; Detienne, M.; Maters, E. C.; Delmelle, P.

    2016-09-01

    Hydrothermal alteration minerals are often incorporated in volcanic ash from phreatic and phreatomagmatic activity. Here we assess the presence and abundance of such minerals in the ash materials produced during the April-May 2010 initial phreatomagmatic ( phase I) and subsequent magmatic ( phases II and III) eruptions of Eyjafjallajökull volcano, Iceland. The results of X-ray diffraction analyses reveal significant quantities of smectites (up to 4 wt%, mainly as saponite) and zeolites (up to 7 wt%) in ash from phase I. While a minor amount of smectites (<0.5 wt%) is present in ash from the subsequent weak explosive activity ( phase II), both smectites and zeolites are absent in phase III ash. This material was generated following abrupt rejuvenation of explosive activity in the absence of magma-ice/water interaction. Smectites and zeolites in phase I ash result primarily from scouring of altered volcanic rocks in the subsurface, although some may derive also from water-rock interaction within the summit ice cauldrons through which fragmented magma was injected. We show that incorporation of smectites and zeolites in phase I ash can explain its anomalously high specific surface area. Further, the presence of these minerals in ash may enhance its ability to act as ice nuclei as well as favour particle aggregation processes in the volcanic plume/cloud. Finally, the Eyjafjallajökull eruption represents another case in which ash fallout acted as an exogenic source of 2:1-type clay minerals in volcanic soils.

  7. A 300 Year Surge History of the Drangajökull Ice Cap, Northwest Iceland: Surge Frequency and Little Ice Age Maximum

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, S.; Schomacker, A.; Ingolfsson, O.; Gudmundsdottir, E. R.

    2014-12-01

    Over the last 300 years, each of the three surge-type outlet glaciers of the Drangajökull ice cap in north-west Iceland has surged 2-4 times. There is valuable historical information available on the surge frequencies since the Little Ice Age (LIA) maximum because of the proximity of the surging outlets, Reykjarfjarðarjökull, Leirufjarðarjökull and Kaldalónsjökull to farms and pastures. We have reconstructed the surge history of the Drangajökull ice cap, based on geomorphological mapping, sedimentary studies and review of historical records. Geomorphological mapping of the glacier forefields revealed twice as many end-moraines than previously recognized. This indicates a higher surge frequency than previously perceived. A clear relationship between the surge frequency and climate cannot be established, however, surges were more frequent during the 19th century and the earliest 20th century compared to the cool 18th century and the warmer late part of the 20th century. We have estimated the magnitude of the LIA maximum surge events by reconstruction of Digital Elevation Models (DEMs) that can be compared with modern DEMs. As reference points for the digital elevation modelling we used the recently mapped lateral moraines and historical information on the exposure timing of nunataks. During the LIA maximum surge events the outlet glaciers extended 3-3.5 km further down-valley than at present. Their ice volumes were at least 2-2.5 km3 greater than after their most recent surges in the beginning of the 21st century.

  8. Geomorphology and the Little Ice Age extent of the Drangajökull ice cap, NW Iceland, with focus on its three surge-type outlets

    NASA Astrophysics Data System (ADS)

    Brynjólfsson, Skafti; Schomacker, Anders; Ingólfsson, Ólafur

    2014-05-01

    Detailed geomorphological maps from the forefields of three surging outlets of the Drangajökull ice cap, northwest Iceland, are presented. The maps are based on field studies in 2011-2013, high resolution orthorectified aerial photographs recorded in 2005-2006, and airborne LiDAR data from 2011. The maps cover an area of about 40-60 km2 each. Furthermore, we present an overview map that covers the area surrounding the Drangajökull ice cap. Landforms and sediments were manually registered in a geographic information system (ESRI ArcGIS 10). We mapped glacial landforms such as flutes, ice-sculpted bedrock, hummocky moraine, kame terraces, and moraines. Fluvial landforms include outwash plains/sandur, pitted sandur, and eskers. In addition raised beaches were mapped. The Little Ice Age (LIA) maximum extent of Drangajökull and its outlet glaciers are fingerprinted by surficial till deposits and freshly glacially scoured bedrock. Sediments distal to the LIA deposits were recorded and consist mainly of late Weichselian and early Holocene sediments and locally weathered bedrock. Periglacial activity is demonstrated by patterned ground, mainly occurring on the 500-700 m high plateaux, and three rock glaciers. At least 3-4 surge events are described from each of the outlet glaciers, occurring over the last three centuries. In contrast to most other surge-type outlets from Icelandic ice caps, the Drangajökull outlets are confined within valleys, which affect the forefield geomorphology. Glaciofluvial landforms, moraines, and a thin sheet of till with numerous boulders are characteristic for the forefields of the Drangajökull outlets.

  9. Episodic expansion of Drangajökull, Vestfirðir, Iceland, over the last 3 ka culminating in its maximum dimension during the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif

    2016-11-01

    Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.

  10. Weathering of the Öræfajökull 1362 and the Vatnaöldur 1477 tephra and their impact on soils south of Vatnajökull, SE-Iceland

    NASA Astrophysics Data System (ADS)

    Bonatotzky, Theresa; Ottner, Franz; Gísladóttir, Guðrún

    2015-04-01

    Icelandic soils are highly influenced by volcanic activity and most have developed from igneous rocks of basaltic composition. Volcanism has impacted the settlement south of Vatnajökull since the area was colonised in the late 9th century AD. The most devastating eruption occurred in Öræfajökull volcano in 1362. The eruption was explosive and produced large amounts of rhyolitic tephra, which at present can be found in soil profiles as a light coloured layer with thickness of up to tens of cm. Another important tephra layer preserved in the soils of this area is the basaltic tephra from a Vatnaöldur eruption in 1477, within the Bárðarbunga volcanic system. We investigated two wetland sites in Kálfafell (64°10,749'N, 15°53,236'W) and Reynivellir (64°7,731'N, 16°3,245'W) in the lowlands close to the sea, south of Vatnajökull in SE-Iceland. The predominant climate in the study area is humid and mild with cool summers and mild winters with a mean annual temperature of approximately 5°C and a lot of precipitation. The soils can be classified as Histosols with a large quantity of organic matter and show clearly formed tephra layers. This provides a unique opportunity to study not only the weathering of tephra, but also the formation and development of soils originated from these tephra layers. Tephra and soil samples were analysed concerning their chemical properties, mineralogy and a special focus on the clay content. Complementary studies regarding the soil organic matter (SOM) were done and entered into the question of how the organic carbon is bound in the soil. We present the results of the weathering of the two different tephra layers and their contrasting mineralogy. In addition, the weathering and transformation of the minerals in the soils are presented. This approach enables comparison between the weathering behaviour of tephra of different composition and their impact on soil.

  11. Reawakening of a volcano: Activity beneath Eyjafjallajökull volcano from 1991 to 2009

    NASA Astrophysics Data System (ADS)

    Hjaltadóttir, Sigurlaug; Vogfjörd, Kristín S.; Hreinsdóttir, Sigrún; Slunga, Ragnar

    2015-10-01

    The ice-capped Eyjafjallajökull volcano, south Iceland, had been dormant for 170 years when the first signs of reawakening of the volcano were captured by seismic and geodetic measurements in 1994. These were the first clear observed signs of unrest followed by 16 years of intermittent magmatic unrest culminating in 2010 when two eruptions broke out on the flank and at the summit. We analyze seismic data from 1991 through 2008 and GPS data from 1992 to May 2009 to infer magma movements beneath the volcano. The relocated earthquakes reveal an overall pipe-like pattern northeast of the summit crater, sporadically mapping the pathway of magma from the base of the crust towards an intrusion in the upper crust. During the study period, three major seismic swarms were recorded. Two of them, in 1994 and 1999-2000, occurred in the upper and intermediate crust and accompanied crustal deformation centered at the southeastern flank. No uplift was detected during the 19- to 25-km-deep 1996 swarm, near the crust-mantle boundary, but the horizontal, ~ E-W oriented T-axes indicate a period of tension/opening, suggesting magma intruding up into the base of the crust. The GPS measured deformation during 1999-2000 can be modeled as intrusion of a horizontal, circular sill with volume of 0.030 ± 0.007 km3 at 5.0 ± 1.3 km depth. The less constrained 4.5- to 5-km-deep sill model for the 1994 episode indicates a three times smaller intruded volume (0.011 km3) than during 1999-2000. In the years between/following the intrusions, contraction was observed at the southeastern flank. The contraction from 2000.5 to 2009.3 can be fitted by a circular sill model with a volume contraction of - 0.0015 ± 0.0003 km3/year at 5.5 ± 2.0 km depth. The less well constrained model for 1994.7 to 1998.6 gives a volume contraction of -(0.0009-0.0010) km3 at a fixed depth of 5 km. The accumulated volume changes (~- 0.013 km3 for the second period, ~ 0.0037 km3 for the first period) are much larger than

  12. Seismogenic ';trapdoors' during magma intrusion at Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    White, R. S.; Tarasewicz, J.; Brandsdottir, B.; Schonnman, C.

    2013-12-01

    Relocated earthquake hypocentres for >1000 microearthquakes that occurred prior to and during the 2010 fissure and summit eruptions of Eyjafjallajökull volcano in Iceland map out magma conduits from the upper mantle (30 km depth) to the surface. During the two weeks prior to the first, flank eruption, hypocentre locations lie predominantly in horizontally separated clusters at 3-4 km below sea level. They represent the filling with magma of an inflating sill beneath the eastern flank of the volcano, from which feeder dykes propagated laterally and vertically toward the flank eruption site three days prior to the eruption onset. The majority of events within some clusters of up to >100 earthquakes exhibit similar waveforms and identical patterns of P-wave first-motion polarities recorded across the monitoring network. In the clearest example, 104 out of 105 events in a single cluster appear to have the same source mechanism based on P-wave first-motion polarities and waveform similarity. These observations suggest that the clusters of similar events may comprise many earthquakes generated by source processes that have the same orientation of failure, perhaps even on the same rupture plane, in fixed locations that are repeatedly active. The epicentral clustering and similarity of source mechanisms suggest that much of the seismicity was generated at approximately static constrictions to magma flow in an inflating sill. These constrictions may act as a form of pressure valve or ';trapdoor' in the country rock, which ruptures when the melt pressure exceeds a critical level, then reseals after a pulse of melt has passed through. We infer that the magmatic intrusion causing the seismicity was likely to be a laterally inflating sill at 3-4 km depth, with seismogenic pinch-points occurring between aseismic compartments of the sill, or between adjacent magma lobes as they inflate. A second eruption followed from the summit, 8 km west of the first eruption site. During the

  13. Eyjafjallajökull2010 - The activity of the eruption plume during the first 2 weeks

    NASA Astrophysics Data System (ADS)

    Sigurősson, Árni; Pálmason, Bolli; Hlíőar Jensen, Esther; Petersen, Gudrun Nina; Björnsson, Halldór; Şorsteinsson, Hróbjartur; Arason, Şórőur

    2010-05-01

    On 14 April 2010 an eruption started in Eyjafjallajökull, in southern Iceland. This was an explosive eruption in the caldera, beneath the glacier. During the first two weeks the eruption went through two phases, an explosive phase with much tephra and ash production and a calmer phase with less productivity and some lava production. During the explosive phase 14-17 April, the plume altititude was about 5-7 km but occasionally increased up to 8 km height, there was lightning activity in the plume and the material produced was mainly ash and tephra. It is estimated that the production was peaked at about 750 tons/s. The local ash fall on 17 April was the worst by far for the local community to the south of the volcano as about a 1 km thick ash cloud flowed almost continuously from the volcano and over the region. During this phase the upper level winds over Iceland were strong, northwesterly 40-50 m/s, and the emitted ash was advected southeastward toward northwestern Europe. This caused major disruption in air traffic. During the second phase 18-29 April there was a reduced net output form the volcano, lava production was estimated as 10-30 tons/s and tephra and ash production of less than 10 tons/s. The height of the plume was estimated as 3-5 km. Local ash fall predictions were made for the areas within a 500 km radius from the eruption site and prediction maps published on the website of the Icelandic Met Office. Information on local ash fall were collected from synoptic weather stations but also from the general public and the media. An internet web registration form was made public and advertised. In 6 days 95 reports of ash fall were made. This information together with other ground observations and remote sense observations are important for validations of ash fall prediction, near field and far field, as well as ensuring that the impact of the volcanic eruption is well understood, in a geological, geophysical and biological sense but also the societal

  14. A theoretical model of drumlin formation based on observations at Múlajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Iverson, Neal R.; McCracken, Reba; Zoet, Lucas; Benediktsson, Ívar; Schomacker, Anders; Johnson, Mark; Finlayson, Andrew; Phillips, Emrys; Everest, Jeremy

    2016-04-01

    Theoretical models of drumlin formation have generally been developed in isolation from observations in modern drumlin forming environments - a major limitation on the empiricism necessary to confidently formulate models and test them. Observations at a rare modern drumlin field exposed by the recession of the Icelandic surge-type glacier, Múlajökull, allow an empirically-grounded and physically-based model of drumlin formation to be formulated and tested. Till fabrics based on anisotropy of magnetic susceptibility and clast orientations, along with stratigraphic observations and results of ground penetrating radar, indicate that drumlin relief results from basal till deposition on drumlins and erosion between them. These data also indicate that surges cause till deposition both on and between drumlins and provide no evidence of the longitudinally compressive or extensional strain in till that would be expected if flux divergence in a deforming bed were significant. Over 2000 measurements of till density, together with consolidation tests on the till, indicate that effective stresses on the bed were higher between drumlins than within them. This observation agrees with evidence that subglacial water drainage during normal flow of the glacier is through channels in low areas between drumlins and that crevasse swarms, which reduce total normal stresses on the bed, are coincident with drumlins. In the new model slip of ice over a bed with a sinusoidal perturbation, crevasse swarms, and flow of subglacial water toward R-channels that bound the bed undulation during periods of normal flow result in effective stresses that increase toward channels and decrease from the stoss to the lee sides of the undulation. This effective-stress pattern causes till entrainment and erosion by regelation infiltration (Rempel, 2008, JGR, 113) that peaks at the heads of incipient drumlins and near R-channels, while bed shear is inhibited by effective stresses too high to allow

  15. New land, new opportunitites. Vegetation succession and soil formation within the heterogenous moraines formed by the Skaftafellsjökull and Breiðamerkurjökull outlet glaciers in Southeast Iceland.

    NASA Astrophysics Data System (ADS)

    Vilmundardóttir, Olga K.; Gísladóttir, Guðrún; Lal, Rattan

    2016-04-01

    Retreating glaciers expose heterogenous landscapes where primary vegetation succession becomes active. These glacier forelands are excellent sites to study the effects of landscape on vegetation establishment and the commencing soil formation. Where the location of the glacier terminus is known in time, a chronosequence can be established, thus allowing for assessing the role of time on both vegetation succession and soil development. In Iceland, glaciers have been more or less retreating since the end of the Little Ice Age in ~1890, exposing thick moraines mostly composed of ground basaltic material of volcanic origin. In a research from southeast Iceland, soil formation was studied in front of two outlet glaciers, Skaftafellsjökull and Breiðamerkurjökull, and the developing soil properties analyzed with regards to the age of the surface, vegetation, avifauna and topography. At Skaftafellsjökull, soils were sampled along three moraines of known age. The vegetation was dominated by mosses but dwarf shrubs and shrubs (willows and birch) characterized the older moraines. Vegetation cover and plant group cover was affected by the profile position (summit, shoulder, backslope, footslope, toeslope) and the shape of the topographic features (ridge, slope, depression). The cover was significantly greater in toeslopes and footslopes when compared to the backslopes and featured significantly more shrub cover. The vegetation cover was significantly denser in depressions than on ridges and slopes, predominantly comprising mosses and shrubs. On the other hand, macro-lichens predominated on ridges. The vegetation cover and soil properties showed the strongest relation between total vegetation cover, cover of mosses, macro-lichens and dwarf shrubs. The concentration of SOC, N and ammonium oxalate extractable Al increased significantly with increase in vegetation cover and showed similar trends of increase in the cover by mosses, macro-lichens and dwarf shrubs. Profile

  16. Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

    SciTech Connect

    Brunner, T A; Kolev, T V

    2010-12-17

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the full system. Significant improvements in the solution time are observed for several test problems.

  17. Fractionation and Mobility of Thallium in Volcanic Ashes after Eruption of Eyjafjallajökull (2010) in Iceland.

    PubMed

    Karbowska, Bozena; Zembrzuski, Wlodzimierz

    2016-07-01

    Volcanic ash contains thallium (Tl), which is highly toxic to the biosphere. The aim of this study was to determine the Tl concentration in fractions of volcanic ash samples originating from the Eyjafjallajökull volcano. A sequential extraction scheme allowed for a study of element migration in the environment. Differential pulse anodic stripping voltammetry using a flow measuring system was selected as the analytical method to determine Tl content. The highest average content of Tl in volcanic ash was determined in the fraction entrapped in the aluminosilicate matrix (0.329 µg g(-1)), followed by the oxidizable fraction (0.173 µg g(-1)). The lowest content of Tl was found in the water soluble fraction (0.001 µg g(-1)); however, this fraction is important due to the fact that Tl redistribution among all the fractions occurs through the aqueous phase.

  18. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Francis, Peter N.; Cooke, Michael C.; Saunders, Roger W.

    2012-10-01

    A robust method to detect volcanic ash, using data from the infrared channels of the Spinning Enhanced Visible and Infrared Imager instrument mounted on-board Meteosat Second Generation, is presented. The simultaneous retrieval of quantitative volcanic ash physical properties using a one-dimensional variational analysis framework is also described. These methods are demonstrated using data from the Icelandic Eyjafjallajökull eruption in 2010. Sensitivity experiments are presented which show that the retrieved quantities are strongly dependent on the choice of ash refractive index data used in the retrieval scheme's radiative transfer model. Validation of the retrieved properties is carried out against lidar data, which demonstrate that the retrievals are realistic, and which indicate the most suitable refractive index data sets to use for these cases.

  19. Time Scale of Gas Accumulation before the 2010 Eyjafjallajökull Eruption (Iceland) from 210Po Radioactive Excess

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2015-12-01

    The 2010 mildly explosive eruption at Eyjafjallajökull, Iceland, produced mingled tephra of benmoreitic and trachytic composition whereas alkali basalt was emitted during preceding flank eruption. Tephra of the first explosive phase are composed of three glass types, alkaline rhyolite, mixed benmoreite, and basalt. The early formed benmoreitic tephra (erupted on 15 and 17 April 2010) had large 210Po in excess of 210Pb [(210Po/210Pb)0= 1.88)] at the time of eruption, and possibly a small 210Pb excess over its parent 226Ra. In contrast, the preceding flank eruption produced basalt with (210Po)0 = 0, upon eruption, and the final trachyte (end of May 2010) had lost most of its 210Po during open-system degassing. The 210Po excess in the first erupted benmoreites is interpreted to result from 210Po degassing of basaltic magma and the accumulation of 210Po-enriched gas, either in the upper part of the basaltic intrusion, below the rhyolite-basalt interface, on in the pre-existing residual rhyolitic magma chamber. A model of radon and polonium accumulation in the rhyolitic reservoir, allows calculating the ratio of mass of basalt magma degassing over mass of magma accumulating excess gas. This ratio decreased from 20 to 15 over 2 days, implying zoned magma reservoir, with the uppermost and gas-richest part erupted first. The duration of pre-eruptive gas accumulation in this model is approximately one year. This corresponds closely to the initiation of a seismic swarm beneath Eyjafjallajökull, early June 2009, which was the first pre-eruptive signal detected. The coincidence between initiation of gas accumulation at relatively shallow depth and deeper seismicity strongly suggests that the excess gas phase originated from a basalt magma batch intruded at depth, and that this gas phase reached the surface approximately a year later.

  20. Infrasonic propagation from the 2010 Eyjafjallajökull eruption: Investigating the influence of stratospheric solar tides

    NASA Astrophysics Data System (ADS)

    Green, D. N.; Matoza, R. S.; Vergoz, J.; Le Pichon, A.

    2012-11-01

    The stratospheric infrasound duct, formed between Earth's surface and altitudes of ˜50 km, is sensitive to spatiotemporal variations in stratospheric wind speed and temperature. Infrasound recorded at long range from the 2010 summit eruption of Eyjafjallajökull volcano, Iceland, exhibits temporal variability correlated with diurnal stratospheric solar tidal wind speed variations. Between 18 and 28 April 2010, signal observations at stations BKNI, U.K. (range, 1745 km), and IS18, Greenland (range, 2285 km), exhibit prominent diurnal variations in infrasonic amplitude, bandwidth, back azimuth, and apparent speed, which we identify using the CLEAN spectral analysis algorithm for unevenly sampled time series. Results of 3-D acoustic ray tracing through operational atmospheric specifications indicate that tidal wind speed variations (with amplitudes of ˜20 m/s) can generate diurnal variations in the proportion of the acoustic wavefield propagating within the stratospheric acoustic duct. Range-dependent meteorology is required; propagation modeling using averaged meteorological profiles fails to predict the leakage of acoustic energy out of the stratospheric acoustic duct at times of low observed signal amplitudes. Ray tracing correctly predicts the phase of the observed signal amplitude and apparent speed variations. Diurnal variability in ducting, combined with diurnal variations in ambient noise at the sensors, can explain the observed signal bandwidth variations. Back azimuth variations (observed only along the Eyjafjallajökull to BKNI path) are not predicted by 3-D ray tracing. Tidal variations have implications for models of infrasound array network detection capability and for studies that utilize amplitude and bandwidth measurements to make inferences about the acoustic source.

  1. The 2010 Eyjafjallajökull and 2011 Grimsvötn ash plumes as seen by GPS

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Hreinsdottir, S.; Gudmundsson, M. T.

    2015-12-01

    The injection of a volcanic plume introduces a dynamic, localized, short-term heterogeneity in the atmosphere. Satellite-imagery based remote sensing techniques provide good spatial coverage for the detection of such plumes, but slow satellite repeat times (>30 minutes) and cloud cover can delay, if not entirely prevent, the detection. GPS, in turn, provides excellent temporal coverage, but requires favorable satellite-station-geometry such that the signal propagates through the plume if it is to be used for plume detection and analysis. Two methods exist to detect / analyze ash plumes with GPS: (a) Ash-heavy plumes result in signal dispersion and hence a lowered signal-to-noise ratio (SNR). A lowered SNR, recorded by some receivers, can provide useful information about the plume, such as location and velocity of ascent. These data can be evaluated directly as they are recorded by the receiver; without the need of solving for a receiver's position. (b) Wet plumes refract the GPS signals piercing the plume and hence induce a propagation delay. When solving for a receiver position GPS analysis tools do not model this localized phase delay effect and solutions for plume-piercing satellites do not fit the data well. This can be exploited for plume analysis such as the estimation of changes to the atmospheric refractivity index. We analyze GPS data of the ~2 month 2010 Eyafjallajökull erption and the week-long 2011 Grímsvötn eruption to infer a first order estimate of plume geometry and its progression. Using SNR and phase delay information, we evaluate the evolution of the partitioning of wet versus dry parts of the plume. During the GPS processing we iteratively solve for phase-delay and position and fix other parameters, hence reducing the mapping of least-squares misfit into position estimates and other parameters. Nearly continuous webcam imagery provides independent observations of first-order plume characteristics for the Eyafjallajökull event.

  2. Clastic injection dynamics during ice front oscillations: A case example from Sólheimajökull (Iceland)

    NASA Astrophysics Data System (ADS)

    Ravier, Edouard; Buoncristiani, Jean-François; Menzies, John; Guiraud, Michel; Portier, Eric

    2015-06-01

    Soft-sediment deformation structures are being increasingly used as a tool for reconstructing palaeoenvironments and porewater pressure conditions in glacial settings. However, the potential of hydrofractures and clastic injections in the reconstruction of ice dynamics remains poorly constrained. This paper presents the results of a detailed study of a clastic injection network outcropping in the Sólheimajökull forefield (South Iceland). Sedimentological descriptions are combined with microscopic to macroscopic analyses of clastic injection geometries, sediment-fills, and cross-cutting relationships. The 250 m long and 20 m high exposure observed along the east flank of the proglacial braid plain displays alternating glaciofluvial sediments and subglacial tills, illustrating oscillations of the ice margins. These sediments are cross-cut by a dense network of injection composed of dykes propagating upward or downward, sills, and stepped sills. These clastic injections result from processes of hydrofracturing and the sediment-fills in these hydrofractures are generally laminated with an increase of grain-size towards the centre of the injections. These fracture-fill characteristics suggest multiple injection phases within the hydrofractures and an increase of porewater pressure over time. Five main generations of clastic injections showing different senses of propagation and dip directions are determined and are interpreted as forming in different environments. Per descensum clastic dykes dipping down ice demonstrate subglacial hydrofracturing underneath flowing-ice, while sills and per ascensum clastic dykes form in submarginal to marginal environments due to the decrease of ice overburden pressure. The integration of these results with the sedimentological characteristics allows the Holocene ice front oscillations of the Sólheimajökull to be reconstructed. This study demonstrates the importance of hydrofracture systems and their sediment-fills in the

  3. Rhyolite volcanism at Öræfajökull Volcano, Iceland - geochemistry, field relations & 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Walker, Angela; Burgess, Ray; McGarvie, David; Smellie, John

    2010-05-01

    Öræfajökull is Iceland's largest stratovolcano, situated at the southern tip of Vatnajökull Glacier in the south east of the island. Its position away from the extensional tectonic forces of the rift zone has enabled the build-up of a substantial edifice 2110m in height. The majority of the volcanic edifice, including its 5km wide caldera is covered by glacial ice, leaving only the southern flanks of the volcano exposed. This area of South East Iceland has been completely glaciated at least 16 times in the last 5 million years (Helgason and Duncan, 2001) and evidence from previous field studies suggests that throughout periods in the geological past, Öræfajökull and the surrounding area were covered by ice to a much greater extent than we see today (Stevenson et al., 2006). The volcano has erupted twice since historical records began, in 1727 and 1362, the latter being one of Iceland's most explosive historical eruptive events producing over 6x109m3 of rhyolitic tephra (Selbekk and Trønnes, 2007). However, the abundance of hyaloclastite present across much of the exposed southern flank of the edifice suggests that Öræfajökull has been at its most active during glacial periods (Prestvik, 1979). The post-eruptive geomorphic evolution of volcanic deposits at Öræfajökull has been dominated by volcano-ice interaction and characteristic glaciovolcanic landforms are evident at many exposures. A multidisciplinary approach combining field observation, geochemistry and isotope geochronology is being utilised in order to establish the geological evolution of the Goðafjall area on the southern flanks of Öraefajökull and a record of regional minimum ice thicknesses during the development of the volcanic edifice throughout the varying climatic conditions of the mid to late Quaternary. Individual eruptive events have been identified in the field using a combination of traditional field mapping techniques and geochemistry, and the units are being dated using 40Ar

  4. Structural evolution triggers a dynamic reduction in active glacier length during rapid retreat: Evidence from Falljökull, SE Iceland

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys; Finlayson, Andrew; Bradwell, Tom; Everest, Jez; Jones, Lee

    2014-10-01

    Over the past two decades Iceland's glaciers have been undergoing a phase of accelerated retreat set against a backdrop of warmer summers and milder winters. This paper demonstrates how the dynamics of a steep outlet glacier in maritime SE Iceland have changed as it adjusts to recent significant changes in mass balance. Geomorphological evidence from Falljökull, a high-mass turnover temperate glacier, clearly shows that between 1990 and 2004 the ice front was undergoing active retreat resulting in seasonal oscillations of its margin. However, in 2004-2006 this glacier crossed an important dynamic threshold and effectively reduced its active length by abandoning its lower reaches to passive retreat processes. A combination of ice surface structural measurements with radar, lidar, and differential Global Navigation Satellite Systems data are used to show that the upper active section of Falljökull is still flowing forward but has become detached from and is being thrust over its stagnant lower section. The reduction in the active length of Falljökull over the last several years has allowed it to rapidly reequilibrate to regional snowline rise in SE Iceland over the past two decades. It is possible that other steep, mountain glaciers around the world may respond in a similar way to significant changes in their mass balance, rapidly adjusting their active length in response to recent atmospheric warming.

  5. Tracking the seismicity preceding and during the March 2010 Fimmvörduháls fissure eruption and April 2010 summit eruption of Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Tarasewicz, J.; Brandsdottir, B.; Hensch, M.; White, R. S.

    2010-12-01

    Using Coalescence Microseismic Mapping (CMM) we have located over 9,000 earthquakes in the period starting two weeks prior to the Fimmvörduháls fissure eruption at the northeastern margin of the Eyjafjallajökull stratovolcano, South Iceland. CMM is an automatic earthquake detection and location program developed at Cambridge University which performs a search in time and space for a best-fit earthquake location. This is done by migrating both P and S wave energy from each seismometer location back into the subsurface and finding an optimum event location where the back-projected energy coalesces within a specified search volume by fitting it to a grid for which P- and S-wave travel times have been calculated from each point in the grid to every seismometer. Following a prolonged period of escalating seismicity we deployed six temporary, three-component, broadband seismometers around the Eyjafjallajökull volcano on 5th March 2010. Data from these seismometers were augmented by data from the eight closest seismometers of the permanent network operated by the Icelandic Meteorological Office (IMO). During March 2010, sustained seismic activity was concentrated primarily between 3-6 km depth under the northeastern flank of the Eyjafjallajökull volcano. To first order, the seismicity migrated eastwards away from the Eyjafjallajökull caldera and towards the first eruption site at Fimmvörduháls during the two weeks prior to eruption. We attribute this to melt movement within the crust. However, clusters in three (or more) discrete locations on the northeastern flank are observed to have been active simultaneously, or with activity alternating between locations, suggesting that magma movement was more complex than a single dyke propagating towards the Fimmvörduháls eruption site. Seismic activity decreased markedly in the two days prior to the onset of the fissure eruption on March 20th. The fissure eruption continued until 12th April and was a pre-cursor to the

  6. Moment- and Stress-Tensor-Inversion of volcanic earthquakes: Constraining driving forces of the 2010 eruptions at Eyjajfallajökull (Iceland)

    NASA Astrophysics Data System (ADS)

    Hensch, M.; Brandsdottir, B.; Cesca, S.; Lund, B.

    2013-12-01

    The Eyjafjallajökull stratovolcano is located at the western border of the Eastern Volcanic Zone (EVZ) in South Iceland, west of Mýrdalsjökull (Katla). Since the settlement in Iceland, three eruptions have been documented in Eyjafjallajökull before 2010, in 920, 1612 and 1821-1823. Following three episodes of persistent microearthquake activity in the 1990s, seismicity increased again in spring 2009 under the northeastern flank of Eyjafjallajökull. The activity raised throughout the year and culminated in an intense earthquake swarm in February-March 2010. Simultaneous inflation observed by GPS and InSAR data confirmed magmatic accumulation within the volcano which heralded the subsequent eruptions. In early March, the permanent seismic network around the volcano was augmented by additional stations to enhance hypocentral earthquake locations and to improve the liability of focal solutions. Earthquake locations revealed more than one accumulation zone at shallow (3-5 km) depth beneath the northeastern flank of the volcano throughout March 2010. The seismic clusters migrated eastwards during the week prior to the Fimmvörduháls flank eruption on 21. March. The 14. April summit eruption was preceded by a seismic cluster beneath the central part of the volcano. Focal mechanisms derived from P-wave polarity analysis indicate E-W striking reverse faulting for the February-March earthquake swarm, same as for an intrusion event in 1994. Normal faulting events were observed beneath the summit crater prior to the second eruption, indicating that magma was on its way to the surface. The scope of this study is to constrain driving forces of the intrusive activity beneath Eyjafjallajökull in detail by inverting focal mechanism data towards the stress tensor. This analysis reveals a significant change of the direction of maximum stress between the intrusion phase during the weeks before the eruptions and the final magma ascent prior to the summit eruption. Unstable T

  7. Quantifying landscape change following the 1999 jökulhlaup at Sólheimajökull, southern Iceland

    NASA Astrophysics Data System (ADS)

    Staines, Kate E. H.

    2010-05-01

    landscape and its recovery potential. Factors controlling these include the recurrence interval and magnitude of past jökulhlaups, glacier surging, glacial advance and retreat cycles and fluctuations in glacier discharge. This study aims to quantify the immediate landscape change associated with a jökulhlaup and examine the response of the landscape in the years following the flood. The study site is the outwash plain (sandur) of Sólheimajökull, an outlet glacier of the Mýrdalsjökull ice cap in southern Iceland. The most recent jökulhlaup, triggered by the eruption of the subglacial volcano Katla, was in July 1999. Field surveys of a boulder fan deposited during the flood at the snout of Sólheimajökull will be used to reconstruct flow palaeocompetence, with cross-sections of the river channel used to calculate peak discharge. From orthorectified pre- and immediate post-flood aerial imagery, digital elevation models will be generated and used to quantify net elevation change (i.e. sediment loss or gain) across the flooded area. Geomorphological maps of the proglacial area from before and in the decade following the flood have been produced and will be used to quantify changes in the main river channel, in terms of braiding and sinuosity parameters.

  8. Why do models predict such large ash clouds? An investigation using data from the Eyjafjallajökull eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Schwaiger, H.; Denlinger, R. P.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull volcano, Iceland caused unprecedented disruption of European air operations and a rethinking of current practices on avoidance of volcanic ash by aircraft. During eruptions, Volcanic Ash Advisory Centers (VAACs) are responsible for tracking and communicating ash-cloud location and movement to the aviation community. VAACs rely on numerical models to forecast ash-cloud movement, but models tend to predict larger ash clouds than are observed in satellite images, suggesting sometimes unnecessarily large areas of hazard. This discrepancy led to controversy during the Eyjafjallajökull eruption as pressure to open airspace increased and sporadic airborne measurements failed to find ash at some locations where models predicted it. We compare ash-cloud model simulations from our new Eulerian finite-volume model, Ash3d, with satellite, air, and ground-based measurements obtained by others during the Eyjafjallajökull eruption. Our objective is to examine the discrepancy between observed and modeled ash-cloud size and to consider possible causes. We used wind data from the NOAA Global Forecast System model, and modeled the period April 14-16 2010 using a plume height of 10 km, eruption rate of 2.5×10^4 kg/s, and a single grain size having fall velocity of 0.01 m/s. We did not calculate diffusion, meaning that all downwind widening of the plume occurred through wind advection and “numerical diffusion”, an artifact in which ash is smeared across cells in the model. Our model results are similar to others that have been publicly released. On April 16, satellite images show the migration of an east-west-oriented crescent-shaped, concave-northward cloud from southern Norway and Sweden southward toward Poland and Germany. By 1800UT, the cloud extended from near the German-Dutch border across the Czech Republic toward the northeast corner of Poland—an area of ~1×10^5 km^2 where ash load exceeded 0.1 T/km^2. In contrast, the modeled

  9. Using the 2010 Eyjafjallajökull eruption as an example of citizen involvement in scientific research

    NASA Astrophysics Data System (ADS)

    Klemetti, E. W.

    2010-12-01

    With the dramatic increase in realtime data for volcano monitoring (and many other earth science data) available on the internet, the interest in data analysis and observation by untrained citizens is increasing rapidly. These volcanologic data sources include, but are not limited to, seismic information, webicorders, webcams, GPS, water and gas fluxes. The easy access to these data has allowed not only for the public to see the raw data that volcanologists use to assess and predict activity of a volcanic system, but also to actively participate in the process of volcano monitoring. This can be manifested in activities such observation of the changes in volcanic behavior via webcams to manipulation of seismic data to analyze for changes in the character of the seismicity. However, the biggest challenge for citizen analysis and participation in volcano monitoring is providing guidance and structure for these data as they are presented on the internet. The 2010 eruption of Eyjafjallajökull in Iceland provided an opportunity to observe and develop a community of “citizen scientists” interested in volcano monitoring on the internet. The readers of the volcano blog Eruptions followed the pre-, during and post-eruptive activity at Eyjafjallajökull while providing observations and data interpretations as time-stamped comments. During the eruption, the blog was viewed over 1,000,000 times and over 3,000 comments were left by readers. Many of these comments contained: (1) detailed descriptions of the current activity of the volcano as observed on the webcams; (2) observations on changes in seismicity as seen in realtime data provided by the Icelandic Meteorological Office and (3); reader-created compilations of various data in the form of images, tables of movies. By moderating the blog comments and providing corrections and insight to their observations, the readers felt that they were participating in an important way to the monitoring and recording of this historic

  10. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.

    2012-12-01

    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see http://www.icao.int/safety/meteorology/ivatf/Pages/default.aspx for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. <0.2, 0.2-2, 2-4, >4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial

  11. Excess 210Po in 2010 Eyjafjallajökull tephra (Iceland): Evidence for pre-eruptive gas accumulation

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Condomines, Michel; Gauthier, Pierre-Jean

    2015-10-01

    Excess gas phase in magmas erupting explosively is well known worldwide. However, the origin of this gas phase, in excess of what can be dissolved in the erupting magma at depth, and the rate of gas accumulation is less well defined. The 2010 mildly explosive eruption at Eyjafjallajökull, Iceland, produced mingled tephra of benmoreitic and trachytic composition whereas alkali basalt was emitted during preceding flank eruption. Tephra of the first explosive phase are composed of three glass types, alkaline rhyolite, mixed benmoreite, and basalt, which suggests that the basaltic magma intruded a pre-existing rhyolitic magma chamber, and ultimately triggered the eruption. The mixed benmoreitic tephra (erupted on 15 and 17 April 2010) had large 210Po in excess of 210Pb [(210Po /210Pb) 0 = 1.88 ] at the time of eruption, and possibly a small 210Pb excess over its parent 226Ra. In contrast, the preceding flank eruption produced basalt with (210Po) 0 = 0, upon eruption, and the final trachyte had lost most of its 210Po during open-system degassing. The 210Po excess in the first erupted benmoreites is interpreted to result from 210Po degassing of basaltic magma and the accumulation of 210Po-enriched gas, either in the upper part of the basaltic intrusion, below the rhyolite-basalt interface, or in the pre-existing residual rhyolitic magma chamber. From a simple model of radon and polonium accumulation in the rhyolitic reservoir, the ratio of the mass of basalt magma degassing over the mass of magma accumulating the excess gas decreased from 20 to 15 over 2 days, implying zoned magma reservoir, with the uppermost and gas-richest part erupting first. The duration of pre-eruptive gas accumulation in this model is approximately one year. This corresponds closely to the initiation of a seismic swarm beneath Eyjafjallajökull, early June 2009, which was the first pre-eruptive signal detected. The coincidence between initiation of gas accumulation at relatively shallow depth and

  12. Separation of volcanic ash and sulfur dioxide from the Eyjafjallajökull eruption, April-May 2010

    NASA Astrophysics Data System (ADS)

    Thomas, H. E.; Prata, F.; Carn, S. A.; Clarisse, L.; Watson, M. I.

    2010-12-01

    The ash cloud produced by the eruption of Eyjafjallajökull, Iceland during April and May 2010 caused major disruption to European airspace. One of the most significant consequences of the eruption was the introduction of an ash threshold limit, below which ash concentrations are deemed safe for aircraft. If ash dissipates rapidly, and therefore cannot be detected in near real-time, then it becomes difficult to advise whether it is safe for aircraft to fly through an area. This makes it even more imperative that measurement techniques are able to accurately monitor and quantify ash in near real-time. Separation of ash and SO2 from volcanic eruptions reveals that the two species have been observed to travel in opposing directions and at different altitudes. In most cases, clouds of SO2 are accompanied by very fine ash at levels below current detection limits, which itself poses a threat to aircraft. Furthermore, SO2 also presents a risk, causing respiratory problems for those on board and also in corrosion of the airframe. Satellite-based instruments are currently able to detect both species, with varying threshold limits. Ash concentrations in excess of 5 mg m-3 (assuming a cloud thickness of 500 m) were measured by satellite-based instruments during the period April 14 - May 24, and initially low SO2 concentrations were seen to increase during early May up to values approaching 1.2 mg m-3. Here we use a number of satellite-based sensors with varying spatial, spectral and temporal resolutions in order to investigate the separation and differential transportation of products from the Eyjafjallajökull eruption. Ash and SO2 detection using thermal infrared channels between 10 and 12 µm from the Meteosat Second Generation (MSG) SEVIRI instrument, the Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI), along with SO2 products from the ultraviolet Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2

  13. Origin of the active drumlin field at Múlajökull, Iceland: New insights from till shear and consolidation patterns

    NASA Astrophysics Data System (ADS)

    McCracken, Reba G.; Iverson, Neal R.; Benediktsson, Ívar Ö.; Schomacker, Anders; Zoet, Lucas K.; Johnson, Mark D.; Hooyer, Thomas S.; Ingólfsson, Ólafur

    2016-09-01

    Stratigraphic and morphologic data previously collected from the forefield of Múlajökull, Iceland, suggest that its recent surge cycles are responsible for the formation of drumlins there and that their relief reflects both deposition on drumlins and erosion between them. We have tested these ideas and aspects of leading models of drumlin formation by studying past patterns of bed deformation and effective stress in basal tills of the glacier's forefield. Patterns of till strain indicated by the anisotropy of magnetic susceptibility (AMS) of ∼2300 intact till samples indicate that till was deposited during shear deformation, with shearing azimuths and planes that conform to the drumlin morphology. Thus, till deposition occurred as drumlins grew, in agreement with LiDAR data indicating that the degree of aggradation of the glacier forefield is largest in areas subjected to the most surges. Previously described unconformities on the drumlin flanks, however, indicate that drumlin relief at Múlajökull has resulted, in part, from erosion. Given that the last surge deposited a till layer both on and between drumlins, a reasonable hypothesis is that erosion between drumlins occurred during normal (quiescent) flow of the glacier between surges. Densities of till samples, analyzed in conjunction with laboratory consolidation tests, indicate that effective stresses on the bed during such periods were on the order of 100 kPa larger between drumlins than within them, an observation consistent with subglacial channels at low water pressure occupying interdrumlin areas. Transport of sediment by turbulent flow in these channels or high effective stress adjacent to them causing enhanced till entrainment in ice or increased depths of bed deformation would promote the sediment flux divergence necessary to erode areas between drumlins. The observation that effective stresses were higher between drumlins than within them is the opposite of that presumed in leading models of

  14. In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    NASA Astrophysics Data System (ADS)

    Sandrini, S.; Giulianelli, L.; Decesari, S.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; Perrino, C.; Facchini, M. C.

    2014-01-01

    Continuous measurements of physical and chemical properties at the Mt. Cimone (Italy) GAW-WMO (Global Atmosphere Watch, World Meteorological Organization) Global Station (2165 m a.s.l.) have allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull (Iceland) eruption of spring 2010. The event affected the Mt. Cimone site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from April 19 to 21 and the second from 18 to 20 May 2010. This paper reports the modification of aerosol characteristics observed during the two episodes, both characterised by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (ionic chromatography, particle induced X-ray emission-particle induced gamma-ray emission (PIXE-PIGE) and inductively coupled plasma mass spectrometry (ICP-MS)) were performed on aerosols collected by ground-level discrete sampling. The resulting database allows the characterisation of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterised by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10 on 18 May, which was the most intense of the two episodes. These results appear

  15. Eyjafjallajökull and 9/11: the impact of large-scale disasters on worldwide mobility.

    PubMed

    Woolley-Meza, Olivia; Grady, Daniel; Thiemann, Christian; Bagrow, James P; Brockmann, Dirk

    2013-01-01

    Large-scale disasters that interfere with globalized socio-technical infrastructure, such as mobility and transportation networks, trigger high socio-economic costs. Although the origin of such events is often geographically confined, their impact reverberates through entire networks in ways that are poorly understood, difficult to assess, and even more difficult to predict. We investigate how the eruption of volcano Eyjafjallajökull, the September 11th terrorist attacks, and geographical disruptions in general interfere with worldwide mobility. To do this we track changes in effective distance in the worldwide air transportation network from the perspective of individual airports. We find that universal features exist across these events: airport susceptibilities to regional disruptions follow similar, strongly heterogeneous distributions that lack a scale. On the other hand, airports are more uniformly susceptible to attacks that target the most important hubs in the network, exhibiting a well-defined scale. The statistical behavior of susceptibility can be characterized by a single scaling exponent. Using scaling arguments that capture the interplay between individual airport characteristics and the structural properties of routes we can recover the exponent for all types of disruption. We find that the same mechanisms responsible for efficient passenger flow may also keep the system in a vulnerable state. Our approach can be applied to understand the impact of large, correlated disruptions in financial systems, ecosystems and other systems with a complex interaction structure between heterogeneous components.

  16. Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland

    PubMed Central

    Gudmundsson, Magnús T.; Thordarson, Thorvaldur; Höskuldsson, Ármann; Larsen, Gudrún; Björnsson, Halldór; Prata, Fred J.; Oddsson, Björn; Magnússon, Eyjólfur; Högnadóttir, Thórdís; Petersen, Guðrún Nína; Hayward, Chris L.; Stevenson, John A.; Jónsdóttir, Ingibjörg

    2012-01-01

    The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·1010 kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe. PMID:22893851

  17. Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland.

    PubMed

    Gudmundsson, Magnús T; Thordarson, Thorvaldur; Höskuldsson, Armann; Larsen, Gudrún; Björnsson, Halldór; Prata, Fred J; Oddsson, Björn; Magnússon, Eyjólfur; Högnadóttir, Thórdís; Petersen, Guðrún Nína; Hayward, Chris L; Stevenson, John A; Jónsdóttir, Ingibjörg

    2012-01-01

    The 39-day long eruption at the summit of Eyjafjallajökull volcano in April-May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·10¹¹ kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km³). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km³) transported by 3-10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·10¹⁰ kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km² in Europe and the North Atlantic. Of order 10¹⁰ kg (2%) are considered to have been transported longer than 600-700 km with <10⁸ kg (<0.02%) reaching mainland Europe.

  18. Untangling a crystal storm through time: how do 500 diffusion stopwatches inform our view of Eyjafjallajökull 2010?

    NASA Astrophysics Data System (ADS)

    Pankhurst, M. J.; Morgan, D. J.; Thordarson, T.; Loughlin, S.

    2014-12-01

    A new database of 500+ olivine crystal timescales from samples that encompass the duration of the 2010 Fimmvörðuháls-Eyjafjallajökull eruption is presented. We also integrate new petrologic, thermometric and barometric data to read a 4D narrative of the magmatic processes within this volcanic plumbing system preceding­­- and during- eruption. Using this perspective we can identify and semi-quantify magmatic componentry, detect new magmatic inputs, and 'watch' those crystal chemical populations age. We find that major crystal-liquid disequilibrium events occurred up to several years preceding the eruptions, and inputs fed the plumbing system during the eruption window (days - hours). We place timeframes upon processes including magma-mixing, mush remobilization and erosion, and final-ascent quenching and eruption. Fe-Mg binary diffusion in olivine modelling conducted upon this scale was made possible using new advances -also presented here- in both the gathering and processing of raw data, and extraction of timescale information. We demonstrate that this streamlined workflow can now produce statistically robust timescale data within an integrated petrologic and geochemical context that may be resolved alongside independent geophysical and other remote sensing data into a common dimension - time. Transposing petrologic information (record of past process) and geophysical observation (phenomenological in the present) into a common language is designed to produce new understanding of both active and palaeo- volcanic systems, the implications of which we discuss here using our case study as an example.

  19. Pioneer microbial communities of the Fimmvörðuháls lava flow, Eyjafjallajökull, Iceland.

    PubMed

    Kelly, Laura C; Cockell, Charles S; Thorsteinsson, Thorsteinn; Marteinsson, Viggó; Stevenson, John

    2014-10-01

    Little is understood regarding the phylogeny and metabolic capabilities of the earliest colonists of volcanic rocks, yet these data are essential for understanding how life becomes established in and interacts with the planetary crust, ultimately contributing to critical zone processes and soil formation. Here, we report the use of molecular and culture-dependent methods to determine the composition of pioneer microbial communities colonising the basaltic Fimmvörðuháls lava flow at Eyjafjallajökull, Iceland, formed in 2010. Our data show that 3 to 5 months post eruption, the lava was colonised by a low-diversity microbial community dominated by Betaproteobacteria, primarily taxa related to non-phototrophic diazotrophs such as Herbaspirillum spp. and chemolithotrophs such as Thiobacillus. Although successfully cultured following enrichment, phototrophs were not abundant members of the Fimmvörðuháls communities, as revealed by molecular analysis, and phototrophy is therefore not likely to be a dominant biogeochemical process in these early successional basalt communities. These results contrast with older Icelandic lava of comparable mineralogy, in which phototrophs comprised a significant fraction of microbial communities, and the non-phototrophic community fractions were dominated by Acidobacteria and Actinobacteria.

  20. Eyjafjallajökull and 9/11: The Impact of Large-Scale Disasters on Worldwide Mobility

    PubMed Central

    Woolley-Meza, Olivia; Grady, Daniel; Thiemann, Christian; Bagrow, James P.; Brockmann, Dirk

    2013-01-01

    Large-scale disasters that interfere with globalized socio-technical infrastructure, such as mobility and transportation networks, trigger high socio-economic costs. Although the origin of such events is often geographically confined, their impact reverberates through entire networks in ways that are poorly understood, difficult to assess, and even more difficult to predict. We investigate how the eruption of volcano Eyjafjallajökull, the September 11th terrorist attacks, and geographical disruptions in general interfere with worldwide mobility. To do this we track changes in effective distance in the worldwide air transportation network from the perspective of individual airports. We find that universal features exist across these events: airport susceptibilities to regional disruptions follow similar, strongly heterogeneous distributions that lack a scale. On the other hand, airports are more uniformly susceptible to attacks that target the most important hubs in the network, exhibiting a well-defined scale. The statistical behavior of susceptibility can be characterized by a single scaling exponent. Using scaling arguments that capture the interplay between individual airport characteristics and the structural properties of routes we can recover the exponent for all types of disruption. We find that the same mechanisms responsible for efficient passenger flow may also keep the system in a vulnerable state. Our approach can be applied to understand the impact of large, correlated disruptions in financial systems, ecosystems and other systems with a complex interaction structure between heterogeneous components. PMID:23950904

  1. Volcanic glass in surface sediments offshore southern Iceland: Can eruptions such as Eyjafjallajökull 2010 be traced in the marine archive?

    NASA Astrophysics Data System (ADS)

    Bonanati, Christina; Portnyagin, Maxim; Wehrmann, Heidi; Hoernle, Kaj

    2015-04-01

    Explosive volcanic eruptions on Iceland even of small to intermediate magnitude can cause significant economic loss and health risk to humans in the North Atlantic region. This was strikingly revealed by the recent eruptions of Eyjafjallajökull in 2010 and Grímsvötn in 2011, disrupting European and intercontinental air traffic. We are using the North Atlantic marine archive to reconstruct the Icelandic eruption record with the aim to refine and improve the hazard assessment associated with explosive volcanism. Thirteen giant box corers were obtained during RV Poseidon Cruise 457 in August 2013, at < 100 to 1,600 m water depths and distances between 40 and 400 km southwest, south and east of Iceland. Volcanic glass shards from the uppermost 1 cm of the surface sediment were analysed by electron microprobe for their major element composition. Our analytical setup included a spatially systematic approach to facilitate the determination of modal proportions of the different shard populations in two size fractions, <32 µm and >32 µm. In total, ~900 tephra particles were analysed. More than 80 % have mafic compositions. Most of them are derived from the Katla and Veiðivötn-Bárðarbunga volcanic systems as well as Grímsvötn-Lakagígar, where the eruptions of Grímsvötn in 2011 and Laki 1783/84 are the only possible sources. A few particles of felsic to intermediate composition correlate with those of Hekla and Snæfellsjökull volcanoes. The occurrence of tephra particles from the historic rhyolitic eruptions of Askja 1875 and Öræfajökull 1362 displays that the record covers at least the past 650 years and yields information about the tephra distribution and dimension of these eruptions. Unexpectedly, we found only two particles that correlate with the 2010 Eyjafjallajökull eruption, sourced from its trachydacitic portion. According to simple sedimentation chronology, this most recent eruption should be well represented in the surface sediment. Its

  2. Integrating Terrestrial Time-Lapse Photography with Laser Scanning to Distinguish the Drivers of Movement at Sólheimajökull, Iceland

    NASA Astrophysics Data System (ADS)

    How, P.; James, M. R.; Wynn, P.

    2014-12-01

    Glacier movement is attributed to a sensitive configuration of driving forces. Here, we present an approach designed to evaluate the drivers of movement at Sólheimajökull, an outlet glacier from the Myrdalsjökull ice cap, Iceland, through combining terrestrial time-lapse photography and laser scanning (TLS). A time-lapse camera (a dSLR with intervalometer and solar-recharged battery power supply) collected hourly data over the summer of 2013. The data are subject to all the difficulties that are usually present in long time-lapse sequences, such as highly variable illumination and visibility conditions, evolving surfaces, and camera instabilities. Feature-tracking software [1] was used to: 1) track regions of static topography (e.g. the skyline) from which camera alignment could be continuously updated throughout the sequence; and 2) track glacial surface features for velocity estimation. Absolute georeferencing of the image sequence was carried out by registering the camera to a TLS survey acquired at the beginning of the monitoring period. A second TLS survey (July 2013) provided an additional 3D surface. By assuming glacial features moved in approximately planimetrically straight lines between the two survey dates, combining the two TLS surfaces with the monoscopic feature tracking allows 3D feature tracks to be derived. Such tracks will enable contributions from different drivers (e.g. surface melting) to be extracted, even in imagery that is acquired not perpendicular to glacier motion. At Sólheimajökull, our aim is to elucidate any volcanic contribution to the observed movement.[1] http://www.lancaster.ac.uk/staff/jamesm/software/pointcatcher.htm

  3. Near Ice Oceanographic Observations of the Breiðamerkurjökull Glacier Melt Plume in Jökulsárlón Lagoon, Iceland

    NASA Astrophysics Data System (ADS)

    Brandon, M. A.; Hodgkins, R.

    2014-12-01

    The Breiðamerkurjökull glacier flows down from the Vatnajökull ice cap and it has a marine terminus in a lagoon connected to the North Atlantic Ocean. The lagoon waters have characteristics determined by the Atlantic water, subglacial run-off and the local melting of ice calved from the glacier. The lagoon is not a fjordic environment, but many similar physical processes are operating. We conducted four hydrographic sections within the lagoon to determine the effects of the ocean on the glacier. Three of the sections across the lagoon allow us to determine the pathway of Atlantic water towards the glacial ice. One hydrographic section of 16 stations along the Breiðamerkurjökull glacier face was always within 3 to 30m from the ice face. This very near ice section showed both the warmest and coldest water sampled in the lagoon. The coldest water was close to the maximum depth of our measurements and was formed through contact with the ice. A heat and salt conservation model has enabled the relative contributions of the inflowing Atlantic derived saline water, the sub glacial fresh water run-off and the melt from the ice face to be determined. Overall the dominant freshwater contribution to the lagoon in the upper 20 m is from the sub-glacial freshwater. Beneath 20 m the dominant factor is modified North Atlantic water. The contribution from melting ice is observed below 10 m, and below 40 m depth this is in layers. Individual CTD measurements show that within the layers of higher ice melt there are strong peaks of increased melt, and so there is a 3 dimensional structure to the melt. The highest resolution data we obtained show that the water at these depths is in places statically unstable.

  4. Volcanic ash transport integrated in the WRF-Chem model: a description of the application and verification results from the 2010 Eyjafjallajökull eruption.

    NASA Astrophysics Data System (ADS)

    Stuefer, Martin; Webley, Peter; Grell, Georg; Freitas, Saulo; Kim, Chang Ki; Egan, Sean

    2013-04-01

    Regional volcanic ash dispersion models are usually offline decoupled from the numerical weather prediction model. Here we describe a new functionality using an integrated modeling system that allows simulating emission, transport, and sedimentation of pollutants released during volcanic activities. A volcanic preprocessor tool has been developed to initialize the Weather Research Forecasting model with coupled Chemistry (WRF-Chem) with volcanic ash and sulphur dioxide emissions. Volcanic ash variables were added into WRF-Chem, and the model was applied to study the 2010 eruption of Eyjafjallajökull. We evaluate our results using WRF-Chem with available ash detection data from satellite and airborne sensors, and from ground based Lidar measurements made available through the AeroCom project. The volcanic ash was distributed into 10 different bins according to the particle size ranging from 2 mm to less than 3.9 μm; different particle size distributions derived from historic eruptions were tested. An umbrella shaped initial ash cloud and an empirical relationship between mass eruption rates and eruption heights were used to initialize WRF-Chem. We show WRF-Chem model verification for the Eyjafjallajökull eruptions, which occurred during the months of April and May 2010. The volcanic ash plume dispersed extensively over Europe. Comparisons with satellite remote sensing volcanic ash retrievals showed good agreement during the events, also ground-based LIDAR compared well to the model simulations. The model sensitivity analysis of the Eyjafjallajökull event showed a considerable bias of ass mass concentrations afar from the volcano depending on initial ash size and eruption rate assumptions. However the WRF-Chem model initialized with reliable eruption source parameters produced good quality forecasts, and will be tested for operational volcanic ash transport predictions.

  5. Field constraints for modeling the emplacement of the 2010 Gigjökull lava flow, southern Iceland: interplay between subaqueous, ice contact and subaerial lava emplacement

    NASA Astrophysics Data System (ADS)

    Edwards, B.; Oddsson, B.; Gudmundsson, M. T.; Rossi, R.

    2012-04-01

    One of the least accessible products of the 2010 Eyjafjallajokull eruption is the trachyandesite lava that flowed north from the summit eruption site down through Gigjökull glacier. Based on numerous overflights during 2010, syn-eruption satellite imagery and two on-site investigations in 2011, we have developed a preliminary model to illustrate the progressive movement of the complex lava flow down through Gigjökull. Previous workers have documented the events surrounding the explosive summit eruptions, including the flow path for the majority of the water derived from melting ~0.1 cubic km of summit ice, which moved over, through and beneath Gigjökull producing a series of jokulhlaups during April and May 2010. Overflights in 2010 and 2011 show that most of the upper parts of the lava flow are surfaced by oxidized, blocky lava that appears very similar to what would be expected from an entirely subaerial lava flow. However, exposures at the lowest end of the flow preserve a record documenting lava emplacement in water and through ice tunnels. We describe 8 different components visible in this northernmost, lowest part of the lava flow, including: (1) upper subaerial levee-bounded lava flow, (2) subaerial blocky lava bench, (3) subaqueous/ice contact lava mounds, (4) subaqueous/ice contact sheet lava complex, (5) ponded, glaciolacustrine sediments, (6) subaerial slabby lava flow, (7) subaqueous pillow lava lobes, and (8) ice-tunnel confined lava flows. In combination these 8 components are consistent a model for lava emplacement through a valley glacier. We propose that the lava flow, which appears to have started moving down the glacier from a tephra cone immediately north of the main summit craters after the largest of the jokulhlaups, exploited newly formed and/or pre-existing sub-ice drainage systems along the base of Gigjökull. Initial meltwater from the eruption site created/enhanced basal ice drainage systems. Lava flows exploited these drainage systems

  6. Exploring Structural Bond Energy Release (SBER) in Nanodiamonds Using Quantum Molecular Dynamics and Static High Pressure

    DTIC Science & Technology

    2008-12-01

    fluorescence line [Zha et al. 2000]. Raman spectra were obtained from an Ar+ ion laser operating at 514.5 nm with an optical system previously...shows a continuing separation of the particles, with the various polyatomic moieties departing from the sheared region of the NDs into the vacuum

  7. Volcanic unrest primed by ice cap melting: A case study of Snæfellsjökull volcano, Western Iceland

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Lupi, Matteo; Frehner, Marcel; Berger, Julien; Fuchs, Florian

    2014-05-01

    The most dramatic effect of global warming is the water level rise due to rapid melting of ice sheets. In addition, recent studies suggest that accelerated glacial retreat and associated lithospheric relaxation may enhance upwelling of magmatic fluids through the crust. Here, we investigate whether, also at short geological timescales, shallow magmatic systems may be affected by rapid melting of ice caps. As a case study, we chose the Snæfellsjökull volcanic system in western Iceland, whose ice cap is rapidly melting with 1.25 m(w.e.)/year. To investigate the role of deglaciation in promoting volcanic unrest we use a cross-disciplinary approach integrating geophysical field data, laboratory rheological rock tests, and numerical finite-element analysis. Initial results from seismic data acquisition and interpretation in 2011 show seismic activity (occasionally in swarm sequences) at around a depth range of 8-13 km, indicating the presence of a magmatic reservoir in the crust. In addition, a temporary seismic network of 21 broad-band stations has been deployed in spring 2013 and continuously collected data for several months, which will help better constrain the subsurface geometry. During summer 2013 we collected samples of Tertiary basaltic bedrock from the flanks of Snæfellsjökull, which we assume to be representative for the subsurface volcanic system. Cores drilled from these samples were tri-axially deformed in a Paterson-type apparatus at a constant strain rate of 10-5 s-1, a confining pressure of 50 MPa (i.e. ~2 km depth), and a temperature ranging from 200 °C to 1000 °C (i.e. various proximities to magma chamber). From the obtained stress-strain curves the static Young's modulus is calculated to be around 35 (±2) GPa, which is not significantly influenced by increasing temperatures up to 800 °C. Beyond the elastic domain, cataclastic shear bands develop, accommodating up to 7% strain before brittle failure. The subsurface geometrical constraints from

  8. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations

    NASA Astrophysics Data System (ADS)

    Bonadonna, C.; Genco, R.; Gouhier, M.; Pistolesi, M.; Cioni, R.; Alfano, F.; Hoskuldsson, A.; Ripepe, M.

    2011-12-01

    The April-May 2010 eruption of the Eyjafjallajökull volcano (Iceland) was characterized by a nearly continuous injection of tephra into the atmosphere that affected various economic sectors in Iceland and caused a global interruption of air traffic. Eruptive activity during 4-8 May 2010 was characterized based on short-duration physical parameters in order to capture transient eruptive behavior of a long-lasting eruption (i.e., total grain-size distribution, erupted mass, and mass eruption rate averaged over 30 min activity). The resulting 30 min total grain-size distribution based on both ground and Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) satellite measurements is characterized by Mdphi of about 2 ϕ and a fine-ash content of about 30 wt %. The accumulation rate varied by 2 orders of magnitude with an exponential decay away from the vent, whereas Mdphi shows a linear increase until about 18 km from the vent, reaching a plateau of about 4.5 ϕ between 20 and 56 km. The associated mass eruption rate is between 0.6 and 1.2 × 105 kg s-1. In situ sampling showed how fine ash mainly fell as aggregates of various typologies. About 5 to 9 wt % of the erupted mass remained in the cloud up to 1000 km from the vent, suggesting that nearly half of the ash >7ϕ settled as aggregates within the first 60 km. Particle sphericity and shape factor varied between 0.4 and 1 with no clear correlation to the size and distance from vent. Our experiments also demonstrate how satellite retrievals and Doppler radar grain-size detection can provide a real-time description of the source term but for a limited particle-size range.

  9. Contrasting snow and ice albedos derived from MODIS, Landsat ETM+ and airborne data from Langjökull, Iceland

    NASA Astrophysics Data System (ADS)

    Pope, Ed; Willis, Ian; Pope, Allen; Miles, Evan; Arnold, Neil; Rees, Gareth

    2015-04-01

    Surface albedo is a key parameter in the energy balance of glaciers and ice sheets because it controls the shortwave radiation budget, which is often the dominant term of a glacier's surface energy balance. Monitoring surface albedo is a key application of remote sensing and achieving consistency between instruments is crucial to accurate assessment of changing albedo. These measurements may then be used to quantify past reflectance, energy balance and melt characteristics. Here we compare near contemporaneous ETM+ (30 m), MODIS (250 m) and airborne multispectral imagery (ATM; 5 m) that were collected over Langjökull, Iceland's second largest ice cap (910 km2) in 2007. All three radiance datasets are converted to reflectance by applying commonly used atmospheric correction schemes: 6S and FLAASH. These are used to derive broadband albedos. We first compare the similarity of albedo values produced by the different atmospheric correction schemes for the same instrument, then contrast results from the different instruments. In this way we are able to evaluate the consistency of the available atmospheric correction algorithms and to consider the impacts of different spatial resolutions. Albedo is shown to be highly variable at small spatial scales. Different retrieval methods for surface albedo from the same instrument are shown to produce locally inconsistent measurements of surface albedo. Differences between the atmospheric correction schemes of 6S and FLAASH therefore produce significant contrasts in surface albedo. Comparison of the 6S corrected ATM dataset, a 6S corrected ETM+ dataset and an MCD43 dataset showed inconsistencies between the datasets associated with specific glacier facies. These differences result in contrasting stepped albedo maps which would imply spatially different melt regimes across the glacier surface. These inconsistencies are hypothesised to be the result of the certainty with which sub-pixel scale differences in albedo, Bi

  10. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  11. A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations

    NASA Astrophysics Data System (ADS)

    Turnbull, Kate; Johnson, Ben; Marenco, Franco; Haywood, Jim; Minikin, Andreas; Weinzierl, Bernadett; Schlager, Hans; Schumann, Ulrich; Leadbetter, Susan; Woolley, Alan

    2012-10-01

    On 17 May 2010, the FAAM BAe-146 aircraft made remote and in situ measurements of the volcanic ash cloud from Eyjafjallajökull over the southern North Sea. The Falcon 20E aircraft operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR) also sampled the ash cloud on the same day. While no "wingtip-to-wingtip" co-ordination was performed, the proximity of the two aircraft allows worthwhile comparisons. Despite the high degree of inhomogeneity (e.g., column ash loadings varied by a factor of three over ˜100 km) the range of ash mass concentrations and the ratios between volcanic ash mass and concentrations of SO2, O3 and CO were consistent between the two aircraft and within expected instrumental uncertainties. The data show strong correlations between ash mass, SO2concentration and aerosol scattering with the FAAM BAe-146 data providing a specific extinction coefficient of 0.6-0.8 m2 g-1. There were significant differences in the observed ash size distribution with FAAM BAe-146 data showing a peak in the mass at ˜3.5μm (volume-equivalent diameter) and DLR data peaking at ˜10μm. Differences could not be accounted for by refractive index and shape assumptions alone. The aircraft in situ and lidar data suggest peak ash concentrations of 500-800 μg m-3with a factor of two uncertainty. Comparing the location of ash observations with the ash dispersion model output highlights differences that demonstrate the difficulties in forecasting such events and the essential nature of validating models using high quality observational data from platforms such as the FAAM BAe-146 and the DLR Falcon.

  12. CALIOP observations of the transport of ash from the Eyjafjallajökull volcano in April 2010

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Liu, Z.; Omar, A.; Tackett, J.; Fairlie, D.

    2012-10-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is an elastic backscatter lidar carried on the CALIPSO satellite. CALIOP observations between 15 and 20 April 2010 of volcanic ash plumes following the eruption of the Icelandic Eyjafjallajökull volcano are reported here. While CALIOP has limited spatial coverage due to nadir-only sampling, ash plumes were observed by CALIOP over a wide region - from the North Atlantic Ocean to eastern Europe - during both day and night. Due to its nadir-only view, however, CALIOP did not sample the densest ash plumes which were observed by passive satellite sensors and ground-based lidar. Lidar depolarization and spectral backscatter signatures are used to discriminate ash layers from clouds. Most ash was observed in thin layers of laminar appearance with thicknesses ranging from 0.4 km to a little more than 1 km and at relatively low altitudes, between 1 and 7 km. Most layers reported here produced strong lidar depolarization, indicating a predominance of ash over sulfate aerosol in the plumes. Estimates of lidar extinction-to-backscatter ratio allow the retrieval of profiles of ash optical properties. Layers were observed with mean optical extinction ranging from 0.03 km-1 to nearly 1 km-1. Combined with an estimate of mass extinction efficiency, mass concentration profiles can also be estimated. These observations of the three-dimensional dispersion of the plume are complementary to observations from passive satellite instruments and ground-based lidars, and can be useful for verification of dispersion models such as those used by the Volcanic Ash Advisory Centers.

  13. Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Walker, A. J.; McGarvie, D. W.; Burgess, R.

    2016-08-01

    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations.

  14. Detailed subglacial topography and drumlins at the marginal zone of Múlajökull outlet glacier, central Iceland: Evidence from low frequency GPR data

    NASA Astrophysics Data System (ADS)

    Lamsters, Kristaps; Karušs, Jānis; Rečs, Agnis; Běrziņš, Dāvids

    2016-12-01

    New ground penetrating radar (GPR) observations on the Múlajökull surge-type outlet glacier, central Iceland, are presented. Overall 10.5 km of GPR profile lines were recorded parallel to the glacier margin in August, 2015. Detailed GPR investigations combined with high-accuracy GPS measurements allowed to build a high-resolution model of the subglacial topography. We provide new evidence of streamlined ridges beneath Múlajökull's marginal zone interpreted as drumlins and show the location of the upper edge of the drumlin field. This discovery improves understanding of the location, morphology and development of drumlins as other geophysical observations of subglacial bedforms beneath modern outlet glaciers are quite rare. The location of drumlins corresponds with the position of the major sets of crevasses in the digital elevation model (2008) suggesting the presence of additional drumlins beneath such crevasses in the ice-marginal zone. We suggest this semi-circular pattern of crevasses to be formed due to the variable glacier strain rates created by the subglacial topography. Numerous hyperbolic diffractions representing reflections of englacial channels are found in radar profiles suggesting a well-developed channelized drainage system of a surge-type glacier in its quiescence phase. The calculated thinning of the ice surface in the investigated area (0.65 km2) is on average 17.9 m during 2008-2015.

  15. Science in Support of Aviation-Risk Management since the April 2010 Eruption of Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Mastin, L. G.; Schneider, D. J.; Tupper, A.

    2010-12-01

    The nearly week-long airspace closure over large parts of Europe and the North Atlantic in April 2010 that resulted from dispersion of ash from the eruption of Eyjafjallajökull prompted a shift from the accepted global policy of strict avoidance by aircraft of ash-contaminated airspace to one of allowing flight through zones of dilute ash under some circumstances. This shift was made in a crisis environment of rapidly mounting economic losses and social disruptions extending well beyond the European region. To get the global air transportation system moving again, European aviation authorities and associated meteorological offices created a new type of advisory product depicting forecasted zones of low ash concentrations in Eyjafjallajökull’s clouds that could be transited with expectation of no or minimal risk of aircraft damage, under the condition of more frequent aircraft inspections and enhanced risk management by airlines. Preliminary data of the European Aviation Safety Agency indicate that transit through Eyjafjallajökull’s dilute ash clouds caused some wear (primarily abrasion) to a few aircraft, but not to the severity of degraded engine performance in flight; after inspections the aircraft were returned to service and continued to operate without problems. Following the crisis, recognizing that such a fundamental shift in risk management requires sound scientific and engineering bases, the International Civil Aviation Organization (ICAO) formed an International Volcanic Ash Task Force that, in conjunction with the World Meteorological Organization (WMO), will incorporate advice and recommendations from scientific, aviation, and engineering experts worldwide about ways to improve (1) situational awareness to aviation users of impending volcanic eruptions, (2) characterization of critical eruption source parameters for incorporation in forecast modeling, (3) detection and characterization of volcanic clouds, (4) accuracy of volcanic ash transport

  16. Unraveling the Eyjafjallajökull 2010 plumbing system and magma chamber dynamics through high-resolution geochemical investigations

    NASA Astrophysics Data System (ADS)

    Laeger, Kathrin; Petrelli, Maurizio; Andronico, Daniele; Scarlato, Piergiorgio; Cimarelli, Corrado; Misiti, Valeria; del Bello, Elisabetta; Perugini, Diego

    2016-04-01

    The April-May 2010 eruption of the Eyjafjallajökull volcano (EFJ, Iceland) was triggered by an intrusion of fresh magma coming from deeper portions of the crust migrating into shallower depth of 3-6 km in the magmatic system. Here, we present new EMPA and LA-ICP-MS analyses on groundmass glasses of ash particles erupted between 18 and 22 May 2010, the last days of the eruption. The glasses define two well separated groups. The first group is basaltic in composition with SiO2 ranging from 49.98 to 51.76 wt.% and a total alkali content (Na2O + K2O) in the range between 4.63 and 5.17 wt.%. The second group ranges between trachyandesitic and rhyolitic compositions with SiO2 ranging between 57.13 to 70.38 wt.% and a total alkali content from 7.21 to 10.90 wt.%. Least square modelling after Störmer and Nicholls (1978) discriminates best the origin of the basaltic glass by both fractional crystallization of a more primitive basalt or mixing of a basalt and a felsic magma. Furthermore, this model proves that the trachyandesitic range is the result of mixing of trachyandesite and trachyte magma. Magma mixing modeling after Langmuir (1978) and element concentration histograms indicate a probable incomplete magma mixing as the main process forming the great compositional variability observed in the erupted products. Finally, we estimated mixing end-members of intermediate (~59 wt.% SiO2) and felsic composition (~66-68 wt.% SiO2) with a felsic melt-proportion of 0.35-0.47. In the 90s, recorded seismicity and ground deformation indicated intrusions at shallow depth under the EFJ edifice probably forming separated sills. Therefore, the origin of the trachyandesite is presumably to find in a discrete magma batch that generated years before eruption. The rhyolite composition can be considered as the residual melt that remained in the plumbing system of EFJ since the last eruption in 1821-23. We suggest that these different magma batches formed the plumbing system of EFJ and have

  17. Simulation of the dispersion of the Eyjafjallajökull plume over Europe with the German operational weather forecast system

    NASA Astrophysics Data System (ADS)

    Vogel, Heike; Förstner, Jochen; Vogel, Bernhard; Hanisch, Thomas; Mühr, Bernhard; Schättler, Ulrich

    2010-05-01

    After resting for 187 years the vulcano Eyjafjallajökull, Island wake up again at March 20th, 2010. Starting at April 14th massive emissions of volcanic ash occurred and finally lead to a shut down of civil aviation over entire Europe. We transferred the comprehensive online coupled model system COSMO-ART (Vogel et al., 2009) so far used for research purposes into the operational forecast mode at Deutscher Wetter-dienst (German Weather Service, DWD). COSMO-ART is the extension of the operational weather forecast model of DWD. Six individual size distributions were simulated starting from 1 m up to 35 m. Deposition, sedimentation, and below cloud scavenging were taken into account. Source heights were taken as published by the volcanic ash advisory centre London (VAAC), UK that is responsible for making the official forecast of ash coming from volcanoes in Island according to international agreements. During the first days of the eruption volcanic ash was injected into the atmosphere up to 11 km. Therefore, it was transported rapidly at higher levels towards Europe. A comparison of the simulated ash-plume with the satellite pictures shows that the model captures the horizontal distribution of the ash-plume quite well. Even the volcanic ash that was located above a narrow band of clouds is nicely reproduced. The temporal development can be also compared to Lidar measurements at different sites. These comparisons will be also presented. Our simulation results show the capability of an operational weather forecast model that is extended by aerosol processes to simulate the spatial and temporal distribution of volcanic ash qualitatively. As the source strength was not know and will not be known during future eruption events only a combination of ground based and satellite born remote sensing instruments together with in-situ observations and model results facilitates the work of decision makers during future events. Vogel, B., Vogel H., Bäumer, D., Bangert, M

  18. 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Giehl, H.; Jäger, H.; Vogelmann, H.

    2013-05-01

    Lidar measurements at Garmisch-Partenkirchen (Germany) have almost continually delivered backscatter coefficients of stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt Pinatubo (Philippines, 1991). Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa. We conclude that the increase of our integrated backscatter coefficients starting in 2008 is mostly due to volcanic eruptions with explosivity index 4, penetrating strongly into the stratosphere. Most of them occurred in the mid-latitudes. A key observation for judging the role of eruptions just reaching the tropopause region was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash above the volcano was reported just as 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.3 km. Our analysis suggests for two or three of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, differing from the strong descent

  19. 35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Giehl, H.; Jäger, H.; Vogelmann, H.

    2012-09-01

    The powerful backscatter lidar at Garmisch-Partenkirchen (Germany) has almost continually delivered backscatter coefficients of the stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt. Pinatubo (Philippines, 1991). The volcanic aerosol disappears within about five years, the removal from the stratosphere being modulated by the phase of the quasi-biennial oscillation. Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa or Boulder. This suggests being careful with invoking Asian air pollution as the main source as found in the literature. Rather an impact of previously missed volcanic eruptions on the stratospheric aerosol must be taken into consideration. A key observation in this regard was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash next to the source was reported just as roughly 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.5 km. Our analysis suggests for two, perhaps three, of the four measurement days

  20. Duration of gas accumulation before the 2010 Eyjafjallajökull eruption constrained by 210Po-210Pb-226Ra disequilibria

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Condomines, Michel

    2014-05-01

    Excess gas phase in magmas erupting explosively is well known world-wide. However, the origin of this gas phase, in excess of what can be dissolved in the erupting magma at depth, and the duration of gas accumulation, is less well defined. The 2010 mildly explosive eruption at Eyjafjallajökull, Iceland, produced mingled tephra of benmoreiitic and trachytic composition whereas alkali basalt (MgO > 8 %) was emitted during the preceding flank eruption. The silicic tephra of the first explosive phase is composed of three glass types, alkaline rhyolite, mixed benmoreiite, and evolved basalt (MgO < 5 %). The rhyolitic glass is indistinguishable from tephra glass composition emitted during the penultimate eruption of Eyjafjallajökull in 1821-23 AD (Sigmarsson et al., 2011). Tephra from the first explosive phase, emitted on 15 and 17 April, had large 210Po in excess of 210Pb ((210Po/210Pb)0 as high as 2!) and a small, but significant, 210Pb excess over its parent 226Ra ((210Pb/226Ra)0= 1.05 and 1.04, respectively). These excesses suggest rapid accumulation of Po and Rn together with the major gas species in the residual rhyolitic magma from the 1821-23 eruption. The gas most likely originates from the basalt recharge that eventually provoked the eruption. Basalts emitted a month earlier during the flank eruption at Fimmvörðuháls lost all their Po upon eruption and had (210Po/210Pb)0 equal to 0). From a simple model of radon and polonium degassing and accumulation, the mass of basalt magma degassing over the mass of silicic magma accumulating the excess gas can be calculated. Moreover, the duration of gas accumulation can be shown to be close to 300 days. This duration suggests that gas was liberated from the basaltic magma since June 2009, a month that corresponds to the initial seismic swarm beneath Eyjafjallajökull preceding the explosive eruption of 14 April 2010.

  1. Monitoring glaciers and indications of subglacial volcanic activity using small-scale Top-Hat reflectors - An IsViews experiment on Myrdalsjökull, Iceland

    NASA Astrophysics Data System (ADS)

    Minet, Christian; Duque Biarge, Sergi; Jaenicke, Julia; Münzer, Ulrich; Mayer, Christoph; Franke, Jonas; Guðmundsson, Águst; Parizzi, Alessandro; Fritz, Thomas; Eineder, Michael

    2014-05-01

    Subglacial volcanic eruptions often provide indications of activity some time before the actual catastrophic event. Surface undulations appear on top of the ice cap and meltwater torrents can occur at the glacier margin. Even large scale uplifts of ice caps have been observed. Within the project IsViews a processing chain, based on high spatially and temporally resolved remote sensing imagery, will be developed in order to automatically identify such early indications. The main data used for this analysis are acquired by the TerraSAR-X, TanDEM-X and RapidEye satellites. First investigations concerning the feasibility of the near real-time warning system and the general baseline conditions are carried out on two large plateau glaciers in southern Iceland, namely Mördalsjökull and Vatnajökull. Within the 2013 IsViews field work an experiment was started in order to test a new way of glacier monitoring. Two test sites were established on the Mördalsjökull ice cap (one at the equilibrium line and one below), each consisting of a permanent GPS station and two nearby RADAR reflectors. These RADAR reflectors are specially designed Top-Hat reflectors, which are cheap to manufacture, small (50 cm diameter) and lightweight and therefore easy to handle, transport and deploy. Their special design makes them visible in SAR images independent of orientation, so different acquisition geometries and even different sensors can be used. The drawback of the small, low reflecting Top-Hat can be overcome by using the newly implemented Staring Spotlight Mode of the German SAR Satellite TerraSAR-X, providing an unprecedented resolution of down to 20 cm in the azimuth direction. The reflectors, as point targets, allow absolute positioning within the cm-level in the TerraSAR-X data. Time series of SAR data can be used to derive position and altitude changes of the reflector itself and possibly even melting rates by exploiting the different signal paths. The visibility of the Top

  2. The Effects of Vegetation Succession and Landscape on the Evolution of Soil Properties: A Chronosequence Study Along the Proglacial Area of Skaftafellsjökull Glacier, SE Iceland

    NASA Astrophysics Data System (ADS)

    Vilmundardóttir, O. K.; Gísladóttir, G.; Lal, R.

    2014-12-01

    On young soils developing along the recessional path left by the Skaftafellsjökull glacier, SE-Iceland, we investigated the soil development, vegetation succession and landscape representing an age chronosequence of 120 years. In total, 54 sampling sites were distributed along three moraines representing surfaces exposed for 8, 65 and 120 years. For comparison, soil samples were collected from nearby birch woodlands, representing soils in a mature ecosystem likely to establish on the moraines in the future. The youngest moraines were sparsely vegetated with only 10% cover of mosses and grasses. The plant cover increased to 67% after 120 years, and was characterized by mosses (38%), dwarf shrubs (20%) and low growing birch (3.5%). Consequently, the soil formed over 120 years contained 1.1 kg C m-2 in the surface layer (0-10 cm), or about one third of the 3.2 kg C m-2 in soil under the woodlands. The N stock was estimated at 0.06 kg N m-2after 120 yrs, almost one fourth of that under the woodlands. The data suggest that landscape affects vegetation establishment and in turn, both landscape and vegetation affect soil development. Thus, concentrations of soil organic carbon (SOC), N and noncrystalline oxalate extractable Al and Fe were higher within depressions than on ridges and slopes. The comparison of SOC stock in the moraine-derived soils with that under the birch woodlands showed that the young proglacial soils still have a large potential to accrete SOC within the developing pedosphere. With the observed accrual rate of 9.1 g C m-2 yr-1in the top 10 cm, it may take the moraine soils an additional 220 yrs to accrue SOC stocks comparable with those under the birch forest. Given the fact that all Icelandic glaciers are receding, assessing SOC sequestration in new soil formation may be important to off-setting some of anthropogenic emissions. The research is funded by the University of Iceland Doctoral Fund, the University of Iceland Trust Fund, the Landsvirkjun

  3. The impact of the 1996 subglacial volcanic eruption in Vatnajökull on the river Jökulsá á Fjöllum, North Iceland

    NASA Astrophysics Data System (ADS)

    Kristmannsdóttir, Hrefna; Björnsson, Axel; Pálsson, Svanur; Sveinbjörnsdóttir, Árny E.

    1999-10-01

    A subglacial volcanic eruption took place in October 1996 beneath the Vatnajökull glacier, Iceland. The volcanic fissure erupted for some 14 days and it extended between two known subglacial central volcanoes. Most of the melt water drained to the south into the Grı´msvötn caldera from where it escaped a month later during a major jökulhlaup (extreme flood) into the glacial rivers flowing to the south from Vatnajökull. At the start of the eruption, the northernmost part of the volcanic fissure extended across the water divide beneath the glacier and into the river basin of Jökulsá á Fjöllum, flowing to the north. A few days later, signs of melt water from the volcanic site were detected in the glacial river Jökulsá á Fjöllum. Distinct changes in the chemical composition of the water were observed. Both discharge and turbidity of the river were somewhat higher than normal for the season, but there was no extreme flood (jökulhlaup). Total dissolved solids (TDS) and conductivity of the river water, as well as bicarbonate, were found to be higher than previously observed. Traces of sulphide and mercury were detected, which are never recorded at normal conditions. The stable isotope ratios, δD and δ 18O, the 14C apparent age and the δ 13C value were also found to be anomalous. In a few weeks the chemistry was back to normal. The chemical changes were most likely caused by a direct flow of melt water from the northernmost part of the main volcanic fissure or from small cauldrons created at the rim of the Bárdarbunga caldera. The flow of melt water to the north from the volcanic centre ebbed soon after or even just before the volcanic eruption in Vatnajökull ended. This experience shows clearly that simultaneous monitoring of chemical changes and flow rate in glacial rivers can deliver valuable data for following subglacial volcanic activity in space and time and may be used to give warning before a major catastrophic flood. Chemical study of glacial

  4. Inferring source mass flux from heights for wind-blown volcanic plumes: implications for ash dispersal models and application to the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Woodhouse, M. J.; Hogg, A. J.; Phillips, J. C.; Sparks, S. S.

    2012-12-01

    The eruption of Eyjafjallajökull in April 2010 resulted in several weeks of disruption to aviation in Europe. Forecasting ash dispersion in the atmosphere require, as input, estimates of source parameters, in particular the mass flux of material from the volcano and the height at which ash is injected into the atmosphere. Typically the mass flux has been determined from empirical relations derived from a small dataset of historical eruptions where independent estimates of the height of the eruption column and the mass flux of material released from the volcano are available. For small explosive eruptions such as the 2010 eruption of Eyjafjallajökull, atmospheric conditions can strongly effect the rise height of the plume and lead to inaccurate estimates of the mass flux of volcanic ash injected into the atmosphere. We formulate an integral model of volcanic eruption columns that includes a description of the thermodynamics of heat transfer between erupted solid pyroclasts, magmatic gases and the atmospheric air entrained by turbulent eddies, and describes the bending over of the plume trajectory in a cross-wind. We show that atmospheric winds strongly influence the rise of volcanic plumes, with the wind restricting the rise height such that obtaining equivalent rise heights for a plume in a windy environment would require an order of magnitude increase in the source mass flux over a plume in a quiescent environment. The model predictions are in accord with a dataset of historic eruptions if the profile of atmospheric wind shear is described, and our calculations are used to calibrate a semi-empirical relationship between the plume height and the source mass flux which explicitly includes the atmospheric wind speed. By employing observations of the local meteorology during the first explosive phase of the Eyjafjallajökull eruption (14 to 18 April 2010) in the integral model, we demonstrate that varying atmospheric conditions can account for observed variations in

  5. Applying 3D Dynamic Visualisation to (Palaeo) Geomorphic Reconstruction: Modelling a Tenth Century Jökulhlaup at Sólheimajökull Glacier, South Iceland.

    NASA Astrophysics Data System (ADS)

    Booth, Laura; Isaacs, John

    2014-05-01

    Jökulhlaup (glacial outburst floods) are caused by subglacial geothermal activity melting overlying ice, or by draining of ice-dammed lakes. They pose a recurring hazard along Iceland's south coast where volcano-glacial interactions create often unpredictable, high-magnitude floods. Gathering information about past floods is crucial for projecting findings to present day scenarios and developing future predictions for contemporary flood routes. Understanding the physical setting or surrounding environment is essential in palaeo-flood reconstruction as drainage routes are ultimately defined by local topography and changing ice cover. At Sólheimajökull glacier, which drains the southern portion of Mýrdalsjökull ice cap, field evidence has been collected of a Tenth Century flood, recorded in the Icelander's Landnámabók (Book of Settlements). It was an exceptional event in terms of generation, magnitude and geomorphic impact. Although now fragmented and piecemeal, many of its direct (and indirect) geomorphological and sedimentary markers are still relatively well preserved and have been identified, mapped and dated to unravel the sequence of events played out during this significant episode in the glacial history and complex regional flood chronology. VolcVis, an innovative, bespoke visualisation platform, is developed and applied for the first time in visualising volcanic jökulhlaup. The platform is created using the Microsoft XNA game development framework, which facilitates rapid game engine production by providing a set of tools utilising a managed runtime environment. VolcVis can render large amounts of data efficiently and still provide an extremely high level of interaction with the data being presented, including full freedom of motion. This enables synthesis and presentation of field results from Sólheimajökull in a novel way, creating an interactive, multi-perspective, three-dimensional (3D) prototype model. The platform combines Digital Elevation

  6. Governing the lithosphere: Insights from Eyjafjallajökull concerning the role of scientists in supporting decision-making on active volcanoes

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Oppenheimer, Clive

    2012-03-01

    The 2010 eruption of Eyjafjallajökull volcano, and the social consequences across the world, demonstrated some key issues in volcanological science and its application. Scientists in several nations were called upon to advise governments, to justify models and to give guidance about likely future activity. This is symptomatic of many other fields: scientists increasingly have a role in governance, and their work may be driven by questions that arise as a result. This article considers the role of scientists in different national contexts and the challenges faced in formulating scientific advice for policymakers. It concludes by assessing future challenges, and the key role that social scientific research can play. While this is a research paper and presents new data, it takes a commentary approach to elucidate some of the challenges involved in governing volcanic hazards.

  7. Correlating Ground-Based Lightning Measurements with Ash Cloud Satellite Data from the 2010 Eruption of Eyjafjallajökull Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Thomas, R. J.; Pavolonis, M. J.; Sieglaff, J.; Aster, R. C.

    2012-12-01

    Airborne volcanic ash is a major aviation hazard. For example, the 2010 eruption of Eyjafjallajökull volcano in Iceland resulted in the largest air-traffic shutdown since World War II. More than 100,000 flights were grounded, stranding passengers in Europe and across the globe, and producing a multi-billion dollar economic impact. Because of the high impact on aviation, sophisticated tools are needed to provide real-time alerts, tracking, and forecasting of volcanic clouds. In an attempt address the 5-minute volcanic cloud warning criteria established by the international aviation community, an automated volcanic cloud alert system for the Geostationary Operational Environmental Satellite - R Series (GOES-R) built upon the automated ash cloud alert system for the Advanced Very High Resolution Radiometer (AVHRR) is in development. The new system will be capable of identifying ash and SO2 clouds with greater accuracy. One component of GOES-R will be a lightning mapper. To study the temporal, spatial, and physical relationships between ash clouds and lightning, and the utility of lightning detection in a real-time alert system, we analyze data collected by the Lightning Mapping Array, a ground-based lightning detection network, in conjunction with satellite data gathered by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument aboard Meteosat-9 during in the 2010 eruption of Eyjafjallajökull volcano. We correlate lightning characteristics, intensity, and distribution with plume location, height, mass loading, and effective particle radius. Lightning mapping in volcanic ash clouds potentially will allow for better characterization of the ash cloud and aid in forecasting the distribution of ash and its effects on aviation.

  8. A survey of early health effects of the Eyjafjallajökull 2010 eruption in Iceland: a population-based study

    PubMed Central

    Carlsen, Hanne Krage; Gislason, Thorarinn; Benediktsdottir, Bryndis; Kolbeinsson, Thorir Bjorn; Hauksdottir, Arna; Thorsteinsson, Throstur

    2012-01-01

    Objective To estimate physical and mental health effects of the Eyjafjallajökull volcanic eruption on nearby residents. Design Cross-sectional study. Setting The Icelandic volcano Eyjafjallajökull erupted on 14 April 2010. The eruption lasted for about 6 weeks and was explosive, ejecting some 8 million tons of fine particles into the atmosphere. Due to prevailing winds, the ash spread mostly to the south and south-east, first over the rural region to the south, later over the Atlantic Ocean and Europe, closing European air space for several days. Participants Residents (n=207) of the most ash-exposed rural area south and east of the volcano. Methods The study period was from 31 May to 11 June 2010. Participants were examined by a physician. To ascertain respiratory health, standardised spirometry was performed before and after the use of a bronchodilator. All adult participants answered questionnaires about mental and physical health, their children's health and the use of protective equipment. Results Every other adult participant reported irritation in eyes and upper airway when exposed to volcanic ash. Adults (n=26) and children (n=5) with pre-existing asthma frequently reported worsening of their symptoms. No serious health problems requiring hospitalisation could be attributed to the eruption. The majority of the participants reported no abnormal physical or mental symptoms to the examining physician. Compared to an age- and gender-matched reference group, the ash-exposed participants reported lower smoking rates and were less likely to have ventilation impairment. Less than 10% of the participants reported symptoms of stress, anxiety or depression. Conclusions Short-term ash exposure was associated with upper airway irritation symptoms and exacerbation of pre-existing asthma but did not contribute to serious health problems. The exposure did not impair respiratory function compared to controls. Outdoor use of protective glasses and face masks was

  9. Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Oddsson, Björn; Gudmundsson, Magnús T.; Edwards, Benjamin R.; Thordarson, Thorvaldur; Magnússon, Eyjólfur; Sigurðsson, Gunnar

    2016-07-01

    During the 2010 Eyjafjallajökull eruption in South Iceland, a 3.2-km-long benmoreite lava flow was emplaced subglacially during a 17-day effusive-explosive phase from April 18 to May 4. The lava flowed to the north out of the ice-filled summit caldera down the outlet glacier Gígjökull. The flow has a vertical drop of about 700 m, an area of ca. 0.55 km2, the total lava volume is ca. 2.5·107 m3 and it is estimated to have melted 10-13·107 m3 of ice. During the first 8 days, the lava advanced slowly (<100 m day-1), building up to a thickness of 80-100 m under ice that was initially 150-200 m thick. Faster advance (up to 500 m day-1) formed a thinner (10-20 m) lava flow on the slopes outside the caldera where the ice was 60-100 m thick. This subglacial lava flow was emplaced along meltwater tunnels under ice for the entire 3.2 km of the flow field length and constitutes 90 % of the total lava volume. The remaining 10 % belong to subaerial lava that was emplaced on top of the subglacial lava flow in an ice-free environment at the end of effusive activity, forming a 2.7 km long a'a lava field. About 45 % of the thermal energy of the subglacial lava was used for ice melting; 4 % was lost with hot water; about 1 % was released to the atmosphere as steam. Heat was mostly released by forced convection of fast-flowing meltwater with heat fluxes of 125-310 kWm-2.

  10. Retrieval of the Eyjafjallajökull volcanic aerosol optical and microphysical properties from POLDER/PARASOL measurements

    NASA Astrophysics Data System (ADS)

    Waquet, F.; Peers, F.; Goloub, P.; Ducos, F.; Thieuleux, F.; Derimian, Y.; Riedi, J.; Tanré, D.

    2013-04-01

    Total and polarized radiances provided by the Polarization and Directionality of Earth Reflectances (POLDER) satellite sensor are used to retrieve the microphysical and optical properties of the volcanic plume observed during the Eyjafjallajökull volcano eruption in 2010, over cloud-free and cloudy ocean scenes. We selected two plume conditions, fresh aerosols near the sources (three cases) and a downwind volcanic plume observed over the North Sea 30 h after its injection into the atmosphere (aged aerosols). In the near-source conditions, the aerosol properties depend on the distance to the plume. Within the plume, aerosols are mainly non-spherical and in the coarse mode with an effective radius equal to 1.50 (± 0.15) μm and an Ångström Exponent (AE) close to 0.0. Far from the plume, in addition to the coarse mode, there are smaller particles retrieved in the accumulation mode suggesting a mixture of sulfate aerosols and volcanic dust, resulting in an AE around 0.8. The properties of the aerosols also depend on whether the plume is fresh or aged. For the downwind (aged) plume, if non-spherical coarse particles as well as some fine mode particles are still retrieved, the AE is smaller, around ~ 0.4. In addition, the real refractive index (RR) values are larger for the downwind plume (1.42 < RR < 1.58) than for the near-source plume (1.38 < RR < 1.48). The mean Single Scattering Albedo (SSA) retrieved at 0.865 μm was estimated at 0.97 over some parts of the downwind and near-source plumes; despite the low accuracy of our retrievals, the derived SSA values suggest that the ash particles are rather absorbing. To consider the particle shape, a combination of spheroid models is used. Although the employed model enabled accurate modeling of the POLDER signal in case of non-spherical ash, our approach failed to model the signal over the optically thickest parts of the near-source plume. The most probable reason for this is speculated to be the presence of ice

  11. Deterministic non-linear source processes of volcanic tremor signals accompanying the 1996 Vatnajökull eruption, central Iceland

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos I.

    2002-03-01

    Observations and theoretical considerations have cast doubt on the suggestion that volcanic tremor source processes may be modelled by a linear oscillator that is set into resonance by a sustained disturbance. Volcanic tremor signals that accompanied the 1996 Vatnajökull subglacial eruption, central Iceland, have been analysed using methods from the discipline of non-linear dynamics in order to investigate the possibility that they originated from a non-linear source. The volcano-seismic phenomena associated with the eruption were recorded by a permanent network equipped with broad-band seismometers (HOTSPOT) using a sampling rate of 20 samples s-1 . The eruption was preceded by increased seismic activity for a period of 2 days, which also included a large earthquake with a moment magnitude of 5.6. The tremor during the first 2 days of the eruption has a high signal-to-noise ratio at the nearest station to the eruption site and starts as a continuous signal, later evolving to low-amplitude background tremor interrupted by high-amplitude, cigar-shaped bursts having an average duration of 250 s. The phase space, which describes the evolution of the behaviour of a non-linear system, was reconstructed from the original tremor seismograms using the delay embedding theorem suggested by Takens. The delay time used for the reconstruction was selected after examining the autocorrelation function, which showed a first zero crossing at a timelag of 4 samples and the average mutual information that showed no minimum, indicating that the tremor process may have been undersampled. Based also on phase space portraits for different delay times, a delay time of one sample interval (0.05 s) was used. The sufficient embedding dimension for phase space reconstruction was selected by applying the false nearest-neighbours method, which revealed complete unfolding of the tremor attractor at dimensions 7-8, implying upper bounds of its fractal dimension in the range 3.5-4.0. The phase

  12. Dyke-path formation in relation to the eruptions of Eyjafjallajökull 2010 and Bardarbunga-Holuhraun 2014

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Dykes are extension fractures and form when the magmatic overpressure is high enough to rupture (break) the host rock. Their formation is entirely analogous to that of many joints and human-made hydraulic fractures, such as are used to increase permeability in reservoirs. When generating their paths, dykes use existing weaknesses (e.g., cooling joints) in the host rock. The maximum depth of large tension fractures below the surface of a rift zone, however, is mostly less than a few hundred metres. If the fractures extend to greater depths, they must change into closed normal faults which are generally not used as magma paths. There are thus no large tension fractures or wide-open faults at great depths ready to be filled with magma to form a dyke. While magma flow in dykes, as in other fluid-driven fractures, is at any point in various directions dyke segmentation may indicate the overall large-scale flow direction. Thus, dykes composed of large-spaced disconnected segments in lateral sections are primarily formed in vertical magma flow at segmentation depth whereas those composed of large-spaced disconnected segments in vertical sections are primarily formed in lateral magma flow. The far-field displacement and stress fields of segmented dykes are similar to those generated by single, continuous dykes of similar dimensions, particularly when the distances between the nearby tips of the segments become small in comparison with segment lengths. Most dykes become arrested and never supply magma to eruptions. Feeder-dykes normally reach the surface only along parts of their lengths (strike-dimensions). The volumetric flow or effusion rate of magma through a feeder-dyke or volcanic fissure depends on the aperture (opening) of the dyke or fissure in the 3rd power. All these theoretical and observational results are here applied to the dyke emplacements associated with the eruptions of Eyjafjallajökull 2010 and Bardarbunga-Holuhraun 2014. The results make it possible to

  13. Characterization of the Eyjafjallajökull volcanic plume over the Iberian Peninsula by lidar remote sensing and ground-level data collection

    NASA Astrophysics Data System (ADS)

    Revuelta, M. A.; Sastre, M.; Fernández, A. J.; Martín, L.; García, R.; Gómez-Moreno, F. J.; Artíñano, B.; Pujadas, M.; Molero, F.

    2012-03-01

    In April and May 2010 the eruption of the Eyjafjallajökull volcano disrupted air traffic across Europe. The vast economic impact of this event has stirred interest on accurate plume dispersion estimation and detailed ash characterization, in order to establish a more precise threshold for safe aircraft operation. In this work we study the physical and chemical properties of volcanogenic aerosol detected at ground level at several locations over the Iberian Peninsula, nearly 3000 km away from the Icelandic volcano. Between 4 and 14 May, the volcanogenic plume was detected at ground level, identified by an increase in sulfur dioxide, particle mass concentrations, and particulate sulfate concentration, at most EMEP stations as well as at the CIEMAT site (for the sulfate concentration in PM). At the CIEMAT site, the synergic use of Raman lidar and on-site instruments provided relevant information on the evolution and properties of the plume over the central part of the Iberian Peninsula. Aerosol extinction coefficient profiles provided by the lidar station show the presence of remarkable aerosol layers between 6 May and 15 May. Provenance studies using FLEXTRA backtrajectories confirmed that most of the aerosol layers originated in the Eyjafjallajökull eruption. The large suite of semi-continuous instruments present in the latter site allowed a better characterization of the aerosol properties. Size distribution and chemical composition were continuously monitored during the event, revealing a large increase in the aerosol fine mode, in coincidence with increases in ambient sulfate concentration, while the coarse mode remained almost unaltered. These results show that the plume carried mainly fine particles, with sizes between 0.1 and 0.7 μm in diameter, in contrast with studies of the plume that affected Central Europe in April, where particles with diameters larger than 20 μm were present in the ash layers. A possible explanation for this can be related to the

  14. The mass balance record and surge behavior of Drangajökull Ice Cap (Iceland) from 1946 to 2011 deduced from aerial photographs and LiDAR DEM

    NASA Astrophysics Data System (ADS)

    Muñoz-Cobo Belart, Joaquín; Magnússon, Eyjólfur; Pálsson, Finnur

    2014-05-01

    High resolution and accuracy (e.g. based on LiDAR survey) Digital Elevation Models (DEMs) of glaciers and their close vicinity have significantly improved the methods for calculation of geodetic mass balance and study of changes in glacier dynamics. However additional data is needed to extend such studies back in time. Here we present a geodetically derived mass balance record for Drangajökull ice cap (NW-Iceland) since 1946 to present. The mass balance is calculated from a series of DEMs derived by photogrammetric processing of aerial photographs (years: 1946, 1975, 1985, 1994) and a LiDAR DEM (2011). All Ground Control Points (GCPs) used to constrain the orientation of the aerial photographs, used in the photogrammetric processing, are picked from the LiDAR derived DEM, thus eliminating the time consuming and expensive in situ survey of GCPs. The LiDAR DEM also helps to assess the accuracy of the photogrammetrically derived DEMs, by analyzing the residuals in elevation in ice-free areas. For the DEMs of 1975, 1985 and 1994 the Root Mean Square Error (RMSE) of the residuals is less than 2 m, whereas the accuracy of the DEM of 1946 is worse, with RMSE of 5.5 m, caused by the deteriorated images. The geodetic mass balance yields a negative specific mass balance of ~-0.5 m w.e.a-¹ for the period 1946-1975, followed by periods of positive mass balance: ~0.2 m w.e.a-¹ for the period 1975-1985 and ~0.3 m w.e.a-¹ for the period 1985-1994. Negative specific mass balance of ~-0.6 m w.e.a-¹ is derived for the period 1994-2011. High mass redistribution is observed during 1985-1994 and 1994-2011 on the three main outlets of the ice cap, related to surges. The derived orthophotographs allow tracking of stable features at individual locations on the northern part of Drangajökull, indicating an average velocity of 5-10 m a-¹ for the period 1946-1985 and speeding up in the last two periods due to a surge.

  15. Long-term health effects of the Eyjafjallajökull volcanic eruption: a prospective cohort study in 2010 and 2013

    PubMed Central

    Hlodversdottir, Heidrun; Petursdottir, Gudrun; Gislason, Thorarinn; Hauksdottir, Arna

    2016-01-01

    Objectives To examine the long-term development of physical and mental health following exposure to a volcanic eruption. Design Population-based prospective cohort study. Setting In spring 2010, the Icelandic volcano Eyjafjallajökull erupted. Data were collected at 2 time points: in 2010 and 2013. Participants Adult residents in areas close to the Eyjafjallajökull volcano (N=1096), divided according to exposure levels, and a non-exposed sample (n=475), with 80% participation rate in 2013. Main outcome measures Physical symptoms in the previous year (chronic) and previous month (recent), and psychological distress (General Health Questionnaire-12-item version, GHQ-12), perceived stress (Perceived Stress Scale, PSS-4) and post traumatic stress disorder (PTSD) symptoms (Primary Care PTSD, PC-PTSD). Results In the exposed group, certain symptoms were higher in 2013 than in 2010, for example, morning phlegm during winter (OR 2.14; 95% CI 1.49 to 3.06), skin rash/eczema (OR 2.86; 95% CI 1.76 to 4.65), back pain (OR 1.45; 95% CI 1.03 to 2.05) and insomnia (OR 1.53; 95% CI 1.01 to 2.30), in addition to a higher prevalence of regular use of certain medications (eg, for asthma (OR 2.80; 95% CI 1.01 to 7.77)). PTSD symptoms decreased between 2010 and 2013 (OR 0.33; 95% CI 0.17 to 0.61), while the prevalence of psychological distress and perceived stress remained similar. In 2013, the exposed group showed a higher prevalence of various respiratory symptoms than did the non-exposed group, such as wheezing without a cold (high exposure OR 2.35; 95% CI 1.27 to 4.47) and phlegm (high exposure OR 2.81; 95% CI 1.48 to 5.55), some symptoms reflecting the degree of exposure (eg, nocturnal chest tightness (medium exposed OR 3.09; 95% CI 1.21 to 10.46; high exposed OR 3.42; 95% CI 1.30 to 11.79)). Conclusions The findings indicate that people exposed to a volcanic eruption, especially those most exposed, exhibit increased risk of certain symptoms 3–4 years after the eruption. PMID

  16. Aerial infrared surveys of Reykjanes and Torfajökull thermal areas, Oceland, with a section on cost of exploration surveys

    USGS Publications Warehouse

    Pálmason, G.; Friedman, J.D.; Williams, R. S.; Jónsson, J.; Saemundsson, K.

    1970-01-01

    In 1966 and 1968 aerial infrared surveys were conducted over 10 of 13 high-temperature thermal areas in Iceland. The surveys were made with an airborne scanner system, utilizing radiation in the 4.5–5.5 μm wavelength band.Supplementary ground geological studies were made in the Reykjanes and Torfajökull thermal areas to interpret features depicted on the infrared imagery and to relate zones of high heat flux to tectonic structure. In the Reykjanes area in southwestern Iceland a shallow ground temperature map was prepared for temperatures at a depth of 0.5 meters; comparison of this map with the infrared imagery reveals some striking similarities.It appears that aerial infrared surveys outline the surface thermal patterns of high-temperature areas and aid in relating these patterns to possible geological structures controlling the upflow of hot water. Amplitude-slicing techniques applied to the magnetically taped airborne scanner data permit an estimate to be made of the natural heat output on the basis of size of area and specific radiance.In addition to their value in preliminary studies of high-temperature areas, infrared surveys conducted at regular intervals over thermal area under exploitation can provide valuable data on changes that occur in surface manifestations with time.

  17. Aerial infrared surveys of Reykjanes and Torfajökull thermal areas, Iceland, with a section on cost of exploration surveys

    USGS Publications Warehouse

    Pálmason, G.; Friedman, J.D.; Williams, R.S.; Jónsson, J.; Saemundsson, K.

    1970-01-01

    In 1966 and 1968 aerial infrared surveys were conducted over 10 of 13 high-temperature thermal areas in Iceland. The surveys were made with an airborne scanner system, utilizing radiation in the 4.5–5.5 μm wavelength band. Supplementary ground geological studies were made in the Reykjanes and Torfajökull thermal areas to interpret features depicted on the infrared imagery and to relate zones of high heat flux to tectonic structure. In the Reykjanes area in southwestern Iceland a shallow ground temperature map was prepared for temperatures at a depth of 0.5 meters; comparison of this map with the infrared imagery reveals some striking similarities. It appears that aerial infrared surveys outline the surface thermal patterns of high-temperature areas and aid in relating these patterns to possible geological structures controlling the upflow of hot water. Amplitude-slicing techniques applied to the magnetically taped airborne scanner data permit an estimate to be made of the natural heat output on the basis of size of area and specific radiance. In addition to their value in preliminary studies of high-temperature areas, infrared surveys conducted at regular intervals over thermal area under exploitation can provide valuable data on changes that occur in surface manifestations with time.

  18. Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Prata, Fred; Lin, Hai Xiang; Heemink, Arnold; Segers, Arjo; Lu, Sha

    2017-01-01

    Using data assimilation (DA) to improve model forecast accuracy is a powerful approach that requires available observations. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations for the assimilation scheme. However, because these primary satellite-retrieved data are often two-dimensional (2-D) and the ash plume is usually vertically located in a narrow band, directly assimilating the 2-D ash mass loadings in a three-dimensional (3-D) volcanic ash model (with an integral observational operator) can usually introduce large artificial/spurious vertical correlations.In this study, we look at an approach to avoid the artificial vertical correlations by not involving the integral operator. By integrating available data of ash mass loadings and cloud top heights, as well as data-based assumptions on thickness, we propose a satellite observational operator (SOO) that translates satellite-retrieved 2-D volcanic ash mass loadings to 3-D concentrations. The 3-D SOO makes the analysis step of assimilation comparable in the 3-D model space.Ensemble-based DA is used to assimilate the extracted measurements of ash concentrations. The results show that satellite DA with SOO can improve the estimate of volcanic ash state and the forecast. Comparison with both satellite-retrieved data and aircraft in situ measurements shows that the effective duration of the improved volcanic ash forecasts for the distal part of the Eyjafjallajökull volcano is about 6 h.

  19. Airborne measurements of the Eyjafjallajökull volcanic ash plume over northwestern Germany with a light aircraft and an optical particle counter: first results

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Vogel, Andreas; Fischer, Christian; van Haren, Günther; Pohl, Tobias

    2010-10-01

    During the eruption phase of the Icelandic volcano Eyjafjallajökull in April/May 2010 the University of Applied Sciences Duesseldorf has performed 14 measurement flights over north-western Germany in the time period of 23 April 2010 to 21 May 2010. Additionally 4 flights have been performed for visual observations, referencing and transfer. The measurement flights have been performed in situations, where the ash plume was present over north-western Germany as well as in situations, when there was no ash plume predicted. For the measurements a light aircraft (Flight Design CTSW Shortwing) was used, which was equipped with an optical particle counter (Grimm 1.107). Additionally the aircraft was equipped for one flight with an UV-DOAS system and a CO2-measurement system. The optical particle counter allowed in-situ measurements of the particle distribution between 250 nm and 32 μm and of PM10, PM2.5 and PM1. The ash plume appeared during the measurements as inhomogeneous in structure. Layers or multilayers of one hundred meters to a few hundred meters vertical depth of ash plume could be identified. Sub-plumes with a horizontal extension of several kilometres to several tenths of kilometres could be found. The layers of the ash plume could be found in altitudes between 2500m and 4500m. The measured concentrations have been compared with the concentration and extension of the ash plume predicted by the Volcanic Ash Advisory Centre (VAAC).

  20. The onset of an eruption: selective assimilation of hydrothermal minerals during pre-eruptive magma ascent of the 2010 summit eruption of Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Pistolesi, M.; Cioni, R.; Francalanci, L.; Bertagnini, A.; D'Oriano, C.; Braschi, E.; Höskuldsson, A.

    2016-11-01

    The complex processes occurring in the initial phases of an eruption are often recorded in the products of its opening stage, which are usually characterized by small volume and limited dispersal, and thus generally poorly studied. The 2010 eruption of Eyjafjallajökull (Iceland) represents a unique opportunity for these investigations thanks to the good preservation of tephra deposits within the ice/snow pack. A detailed geochemical investigation on the glassy groundmass of single ash clasts disclosed a population of fragments with unusual high 87Sr/86Sr (up to 0.70668) for Icelandic magmatism, and anomalous elemental composition with respect to most of the juvenile material of the eruption. This suggests that during its rise, before intruding into the ice cover, magma at a dyke tip selectively assimilated hydrothermal minerals with seawater-related, high-Sr isotopic ratios (zeolites, silica phases, anhydrite) hosted in altered volcanic/epiclastic rocks. According to the observed precursory seismicity, only restricted to few hours before the onset of the eruption, this process could have accompanied subcritical aseismic fracture opening during the days before the eruption, possibly related to stress corrosion-cracking processes, which enhanced the partial dissolution/melting and subsequent selective assimilation of the host rocks.

  1. Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Giannakaki, E.; Veselovskii, I.; Kokkalis, P.; Tsaknakis, G.; Balis, D.; Kristiansen, N. I.; Stohl, A.; Korenskiy, M.; Allakhverdiev, K.; Huseyinoglu, M. F.; Baykara, T.

    2012-03-01

    The vertical extension and the optical properties of aged ash layers advected from the Eyjafjallajökull volcanic eruption over the Eastern Mediterranean (Greece and Turkey) are presented for the period May 10-21, 2010. Raman lidar observations performed at three stations of EARLINET (Athens, Thessaloniki and Istanbul), provided clear ash signatures within certain layers, although ash was sometimes mixed with mineral dust advected from the Saharan region. AERONET columnar measurements did not indicate the presence of ash over the area for that period, although they did for the dust particles. This was further investigated and confirmed by simulations of the ash trajectories by the FLEXPART model and the BSC-DREAM8b dust model. Good agreement was found between simulated and observed geometrical characteristics of the ash and dust layers, respectively. Ash particles were observed over the lidar stations after 6-7-days transport from the volcanic source at height ranges between approximately 1.5 and 6 km. Mean ash particle layer thickness ranged between 1.5 and 2.5 km and the corresponding aerosol optical depth (AOD) was of the order of 0.12-0.06 at 355 nm and of 0.04-0.05 at 532 nm. Inside the ash layers, the lidar ratios (LR) ranged between 55 and 67 sr at 355 nm and 76-89 sr at 532 nm, while the particle linear depolarization ratio ranged between 10 and 25%.

  2. A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements

    NASA Astrophysics Data System (ADS)

    Newman, Stuart M.; Clarisse, Lieven; Hurtmans, Daniel; Marenco, Franco; Johnson, Ben; Turnbull, Kate; Havemann, Stephan; Baran, Anthony J.; O'Sullivan, Debbie; Haywood, Jim

    2012-10-01

    An extensive set of airborne and satellite observations of volcanic ash from the Eyjafjallajökull Icelandic eruption are analyzed for a case study on 17 May 2010. Data collected from particle scattering probes and backscatter lidar on the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 aircraft allow estimates of ash concentration to be derived. Using radiative transfer simulations we show that airborne and satellite infrared radiances can be accurately modeled based on the in situ measured size distribution and a mineral dust refractive index. Furthermore, airborne irradiance measurements in the 0.3-1.7 μm range are well modeled with these properties. Retrievals of ash mass column loading using Infrared Atmospheric Sounding Interferometer (IASI) observations are shown to be in accord with lidar-derived mass estimates, giving for the first time an independent verification of a hyperspectral ash variational retrieval method. The agreement of the observed and modeled solar and terrestrial irradiances suggests a reasonable degree of radiative closure implying that the physical and optical properties of volcanic ash can be relatively well constrained using data from state-of-the-science airborne platforms such as the FAAM BAe 146 aircraft. Comparisons with IASI measurements during recent Grímsvötn and Puyehue volcanic eruptions demonstrate the importance of accurately specifying the refractive index when modeling the observed spectra.

  3. Time-lagged ensemble simulations of the dispersion of the Eyjafjallajökull plume over Europe with COSMO-ART

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Förstner, J.; Vogel, B.; Hanisch, T.; Mühr, B.; Schättler, U.; Schad, T.

    2014-08-01

    An extended version of the German operational weather forecast model was used to simulate the ash dispersion during the eruption of the Eyjafjallajökull. As an operational forecast was launched every 6 hours, a time-lagged ensemble was obtained. Sensitivity runs show the ability of the model to simulate thin ash layers when an increased vertical resolution is used. Calibration of the model results with measured data allows for a quantitative forecast of the ash concentration. After this calibration an independent comparison of the simulated number concentration of 3 μm particles and observations at Hohenpeißenberg gives a correlation coefficient of 0.79. However, this agreement could only be reached after additional modifications of the emissions. Based on the time lagged ensemble the conditional probability of violation of a certain threshold is calculated. Improving the ensemble technique used in our study such probabilities could become valuable information for the forecasters advising the organizations responsible for the closing of the airspace.

  4. The Impacts of Advancing Glaciers and Jökulhlaups on the 19th Century Farming Community in the Suðursveit District South of Vatnajökull Glacier, Iceland.

    NASA Astrophysics Data System (ADS)

    Sigurmundsson, F. S.; Gísladóttir, G.; Erlendsson, E.

    2014-12-01

    Few areas in Iceland were as vulnerable to climate changes during the 19th century as the region south of Vatnajökull glacier. The region was repeatedly affected by glacier advance and jökulhlaups (glacier outburst floods) during the Little Ice Age AD 1300-1900 (LIA). The land area between the glacier and the coast was occupied by farming community. The aim of this research is to quantify and map the size of lost vegetated area in the 19th century during the glacial advance in the climax of the LIA and the impact these events had on the community, land-use, ownership, value of estates and livelihood. This research employs historical written sources to investigate changes in the cultural and natural landscape. Historical data and field observations will be collected and stored in a GIS database designed for the research, allowing data to be analyzed and presented on maps. The first recorded impact on the settlement is from 1794 when the Breiðármerkurjökull outlet glacier advanced and devastated pastures and crofts belonging in west of the district. Seventy five years later, in 1868, the largest estate was completely destroyed by a jökulhlaup. In 1829 a farm site in the middle of the district was moved due to repeated jökulhlaup. The outlet glacier Brókarjökull initiated annual jökulhlaups during 1820 -1870, devastating pastures and hayfields and woodlands of a total of 3 prominent estates in the area (by 1200 ha), causing devaluation of 33-66% on these estates. In the eastern part extensive jökulhlaups changed the glacial river channel causing the river to flow over vast area devastating 80 % of the eastern most estate causing its abandonment in 1892. The climate change and accompanied hazards during the 19th century changed the landscape of the Suðursveit district significantly. By the turn of the 20thcentury the vegetated land in the district had been reduced by 35% and areas of sediments increased by 25% and glaciated area increased by 10%. These

  5. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    PubMed

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples

  6. Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data - Case study from Drangajökull ice cap, NW Iceland

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Muñoz-Cobo Belart, J.; Pálsson, F.; Ágústsson, H.; Crochet, P.

    2016-01-01

    In this paper we describe how recent high-resolution digital elevation models (DEMs) can be used to extract glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne lidar in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high-resolution lidar DEM. The lidar DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice- and snow-free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical semivariogram model, which along with the derived errors in ice- and snow-free areas were used as inputs into 1000 sequential Gaussian simulations (SGSims). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM and the 95 % confidence level of this bias. This results in bias correction varying in magnitude between 0.03 m (in 1975) and 1.66 m (in 1946) and uncertainty values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2-4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional seasonal bias correction was therefore estimated using a degree-day model to obtain the volume change between the start of 2 glaciological years (1 October). This correction was largest for the 1960 DEM, corresponding to an average elevation change of -3.5 m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume

  7. High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and resuspension of deposited ash

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Throstur; Jóhannsson, Thorsteinn; Stohl, Andreas; Kristiansen, Nina I.

    2012-09-01

    The dangers to people living near a volcano due to lava and pyroclastic flows, and, on glacier- or snow-covered volcanoes, jökulhlaups, are well known. The level of risk to human health due to high concentrations of ash from direct emission and resuspension from the ground is, however, not as well known. The eruption at Eyjafjallajökull, 14 April to 20 May 2010, produced abundant particulate matter due to its explosive eruption style. Even after the volcanic activity ceased, high particulate matter (PM) concentrations were still measured on several occasions, due to resuspended ash. The 24 hour mean concentration of PM10 in the small town of Vík, 38 km SE of the volcano, reached 1230 μg m-3, which is about 25 times the health limit, on 7 May 2010, with 10 min average values over 13,000 μg m-3. Even after the eruption ceased, values as high as 8000 μg m-3 (10 min), and 900 μg m-3 (24 h), were measured because of resuspension of freshly deposited fine ash. In Reykjavík, 125 km WNW of the volcano, the PM10 concentration reached over 2000 μg m-3 (10 min) during an ash storm on 4 June 2010, which should have warranted airport closure. Summarizing, our study reveals the importance of ash resuspension compared to direct volcanic ash emissions. This likely has implications for air quality but could also have detrimental effects on the quality of ash dispersion model predictions, which so far generally do not include this secondary source of volcanic ash.

  8. Dynamics of eruptive pulses - A case study of the second explosive phase of the 2010 Eyjafjallajökull eruption (Iceland)

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias; Gudmundsson, Magnus; Karmann, Sven; Zimanowski, Bernd; Dellino, Pierfrancesco; Rietze, Martin; Büttner, Ralf

    2014-05-01

    Current ash plume models of long-lived eruptions usually consider sustained ash plumes to be a continuous steady emission of tephra at the volcanic vent. The 2010 eruption of Eyjafjallajökull volcano, however, often displayed pulsating activity, where emissions from the vent occurred by frequent but discrete bursts (with pulses in the order of seconds) that merged at higher altitude in a sustained eruption column. High resolution near-field video recordings of the vents, taken from a distance of ~850 m during the second explosive phase from 8 - 10 May and supplemented by aerial observations, were used as a case study to describe the mechanism of such pulsating eruptions. The dynamics of discrete pressurized jets were characterized and their pressure history quantified between discharge from vent until they reached the height of transition at ~100 m, where the expanding regime turned into a convective buoyant one. It is suggested that during the analyzed initial expansion phase of eruption, a rapid decompression of the pulses caused a significant decrease in particle volumetric concentration within the jets, allowing and enhancing further-up air entrainment and buoyancy and leading to the establishment of dilute ash plumes that eventually merged and form the quasi-continuous eruption column. Based on the results and conclusions of our case study we examine how to link the eruption source parameters of multiple discrete expansive jets to the over-all mass eruption rate derived by 'classical' continuous ash plume models (being in the order of ~104 kg/s). Furthermore, the implications for real-time assessment by using near-field monitoring systems under pulsatory eruption conditions are discussed. Finally, the expansion dynamics of the analyzed pulses are compared to those of pulses generated in large-scale experiments designed for reproducing explosive magmatic eruptions, allowing us to evaluate the strengths and restrictions of using such experimental simulations

  9. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010

    NASA Astrophysics Data System (ADS)

    Ansmann, A.; Tesche, M.; Seifert, P.; Groß, S.; Freudenthaler, V.; Apituley, A.; Wilson, K. M.; Serikov, I.; Linné, H.; Heinold, B.; Hiebsch, A.; Schnell, F.; Schmidt, J.; Mattis, I.; Wandinger, U.; Wiegner, M.

    2011-10-01

    A combined lidar-photometer method that permits the retrieval of vertical profiles of ash and non-ash (fine-mode) particle mass concentrations is presented. By using a polarization lidar, the contributions of non-ash and ash particles to total particle backscattering and extinction are separated. Sun photometer measurements of the ratio of particle volume concentration to particle optical thickness (AOT) for fine and coarse mode are then used to convert the non-ash and ash extinction coefficients into respective fine-mode and ash particle mass concentrations. The method is applied to European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) Sun photometer observations of volcanic aerosol layers at Cabauw, Netherlands, and Hamburg, Munich, and Leipzig, Germany, after the strong eruptions of the Icelandic Eyjafjallajökull volcano in April and May 2010. A consistent picture in terms of photometer-derived fine- and coarse-mode AOTs and lidar-derived non-ash and ash extinction profiles is found. The good agreement between the fine- to coarse-mode AOT ratio and non-ash to ash AOT ratio (<10% difference) in several cases corroborates the usefulness of the new retrieval technique. The main phases of the evolution of the volcanic aerosol layers over central Europe from 16 April to 17 May 2010 are characterized in terms of optical properties and mass concentrations of fine fraction and ash particles. Maximum coarse-mode 500 nm AOTs were of the order of 1.0-1.2. Ash concentrations and column mass loads reached maximum values around 1500 μg/m3 and 1750 mg/m2, respectively, on 16-17 April 2010. In May 2010, the maximum ash loads were lower by at least 50%. A critical aspect of the entire retrieval scheme is the high uncertainty in the mass-to-extinction conversion for fresh volcanic plumes with an unknown concentration of particles with radii >15 μm.

  10. MODIS-derived albedo changes of Vatnajökull (Iceland) due to tephra deposition from the 2004 Grímsvötn eruption

    NASA Astrophysics Data System (ADS)

    Möller, Rebecca; Möller, Marco; Björnsson, Helgi; Guðmundsson, Sverrir; Pálsson, Finnur; Oddsson, Björn; Kukla, Peter A.; Schneider, Christoph

    2014-02-01

    Occasionally, the surface albedo of glaciers may be abruptly altered by deposition of light-absorbing aerosols, which consequently has a sustained impact on their energy- and mass balance. Volcanic eruptions may spread tephra deposits over regional-scale glacierized areas. In November 2004, an explosive, phreatomagmatic eruption of the subglacial Grímsvötn volcano, located in the centre of the Icelandic ice cap Vatnajökull, produced ash fall covering an area of ∼1280 km2 in the northwestern part of the ice cap. This event affected the surface albedo of the glacier over several years after the eruption. We use MODIS surface-albedo data and an ash-dispersal dataset obtained from in situ measurements on the ice cap to develop a novel, empirically based modelling approach to describe the albedo decrease across the glacier surface caused by the deposited tephra. We present analyses of the temporal and spatial variability of the albedo pattern over the post-eruption period from November 2004 to December 2008. The tephra-induced albedo changes were largest and most widely distributed over the glacier surface during the summer season 2005. The observed albedo decrease reached 0.35 when compared to modelled, undisturbed conditions. In the low-lying ablation area, where strong surface melting takes place, the tephra influence on albedo diminished with time and completely faded out within four years after the eruption. In contrast, at the rim of the Grímsvötn caldera surrounding the eruption site the tephra influences on albedo considerably increased with time. Throughout the rest of the high-lying accumulation area, the influences were scattered in both space and time.

  11. Validation of ash optical depth and layer height retrieved from passive satellite sensors using EARLINET and airborne lidar data: the case of the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Balis, Dimitris; Koukouli, Maria-Elissavet; Siomos, Nikolaos; Dimopoulos, Spyridon; Mona, Lucia; Pappalardo, Gelsomina; Marenco, Franco; Clarisse, Lieven; Ventress, Lucy J.; Carboni, Elisa; Grainger, Roy G.; Wang, Ping; Tilstra, Gijsbert; van der A, Ronald; Theys, Nicolas; Zehner, Claus

    2016-05-01

    The vulnerability of the European airspace to volcanic eruptions was brought to the attention of the public and the scientific community by the 2010 eruptions of the Icelandic volcano Eyjafjallajökull. As a consequence of this event, ash concentration thresholds replaced the "zero tolerance to ash" rule, drastically changing the requirements on satellite ash retrievals. In response to that, the ESA funded several projects aiming at creating an optimal end-to-end system for volcanic ash plume monitoring and prediction. Two of them, namely the SACS-2 and SMASH projects, developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. The validation of volcanic ash levels and height extracted from the GOME-2 and IASI instruments on board the MetOp-A satellite is presented in this work. EARLINET lidar measurements are compared to different satellite retrievals for two eruptive episodes in April and May 2010. Comparisons were also made between satellite retrievals and aircraft lidar data obtained with the UK's BAe-146-301 Atmospheric Research Aircraft (managed by the Facility for Airborne Atmospheric Measurements, FAAM) over the United Kingdom and the surrounding regions. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets, but more collocation scenes would be desirable to perform a comprehensive statistical analysis. The satellite estimates and the validation data sets are better correlated for high ash optical depth values, with correlation coefficients greater than 0.8. The IASI retrievals show a better agreement concerning the ash optical depth and ash layer height when compared with the ground-based and airborne lidar data.

  12. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland

    NASA Astrophysics Data System (ADS)

    Russell, Andrew J.; Knudsen, Óskar

    1999-08-01

    This paper presents new evidence of coarse-grained deposition from a turbulent suspension within a low-energy `slack-water' location during a recent well-documented, volcanically related, high-magnitude glacier outburst flood or jökulhlaup, Skeiðarárjökull, Iceland. This study uses established spatial and temporal constraints on processes observed during the November 1996 jökulhlaup to interpret resultant flood sediments. Coarse-grained sediments were deposited within flood slack-water conditions from suspension load by repeated turbulent flow pulses with durations of seconds-minutes. Depositional processes are thought to be analogous to turbidity currents. A minimum thickness of 15 m of rhythmites record suspended sediment dynamics at a conduit mouth during the late rising and early falling stages of the jökulhlaup. The morphology and sedimentology of deposits in a large ice-walled chamber are consistent with previous models proposed for bar deposition during cataclysmic floods. Flood flows within subglacial conduits and ice-walled open channels were sufficiently powerful to carry material up to boulder size in suspension. Macro-turbulent flows carried huge quantities of suspended sediment to high levels within the main outlet channel. High-frequency, short-duration flow pulses entering a complex ice-walled channel geometry generated highly unsteady and non-uniform flows capable of both erosional and depositional work. This study lends support to the deposition of multiple rhythmites per flood under main flow slack-water conditions. Identification of high-magnitude jökulhlaups in the ice-marginal sedimentary record will depend on the identification and correct interpretation of feeder channel and slack-water turbidite sediments. The results described here may also have application to rhythmic deposits formed by large turbulent flows in other environmental settings.

  13. In-situ physical and chemical characterization of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    NASA Astrophysics Data System (ADS)

    Sandrini, S.; Giulianelli, L.; Decesari, S.; Facchini, M. C.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; Perrino, C.

    2013-08-01

    Continuous measurements of physical and chemical properties at the Mt. Cimone GAW-WMO Global Station (2165 m a.s.l.) allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull eruption of spring 2010. The event affected the site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from 19 to 21 April and the second from 18 to 20 May 2010. The paper reports the modification of aerosol characteristics observed during the two episodes, both characterized by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (Ionic Chromatography, PIXE-PIGE and ICP-MS) were performed on aerosols collected by ground level discrete sampling. The resulting database allows the characterization of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterized by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10, on 18 May, which was the most intense of the two episodes. These results appear significant, especially in the light of the huge distance of Mt. Cimone from the source, confirming the widespread diffusion of the Eyjafjallajokull ashes over Europe.

  14. Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland.

    PubMed

    Woodhouse, Mark J; Behnke, Sonja A

    Observations of volcanic lightning made using a lightning mapping array during the 2010 eruption of Eyjafjallajökull allow the trajectory and growth of the volcanic plume to be determined. The lightning observations are compared with predictions of an integral model of volcanic plumes that includes descriptions of the interaction with wind and the effects of moisture. We show that the trajectory predicted by the integral model closely matches the observational data and the model well describes the growth of the plume downwind of the vent. Analysis of the lightning signals reveals information on the dominant charge structure within the volcanic plume. During the Eyjafjallajökull eruption both monopole and dipole charge structures were observed in the plume. By using the integral plume model, we propose the varying charge structure is connected to the availability of condensed water and low temperatures at high altitudes in the plume, suggesting ice formation may have contributed to the generation of a dipole charge structure via thunderstorm-style ice-based charging mechanisms, though overall this charging mechanism is believed to have had only a weak influence on the production of lightning.

  15. Evolution of deformation and stress changes during the caldera collapse and dyking at Bárdarbunga, 2014-2015: Implication for triggering of seismicity at nearby Tungnafellsjökull volcano

    NASA Astrophysics Data System (ADS)

    Parks, Michelle Maree; Heimisson, Elías Rafn; Sigmundsson, Freysteinn; Hooper, Andrew; Vogfjörd, Kristín S.; Árnadóttir, Thóra; Ófeigsson, Benedikt; Hreinsdóttir, Sigrún; Hjartardóttir, Ásta Rut; Einarsson, Páll; Gudmundsson, Magnús Tumi; Högnadóttir, Thórdis; Jónsdóttir, Kristín; Hensch, Martin; Bagnardi, Marco; Dumont, Stéphanie; Drouin, Vincent; Spaans, Karsten; Ólafsdóttir, Rósa

    2017-03-01

    Stress transfer associated with an earthquake, which may result in the seismic triggering of aftershocks (earthquake-earthquake interactions) and/or increased volcanic activity (earthquake-volcano interactions), is a well-documented phenomenon. However limited studies have been undertaken concerning volcanic triggering of activity at neighbouring volcanoes (volcano-volcano interactions). Here we present new deformation and stress modelling results utilising a wealth of diverse geodetic observations acquired during the 2014-2015 unrest and eruption within the Bárdarbunga volcanic system. These comprise a combination of InSAR, GPS, LiDAR, radar profiling and optical satellite measurements. We find a strong correlation between the locations of increased seismicity at nearby Tungnafellsjökull volcano and regions of increased tensile and Coulomb stress changes. Our results suggest that stress transfer during this major event has resulted in earthquake triggering at the neighbouring Tungnafellsjökull volcano by unclamping faults within the associated fissure swarm. This work has immediate application to volcano monitoring; to distinguish the difference between stress transfer and new intrusive activity.

  16. Hydro-morphodynamic modelling of a volcano-induced sediment-laden outburst flood at Sólheimajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.

    2013-12-01

    Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the

  17. Analysis of the Eyjafjallajökull Eruption using the WRF-Chem Model compared to Satellite-Based Ash Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    Steensen, T. S.; Stuefer, M.; Webley, P.; Grell, G. A.; de Freitas, S. R.

    2010-12-01

    On April 14th, 2010, the long-dormant ice-capped volcano Eyjafjallajökull in southern Iceland exhibited a black ash-rich plume that quickly developed into an upper-tropospheric ash-cloud covering large parts of Europe grounding the majority of European air traffic for days. The emission of the ash-cloud continued for three days before the eruption turned more magmatic on April 18th. Due to a strong jet stream the plume initially drifted towards the United Kingdom and Norway with ash-fall occurring in many cities in both countries. Over the course of a week, most countries in Europe were affected by the dispersing cloud resulting in numbers of closed airports never seen before, grounded planes and confused passengers. This eruption, although small on the international scale, drew volcanic hazards into the public eye and called for better understanding of evolving volcanic plumes and their ash content. The Weather Research and Forecast model (WRF) coupled with Chemistry (Chem) has been utilized to use wind fields and chemical compositions to forecast the drift and chemical alteration of dispersed substances such as forest fires and volcanic ash and, in this study, was used to simulate the developing plume in time, based on physical input parameters of the initial plume as well as the wind patterns over Europe during April 2010. The results of this model have been compared to satellite-based ash retrieval algorithms like the Reverse Absorption Method and the Principal Component Analysis using Advanced Very High Resolution Radiometer (AVHRR) the Moderate-Resolution Imaging Spectroradiometer (MODIS) data. This comparison allows both, the ratification of the model as a forecasting tool and of the satellites as an in-situ measurement. Both parts are essential components to be able to predict and analyze airborne volcanic ash and to constantly improve the hazard assessment of ash cloud forecasting to minimize the burden on the aviation community while maximizing the

  18. Observing the 2010 Eyjafjallajökull, Iceland, Eruptions with NASA's Earth Observing-1 Spacecraft - Improving Data Flow In a Volcanic Crisis Through Use of Autonomy

    NASA Astrophysics Data System (ADS)

    Chien, S.; Davies, A. G.; Doubleday, J.; Tran, D. Q.; Gudmundsson, M. T.; Jónsdóttir, I.; Hoskuldsson, A.; Thordarson, T.; Jakobsdottir, S.; Wright, R.

    2010-12-01

    Eyjafjallajökull volcano, Iceland, erupted from 20 March to 12 April 2010 (a flank eruption) and again from 14 April to 23 May 2010. The latter eruption heavily impacted air travel across much of northern Europe, and highlighted the need to monitor and quickly react to new eruptions. The NASA Earth Observing 1 spacecraft (EO-1), which is managed by the NASA Goddard Space Flight Center, obtained over 50 observation pairs with the Hyperion hyperspectral imager and ALI (Advanced Land Imager) multispectral camera. EO-1 is the remote-sensing asset of a globe-spanning Volcano Sensor Web [1], where low spatial resolution data (e.g., MODIS) or alerts of ongoing or possible volcanic activity are used to trigger requests for high resolution EO-1 data. Advanced resource management software, developed in part for flight onboard EO-1 as part of the Autonomous Sciencecraft [2, 3] is now used to task EO-1. This system allowed rapid re-tasking of EO-1 to obtain both day and night data at high temporal resolution (on average every 2 days), unusual for such high spatial resolution imagers (Hyperion and ALI at 30 m/pixel, with an ALI panchromatic band at 10 m/pixel). About 50% of the data were impacted by cloud. Advances in data handling and communications during the last two years means that Hyperion and ALI data are typically on the ground and ready for analysis within a few hours of data acquisition. Automatic data processing systems at the NASA’s Jet Propulsion Laboratory process Hyperion data to (1) correct for atmospheric adsorption; (2) remove the sunlight component in daytime data; (3) identify hot pixels; (4) fit unsaturated data to determine temperature and area of sub-pixel thermal sources; (5) calculate total thermal emission and, from this, an effusion rate; (6) generate geo-located data products. The entire process is autonomous. Data products, as well as images generated, were sent to volcanologists in the field to aid in eruption assessment. The JPL group is now

  19. Soil carbon accretion along an age chronosequence formed by the retreat of the Skaftafellsjökull glacier, SE-Iceland

    NASA Astrophysics Data System (ADS)

    Vilmundardóttir, O. K.; Gísladóttir, G.; Lal, R.

    2015-01-01

    Climate warming has led to glacial retreat worldwide, where surfaces exposed to the atmosphere are subjected to weathering, vegetation colonization and new soil formation. On young soils developing along the recessional path left by the Skaftafellsjökull glacier, SE-Iceland, we investigated the accretion of soil organic carbon (SOC) and nitrogen (N), representing an age chronosequence of 120 years. In total, 54 sampling sites were distributed along three moraines deposited in 1890, 1945, and 2003. For comparison, soil samples were collected from nearby birch woodlands (Betula pubescens Ehrh.), representing soils in a mature ecosystem likely to establish on the moraines in the future. Results show that the average SOC and N concentrations increase with time and at faster rates over the latter part of the chronosequence period investigated (1945-1890). After 120 yrs, the soil contains 1.1 kg C m- 2 in the surface layer (0-10 cm), which is still about one third of the 3.2 kg C m- 2 in soil under the birch woodlands. The N stock estimated at 0.06 kg N m- 2 after 120 yrs is almost one fourth of that under the woodlands. The data suggest that landscape affects vegetation establishment and in turn, both landscape and vegetation affect soil development. Thus, concentrations of SOC, N and noncrystalline oxalate extractable Al and Fe are higher within depressions in the proglacial landscape. The comparison of SOC stock in the moraine soils with that under the birch forest shows that the young proglacial soils still have a large potential to accrete SOC within the developing pedosphere. With the observed accrual rate of 9.1 g C m- 2 yr- 1 in the top at 10 cm, it may take the moraine soils an additional period of 220 yrs to accrue SOC stocks comparable with those under the birch forest. Given the fact that all Icelandic glaciers are receding, assessing SOC accretion in new soil formation may be important to off-setting the greenhouse gas emissions.

  20. PS-InSAR measurements at the most active volcanoes in Iceland: role of the GEO supersite initiative in deformation monitoring at Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull volcanoes

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Drouin, Vincent; Sigmundsson, Freysteinn; Spaans, Karsten; Hooper, Andrew; Ófeigsson, Benedikt; Árnadóttir, Þóra; Hreinsdóttir, Sigrún; Michalczewska, Karolina; Hjaltadóttir, Sigurlaug; María Friðriksdóttir, Hildur; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur; Vogfjörd, Kristín; Jónsdóttir, Kristín; Hensch, Martin; Guðmundsson, Gunnar; Geirsson, Halldór; Sturkell, Erik

    2015-04-01

    Analysis of a time series of ground deformation measurements at active volcanoes can provide an improved understanding of sub-volcanic and sub-aerial processes; including those related to magmatic, hydrothermal and structural development. Interpreting a long time series may also help determine background behavior, and identify any deviations from this, including the migration of new melt. We use Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques to generate a time series of high-resolution deformation measurements, in the vicinity of the most active volcanoes in Iceland: Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull and compare these to other geodetic measurements. A comprehensive network of continuous GPS stations is already deployed at these volcanoes and a series of campaign GPS measurements are routinely undertaken each summer. InSAR observations are complementary to these field based measurements and their high spatial resolution assists in resolving the geometry of the deformation field hence gaining improved constraints on the inferred source. The Committee on Earth Observation Satellites has recently declared Iceland a Permanent Geohazard Supersite, based on its propensity for relatively frequent eruptions and their potentially hazardous, long ranging effects. The recent Supersite award ensures a considerable amount of SAR data is made available for both past and future satellite acquisitions, including new X-band images (acquired by TerraSAR-X and Cosmo-SkyMed satellites), and historic C-band images from ERS and ENVISAT. We present a series of long-term deformation measurements for Hekla, Katla, Eyjafjallajökull and Askja volcanoes, derived using PS-InSAR techniques, and include recent interferograms spanning the 2014 unrest and eruption within the Bárðarbunga volcanic system. InSAR and tilt measurements at Hekla indicate renewed melt supply to a sub-volcanic reservoir after the last eruption in 2000. Recent

  1. Seismic tremor signals from Bárðarbunga, Grímsvötn and other glacier covered volcanoes in Iceland's Vatnajökull ice cap

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristin S.; Eibl, Eva; Bean, Chris; Roberts, Matthew; Ófeigsson, Benedikt; Jóhannesson, Tómas

    2016-04-01

    Many of Iceland's most active volcanoes, like Grímsvötn and Bárðarbunga are located under glaciers giving rise to a range of volcanic hazards having both local and cross-border effects on humans, infrastructures and aviation. Volcanic eruptions under ice can lead to explosive hydromagmatic volcanism and generate small to catastrophic subglacial floods that may take hours to days to emerge from the glacier edge. Unrest in subglacial hydrothermal systems and the draining of subglacial meltwater can also lead to flood hazards. These processes and magma-ice interactions in general, generate seismic tremor signals that are commonly observed on seismic systems during volcanic unrest and/or eruptions. The tremor signals exhibit certain characteristics in frequency content, amplitude and behavior with time, but their characteristics overlap. Ability to discriminate between the different processes in real-time or near-real time can support early eruption and flood warnings and help mitigate their detrimental effects. One of the goals set forth in the FUTUREVOLC volcano supersite project was in fact to understand and discriminate between the different types of seismic tremor recorded at subglacial volcanoes. In that pursuit, the seismic network was expanded into the Vatnajökull glacier with four permanent stations on rock and in the ice, in addition to three seismic arrays installed at the ice margin, to enable location and possible tracking of the tremor sources. To track subglacial floods with better resolution three GPS receivers were also installed on the ice, one in an ice cauldron above the Skaftárkatlar geothermal melting area and two down glacier, above the track of the expected subglacial flood. During FUTUREVOLC this infrastructure has recorded all the types of process expected: Magmatic dyke intrusion and propagation from Bárðarbunga, subaerial fissure eruption of that magma at Holuhraun, two subglacial floods, one small and one large, draining from the

  2. Reply to the “Comment by Delmelle et al. (2013) on 'Scavenging of sulfur, halogens and trace metals by volcanic ash: The 2010 Eyjafjallajökull eruption' by Bagnato et al. (2013)”

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Aiuppa, A.; Bertagnini, A.; Bonadonna, C.; Cioni, R.; Pistolesi, M.; Pedone, M.; Hoskuldsson, A.

    2014-02-01

    With this short communication we address the principal issues raised by Delmelle et al. (2014) in relation to the work of Bagnato et al. (2013) concerning the 2010 eruption of Eyjafjallajökull, Iceland. The principal conclusions of the work of Bagnato et al. (2013) include the observation that protracted gas-aerosol interaction in the plume promotes selective leaching of cation species from ash, with alkalis and Ca (and, among trace elements, Zn and Cu) being more rapidly re-mobilized (and transferred to soluble surface salts) relative to more inert elements (Mg, Ti). They also observed that adsorption onto ash surfaces is a major atmospheric sink of volcanic acidic gases, with 282 tons of elemental sulfur and 605-691 tons of halogens being daily ground deposited via ash over Iceland in early May 2010. Acidic gas adsorption onto ash increases almost linearly with plume aging (e.g., upon increasing in-plume residence times of ash and gases), and is seen to proceed at about 3 time faster rates for HF than for SO2 and HCl. However, Delmelle et al. (2014) criticized our strategies for data acquisition, processing and interpretation. They also raised some objections concerning several key topics explored by Bagnato et al. (2013), with a special focus on the discussion of rates of interaction between ash particles and gases in a volcanic cloud, and the consequent formation of soluble salts on ash surfaces. They also considered incorrect the estimate of depositional fluxes and volatile budget for the Eyjafjallajökull eruption. While we appreciate the in-depth analysis of Delmelle et al. (2014), we show that most of their criticisms derive from a partial and sometimes incorrect understanding of the work of Bagnato et al. (2013), which overall led to unsupported conclusions and misleading analysis of the original results. Here, we present a detailed response to the comments of Delmelle et al. (2014), accompanied by additional explicative material. The principal

  3. Magma flow, eruption column and magma pressure change during 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions, Iceland: Constraints from volcano geodesy on physical models of eruptive processes

    NASA Astrophysics Data System (ADS)

    Sigmundsson, F.; Hreinsdottir, S.; Hooper, A. J.; Grapenthin, R.; Heimisson, E. R.; Ofeigsson, B.; Sturkell, E. C.; Roberts, M. J.; Gudmundsson, M. T.; Hoskuldsson, A.; Bjornsson, H.; Arason, P.; Parks, M.; Dumont, S.; Drouin, V.

    2014-12-01

    Ground deformation in relation to 2010 Eyjafjallajökull and 1998, 2004 and 2011 Grímsvötn eruptions in Iceland provide constraints on subsurface magma flow and pressure change. When compared with eruptive activity, eruption column and estimates of mass flow rate they can be used to constrain physical models of eruptive processes. The 1998 and 2004 Grímsvötn eruptions were captured by intermittent GPS observations but in 2011 the detailed temporal evolution of co-eruptive deformation was revealed by a kinematic 1 Hz solutions for the position of a single continuous GPS site on the volcano, supplemented with ground tilt observations. The observations can be explained by inflow of magma and pressure buildup between eruptions in a shallow chamber at about 1.7 km depth beneath the center of the Grímsvötn caldera complex, and pressure drop and magma outflow during eruptions. The rate of pressure change in the magma chamber correlates with the height of the volcanic plume over the course of the 2011 eruption. Peaks in activity relate to periods of rapid pressure drop in the chamber. GPS observations and interferometric analysis of satellite radar images from the TerraSAR-X satellite show that the explosive 2010 eruption at Eyjafjallajökull was on the other hand associated with gradual contraction of a source, distinct from pre-eruptive inflation sources at the volcano. For the initial 10-days of the summit eruption, a deflating sill source under the summit at about 5 km depth can explain the observed deformation, but then the source geometry appears to evolve. The rate of deflation was interrupted by inflow of new magma into the deflating source during the eruption in relation to peaks in explosive activity. The contrasting behavior of the two volcanoes is interpreted in terms of different magma plumbing systems of the volcanoes. In both cases, the erupted volume of magma is much larger than the inferred co-eruptive volume change, attributed to compressibility of

  4. Dynamics of Individual Eruptive Pulses and their Contribution to the Total Mass Flux - Case Study of the 2nd Explosive Phase of the 2010 Eyjafjallajökull Eruption (Iceland)

    NASA Astrophysics Data System (ADS)

    Dürig, T.; Gudmundsson, M. T.; Karmann, S.; Zimanowski, B.; Dellino, P.; Rietze, M.; Büttner, R.

    2014-12-01

    The 2010 Eyjafjallajökull eruption was characterized by pulsating activity, where emissions from the vent occurred in frequent but discrete bursts with pulses in the order of seconds that then merged at higher altitude in a sustained eruption column. High resolution near-field video recordings of the vents, taken from a distance of ~850 m from 8 - 10 May (during the second explosive phase), were used as a case study to describe the mechanism of such pulsating eruptions and their contribution to the total mass flux of ash injection in the atmosphere. The dynamics of discrete overpressured jets were quantified during the intial gas thrust stage, i.e. between discharge and the height of transition into a convective buoyant regime (at ~100 m above the vent). By applying a straight-forward volumetrical calculation model, the volume and pressure history of eruptive pulses could be reconstructed. Then the mass flux of individual pulses was determined by exploiting the fact that the pressure at the transition height is known to be at ambient pressure. Based on our results we examine how to link the eruption source parameters of multiple discrete expansive jets to the overall mass eruption rate deduced by "classical" continuous ash plume models (being ~4*104 kg/s). In addition we discuss the implications for a real-time assessment of eruption source parameters by using near-field monitoring systems under pulsatory eruption conditions.

  5. Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and LiDAR data - case study from Drangajökull ice cap, NW-Iceland

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Belart, J. M. C.; Pálsson, F.; Ágústsson, H.; Crochet, P.

    2015-09-01

    In this paper we describe how recent high resolution Digital Elevation Models (DEMs) can be used as constraints for extracting glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW-Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne LiDAR in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high resolution LiDAR DEM (2 m × 2 m cell size and vertical accuracy < 0.5 m). The LiDAR DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice and snow free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical variogram model, which along with the derived errors in ice and snow free areas were used as inputs into 1000 Sequential Gaussian Simulations (SGSim). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM. The derived bias correction, varying in magnitude between DEMs from 0.03 to 1.66 m (1946 DEM) was then applied. The simulation results were also used to calculate the 95 % confidence level of this bias, resulting in values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2-4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional bias correction was therefore estimated using a degree day model to obtain the volume change between the start of two hydrological years (1 October). This correction corresponds to an average elevation change of ~ -3 m in the worst case for 1960, or about ~ 2/3 of volume change between the 1960 and the 1975 DEMs. The

  6. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  7. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—a case study of the 2010 eruption of Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias; Gudmundsson, Magnús Tumi; Karmann, Sven; Zimanowski, Bernd; Dellino, Pierfrancesco; Rietze, Martin; Büttner, Ralf

    2015-11-01

    The 2010 eruption of Eyjafjallajökull volcano was characterized by pulsating activity. Discrete ash bursts merged at higher altitude and formed a sustained quasi-continuous eruption column. High-resolution near-field videos were recorded on 8-10 May, during the second explosive phase of the eruption, and supplemented by contemporary aerial observations. In the observed period, pulses occurred at intervals of 0.8 to 23.4 s (average, 4.2 s). On the basis of video analysis, the pulse volume and the velocity of the reversely buoyant jets that initiated each pulse were determined. The expansion history of jets was tracked until the pulses reached the height of transition from a negatively buoyant jet to a convective buoyant plume about 100 m above the vent. Based on the assumption that the density of the gas-solid mixture making up the pulse approximates that of the surrounding air at the level of transition from the jet to the plume, a mass flux ranging between 2.2 and 3.5 · 104 kg/s was calculated. This mass eruption rate is in good agreement with results obtained with simple models relating plume height with mass discharge at the vent. Our findings indicate that near-field measurements of eruption source parameters in a pulsating eruption may prove to be an effective monitoring tool. A comparison of the observed pulses with those generated in calibrated large-scale experiments reveals very similar characteristics and suggests that the analysis of near-field sensors could in the future help to constrain the triggering mechanism of explosive eruptions.

  8. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland.

    PubMed

    Tepe, Nathalie; Bau, Michael

    2014-08-01

    Volcanic ashes are often referenced as examples for natural nanoparticles, yet the particle size distribution <1000 nm is only rarely documented. We here report results of a geochemical study of glacial-fed rivers, glacial surface runoff, glacial base flow, and pure glacial meltwater from southern Iceland, that had been sampled 25 days after the explosive eruptions at Eyjafjallajökull in 2010. In addition to the dissolved concentrations of rare earth elements (REE), Zr, Hf, Nb, and Th in the 450 nm-filtered waters, we also studied the respective filter residues (river particulates >450 nm) and volcanic ash. In spite of the low solubilities and high particle-reactivities of the elements studied, most water samples show high dissolved concentrations, such as up to 971 ng/kg of Ce and 501 ng/kg of Zr. Except for the pure glacial meltwater and glacial base flow, all waters display the same shale-normalized REE patterns with pronounced light and heavy REE depletion and positive Eu anomalies. While such patterns are unusual for river waters, they are similar to those of the respective river particulates and the volcanic ash, though at different concentration levels. The distribution of dissolved Zr, Hf, Nb, and Th in the waters also matches that of filter residues and ash. This strongly suggests that in all 450 nm-filtered river waters, the elements studied are associated with solid ash particles smaller than 450 nm. This reveals that volcanic ash-derived nanoparticles and colloids are present in these glacial-fed rivers and that such ultrafine particles control the trace element distribution in the surface runoff. Subsequent to explosive volcanic eruptions, these waters provide terrigenous input from landmasses to estuaries, that is characterized by a unique trace element signature and that subsequent to modification by estuarine processes delivers a pulse of nutrients to coastal seawater in regions not affected by plume fall-out.

  9. Cosmogenic 36Cl exposure ages reveal a 9.3 ka BP glacier advance and the Late Weichselian-Early Holocene glacial history of the Drangajökull region, northwest Iceland

    NASA Astrophysics Data System (ADS)

    Brynjólfsson, Skafti; Schomacker, Anders; Ingólfsson, Ólafur; Keiding, Jakob K.

    2015-10-01

    We present twenty-four new cosmogenic isotope (36Cl) surface exposure ages from erratic boulders, moraine boulders and glacially eroded bedrock that constrain the late Weichselian to Holocene glacial history of the Drangajökull region, northwest Iceland. The results suggest a topographically controlled ice sheet over the Vestfirðir (Westfjords) peninsula during the last glaciation. Cold based non-erosive sectors of the ice sheet covered most of the mountains while fjords and valleys were occupied with erosive, warm-based ice. Old36Cl exposure ages from highlands and mountain plateaux (L8; 76.5 ka and H1; 41.6 ka) in combination with younger erratic boulders (L7; 26.2 and K1-K4; 15.0-13.8 ka) superimposed on such surfaces suggest the presence of non-erosive ice over uplands and plateaux in the Vestfirðir peninsula during the last glaciation. Glacially scoured terrain and erratic boulders yielding younger exposure ages (L1-L6; 11.3-9.1 ka and R1, R6-R7; 10.6-9.4 ka) in the lowland areas indicate that the valleys and fjords of the Vestfirðir peninsula were occupied by warm-based, dynamic ice during the last glaciation. The deglaciation of mountain Leirufjall by 26.2 ka BP suggests that ice thinning and deglaciation of some mountains and plateaux preceded any significant lateral retreat of the ice sheet. Subsequently this initial ice thinning was followed by break-up of the shelf based ice sheet off Vestfirðir about 15 ka BP. Hence, the new exposure ages suggest a stepwise asynchronous deglaciation on land, following the shelf break-up with some valleys and most of the highlands, ice free by 14-15 ka BP. The outermost moraine at the mouth of Leirufjörður is dated to 9.3 ka BP, and we suggest the moraine to be formed by a glacier re-advance in response to a cooler climate forced by the reduced Atlantic Meridional Overturning Circulation at around 9.3 ka BP. A system of moraines proximal to the 9.3 ka moraine in Leirufjörður as well as a 9.4 ka deglaciation age

  10. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R. E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N. I.; Stohl, A.; Mona, L.

    2013-02-01

    Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties, as well as of the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece using a multi-wavelength Raman lidar system and inversion models, during 21-24 April 2010. Additionally, Aerosol Robotic Network (AERONET) particulate columnar measurements indicated the presence of volcanic particles over our area. Simulations of the volcanic partilcles dispersion, done by the FLEXPART model, confirmed the presence of these particles over Athens. Our lidar data showed volcanic particles layers, in the form of filaments after 7-day transport from the source (approximately 4000 km away from our site) between from ground levels up to nearly 10 km. Over Athens the volcanic particles layers were found to be mixed with locally produced aerosols, inside the Planetary Boundary Layer (PBL). Mean hourly-averaged lidar signals indicated that the layer thickness of volcanic particles, ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth (AOD) found to vary from 0.014 to 0.184 at 355 nm and from 0.017 up to 0.174 at 532 nm. Furthermore, the corresponding lidar ratios (LR) ranged between 59.7-79.6 sr (at 355 nm) and 43.9-88.3 sr (at 532 nm). Additionally, we calculated that the mean effective radius of the volcanic particles was 0.13-0.38 μm, while their refractive index ranged from 1.39+0.009i to 1.48+0.006i. Finally, our data also allowed us to quantitatively compare, for the first time, the volcanic ash concentrations simulated by FLEXPART with those calculated by the inversion code LIRIC, using data sets derived from coincident lidar-AERONET measurements. In general, good agreement was found between simulations and observations, concerning not only the geometrical

  11. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R. E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N. I.; Stohl, A.; Mona, L.

    2013-09-01

    Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties as well as the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece, using multi-wavelength Raman lidar measurements performed during the period 21-24 April 2010. Aerosol Robotic Network (AERONET) particulate columnar measurements along with inversion schemes were initialized together with lidar observations to deliver the aforementioned products. The well-known FLEXPART (FLEXible PARTicle dispersion model) model used for volcanic dispersion simulations is initiated as well in order to estimate the horizontal and vertical distribution of volcanic particles. Compared with the lidar measurements within the planetary boundary layer over Athens, FLEXPART proved to be a useful tool for determining the state of mixing of ash with other, locally emitted aerosol types. The major findings presented in our work concern the identification of volcanic particles layers in the form of filaments after 7-day transport from the volcanic source (approximately 4000 km away from our site) from the surface and up to 10 km according to the lidar measurements. Mean hourly averaged lidar signals indicated that the layer thickness of volcanic particles ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth was found to vary from 0.01 to 0.18 at 355 nm and from 0.02 up to 0.17 at 532 nm. Furthermore, the corresponding lidar ratios (S) ranged between 60 and 80 sr at 355 nm and 44 and 88 sr at 532 nm. The mean effective radius of the volcanic particles estimated by applying inversion scheme to the lidar data found to vary within the range 0.13-0.38 μm and the refractive index ranged from 1.39+0.009i to 1.48+0.006i. This high variability is most probably attributed to the

  12. Glacial and climatic evolution from the Little Ice Age last Maximum to the present in Tröllaskagi Peninsula (North Iceland): the case of Gljúlfurárjökull

    NASA Astrophysics Data System (ADS)

    María Fernández, Jose; Andres, Nuria; Tanarro, Luis Miguel; Palacios, David

    2015-04-01

    This paper presents the evolution of the Gljúlfurárjökull glacier (65°42'48'' N, 18°39'13'' W; 980 m), located at the headwall of the Skiðadalur valley, on the Tröllaskagi peninsula (N. Iceland). This is one of many small glaciers situated on the bottom of the Tröllaskagi valleys. This glacier is one of the few "clean" glaciers, i.e. not covered with boulders, as is the case with most of the glaciers on this peninsula. This makes the glacier especially sensitive to climate change, and it has retreated and advanced many times since its last maximum during the Little Ice Age (LIA) maximum in the mid- 19th century (Caseldine and Stötter, 1993), leaving a large number of moraine ridges. This paper analyses the change in this glacier from the LIA up to the present day, with reference to the variations in the surface, ELA and volume. Lichenometry and geomorphological field analysis were used to establish the exact limits of the glacier during the LIA last maximum. An aerial photo from 1946 and two orthophotos from 2000 and 2013 were also used. Using photointerpretation and Geographical Information Systems (GIS), the aerial photos were georeferenced to delimit the glacier in different years, analyse the surface and volume variations, and calculate the ELA for each date. The ELA analysis was carried out using the method: Accumulation Area Ratio (AAR 0.67). The results obtained with this method are: Little Ice Age Maximum: 945 m a.s.l. (almost the same ELA proposed by Caseldine and Stötter, 1993) 1946: 970 m a.s.l. 2000: 980 m a.s.l. 2013: 990 m a.s.l. The ice volume lost from LIA to 2000 was: 111.68 hm3 Reference Caseldine, C., Stötter, J., 1993. "Little Ice Age" glaciation of Tröllaskagi Peninsula, northern Iceland: Climatic implications for reconstructed equilibrium line altitudes (ELAs). Holocene 3: 357-366. Research funded by Cryocrisis project (CGL2012-35858), Government of Spain, and Nils Mobility projects (EEA GRANTS)

  13. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... causes motion of the plume features between camera views. A quantitative computer analysis is necessary to separate out wind and height ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  14. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... erroneous impression that they are below the land surface. A quantitative computer analysis is necessary to separate out wind and height. ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  15. Ice nucleating properties of volcanic ash particles from the Eyjafjallajökull volcanic eruption

    NASA Astrophysics Data System (ADS)

    Kulkarni, G.; Zelenyuk, A.; Beranek, J.

    2011-12-01

    The volcanic ash from the volcanic emissions can significantly contribute to the natural source of aerosols in the atmosphere. In the vicinity and downwind of eruption site, the transported ash might have a stronger impact on the aviation industry, regional air quality, and climate. Despite the environmental significance of ash, our understanding of ash particles reacting with other volcanic plume constituents is rudimentary. In particular, the complex interactions between the water vapor and ash particles under different meteorological conditions that lead to cloud hydrometeors are poorly understood. To improve our understanding, we focus on investigating the ice formation properties of ash particles collected from the recent volcanic eruption. It was observed that the ash particles are less efficient ice nuclei compared to the natural dust particles in the deposition nucleation regime, but have similar efficiencies in the condensation freezing mode. The ice nucleated ash particles are separated from the interstitial particles, and further evaporated to understand the elemental composition, size, shape and morphology of the ice residue using the single particle mass spectrometer. The elemental composition reveals that majority of the elements are also present in the natural dust particles, but subtle differences are observed. This suggests that particle properties play an important role in the ice nucleation process.

  16. French airborne lidar measurements for Eyjafjallajökull ash plume survey

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Dabas, A.; Sanak, J.; Lardier, M.; Royer, P.

    2012-03-01

    An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon 20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April-May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as ash extinction coefficient and lidar ratio. Lidar ratios were measured in the range of 33 to 48 sr, in good agreement with the ratios derived from ground-based lidar measurements performed near Paris (France) in April 2010 (∼47 sr). The ash signature in terms of particulate depolarization was consistent around 45 ± 7% during all flights. Such a value seems to be a good identification parameter for ash. Using specific cross-sections between 0.29 and 1.1 m2 g-1, the minimum (maximal) mass concentrations in the ash plumes are derived for the flights on 12 and 16 May. They were 190 (2300) and 270 (1600) μg m-3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m-3) for the aircraft engines, but well above the 200 μg m-3 warning level.

  17. French airborne lidar measurements for Eyjafjallajökull ash plume survey

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Dabas, A.; Sanak, J.; Lardier, M.; Royer, P.

    2012-08-01

    An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April-May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as the extinction coefficient and the lidar ratio. Lidar ratios were measured in the range of 43 to 50 sr, in good agreement with the ratios derived from ground-based lidar near Paris (France) in April 2010 (~48 sr). The ash signature in terms of particulate depolarization was consistent during all flights (between 34 ± 3 % and 38 ± 3%). Such a value seems to be a good identification parameter for volcanic ash. Using specific cross-sections between 0.19 and 1.1 m2 g-1, the minimum (maximal) mass concentrations in the ash plumes derived for the flights on 12 and 16 May were 140 (2300) and 250 (1500) μg m-3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m-3) for the aircraft engines, but well above the 200 μg m-3 warning level.

  18. A Model of Drumlin Growth at Múlajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Iverson, N. R.; McCracken, R. G.; Zoet, L.; Schomacker, A.; Benediktsson, Í. Ö.; Johnson, M. D.; Hooyer, T.

    2015-12-01

    Observations at a rare, modern drumlin field—exposed by the recession of the Icelandic surge-type glacier, Múlajökull—allow a physically based model of drumlin formation to be formulated. These observations include the following: 1) drumlin relief resulted from basal till deposition on drumlins and erosion between them; 2) till deposition occurred during surges; 3) evidence of longitudinally compressive strain in till of the drumlins, as expected from negative flux divergence in a shearing bed, is absent; 4) during quiescent periods till was under higher effective normal stresses between drumlins than within them; 5) crevasse swarms are coincident with drumlins, and 6) water drainage at the glacier margin during the current quiescent state is through channels in low areas between drumlins. In the new model, basal sediment transport is controlled by patterns of effective stress that are different in the quiescent and surging states. During quiescent periods, slip of ice over a sinusoidally perturbed bed, crevasse formation, and flow of subglacial water toward R-channels that lie between drumlins result in effective stresses that increase toward channels and decrease from the stoss to the lee sides of drumlins. This effective-stress pattern causes till entrainment and erosion by regelation infiltration (Rempel, 2008, JGR, 113) that peaks at drumlin heads and near R-channels and is minimized on the lee sides of drumlins, while bed shear is inhibited by effective stresses too high to allow deformation. In contrast, during surges regelation infiltration cannot occur, and high rates of bed shear—assumed to be spatially uniform due to the lack of evidence for till flux divergence—cause basal melt rates sufficient to deposit, by lodgment, till layers of up to ~2.0 m in thickness during a single surge. With multiple surge cycles, drumlins grow in height and migrate downglacier, with resultant stratigraphy in broad agreement with field observations.

  19. Testing crevasse-depth models: a field study at Breiðamerkurjökull, Iceland

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth H.; Benn, Douglas I.

    Interest in crevasses and associated ice-fracture processes has recently increased due to recognition of the importance of calving glaciers to the mass balance of the cryosphere, as well as the importance of fractures in glacier hydrology. Recently developed calving criteria make use of models which predict crevasse depth from surface strain rates, but these models have rarely been tested against observations. In this study, we present data on crevasse depth and surface strain rates, and compare the measured values with results of two crevasse-depth models: a simple function proposed by Nye and a linear elastic fracture mechanics (LEFM) model developed by Van der Veen. Our results indicate that both models predict crevasse depths within the correct order of magnitude. The LEFM model, incorporating measured values of crevasse spacing and tuned for fracture toughness, performs better in predicting crevasse depths, but where lack of input data precludes such tuning, the results are similar to Nye's model predictions. We conclude that both models may be used to calculate crevasse depths in calving models, although the Nye function is undoubtedly much simpler to implement within an ice-dynamics model.

  20. Physical characteristics of drumlins, with implications for their formation, at an active drumlin field, Múlajökull, Iceland

    NASA Astrophysics Data System (ADS)

    McCracken, R. G.; Iverson, N. R.; Benediktsson, Í. Ö.; Schomacker, A.; Johnson, M. D.; Zoet, L.; Hooyer, T.

    2015-12-01

    The forefield of Múlajökull—a warm-based, surge-type glacier in central Iceland—comprises the only known active drumlin field, with drumlins of similar morphometry to their Pleistocene counterparts but formed under better-known glaciological conditions. Study of till magnetic and till fabrics, till densities and preconsolidation stresses, and drumlin stratigraphy indicates that drumlin relief reflects both erosion and deposition: 1) the package of basal tills that constitutes the drumlins thickens where the forefield has experienced more surging, but uniformities are common on drumlin flanks, 2) attitudes of till layers and patterns of deformation within them indicate till deposition occurred on drumlin slopes rather than prior to drumlinization, and 3) past effective stresses during quiescent periods were highest in interdrumlin areas. These data suggest that erosion occurred during quiescence, rather than during surging, with erosion rates that increased under increasing effective stress. Stratigraphic evidence connecting specific till layers to surge moraines (Johnson et al., 2010, Geology 38, 943-6), on the other hand, indicates that deposition occurred during surges. Such deposition could have resulted from negative flux divergence in a shearing bed, but till fabrics provide no evidence for longitudinally compressive strain. A more likely origin for the basal till is that rapid, uniform bed shear during surging—consistent with the low and relatively uniform effective stresses expected during such periods—generated basal melt rates sufficient to release debris from ice and lodge it onto the bed. This conceptual model of alternating erosion and deposition implies drumlins formed by slow flowing ice elsewhere will be dominantly erosional, whereas drumlins with evidence of deposition may have experienced fast ice flow.

  1. Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010

    NASA Astrophysics Data System (ADS)

    Derimian, Y.; Dubovik, O.; Tanre, D.; Goloub, P.; Lapyonok, T.; Mortier, A.

    2012-10-01

    In this work we characterize optical properties and assess the direct radiative effect of an ash plume observed on April 17, 2010 by AERONET, lidar and broadband solar flux measurements collocated on the roof of the Laboratory of Atmospheric Optics in Lille, northern France. These measurements allowed experimental evaluation of ash radiative impact and validation of simulations. The derived aerosol model of ash is characterized by a bi-modal size distribution dominated by coarse mode centered at a radius of 1.5 μm and by relatively strong absorption at short wavelengths (single scattering albedo of 0.81 ± 0.02 at 440 nm as opposed to 0.92 ± 0.02 at 670, 870 and 1020 nm). Due to relatively low aerosol optical thickness during the ash plume transport (˜0.26 at 440 nm), which is unfavorable for AERONET retrievals, the uncertainties in derived ash aerosol model were additionally evaluated. The complex refractive index of ash was derived assuming that effective refractive index retrieved by AERONET for externally mixed bi-component aerosol can be approximated as an average of refractive indices of two components weighted by their volume concentrations. Evaluation of the accuracy of this approximation showed acceptably small errors in simulations of single scattering albedo and aerosol phase function over the range of scattering angles observed by the AERONET almucantar. Daily average radiative forcing efficiency of ash calculated for a land surface reflectance representing Lille was about -93 ± 12 Wm-2 τ550-1 and -31 ± 2 Wm-2 τ550-1 at the bottom and top of the atmosphere; the values for an ocean surface reflectance are also provided.

  2. "Kull wahad la haalu": Feelings of isolation and distress among Yemeni immigrant women in San Francisco's Tenderloin.

    PubMed

    Volk, Lucia

    2009-12-01

    Recently arrived Yemeni immigrant women in San Francisco's Tenderloin neighborhood face a series of challenges as they go about living their everyday lives in a poor and crime-ridden neighborhood. They experience feelings of isolation and distress because of their limited English skills, their conservative Islamic dress that draws comments and unfriendly looks, and their household chores as mothers of often large families, which keep them busy at home. Despite living in close proximity to other Yemeni immigrants, these women feel profoundly lonely. In this study, based on interviews with 15 recently arrived Yemeni women, I show different "idioms of distress" that connect the women's emotional states to experiences of physical space and the body. I also raise methodological and epistemological questions about conducting anthropological work in communities whose members experience profound isolation.

  3. Implications of Common Core State Standards on the Social Studies

    ERIC Educational Resources Information Center

    Kenna, Joshua L.; Russell, William B., III.

    2014-01-01

    Social studies teachers have often been on the outside looking in during much of the era billed as the standards-based educational reform (SBER), but with the adoption and implementation of the Common Core State Standards (CCSS), social studies teachers seem to have been invited back inside. Yet, how will the standards impact social studies…

  4. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  5. Bacterial 16S diversity of basal ice, sediment, and the forefront of Svínafellsjökull glacier via isolation chips and classical culturing techniques

    NASA Astrophysics Data System (ADS)

    Toubes-Rodrigo, Mario; Cook, Simon; Elliott, David; Sen, Robin

    2016-04-01

    Sub-glacial microbes are receiving increased attention due to their central roles in storage and release of greenhouse gases, such as methane and CO2. Climate change driven warming and resulting glacier retreat exposes bedrock that can contribute to soil formation in which subglacial-released microorganisms may play a crucial role. Basal ice, which forms in the lowermost part of glaciers in the absence of light is characterised by a high debris concentration that can be regarded as a glacier niche that must be sustained by the utilisation of overridden organic matter or primary production based on chemolithotrophic metabolism. Compared to other glacial ecosystems, subglacial microbial ecology remains poorly understood, due to limited accessibility and difficulties associated with low microbial occupancy. In this study, different defined types of basal ice (cryofacies) were targeted, namely stratified cryofacies (highest sediment content, fine-grained), debris bands (intermediate debris content, coarse-grained) and dispersed cryofacies (low sediment content, polymodal). Debris bands have been suggested to form by the entrainment of sediment due to shearing forces near the bedrock. Internal glacial processes proceed to modify debris bands leading to the formation of dispersed cryofacies. Stratified cryofacies, result from a range of processes that confers high debris content with a characteristically layered appearance. Basal ice is involved in the creation of subglacial tills and therefore in moraine formation. Elemental analysis, using a portable X-ray fluorescence portable analyser (Olympus Delta), confirmed that debris bands and dispersed cryofacies were highly similar, and distinct from stratified cryofacies, which support the dispersed cryofacies formation hypothesis. Bacteria from basal ice, sediment and forefront soil were cultured via inserted isolation chips (ichips) and traditional extraction/dilution plating. Isolated bacteria were subsequently identified following 16S rRNA gene sequencing and phylogenetics. Basal ice communities comprised a mix of soil and glacial bacteria, with higher proportion of ice-related bacteria in dispersed cryofacies (Polaromonas sp, Flavobacterium xinjiangense) and a water (Arthrobacter agilis) and soil-related microorganisms (Pseudomonas sp) in the debris bands, similar to sub-glacial sediment. During debris band formation, microorganisms from bedrock and overridden soils can be entrained into the ice matrix and those which have adapted to icy conditions can proliferate, explaining the higher viable bacterial counts on dispersed ice as well as higher proportions of glacial isolated-related microorganisms. Once the subglacial sediment and basal ice are released from the glacier and as soil age increases, increased representation of soil-related microbiota (Arthrobacter alpinus, Stenotrophomonas rhizophila) were identified. The results in this study suggest cultivable communities shift in two directions: firstly, within the basal ice layer from subglacial sediment, dominated by soil and water communities towards dispersed ice with a high proportion of glacial communities. The other shift occurs when subglacial sediment is released into the forefront, where the composition changes towards a soil-like microbiota with increase in soil age.

  6. Geodetic observations of deep re-equilibration of magmatic systems accompanying the Hekla 2000 and Eyjafjallajökull 2010 eruptions, Iceland

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor; LaFemina, Peter; Sturkell, Erik; Ofeigsson, Benedikt; Arnadottir, Thora; Hreinsdottir, Sigrun; Hjaltadottir, Sigurlaug; Hooper, Andy; Lund, Bjorn; Schmidt, Peter; Sigmundsson, Freysteinn; Linde, Alan; Sacks, Selwyn

    2015-04-01

    Volcano geodesy most easily displays deformation from shallow deformation sources. However, with the expansion of geodetic networks and observations systems, there is growing evidence for far-field deformation at some volcanoes, indicating deeper processes within theses magmatic systems. We reflect here on crustal deformation from two recent eruptions in Iceland, the Hekla 2000 and Eyjafjallajokull 2010, which show signs of pressure changes at various crustal depths accompanying the eruptions. These eruptions were of similar eruptive volumes, approximately 0.2 km3, and were accompanied by crustal deformation relating to shallow dike and sill emplacements, in addition to more subtle and widespread crustal deformation caused by magma withdrawal. The crustal deformation associated with the Hekla 2000 eruption was captured by various geodetic methods, including continuous and episodic GPS, dry-tilt (i.e., short leveling lines), borehole strain, and InSAR. Continuous GPS data show deformation at >50 km from Hekla. We derive new deformation estimates from the episodic GPS network, and model the GPS displacements with previously published dry-tilt, InSAR, and borehole strain measurements in a formal joint inversion. While most of our data indicate a deep source of magma withdrawal (~20 km depth for a spherical source, or a pipe-like structure that reaches up to shallower depths), data from the borehole strain station closest to Hekla cannot be readily explained with a deep source. The borehole strain data at Hekla has good short-term resolution but poor long-term resolution, while the GPS, tilt, and InSAR measurements span a longer time interval. Therefore, we suggest the geodetic data from the Hekla 2000 eruption can best be interpreted with spatio-temporal progression of pressure changes in the magmatic system such that the co-eruptive signal was from a shallower (~10 km) source, which was followed by magma transport from deep to shallower depths before, during and after the eruption. For the Eyjafjallajokull 2010 eruption, we observe a wide-spread (>60 km from Eyjafjallajokull) deformation field with motion towards the volcano from an extensive network of episodic and continuous GPS stations. The distant continuous GPS stations clearly show that the time of deformation exceeds the eruptive period by several months, indicating that these stations are recording deep re-equilibration of the magmatic system under Eyjafjallajokull. Both volcanoes indicate a certain time-progression of deformation, where the deeper (>10 km) parts of the magmatic systems re-equilibrate in response to the shallower co-eruptive pressure decrease.

  7. In situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010

    NASA Astrophysics Data System (ADS)

    Johnson, Ben; Turnbull, Kate; Brown, Phil; Burgess, Rachel; Dorsey, James; Baran, Anthony J.; Webster, Helen; Haywood, Jim; Cotton, Richard; Ulanowski, Z.; Hesse, Evelyn; Woolley, Alan; Rosenberg, Philip

    2012-10-01

    During April-May 2010 the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft flew 12 flights targeting volcanic ash clouds around the UK. The aircraft observed ash layers between altitudes of 2-8 km with peak mass concentrations typically between 200-2000μg/m3, as estimated from a Cloud and Aerosol Spectrometer (CAS). A peak value of 2000-5000 μg/m3 was observed over Scotland on 14 May 2010, although with considerable uncertainty due to the possible contamination by ice. Aerosol size distributions within ash clouds showed a fine mode (0.1-0.6 μm) associated with sulphuric acid and/or sulphate, and a coarse mode (0.6-35 μm) associated with ash. The ash mass was dominated by particles in the size range 1-10 μm (volume-equivalent diameter), with a peak typically around 3-5μm. Electron-microscope images and scattering patterns from the SID-2H (Small Ice Detector) probe showed the highly irregular shape of the ash particles. Ash clouds were also accompanied by elevated levels of SO2 (10-100 ppbv), strong aerosol scattering (50-500 × 10-6 m-1), and low Ångstrom exponents (-0.5 to 0.4) from the 3-wavelength nephelometer. Coarse-mode mass specific aerosol extinction coefficients (kext), based on the CAS size distribution varied from 0.45-1.06 m2/g. A representative value of 0.6 m2/g is suggested for distal ash clouds (˜1000 km downwind) from this eruption.

  8. Dispersion and evolution of the Eyjafjallajökull ash plume over Europe: vertically resolved measurements with the European LIDAR network EARLINET

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Mattis, Ina

    2010-05-01

    EARLINET, the European Aerosol Research Lidar NETwork, established in 2000 is the first coordinated lidar network for tropospheric aerosol study on continental scale. The network activity is based on scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. At present, the network includes 26 lidar stations distributed over Europe. EARLINET has been closely monitoring the cloud of volcanic ash from the Eyjafjallajoekull volcano in Iceland since it started erupting on 15 April. EARLINET is providing data about the presence, altitude and layering of the plume, together with optical information all over Europe. Updated measurement reports and more information about EARLINET can be found at www.earlinet.org. The financial support for EARLINET by the European Commission under grant RICA-025991 is gratefully acknowledged.

  9. 78 FR 28873 - Availability of Final Environmental Assessment and Finding of No Significant Impact for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... for the Proposed Modification of the Bayonne Bridge Across the Kill Van Kull Between Bayonne, Hudson... the proposed modification of the historic Bayonne Bridge across the Kill Van Kull between Bayonne, New... Bridge across the Kill Van Kull. ADDRESSES: We have provided a copy of the Final EA and FONSI in...

  10. 78 FR 5471 - Availability of Draft Environmental Assessment for the Proposed Modification of the Bayonne...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Bayonne Bridge Across the Kill Van Kull Between Bayonne, Hudson County, NJ and Staten Island, Richmond...-economic impacts of the proposed modification of the historic Bayonne Bridge across the Kill Van Kull... the modification to the Bayonne Bridge across the Kill Van Kull. DATES: Written comments and...

  11. A comparison of the lichenometric and Schmidt hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers

    NASA Astrophysics Data System (ADS)

    Evans, D. J. A.; Archer, S.; Wilson, D. J. H.

    Measurements of Rhizocarpon section and Schmidt hammer R-values are reported from the proglacial geomorphic features on the forelands of the Icelandic glaciers of Kvı´árjökull, Hólárjökull and Heinabergsjökull (Öræfi and south Vatnajökull), Sandfellsjökull and Öldufellsjökull (east Mýrdalsjökull), and Brúárjökull, Eyjabakkajökull and west Snæfell (north Vatnajökull). These data are used in reconstructions of patterns of glacier recession since the Little Ice Age maximum, and the geomorphic signals of climatic versus non-climatic events are discussed. Age control was obtained from various dated substrates by utilizing historical accounts, aerial photographs and grave stones. Three lichen growth rates are calculated: (a) 0.51 mm a -1 (corrected to 0.50 mm a -1) with a colonization lag time of <16 yr for the arid forelands of north Vatnajökull; (b) 0.56 mm a -1 with a colonization lag time of 5 yr for the Icelandic southeast coast; and (c) 0.80 mm a -1 with a colonization lag time of 6.5 yr for the south Vatnajökull and east Mýrdalsjökull forelands. These compare favourably with a previously published growth rate of 0.44 mm a -1 for the arid north of Iceland. This regional coverage of data allows a comparison between annual precipitation totals and lichen growth rates and the construction of a growth rate prediction curve for Iceland. The success of the Schmidt hammer in differentiating moraines based upon age varied according to the geomorphological setting. Reasonable R-value/lichen size correlations were obtained on the east Mýrdalsjökull and Heinabergsjökull forelands where unrestricted glacier advance into lowlands allows for a higher degree of debris surface freshening by direct glacial processes. Weak correlations were obtained at Kvı´árjökull, where the glacier was restricted by a precursor latero-frontal moraine loop and therefore the debris comprising the Little Ice Age recessional moraines was diluted with material of

  12. Counterinsurgency in Pakistan

    DTIC Science & Technology

    2010-01-01

    more information about this poll, see C. Christine Fair, Clay Ramsay , and Steve Kull, “Pakistani Public Opinion on Democracy, Islamist Militancy...favored the policy, 36 percent said they opposed it.129 The results were similar when the USIP/PIPA team asked about 129Fair, Ramsay , and Kull...following the fall of Buner to the Taliban, Pakistani opinion switched 130Fair, Ramsay , and Kull, “Pakistani Public Opinion on Democracy.” 131Fair, Ramsay

  13. 78 FR 740 - Availability of Draft Environmental Assessment for the Proposed Modification of the Bayonne...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Bayonne Bridge Across the Kill Van Kull Between Bayonne, Hudson County, NJ and Staten Island, Richmond... historic Bayonne Bridge across the Kill Van Kull between Bayonne, New Jersey and Staten Island, New York... (PANYNJ) for Coast Guard approval of the modification to the Bayonne Bridge across the Kill Van...

  14. Estimating fugitive bioaerosol releases from static compost windrows: feasibility of a portable wind tunnel approach.

    PubMed

    Taha, M P M; Pollard, S J T; Sarkar, U; Longhurst, P

    2005-01-01

    An assessment of the fugitive release of bioaerosols from static compost piles was conducted at a green waste composting facility in South East England; this representing the initial stage of a programme of research into the influence of process parameters on bioaerosol emission flux. Wind tunnel experiments conducted on the surface of static windrows generated specific bioaerosol emission rates (SBER2s) at ground level of between 13 and 22 x 10(3) cfu/m2/s for mesophilic actinomycetes and between 8 and 11 x 10(3)cfu/m2/s for Aspergillus fumigatus. Air dispersion modelling of these emissions using the SCREEN3 air dispersion model in area source term mode was used to generate source depletion curves downwind of the facility for comparative purposes.

  15. Trend recognition and failure prediction of the attitude determination and control system of the Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle S.; Hadden, George D.

    An approach to automated trend recognition and failure prediction in the health parameter data of spacecraft is described. The approach, State-Based Feature Recognition (SBER), combines intelligent data filtering with state machines to detect the presence of features (trends and impending failures) in the health parameter data of spacecraft. SBFR, when implemented in a space-based or ground-based monitoring system, can increase spacecraft autonomy and decrease technician workload. An implemented, prototype Space Station Freedom (SSF) Maintenance and Diagnostic System (SSFMDS) that demonstrates the applicability of SBFR to trend detection and failure prediction will be described. SBFR allows features to be tracked, using specialized state machines, as they develop in a time-independent manner, allowing both short term and long term features to be detected. Each state machine operates independently of the other machines, making simultaneous feature tracking possible.

  16. BAYONNE BRIDGE LOOKING EAST, BAYONNE TO THE LEFT (CONTACT PRINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BAYONNE BRIDGE LOOKING EAST, BAYONNE TO THE LEFT (CONTACT PRINT MADE FROM 5 1/4" X 4 1/2" NEGATIVE) - Bayonne Bridge, Spanning Kill Van Kull between Bayonne & Staten Island, Bayonne, Hudson County, NJ

  17. 33 CFR 161.25 - Vessel Traffic Service New York Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Raritan Bay to the Raritan River Rail Road Bridge; and then north including the waters of the Arthur Kill... waters of the Kill Van Kull and Upper New York Bay north to a line drawn east-west from the...

  18. 33 CFR 161.25 - Vessel Traffic Service New York Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Raritan Bay to the Raritan River Rail Road Bridge; and then north including the waters of the Arthur Kill... waters of the Kill Van Kull and Upper New York Bay north to a line drawn east-west from the...

  19. SPRINGING OF THE ARCH, SOUTH END OF BRIDGE, STATEN ISLAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPRINGING OF THE ARCH, SOUTH END OF BRIDGE, STATEN ISLAND SIDE (CONTACT PRINT MADE FROM 5 1/4" X 4 1/2" NEGATIVE) - Bayonne Bridge, Spanning Kill Van Kull between Bayonne & Staten Island, Bayonne, Hudson County, NJ

  20. 33 CFR 161.25 - Vessel Traffic Service New York Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Raritan Bay to the Raritan River Rail Road Bridge; and then north including the waters of the Arthur Kill... waters of the Kill Van Kull and Upper New York Bay north to a line drawn east-west from the...

  1. 33 CFR 161.25 - Vessel Traffic Service New York Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Raritan Bay to the Raritan River Rail Road Bridge; and then north including the waters of the Arthur Kill... waters of the Kill Van Kull and Upper New York Bay north to a line drawn east-west from the...

  2. 33 CFR 161.25 - Vessel Traffic Service New York Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Raritan Bay to the Raritan River Rail Road Bridge; and then north including the waters of the Arthur Kill... waters of the Kill Van Kull and Upper New York Bay north to a line drawn east-west from the...

  3. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajokull, Iceland, 1973-92

    USGS Publications Warehouse

    Williams, R.S.; Hall, D.K.; Sigurbsson, O.; Chien, J.Y.L.

    1997-01-01

    Vatnajo??kull, Iceland, is the Earth's most studied ice cap and represents a classical glaciological field site on the basis of S. Pa??lsson's seminal glaciological field research in the late 18th century. Since the 19th century, Vatnajo??kull has been the focus of an array of glaciological studies by scientists from many nations, including many remotesensing investigations since 1951. Landsat-derived positions of the termini of 11 outlet glaciers of Vatnajo??kull were compared with frontal positions of six of these 11 outlet glaciers determined by field observations during the period 1973-92. The largest changes during the 19 year period (1973-92) occurred in the large lobate, surge-type outlet glaciers along the southwestern, western, and northern margins of Vatnajo??kull. Tungnaa??rjo??kull receded - 1413 ?? 112 m (-1380 ?? l m from ground observations), and Bru??arjo??kull receded -1975 ?? 191 m (-2096 ?? 5 m from extrapolated ground observations) between 1973 and 1992. Satellite images can be used to delineate glacier margin changes on a time-lapse basis, if the glacier margin can be spectrally discriminated from terminal moraines and sandur deposits and if the advance/recession is larger than maximum image pixel size. "Local knowledge" of glaciers is critically important, however, in the accurate delineation of glacier margins on Landsat images.

  4. Surging glaciers in Iceland - research status and future challenges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, Olafur

    2013-04-01

    Twenty six Icelandic outlet glaciers, ranging from 0.5-1.500 km2, are known to surge, with terminal advances ranging from of few tens of meters to about 10 km. The geomorphic signatures of surges vary, from large-scale folded and thrusted end moraine systems, extensive dead-ice fields and drumlinized forefields to drift sheets where fast ice-flow indicators are largely missing. Case studies from the forefields of Brúarjökull, Eyjabakkajökull and Múlajökull surging glaciers will be presented. At Brúarjökull, extremely rapid ice flow during surge was sustained by overpressurized water causing decoupling beneath a thick sediment sequence that was coupled to the glacier. The ice-marginal position of the 1890 surge is marked by a sedimentary wedge formed within five days and a large moraine ridge that formed in about one day ("instantaneous end-moraine"). Three different qualitative and conceptual models are required to explain the genesis of the Eyjabakkajökull moraines: a narrow, single-crested moraine ridge at the distal end of a marginal sediment wedge formed in response to decoupling of the subglacial sediment from the bedrock and associated downglacier sediment transport; large lobate end moraine ridges with multiple, closely spaced, asymmetric crests formed by proglacial piggy-back thrusting; moraine ridges with different morphologies may reflect different members of an end moraine continuum. A parallel study highlighting the surge history of Eyjabakkajökull over the last 4400 years suggests climate control on surge frequencies. The Múlajökull studies concern an active drumlin field (>100 drumlins) that is being exposed as the glacier retreats. The drumlins form through repeated surges, where each surge causes deposition of till bed onto the drumlin while similtaneously eroding the sides. Finally, a new landsystem model for surging North Iceland cirque glaciers will be introduced. References Benediktsson,I. Ö., Schomacker, A., Lokrantz, H. & Ing

  5. Colonization of maritime glacier ice by bdelloid Rotifera.

    PubMed

    Shain, Daniel H; Halldórsdóttir, Katrín; Pálsson, Finnur; Aðalgeirsdóttir, Guðfinna; Gunnarsson, Andri; Jónsson, Þorsteinn; Lang, Shirley A; Pálsson, Hlynur Skagfjörð; Steinþórssson, Sveinbjörn; Arnason, Einar

    2016-05-01

    Very few animal taxa are known to reside permanently in glacier ice/snow. Here we report the widespread colonization of Icelandic glaciers and ice fields by species of bdelloid Rotifera. Specimens were collected within the accumulation zones of Langjökull and Vatnajökull ice caps, among the largest European ice masses. Rotifers reached densities up to ∼100 individuals per liter-equivalent of glacier ice/snow, and were freeze-tolerant. Phylogenetic analyses indicate that glacier rotifers are polyphyletic, with independent ancestries occurring within the Pleistocene. Collectively, these data identify a previously undescribed environmental niche for bdelloid rotifers and suggest their presence in comparable habitats worldwide.

  6. 75 FR 32987 - Orders Limiting Scheduled Operations at John F. Kennedy International Airport and Newark Liberty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... notification for scheduled flights between JFK or EWR and points in Europe canceled due to volcanic ash from... INFORMATION: Background On April 14, 2010, an eruption of the Eyjafjallaj kull volcano in Iceland began releasing large quantities of volcanic ash into the air. The resulting volcanic ash cloud spread over...

  7. 47 CFR 90.303 - Availability of frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...)(2)(ii) of this section, base stations shall be limited to a maximum effective radiated power (ERP... Kull, and Arthur Kill, the maximum ERP and antenna height shall be limited to the entries specified in....0″ W). (iii) Mobile stations shall be limited to 100 watts ERP in areas of operation...

  8. Iceland

    Atmospheric Science Data Center

    2013-04-17

    ... (visible in the lower right), and to several other lakes and geothermal areas. Hofsjökull (the Temple Glacier; 1760 meters) is the third ... the city, the "Bay of Smokes", is testimony to the region's geothermal activity. MISR was built and is managed by NASA's Jet Propulsion ...

  9. 33 CFR 165.160 - Safety Zones; fireworks displays and swim events in Coast Guard Captain of the Port New York Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Kill, Elizabeth, NJ Safety Zone • Launch site: A land shoot located in Elizabeth, New Jersey in approximate position 40°38′50″ N 074°10′58″ W (NAD 1983), about 675 yards west of Arthur Kill Channel Buoy 20... (NAD 1983), approximately 350 yards north of the Kill Van Kull Channel. This Safety Zone is a...

  10. 47 CFR 90.303 - Availability of frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...)” curve in Figure B in 47 CFR 90.309(b). (ii) For base stations located west of the Hudson River, Kill Van Kull, and Arthur Kill, the maximum ERP and antenna height shall be limited to the entries specified...

  11. 33 CFR 165.160 - Safety Zones; fireworks displays and swim events in Coast Guard Captain of the Port New York Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Kill, Elizabeth, NJ Safety Zone • Launch site: A land shoot located in Elizabeth, New Jersey in approximate position 40°38′50″ N 074°10′58″ W (NAD 1983), about 675 yards west of Arthur Kill Channel Buoy 20... (NAD 1983), approximately 350 yards north of the Kill Van Kull Channel. This Safety Zone is a...

  12. 47 CFR 90.303 - Availability of frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...)(2)(ii) of this section, base stations shall be limited to a maximum effective radiated power (ERP... Kull, and Arthur Kill, the maximum ERP and antenna height shall be limited to the entries specified in....0″ W). (iii) Mobile stations shall be limited to 100 watts ERP in areas of operation...

  13. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper

  14. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas

    USGS Publications Warehouse

    Carley, T.L.; Miller, C.F.; Wooden, J.L.; Bindeman, I.N.; Barth, A.P.

    2011-01-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), ??r??faj??kull (1362 AD) and Torfaj??kull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions. ?? 2011 Springer-Verlag.

  15. Iceland's Grímsvötn volcano erupts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.

  16. Ozone depletion in tropospheric volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vance, Alan; McGonigle, Andrew J. S.; Aiuppa, Alessandro; Stith, Jeffrey L.; Turnbull, Kate; von Glasow, Roland

    2010-11-01

    We measured ozone (O3) concentrations in the atmospheric plumes of the volcanoes St. Augustine (1976), Mt. Etna (2004, 2009) and Eyjafjallajökull (2010) and found O3 to be strongly depleted compared to the background at each volcano. At Mt. Etna O3 was depleted within tens of seconds from the crater, the age of the St. Augustine plumes was on the order of hours, whereas the O3 destruction in the plume of Eyjafjallajökull was maintained in 1-9 day old plumes. The most likely cause for this O3 destruction are catalytic bromine reactions as suggested by a model that manages to reproduce the very early destruction of O3 but also shows that O3 destruction is ongoing for several days. Given the observed rapid and sustained destruction of O3, heterogeneous loss of O3 on ash is unlikely to be important.

  17. Environmental Impact Statement (EIS) for the Airspace Training Initiative Shaw Air Force Base, South Carolina

    DTIC Science & Technology

    2011-12-09

    Aircraft Overflights in Wilderness. NOISE-CON 90, University of Texas. Austin, Texas. October. Head, H. H., R. C. Kull, Jr., M. S. Campos , K. C...Lockewood Drive, Lake City, SC 29560 The Honorable Henry Brown, United States Senate, 1800 N Oak Street #C, Myrtle Beach, SC 29577 Willie & Grace...7 Summerton, SC 29148 8 Sel Hemingway, Chairman, Georgetown County, 37 E. Main Street, Andrews, SC 29520 [ 9 James Henry , Chairman, Jenkins

  18. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  19. Investigating Disruptions to Channel Missions - What’s the Breaking Point?

    DTIC Science & Technology

    2014-06-01

    number of reasons. Some are the result of natural disasters such as the 2010 Eyjafjallajökull volcano eruption. The initial eruption occurred on...be closed from April 15 until April 20, 2010 ( Volcano Facts, 2010). The disruption that impacted Air Mobility Command as a result of this event...Changes - October 2013. CBS News. (2010, April 15). Iceland Volcano Ash Grounds European Air Travel. Retrieved December 19, 2013, from CBS News: http

  20. Characteristics of recessional moraines at a temperate glacier in SE Iceland: Insights into patterns, rates and drivers of glacier retreat

    NASA Astrophysics Data System (ADS)

    Chandler, Benjamin M. P.; Evans, David J. A.; Roberts, David H.

    2016-03-01

    Icelandic glaciers are sensitive to climate variability on short-term timescales owing to their North Atlantic maritime setting, and have been undergoing ice-marginal retreat since the mid-1990s. Recent patterns, rates and drivers of ice-frontal retreat at Skálafellsjökull, SE Iceland, are examined using small-scale recessional moraines as a geomorphological proxy. These small-scale recessional moraines exhibit distinctive sawtooth planform geometries, and are constructed by a range of genetic processes associated with minor ice-margin re-advance, including (i) combined push/squeeze mechanisms, (ii) bulldozing of pre-existing proglacial material, and (iii) submarginal freeze-on. Remote-sensing investigations and lichenometric dating highlight sequences of annually-formed recessional moraines on the northern and central parts of the foreland. Conversely, moraines are forming on a sub-annual timescale at the southeastern Skálafellsjökull margin. Using annual moraine spacing as a proxy for annual ice-margin retreat rates (IMRRs), we demonstrate that prominent periods of glacier retreat at Skálafellsjökull are coincident with those at other Icelandic outlet glaciers, as well as those identified at Greenlandic outlet glaciers. Analysis of IMRRs and climate data suggests summer air temperature, sea surface temperature and the North Atlantic Oscillation have an influence on IMRRs at Skálafellsjökull, with the glacier appearing to be most sensitive to summer air temperature. On the basis of further climate data analyses, we hypothesise that sea surface temperature may drive air temperature changes in the North Atlantic region, which in turn forces IMRRs. The increase in sea surface temperature over recent decades may link to atmospheric-driven variations in North Atlantic subpolar gyre dynamics.

  1. Eyjabakkajokull Glacial Landsystem, Iceland: Geomorphic Impact of Multiple Surges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, O.; Schomacker, A.; Benediktsson, I.

    2013-12-01

    A new glacial geomorphological map of the Eyjabakkajökull forefield in Iceland is presented. The map covers c. 60 km2 and is based on high-resolution aerial photographs recorded in August 2008 as well as field checking. Landforms are manually registered in a geographical information system (ArcGIS) based on inspection of orthorectified imagery and digital elevation models of the area. We mapped subglacially streamlined landforms such as flutes and drumlins on the till plain, supraglacial landforms such as ice-cored moraine, pitted outwash, and concertina eskers, and ice-marginal landforms such as the large, multi-crested 1890 surge end moraine and smaller single-crested end moraines. The glaciofluvial landforms are represented by outwash plains, minor outwash fans, and sinuous eskers. Extramarginal sediments were also registered and consist mainly of old sediments in wetlands or locally weathered bedrock. Eyjabakkajökull has behaved as a surge-type glacier for 2200 years; hence, the mapped landforms originate from multiple surges. Landforms such as large glaciotectonic end moraines, hummocky moraine, long flutes, crevasse-fill ridges, and concertina eskers are characteristic for surge-type glaciers. The surging glacier landsystem of Eyjabakkajökull serves as a modern analog to the landsystems of terrestrial paleo-ice streams.

  2. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and Síðujökull

  3. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  4. Element variations in rhyolitic magma resulting from gas transport

    NASA Astrophysics Data System (ADS)

    Berlo, K.; Tuffen, H.; Smith, V. C.; Castro, J. M.; Pyle, D. M.; Mather, T. A.; Geraki, K.

    2013-11-01

    Tuffisite veins are glass-filled fractures formed when magma fragments during degassing within the conduit. These veins form transient channels through which exsolved gases can escape from magma. The purpose of this study is to determine the extent to which chemical heterogeneity within the melt results from gas transport, and assess how this can be used to study magma degassing. Two tuffisite veins from contrasting rhyolitic eruptions at Torfajökull (Iceland) and Chaitén (Chile) were studied in detail. The tuffisite vein from Torfajökull is from a shallow dissected conduit (∼70 ka) that fed a degassed lava flow, while the sample from Chaitén was a bomb ejected during the waning phases of Plinian activity in May 2008. The results of detailed in situ chemical analyses (synchrotron XRF, FTIR, LA-ICP-MS) show that in both veins larger vesiculated fragments are enriched in volatile elements (Torfajökull: H, Li, Cl; Chaitén: Li, Cl, Cu, Zn, As, Sn, Sb) compared to the host, while the surrounding smaller particles are depleted in the Torfajökull vein (Li, Cl, Zn, Br, Rb, Pb), but enriched in the Chaitén vein (K, Cu, Zn, As, Mo, Sb, Pb). The lifespans of both veins and the fluxes of gas and particles through them can be estimated using diffusion profiles and enrichment factors. The Torfajökull vein had a longer lifespan (∼a day) and low particle velocities (∼cm/s), while the Chaitén vein was shorter lived (<1 h) with a high gas velocity (∼m/s). These differences are consistent with the contrasting eruption mechanisms (effusive vs. explosive). The amount of magma that degassed through the Chaitén vein is more than ten times the volume of the vein itself, requiring the vein to tap into pre-exsolved gas pockets. This study highlights that tuffisite veins are highly efficient gas pathways and thereby impart chemical diversity in volatile elements on the melt.

  5. Climate, Ice, and Mud: investigating the relationship between glacier activity and sediment flux using varved lake sediments, Iceland

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Miller, G. H.; Geirsdottir, A.; Flowers, G. E.; Bjornsson, H.

    2012-12-01

    The worldwide retreat of many glaciers during the 21st century is expected to have profound impacts on local and regional hydrologic cycles. Associated with the forecasted reductions in global ice volume are changes in meltwater runoff and sediment transport in glacially fed drainage systems. Alpine glaciers and small ice caps are particularly sensitive to climate change because their dimensions can respond quickly to changes in glacier mass balance. Records of past glacier fluctuations are important sources of paleoclimate data and also provide a context for current and future changes to glacier hydrologic systems. Annually laminated (varved) sediments from proglacial lake Hvítárvatn, central Iceland, offer a continuous archive of Langjökull ice cap (~925 km2) activity through the late Holocene. A multi-proxy record from this site indicates that Langjökull's size was more variable during the past millennium than during any other multi-centennial interval of the Holocene. Ice growth culminated in the Little Ice Age (LIA), when Langjökull advanced into Hvítárvatn and reached its maximum aerial extent of the past 10 ka. At present, roughly one-third of the ice cap's discharge flows into the lake catchment, constituting ~70% of the total inflow, and lake sedimentation rates are governed by the production and delivery of glacially eroded clastic material transported to the lake by four primary meltwater streams. Glacier fluctuations of the past 1 ka are reconstructed from physical proxies contained in sediment cores retrieved from six locations throughout the main basin. Total sediment yield and distribution during this period are calculated from sediment accumulation rates and from > 100 km of seismic reflection profiles. A tephra-constrained varve chronology provides high chronologic control, with a maximum age uncertainty of ± 10 years. Low and constant sedimentation rates characterize the 11th and 12th centuries, reflecting minimal glacier activity during

  6. Real time retrieval of volcanic cloud particles and SO2 by satellite using an improved simplified approach

    NASA Astrophysics Data System (ADS)

    Pugnaghi, Sergio; Guerrieri, Lorenzo; Corradini, Stefano; Merucci, Luca

    2016-07-01

    Volcanic plume removal (VPR) is a procedure developed to retrieve the ash optical depth, effective radius and mass, and sulfur dioxide mass contained in a volcanic cloud from the thermal radiance at 8.7, 11, and 12 µm. It is based on an estimation of a virtual image representing what the sensor would have seen in a multispectral thermal image if the volcanic cloud were not present. Ash and sulfur dioxide were retrieved by the first version of the VPR using a very simple atmospheric model that ignored the layer above the volcanic cloud. This new version takes into account the layer of atmosphere above the cloud as well as thermal radiance scattering along the line of sight of the sensor. In addition to improved results, the new version also offers an easier and faster preliminary preparation and includes other types of volcanic particles (andesite, obsidian, pumice, ice crystals, and water droplets). As in the previous version, a set of parameters regarding the volcanic area, particle types, and sensor is required to run the procedure. However, in the new version, only the mean plume temperature is required as input data. In this work, a set of parameters to compute the volcanic cloud transmittance in the three quoted bands, for all the aforementioned particles, for both Mt. Etna (Italy) and Eyjafjallajökull (Iceland) volcanoes, and for the Terra and Aqua MODIS instruments is presented. Three types of tests are carried out to verify the results of the improved VPR. The first uses all the radiative transfer simulations performed to estimate the above mentioned parameters. The second one makes use of two synthetic images, one for Mt. Etna and one for Eyjafjallajökull volcanoes. The third one compares VPR and Look-Up Table (LUT) retrievals analyzing the true image of Eyjafjallajökull volcano acquired by MODIS aboard the Aqua satellite on 11 May 2010 at 14:05 GMT.

  7. Experimental studies of heat transfer at the dynamic magma ice/water interface: Application to subglacially emplaced lava

    NASA Astrophysics Data System (ADS)

    Oddsson, Björn; Gudmundsson, Magnús T.; Sonder, Ingo; Zimanowski, Bernd; Schmid, Andrea

    2016-05-01

    Experiments simulating processes operating in volcano-ice interactions were carried out to explain and quantify lava thermal properties and processes of heat transfer from pure lava melt to water and ice and from hot crystalline lava to water. The samples used (70-200 g) were obtained from an intermediate lava flow (benmoreite-trachyte) that was emplaced under and within the outlet glacier Gígjökull in the 2010 eruption of Eyjafjallajökull. Experiments involved settings with direct contact between ice and lava, and settings where melt and ice were separated by a few centimeters. Direct contact involved melt being emplaced on ice and ice placed on melt. The direct contact experiments provided initial heat flux of up to 900 kW m-2 at an initially lava melt surface temperature of 1100°C, declining to <100 kW m-2 at 200-300°C within 1-2 min, while the experiments without melt-ice contact yielded an initial maximum of 100-180 kW m-2 dropping to 50-80 kW m-2 in 2-3 min. In other experiments, where cubes of hot crystalline lava were subjected to forced convection of water at initial temperature of 20-30°C, initial heat fluxes of 400-770 kW m-2 were followed by fast decline to <100 kW m-2 in 15-35 s, the rate depending on cube size. The hot rock experiments provided thermal conductivity values of 1.2-1.7 W m-1K-1 and diffusivity of about 9 × 10-7 m2s-1. Values for heat flux obtained in these experiments are in the same range as those obtained from field observations of the lava emplacement in the Eyjafjallajökull 2010 eruption.

  8. U-Pb Zircon Provenance of Metasedimentary Basement of the Northwestern Terrane, Svalbard: A central East Greenland correlation

    NASA Astrophysics Data System (ADS)

    Petterssen, C.; Frei, D.; Pease, V.

    2007-12-01

    Svalbard's Caledonian and older bedrock consists of three main exotic terranes separated by north-south trending strike-slip faults. Early in the 19-century Kulling (1930, 1934) noted the striking similarity between the Neoproterozoic and Early Paleozoic sedimentary rocks from East Greenland and Svalbard's Eastern Terrane. After this pioneering work Harland et al. (1969) documented their remarkable similarities through detailed stratigraphic correlation of Neoproterozoic and Early Paleozoic sedimentary rocks. Recent work in the Northwestern and the eastern part of the Eastern terrane shows that this metasedimentary basement has a strong resemblance to the Krummedal and Smallefjord sequences of central East Greenland, with Grenville age (sensu lato) granitoid intrusion followed by Caledonian migmatization and granite genesis. We present the first LA-ICP-MS U-Pb zircon provenance study on quartzites and mica schists from the Kongsfjorden Group of the Northwestern Terrane of Svalbard. These results indicate a strong correlation with the Krummedal of central East Greenland and help to constrain paleogeographic reconstructions of the Northwestern Terrane. References: Kulling, O. 1930. Stratigraphic studies of the geology of Northeast Greenland. Meddelelser on Gronland, 74, 317- 346. Kulling, O. 1934. Scientific results of the Swedish-Norwegian Arctic Expedition in the summer of 1931. Part XI, The "Hecla Hoek Formation" round Hinlopenstredet. Geografiska Annaler, 16, 161-254. Gee, D. G. and Tebenkov, A. M., 2004. Svalbard: a fragment of the Laurentian margin.? In: Gee, D. G. and Pease, V. (eds) The Neoproterozoic Timanide Orogen of eastern Baltica. Geological Society, London, Memoirs, 30, 191- 206. Harland, W. B. 1969. Contribution of Spitsbergen to understanding of tectonic evolution of North Atlantic region. North Atlantic Geology and Continental Drift. Memoirs of the American Association of Petroleum Geologists, 12, 817-851.

  9. Types of habitat in the Universe

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2014-04-01

    From a biological point of view, all environments in the Universe can be categorized into one of three types: uninhabitable, uninhabited habitat or inhabited habitat. This paper describes and defines different habitat types in the Universe with a special focus on environments not usually encountered on the Earth, but which might be common on other planetary bodies. They include uninhabited habitats, subtypes of which are sterile habitats and organic-free habitats. Examples of the different types of environments are provided with reference to the Eyjafjallajökull, Iceland. These habitat types are used to identify testable hypotheses on the abundance of different habitats and the distribution of life in the Universe.

  10. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  11. Frequency, triggering factors and possible consequences of mass movements on outlet glaciers in Iceland.

    NASA Astrophysics Data System (ADS)

    Saemundsson, Thorsteinn; Margeirsson, Guðbjörn

    2016-04-01

    During the last 15 years several mass movements of various size and origin, e.g. rock avalanches, rock slides and debris slides have been observed to have fall on outlet glaciers in Iceland. This should not come as a surprise in this type of glacial environment, but in a way it does. When looking at the history only few mass movements are recorded to have fall on outlet glaciers in Iceland, during the decades before the year 2000 or since 1960. This "lack of mass movements" can be explained by the fact that fewer observations and monitoring were done in the past, but is it so or are we seeing increasing activity? Looking at the distribution of the known mass movements, two activity periods cam be identified. The former one around 1970 and the second one starting around 2000 and is still ongoing. Both of these periods are characterized by warmer climate leading to retreating phases of glaciers. Two larger mass movements are known from these two retreating periods. The former one occurred in January 1967. Then a large rockslide fell on the snout and into the glacial lake of the Steinholtsjökull outlet glacier in the northern side of the Eyjafjallajökull ice cap. The rockslide broke up the snout of the glacier and caused large floodwave bursting down the Steinholtsdalur valley transporting large volume of sediments down its path. The later one occurred in 2007, when a large rockavalanche fell on the Morsárjökull outlet glacier, in the southern side of the Vatnajökull ice cap. The avalanche debris covered around 1/5 of the glacier surface. Today the retreat and thinning of glaciers in Iceland are extremely rapid. The consequences of such a rapid retreat are e.g. unstable valley slopes surrounding the outlet glaciers, both in loose sediments and bedrock, thawing of mountain permafrost and not least formation of glacial lakes in front of the rapid retreating ice margins. Such conditions can become extremely hazardous, as seen by the above mentioned examples, both

  12. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.

    2014-12-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals

  13. Quantification of Sediment Transport During Glacier Surges and its Impact on Landform Architecture

    NASA Astrophysics Data System (ADS)

    Kjaer, K. H.; Schomacker, A.; Korsgaard, N. J.; Benediktsson, I. O.

    2008-12-01

    Multi-temporal DEMs (Digital Elevation Models) of glaciers and ice streams have successfully been used for extraction of changes in ice volume over time. In this study, we analysed DEMs of the Brúarjökull glacier forefield (Iceland) for 1945, prior to the last surge in 1964, and for 2003 in order to assess the effect of the surge on the sediment architecture in the forefield. The pre- and post-surge DEMs allow direct quantification of the sediment volumes that were re-distributed in the forefield by the surging ice mass in 1964. The surge-type glacier Brúarjökull has experienced six surges during the last four centuries; these are the largest surges known to have occurred in Iceland. During the most recent surge in 1963-64, the glacier advanced 8 km over a period of c. 3 months with a maximum ice flow velocity of 5 m/hr, and 700 km3 of ice were moved downglacier. The continued recession of Brúarjökull since the 1963-64 surge reveals a young landscape consisting of widely spaced and elongated bedrock hills interspaced with shallow sedimentary basins. The majority of the forefield is covered with a basal till sheet or glaciofluvial outwash fans. Mapping of the sediment thickness in the glacier forefield shows higher accumulation along ice marginal positions related to wedge formation during extremely rapid ice flow. Fast flow was sustained by overpressurized water causing sediment-bedrock decoupling beneath a thick sediment sequence that was coupled to the glacier. Elevation differences between the terrain surface in 1945 and 2003 confirm this scenario as huge quantities of sediment was eroded, deformed and transported during the last surge event. On the scale of individual landforms, it appears for a drumlin surface that is has been lowered 20 m from 1945-2003. Dead-ice melting can explain roughly 8 m of this lowering. Thus, the drumlin must have experienced 12 m of subglacial erosion during the 1964 surge. The imprint of at least four landform generations is

  14. Investigating La Réunion Hot Spot From Crust to Core

    NASA Astrophysics Data System (ADS)

    Barruol, Guilhem; Sigloch, Karin

    2013-06-01

    Whether volcanic intraplate hot spots are underlain by deep mantle plumes continues to be debated 40 years after the hypothesis was proposed by Morgan [1972]. Arrivals of buoyant plume heads may have been among the most disruptive agents in Earth's history, initiating continental breakup, altering global climate, and triggering mass extinctions. Further, with the temporary shutdown of European air traffic in 2010 caused by the eruption of Eyjafjallajökull, a geologically routine eruption in the tail end of the presumed Iceland plume, the world witnessed an intrusion of hot spot activity into modern-day life.

  15. Laboratory tests for diagnosis of food allergy: advantages, disadvantages and future perspectives.

    PubMed

    Moneret-Vautrin, D A; Kanny, G; Frémont, S

    2003-04-01

    Numerous biological tests point to the diagnosis of food sensitization: detection of specific IgEs by Rast techniques, multi-detection assays, immunoblotting, screening of basophil activation (BAT or FAST), assays for leukotriene LTC4 release (CAST), measurement of plasma histamine, serum tryptase, serum ECP, urinary EDN, completed by mannitol-lactulose test evaluating intestinal permeability, assay of fecal IgEs, Rast for specific IgG4. Primary screening for anti-food IgEs by multi-detection assays seeks justification from insufficient clinical data and false positive tests are common in patients sensitized to pollens or latex, on account of in vitro cross reactivities (CR). Multiple CR explain positive Rast to vegetal food allergens in such patients. Biological tests should not be performed as the first line of diagnosis. In vivo sensitisation is assessed by positive prick-tests, demonstrating the bivalence of allergens, as well as the affinity of specific IgEs, two conditions necessary to bridge membrane bound specific IgEs, leading to the release of mediators. Prick-tests are closer to clinical symptoms than biological tests. However, the diagnosis of food allergy is based on standardised oral challenges. Exceptions are high levels of specific IgEs to egg (> 6 kUl/l), peanut (> 15 kUl/l), fish (> 20 kUl/l) and milk (> 32 kUl/l), reaching a 95% predictive positive value. Rast inhibition tests are useful to identify masked allergens in foods. Research developments will have impact on the development of new diagnostic tools: allergen mixes reinforcing a food extract by associated recombinant major allergens, multiple combination of recombinant allergens (chips) or tests with synthetic epitopes aimed a the prediction of recovery. Laboratory tests take place in the decision free for the diagnosis for the food allergy and the follow-up of the levels specific IgEs is a tool to assess outcome and contributes to predict recovery or persistent allergy. Up to now the

  16. Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Bolte, T.; Coren, F.; He, T.-Y.; Hrabar, A.; Jerma, J.; Mladenovič, A.; Turšič, J.; Veberič, D.

    2011-04-01

    The eruption of the Eyjafjallajökull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored using ground-based in-situ measurements, lidar-based remote sensing and airborne in-situ measurements. Volcanic origin of the detected aerosols was confirmed by subsequent spectral and chemical analysis of the collected samples. The initial arrival of volcanic ash to Slovenia was detected at ground level using in-situ measurements during the night of 17 April 2010, but was not observed via lidar-based remote sensing due to the presence of clouds at lower altitudes while the streaming height of ash-loaded air masses was above 5 km a.s.l. The second arrival of volcanic ash on 20 April 2010 was detected by both lidar-based remote sensing and airborne in-situ measurement, revealing two or more elevated atmospheric aerosol layers above Slovenia. Identification of samples from ground-based in-situ and airborne in-situ measurements based on energy-dispersive X-ray spectroscopy confirmed that a fraction of particles was volcanic ash from the Eyjafjallajökull eruption. We performed simulations of airflow trajectories to explain the arrival of the air masses containing volcanic ash to Slovenia.

  17. Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Bolte, T.; Coren, F.; He, T.-Y.; Hrabar, A.; Jerman, J.; Mladenovič, A.; Turšič, J.; Veberič, D.; Iršič Žibert, M.

    2011-08-01

    The eruption of the Eyjafjallajökull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored using ground-based in-situ measurements, lidar-based remote sensing and airborne in-situ measurements. Volcanic origin of the detected aerosols was confirmed by subsequent spectral and chemical analysis of the collected samples. The initial arrival of volcanic ash to Slovenia was first detected through the analysis of precipitation, which occurred on 17 April 2010 at 01:00 UTC and confirmed by satellite-based remote sensing. At this time, the presence of low clouds and occasional precipitation prevented ash monitoring using lidar-based remote sensing. The second arrival of volcanic ash on 20 April 2010 was detected by both lidar-based remote sensing and airborne in-situ measurements, revealing two or more elevated atmospheric aerosol layers. The ash was not seen in satellite images due to lower concentrations. The identification of aerosol samples from ground-based and airborne in-situ measurements based on energy-dispersive X-ray spectroscopy confirmed that a fraction of particles were volcanic ash from the Eyjafjallajökull eruption. To explain the history of the air masses bringing volcanic ash to Slovenia, we analyzed airflow trajectories using ECMWF and HYSPLIT models.

  18. The Interaction of Volcanic Ash with Water and its Impact on Volcanic Plume Evolution

    NASA Astrophysics Data System (ADS)

    Nenes, A.; Lathem, T. L.; Kumar, P.; Dufek, J.; Sokolik, I. N.; Raymond, T. M.

    2011-12-01

    Volcanic eruptions are long known to have profound impacts on the Earth System and society, which result from the atmospheric emissions and transport of volcanic ash. Yet, limited observational data exists on the physical interactions between water vapor with ash particles which are thought to strongly impact the coagulation efficiency and microphysical evolution of volcanic ash. In this study, we investigate the water uptake properties of fine volcanic ash (less than 125 micro-meter diameter) from a diverse set of eruptions: Mount St. Helens (1980), Tungurahua (2006), Chaiten (2008), Redoubt (2009), and Eyjafjallajökull (2010). The hydrophilicity of the ash particles is quantified by their ability to nucleate cloud droplets under controlled levels of water vapor supersaturation. From this information, we deduce the source of particle hydrophilicity (being absorption from deliquescent soluble material present in the ash or adsorption onto its surface), and, determine their equilibrium water uptake curve. This information is then introduced into a computational fluid dynamic simulation of the Eyjafjallajökull eruption and assess the effects of ash water uptake on the volcanic plume evolution.

  19. Contrasting conditions of rift and off-rift silicic magma origin on Iceland

    NASA Astrophysics Data System (ADS)

    Schattel, Nadine; Portnyagin, Maxim; Golowin, Roman; Hoernle, Kaj; Bindeman, Ilya

    2014-08-01

    Factors controlling the origin of silicic magmas on Iceland are poorly constrained. Here we present new data on H2O content, pressure, temperature, oxygen fugacity, and oxygen isotope composition of rhyolites from Askja, Öræfajökull, and Hekla volcanoes. All these parameters correlate with tectonic (rift and off-rift) setting of the volcanoes. Askja rift rhyolites originate through extensive assimilation of high-temperature hydrothermally altered crust (δ18O < 2‰) at shallow depths (≥1.8 km). These rhyolites are hot (935-1008°C), relatively dry (H2O < 2.7 wt%), and oxidized (QFM = +1.4). Cooler (874-902°C), wet (H2O = 4-6.3 wt%), and non-oxidized (~QFM to QFM-1) off-rift rhyolites (Öræfajökull, Hekla) originate through differentiation deeper in the crust (≥4 km) with almost no or little assimilation of high-T, altered crust, as reflected by slightly lower to normal δ18O values (5.2-6‰). Although off-rift rhyolites predominate during the Holocene, older silicic rocks on Iceland primarily formed in a rift setting possibly analogous to the oldest continental crust on Earth.

  20. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  1. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

  2. Downslope windstorm in Iceland - WRF/MM5 model comparison

    NASA Astrophysics Data System (ADS)

    Rögnvaldsson, Ó.; Bao, J.-W.; Ágústsson, H.; Ólafsson, H.

    2011-01-01

    A severe windstorm downstream of Mt. Öræfajökull in Southeast Iceland is simulated on a grid of 1 km horizontal resolution by using the PSU/NCAR MM5 model and the Advanced Research WRF model. Both models are run with a new, two equation planetary boundary layer (PBL) scheme as well as the ETA/MYJ PBL schemes. The storm is also simulated using six different micro-physics schemes in combination with the MYJ PBL scheme in WRF, as well as one "dry" run. Output from a 3 km MM5 domain simulation is used to initialise and drive both the 1 km MM5 and WRF simulations. Both models capture gravity-wave breaking over Mt. Öræfajökull, while the vertical structure of the lee wave differs between the two models and the PBL schemes. The WRF simulated downslope winds, using both the MYJ and 2EQ PBL schemes, are in good agreement with the strength of the observed downslope windstorm. The MM5 simulated surface winds, with the new two equation model, are in better agreement to observations than when using the ETA scheme. Micro-physics processes are shown to play an important role in the formation of downslope windstorms and a correctly simulated moisture distribution is decisive for a successful windstorm prediction. Of the micro-physics schemes tested, only the Thompson scheme captures the downslope windstorm.

  3. Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjokull ice cap, Iceland

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.

    2000-01-01

    Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.

  4. Multi-year observations of a glacier in southeastern Iceland with Terrestrial Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Voytenko, D.; Dixon, T. H.; Howat, I. M.; Gourmelen, N.

    2013-12-01

    Terrestrial Radar Interferometry (TRI) allows us to measure glacial surface velocities every few minutes with a portable ground-based radar. TRI is complementary to space-based remote sensing methods as it is designed for short-term deployments requiring dense spatial and temporal coverage, making it a useful tool for imaging fast-moving glaciers. The TRI can also be used to generate DEMs of the ice surface. Breidamerkurjökull is a fast-moving marine-terminating glacier located in southeastern Iceland. The glacier terminates at Jökulsárlón, a small lagoon with a narrow outlet to the Atlantic Ocean. We deployed the TRI at Breidamerkurjökull in 2011 and 2012 to look at the ice velocity distribution in the vicinity of the calving front. Our results show velocity time series for selected points on the glacier along with the year-to-year changes in the ice surface and in the velocity field distribution. Our results also suggest that the dynamics of the glacier may be impacted by strong currents within Jökulsárlón.

  5. Changes in shear-wave splitting before volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Crampin, Stuart

    2015-04-01

    We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The

  6. Meteorological Forcing of the Kills in New York / New Jersey Harbor

    NASA Astrophysics Data System (ADS)

    Rankin, K. L.; Chant, R. J.; Bruno, M. S.; Glenn, S.

    2002-12-01

    Hydrographic surveys of the New York / New Jersey Harbor complex were conducted in Newark Bay, the Arthur Kill, and Kill Van Kull as part of the "Contaminant Assessment and Reduction Program" to characterize salient physical processes in this estuarine system. Data collected for the study included shipboard and moored observations of currents, salinity, temperature and turbidity, with the aim of setting a dynamical context in which to interpret chemical data by providing insights into the mechanisms driving the transport pathways of dissolved and suspended contaminated material within the estuary. Analysis of collected data and former studies of the region indicate that the Kills system responds to a complex combination of forcing influences, including tide, wind, basin geometry and freshwater inflow. These influences are responsible for dramatic variations in hydrodynamic and sediment transport characteristics, including, for example, the direction and magnitude of the net, residual flow within the Newark Bay/Kills system. Here we sought to describe the relationship between the sub-tidal currents and the sea surface slope with meteorological forcing (wind/storm events) in the estuary. Measurements being made during the study included three (3) fixed bottom platform stations each equipped with a 1500kHz acoustic Doppler current profiler (ADP) to measure the vertical profile of horizontal currents. We also measured sea surface elevation data with three acoustic radiometric gauges that were deployed at the head of Newark Bay, at the mouth of the Arthur Kill, and at Constable Hook, in the Hudson River. Additional tide data at the Bayonne Bridge were provided by NOAA. Wind data from the Newark International Airport meteorological station (40o 40 57 N, 74o 10 10 W) were supplied by the Northeast Regional Climate Center. Sub-Tidal Motion: Current velocity data from the ADP was averaged over 30-minute intervals and low-pass filtered to remove the tidal component of the

  7. InSAR observations and models of crustal deformation due to a glacial surge in Iceland

    NASA Astrophysics Data System (ADS)

    Auriac, A.; Sigmundsson, F.; Hooper, A.; Spaans, K. H.; Björnsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-09-01

    Surges are common at all the major ice caps in Iceland. Ice masses of gigatons may shift from the upper part of the outlet glacier towards the terminus in a few months, advancing the glacier front by up to several kilometres. The advancing ice front may be up to 100 m thick, increasing the load on crustal rocks correspondingly. We use the observed change in crustal loading during a surge of the western part of the Vatnajökull ice cap, Iceland, during 1993-1995 and the corresponding elastic crustal deformation, surveyed with interferometric synthetic aperture radar, to investigate the material properties of the solid Earth in this region. Crustal subsidence due to the surge reaches ˜75 mm at the edge of the Síðujökull outlet glacier. This signal is mixed with a broad uplift signal of ˜12 mm yr-1, relative to our reference area, caused by the ongoing retreat of Vatnajökull in response to climate change. We disentangle the two signals by linear inversion. Finite element modelling is used to investigate the elastic Earth response of the surge, as well as to confirm that no significant viscoelastic deformation occurred as a consequence of the surge. The modelling leads to estimates of the Young's modulus and Poisson's ratio of the underlying Earth. Comparison between the observed and modelled deformation fields is made using a Bayesian approach that yields the estimate of a probability distribution for each of the free parameters. Residuals indicate a good agreement between models and observations. One-layer elastic models result in a Young's modulus of 43.2-49.7 GPa (95 per cent confidence) and Poisson's ratio of 0-0.27, after removal of outliers. Our preferred model, with two elastic layers, provides a better fit to the whole surge signal. This model consists of a 1-km-thick upper layer with an average Young's modulus of 12.9-15.3 GPa and Poisson's ratio of 0.17, overlying a layer with an average Young's modulus of 67.3-81.9 GPa and Poisson's ratio of 0.25.

  8. Optical, microphysical and compositional properties of volcanic ash samples

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Tabacniks, M.; Artaxo, P.; Schumann, U.

    2012-12-01

    Volcanoes are one of the most important sources of aerosols in the atmosphere and the chemical and physical properties of these particles are of fundamental importance for better understanding of Earth's climate and weather patterns. One of the main parameters missing in current aerosol models is the complex refractive index of aerosol particles from the UV to the short wave infrared (SWIR) wavelengths. The main objective of this research was to perform a detailed characterization of important optical, microphysical and compositional properties of aerosol particles of the volcanic sample from Eyjafjallajökull (Iceland). Ash from this volcano was collected in the vicinity of the eruption in Iceland. The sample was brought to our laboratory and it was initially sieved to retain particles smaller than 45 um, de-agglomerated, re-suspended and carried out by a flow of air through the use of a Fluidized Bed Aerosol Generator (FBAG). This experimental setup allows us to separate particles into PM10, PM2.5, or PM1.0. Particles were collected on Nuclepore filters and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, mass concentration, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index (from 300 to 2500nm) was derived empirically from the measurements of the mass absorption coefficient, size distribution and density of the material. In this work we are going to show the inter comparison of the microphysical properties between Eyjafjallajökull Icelandic volcano and other volcanoes. Volcanic ash from Eyjafjallajökull shows strong absorption and consequently high imaginary refractive index for UV and visible wavelengths. Also, microphysical optical properties and compositional differences were observed between coarse and

  9. Impact of Subglacial Geothermal Activity on Meltwater Quality in the JÖKULSÁ Á SÓLHEIMASANDI System, Southern Iceland

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.; Björnsson, H.; Dolan, M.

    1996-04-01

    The influence of subglacial geothermal activity on the hydrochemistry of the Jökulsá á Sólheimasandi glacial meltwater river, south Iceland, is discussed. A radio echosounding and Global Positioning System survey of south-west Myrdalsjökull, the parent ice-cap of the valley glacier Sólheimajökull, establishes the geometry and position of a subglacial caldera. A cauldron in the ice-cap surface at the basin head is also defined, signifying one location of geothermally driven ablation processes. Background H2S concentrations for the Jökulsá meltwaters in summer 1989 show that leakage of geothermal fluids into the glacial drainage network takes place throughout the melt season. Chemical geothermometry (Na+/K+ ratio) applied to the bulk meltwaters tentatively suggests that the subglacial geothermal area is a high-temperature field with a reservoir temperature of 289-304°C. A major event of enhanced geothermal fluid injection was also detected. Against a background of an apparently warming geothermal reservoir, the event began on Julian day 205 (24 July) with a burst of subglacial seismic activity. Meltwater hydrochemical perturbations followed on day 209 and peaked on day 213, finally leading to a sudden and significant increase in flow on day 214. The hydrochemical excursions were characterized by strong peaks in meltwater H2S, SO2-4 and total carbonate concentrations, transient decreases in pH, small increases in Ca2+ and Mg2+ and sustained increases in electrical conductivity. The event may relate to temporary invigoration of the subglacial convective hydrothermal circulation, seismic disturbance of patterns of groundwater flow and geothermal fluid recruitment to the subglacial drainage network, or a cyclic sweeping out of the geothermal zone by the annual wave of descending groundwater. Time lags between seismic events and meltwater electrical conductivity responses suggest mean and maximum intraglacial throughflow velocities of 0.032-0.132 m s-1

  10. Influence of ice load variations on shallow magma storage zones: Application to Katla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Albino, F.; Pinel, V.; Sigmundsson, F.

    2009-12-01

    As a consequence of climate warming, many volcanoes are currently located under retreating ice caps. The resulting unloading can modify the eruptive activity as proven by observed correlation between deglaciation periods and eruptive activity in the past. Unloading can modify melt generation in the mantle, or modify magma storage conditions at shallow depth. Here we investigate how ice load variations at the Earth's surface act on shallow magma chambers. Numerical calculations are carried out in axisymmetric geometry for an elliptical chamber embedded in an elastic medium, taking magma compressibility into account. For variable chamber shape, size and depth, we quantify how unloading events induce magmatic pressure change as well as variation of the threshold pressure required for dyke initiation at the chamber wall. Influence on eruption likelihood is determined by the interplay between these two parameters. We evaluate the triggering effect of these surface events on onset of eruptions and find it depends strongly on the surface load location and magnitude, and the shape, depth and size of the magma chamber. We apply this model to Katla volcano, Iceland, which is covered by the Mýrdalsjökull ice cap. Ice load variations include long term thinning, as well as an annual load cycle, with up to 6 meters change in snow thickness from winter to summer. As the seasonal snow load is reduced, a pressure decrease of the same order of magnitude as the load is induced within the magma storage zone. The threshold pressure for failure is modified at the same time. Our model predicts that, in case of a spherical or horizontally elongated magma chamber, eruptions are more likely when the seasonal snow cover is smallest. This triggering effect is small, around few kPa, but appears consistent with the fact that all the nine last major historical eruptions at Katla occurred during the summer period. A long-term ice thinning due to global warming is also occurring, mainly at the

  11. Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland

    NASA Astrophysics Data System (ADS)

    Larsen, Darren J.; Miller, Gifford H.; Geirsdóttir, Áslaug; Ólafsdóttir, Sædís

    2012-04-01

    Iceland is well situated to monitor North Atlantic Holocene climate variability. Terrestrial sites there offer the potential for well-dated, high-resolution, continuous records of environmental change and/or glacier activity. Laminated sediments from the proglacial lake Hvítárvatn provide a continuous record of environmental change and the development of the adjacent Langjökull ice cap for the past 10.2 ka. Replicate lake sediment cores, collected from multiple locations in the basin, are placed in a secure geochronology by splicing a varve chronology for the past 3 ka with a tephra-constrained, paleomagnetic secular variation derived chronology for older sediments. Multiple proxies, including sedimentation rate, bulk density, ice-rafted debris, sediment organic matter, biogenic silica, and diatom abundance, allow annual to multi-decadal resolution and reveal a dynamic Holocene terrestrial climate. Following regional deglaciation of the main Iceland Ice Sheet, summer temperatures were high enough that mountain ice caps had already melted, or were contributing insignificant sediment to the lake. Pronounced increases in sedimentation rate, sediment density, and the influx of terrestrial organic matter, between 8.7 and 7.9 ka suggest early Holocene warmth was interrupted by two distinct pulses of cold summers leading to widespread landscape destabilization and possibly glacier growth. The Holocene thermal maximum (HTM; 7.9 to 5.5 ka) was characterized by high within-lake productivity and ice-free conditions in the watershed. Neoglaciation is recorded as a non-linear transition toward cooler summers, landscape destabilization, and the inception and expansion of Langjökull beginning ca 5.5 ka, with notable increases in ice cap size and landscape instability at 4.2 and 3.0 ka. The past two millennia are characterized by the abrupt onset of sustained cold periods at ca 550 and 1250 AD, separated by an interval of relative warmth from ca 950 to 1150 AD. The greatest

  12. Reconstructing Magma Degassing in the Katla 1918 Eruption through Vesicle Textures and Dissolved Volatile Contents

    NASA Astrophysics Data System (ADS)

    Owen, J.; Tuffen, H.; Coats, B.

    2014-12-01

    Iceland's Katla volcano frequently produces explosive eruptions (VEI 3-5) that generate large quantities of ash and powerful glacial floods (jökulhlaups). Its last eruption (VEI 4, basalt) was in 1918, but another may be imminent, given recent unrest and historic correlation with activity at Eyjafjallajökull, which erupted in 2010. Investigations of eruption products at nearby Torfajökull [1,2] have shown that volatiles are the primary control on the eruptive behaviour of subglacial rhyolite, rather than ice thickness. Explosive events are characterised by high pre-eruptive H2O contents (up to ~5 wt. %) and more closed system degassing, demonstrated by H2O-Cl ratios, microlite contents and vesiculation modelling. We have continued to develop the use of volatile degassing as an sensitive indicator of syn-eruptive pressure conditions [3,4]. We are now applying similar approaches to the basaltic Katla 1918 event, to determine the relative influence of volatiles and meltwater on eruption mechanisms. Sampling has included air-fall tephra from Mýrdalsjökull and jökulhlaup deposits from Múlakvísl. Infrared spectroscopy (FTIR) data reveals that airfall tephra have degassed to atmospheric conditions (0.07 wt % H2O), whereas jökulhlaup-carried juvenile clasts have elevated H2O contents (0.18 to 0.32 wt % H2O), consistent with quenching beneath a load of ice, water or tephra. Ongoing quantification of vesicle and crystal size distributions, together with experimental vesicle growth rates using hotstage microscopy, will help constrain rates and amounts of magma decompression, degassing and interactions with meltwater. We also aim to investigate chamber-to-surface degassing through analysis of volatile concentrations in melt inclusions. [1] Owen et al. 2013a Geology 41: 251-254 [2] Owen et al. 2013b J Volcanol Geoth Res 258: 143-162 [3] Tuffen et al. 2010 Earth Sci Rev 99: 1-18 [4] Owen et al. 2012 Bull Volcanol 74: 1355-1378

  13. Application of a Two-Scale Turbulence Transport Model to Mixing by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities*

    NASA Astrophysics Data System (ADS)

    Eliason, Donald; Cabot, William; Zhou, Ye; Rubinstein, Robert

    2002-11-01

    Turbulent mixing of the fluids in a multi-component system is of interest in situations such as inertial confinement fusion (ICF) and core-collapse supernovae [1]. We report results of a project to include a model of turbulent mixing in a multi-component hydrodynamics and physics model called KULL, which is used for ICF. Because KULL is a complex, multi-dimensional model, we have developed a simplified, one-dimensional version called sKULL to speed-up the development of the turbulent mixing model. Of primary interest in the development of a turbulent mixing model for a multi-component fluid is the question of whether it is necessary to allow each component of the fluid to retain its own velocity. Generally a multi-component, multi-velocity turbulent mixing model should allow separate velocities for each component of the fluid[2]. However, the necessity to carry separate velocities for each component of the fluid greatly increases the memory requirements and complexity of the computer implementation. In contrast, we present a new two-scale formulation of the K-epsilon turbulent mixing model, with production terms based on a recent scaling analysis, which treats all components of the fluid as if they had the same velocity. We also show that our new method for the initial conditions of the uncoupled two-scale K-epsilon model yields asymptotic growth, and that the growth of the inferred turbulence length scale is consistent with measured mix width growth from Rayleigh-Taylor experiments. Further comparisons will be made of results from the turbulent mixing model with Rayleigh-Taylor and Richtmyer-Meshkov experiments. *This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-ENG-48. [1] Remington, B. A., D. Arnett, R. P. Drake, and H. Takabe, Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 284, 1488 (1999). [2] Youngs, D. L., Numerical simulation of

  14. Summary Report for ASC L2 Milestone #4782: Assess Newly Emerging Programming and Memory Models for Advanced Architectures on Integrated Codes

    SciTech Connect

    Neely, J. R.; Hornung, R.; Black, A.; Robinson, P.

    2014-09-29

    This document serves as a detailed companion to the powerpoint slides presented as part of the ASC L2 milestone review for Integrated Codes milestone #4782 titled “Assess Newly Emerging Programming and Memory Models for Advanced Architectures on Integrated Codes”, due on 9/30/2014, and presented for formal program review on 9/12/2014. The program review committee is represented by Mike Zika (A Program Project Lead for Kull), Brian Pudliner (B Program Project Lead for Ares), Scott Futral (DEG Group Lead in LC), and Mike Glass (Sierra Project Lead at Sandia). This document, along with the presentation materials, and a letter of completion signed by the review committee will act as proof of completion for this milestone.

  15. Remote Sensing of Volcanic ASH at the Met Office

    NASA Astrophysics Data System (ADS)

    Marenco, F.; Kent, J.; Adam, M.; Buxmann, J.; Francis, P.; Haywood, J.

    2016-06-01

    The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA), has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK) will be much better equipped to deal with such a crisis, should it happen in the future.

  16. Composition and evolution of volcanic aerosol following three eruptions in 2008 - 2010

    NASA Astrophysics Data System (ADS)

    Andersson, S. M.; Martinsson, B. G.; Friberg, J.; Brenninkmeijer, C. A. M.; Hermann, M.; Heue, K. P.; van Velthoven, P. F. J.; Zahn, A.

    2012-04-01

    Measurements of atmospheric aerosols by the CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container) platform following the Kasatochi (Alaska), Sarychev (Russia) and Eyjafjallajökull (Iceland) eruptions in the period 2008-2010 are presented. The CARIBIC platform operates on a Lufthansa passenger aircraft usually on monthly inter-continental flights, measuring the atmospheric composition in the UT/LS at 8-12 km altitude (Brenninkmeijer et al., 2007). After the eruption of Kasatochi, analyses of the stratospheric aerosol composition showed enhanced concentrations of sulfur and carbon for several months. On the other hand the ash component, clearly seen in a sample seven days after the eruption, was not detected a month later (Martinsson et al., 2009). To further investigate the composition of the volcanic aerosol three flights trough the volcanic plume of the Eyjafjallajökull eruption were carried out on April 20, May 16 and May 19, 2010. Aerosol sampling was performed by an impaction technique with a cut-off diameter of 2 μm (Nguyen et al., 2006). Collected samples were analyzed by quantitative multi-elemental analysis by PIXE (Particle-Induced X-ray Emission), to obtain concentrations of elements with atomic number larger than 13, and PESA (Particle Elastic Scattering Analysis) for concentrations of hydrogen, carbon, nitrogen and oxygen (Nguyen and Martinsson, 2007). Three samples taken during the special flights to study the Eyjafjallajökull eruption contained unusually high concentrations of elements pointing to crustal origin. The composition of these samples was compared to ash from a fall out sample (Sigmundsson et al., 2010). The ratio of detected elements to iron in both sample types showed good agreement for most of the elements for all three aerosol samples. Volcanically influenced aerosol following the eruptions of Sarychev and Kasatochi were identified by high concentrations of sulfur and by using air mass

  17. Electrical Properties Of Volcanic Ash Samples From Grímsvötn

    NASA Astrophysics Data System (ADS)

    Houghton, I. M.; Aplin, K. L.; Nicoll, K. A.; Green, O.; Mather, T. A.

    2012-12-01

    performed with pumice (a much more homogeneous material than ash) and compared to the results obtained with the volcanic ash samples. Arason P, Bennett A J and Burgin L E 2011 Charge mechanism of volcanic lightning revealed during the 2010 eruption of Eyjafjallajökull, J. Geophys. Res. 116 B00C03 Bennett A J, Odams P, Edwards D and Arason P 2010 Monitoring of lightning from the April-May 2010 Eyjafjallajökull volcanic eruption using a very low frequency lightning location network, Environ. Res. Lett. 5 044013 Harrison R G, Nicoll K A, Ulanowksi Z and Mather T A 2010 Self-charging of the Eyjafjallajökull volcanic ash plume Environ. Res. Lett. 5 024004 James M R, Wilson L, Lane S J , Gilbert J S, Mather T A, Harrison R G and Martin R S 2008 Electrical charging of volcanic plumes, Space Science Reviews 137 399-418 Lacks D J and Levandovsky A, 2007, Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems, J. Electrostatics, 65, 107-112 Mather T A and Harrison R G 2006 Electrification of volcanic plumes, Surveys in Geophysics 27 4 387-432 Piper I M, Aplin K L and Nicoll K A 2012 Electrical properties of volcanic ash samples from Eyjafjallajökull and Grímsvötn, Proceedings of Annual Aerosol Society Conference 2012, arXiv 1207.6733

  18. 50th Annual Scientific Meeting of the British Society for Haematology.

    PubMed

    Thomas, Angela E

    2010-08-01

    The 50th Annual Scientific Meeting of the British Society for Haematology was notable, not only for its golden anniversary, but also because it coincided with the eruption of the Icelandic volcano, Eyjafjallajökull, and the ensuing travel chaos. In total, 28 speakers from overseas were unable to reach Edinburgh, including a significant number of British speakers who were stranded. However, owing to the superb efforts of the conference organisers and Edinburgh International Conference Centre staff, teleconferencing equipment was installed and all speakers were contacted and able to give their talks on time. The program, consisting of simultaneous sessions and plenary lectures, covered not only recent advances in clinical and laboratory hematology, but also reflected on the contribution of British hematology to the international arena over the past 50 years.

  19. The Latest on Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2013-08-01

    What was the largest volcanic eruption on Earth since the historic Mount Pinatubo eruption on 15 June 1991? Was the Toba super­eruption 74,000 years ago—the largest in the past 100,000 years—responsible for a human genetic bottleneck or a 1000-year-long glacial advance? What role did small volcanic eruptions play in the reduced global warming of the past decade? What caused the Little Ice Age? Was the April 2010 Eyjafjallajökull eruption in Iceland important for climate change? What do volcanic eruptions teach us about new ideas on geoengineering and nuclear winter? These are some of the questions that have been answered since the review article by Robock [2000]. Reviews by Forster et al. [2007] and Timmreck [2012] go into some of these topics in much greater detail.

  20. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  1. Risk, interest groups and the definition of crisis: the case of volcanic ash.

    PubMed

    Hutter, Bridget M; Lloyd-Bostock, Sally

    2013-09-01

    This paper considers a key aspect of the 'risk society' thesis: the belief that we should be able to manage risks and control the world around us. In particular it focuses on the interface between risk and risk events as socially constructed and the insights that 'critical situations' give us into 'the routine and mundane', the otherwise taken for granted assumptions underlying risk regulation. It does this with reference to the events precipitated by the April 2010 volcanic eruption in the Eyjafjallajökull area of Iceland. The resulting cloud of volcanic ash spread across Europe and much of Europe's airspace was closed to civil aviation for six days, with far reaching consequences including huge financial losses for airlines. The social processes of defining and reacting to risk and crisis both reveal and generate dilemmas and challenges in regulation. This paper examines the role of different interest groups in defining risk expectations and thereby redefining the ash crisis as a regulatory crisis.

  2. Magma types and mantle sources of the Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Halldórsson, Sæmundur; Rubin, Ken; Sverrisdóttir, Guðrún; Sigurðsson, Gylfi

    2015-04-01

    The Bárðarbunga volcanic system (BVS) represents one of the largest volcanic systems in Iceland, extending ~190 km from the northern boundary of Torfajökull in the south to Dyngjufjöll Ytri in the north, and intersecting the largely ice-covered Bárðarbunga volcano. The extensive length of the BVS thus allows sampling of an unusually large section of the mantle underlying Iceland's Eastern rift zone. Perhaps surprisingly, the degree of mantle source heterogeneity beneath the BVS remains poorly known. We have recently undertaken a detailed study of the BVS because such data are fundamental for understanding the magmatic history and magma delivery system beneath of the BVS, including those that led to recent volcanism north of Dyngjujökull. Here, we present major and trace element analyses, as well as high-precision Pb isotope analyses, of several Holocene lava flows from the Dyngjuháls area and from rocks representing the basement, flanks and nunataks of the ice-free part of the Bárðarbunga volcano. We compare these data to those on a suite of recently collected fissure basalts from the Veiðivötn fissure swarm in the south and the new lava north of Dyngjujökull in order to study the geochemical characteristics of the BVS as a whole. The BVS has generated fairly primitive tholeiites (MgO ~6-9 wt.%) throughout the Holocene. Evolved basaltic compositions (MgO ≤6 wt.%) that are often associated with large and mature caldera systems in Iceland (e.g., Krafla and Askja), appear to be notably absent in the BVS within our current sample set (although might still exist in the largely ice-covered Bárðarbunga volcano). Significantly, no highly evolved rocks (dacite, rhyolite) have been associated with the BVS. It is therefore unlikely that a long-lived and relatively shallow (<5 km) magma chamber has existed beneath Bárðarbunga throughout the Holocene, and possibly longer. In Pb-Pb isotope plots, the three sections of the BVS form distinct trends. Notably

  3. Chemistry and fluxes of magmatic gases powering the explosive trachyandesitic phase of Eyjafjallajokull 2010 eruption: constraints on degassing magma volumes and processes

    NASA Astrophysics Data System (ADS)

    Allard, P.; Burton, M. R.; Oskarsson, N.; Michel, A.; Polacci, M.

    2010-12-01

    The 2010 Eyjafjallajökull eruption developed in two distinct phases, with initial lateral effusion of alkali basalt since March 20, followed by highly explosive extrusion of a quite homogenous and crystal-poor trachyandesitic magma [1] through the central volcano ice cap between April 14 and May 24. As usual, magmatic volatiles played a key role in the eruption dynamics. Here we report on the chemical composition and the mass output of magmatic gases powering intense explosive activity during the second eruptive phase in early May. On May 8 we could measure the composition of magmatic gases directly issuing from the eruptive vents, by using OP-FTIR spectroscopy from the crater rim (~900 m distance) and molten lava blocks as IR radiation source. FTIR spectra reveal a variable mixture between two gas components equally rich in H2O (91.3 mol%) and CO2 (8%) but differing in their SO2/HCl ratio (up to 3.5 for the main one and 0.5 for the Cl-richer second one). Analysis of S-Cl-F in ash leachates and in ash and lava bomb samples (pyrohydrolysis) show that this second component was generated by greater chlorine loss during extensive magma fragmentation into fine ash. S/Cl and Cl/F ratios from both these analyses and solar occultation FTIR plume sensing indicate a modest fluorine content in emitted gas and its preferential adsorption onto solid particles during plume transport. DOAS traverses under the volcanic plume (4-6 km height), though hampered by dense ash load, gave most reliable SO2 fluxes of 4500-6600 tons d-1 on May 9, consistent with OMI satellite data [2]. These imply the daily co-emission of 7.2x105 tons of H2O, 1.5x105 tons of CO2, 2000 tons of HCl and ≤200 tons of HF. Eyjafjallajökull thus produced more hydrous and relatively CO2-poorer gas, in much greater quantities, during that stage than during its first basaltic phase [3]. Linear variations of dissolved S with TiO2/FeO ratio in nearby Katla alkali magmas [4] suggest possible pre-eruptive S contents

  4. Volcanic ash hazards and aviation risk: Chapter 4

    USGS Publications Warehouse

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  5. From Operational Ceilometer Network to Operational Lidar Network

    NASA Astrophysics Data System (ADS)

    Adam, Mariana; Turp, Myles; Horseman, Andrew; Ordóñez, Carlos; Buxmann, Joelle; Sugier, Jacqueline

    2016-06-01

    During the eruption of Eyjafjallajökull in 2010, the Met Office ceilometers (Laser Cloud Based Recorders - LCBR) provided reasonable information about volcanic ash plumes over the United Kingdom [1]. This capability triggered the development of an operational system to provide quick looks of the range corrected signals (RCS) in near-real-time (NRT). Moreover, the Met Office acquired eleven Jenoptik ceilometers to supplement the operational ceilometer network. The combined network became operational in 2012 and currently comprises a total of 43 ceilometers reporting backscatter profiles in NRT. In 2013, Civil Aviation Authority (CAA) and the Department for transport (DfT) sponsored the acquisition of 9 fixed lidars and one mobile unit (each accompanied by a sunphotometer), to further improve the quantitative monitoring of volcanic ash. The current status of both ceilometer and lidar/sun-photometer networks is discussed and further developments are proposed.

  6. Anthropogenic radionuclides in atmospheric air over Switzerland during the last few decades.

    PubMed

    Alvarado, J A Corcho; Steinmann, P; Estier, S; Bochud, F; Haldimann, M; Froidevaux, P

    2014-01-01

    The atmospheric nuclear testing in the 1950s and early 1960s and the burn-up of the SNAP-9A satellite led to large injections of radionuclides into the stratosphere. It is generally accepted that current levels of plutonium and caesium radionuclides in the stratosphere are negligible. Here we show that those radionuclides are present in the stratosphere at higher levels than in the troposphere. The lower content in the troposphere reveals that dry and wet deposition efficiently removes radionuclides within a period of a few weeks to months. Since the stratosphere is thermally stratified and separated from the troposphere by the tropopause, radioactive aerosols remain longer. We estimate a mean residence time for plutonium and caesium radionuclides in the stratosphere of 2.5-5 years. Our results also reveal that strong volcanic eruptions like Eyjafjallajökull in 2010 have an important role in redistributing anthropogenic radionuclides from the stratosphere to the troposphere.

  7. A-Train Satellite Observations of Recent Explosive Eruptions in Iceland and Chile

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Yang, K.; Prata, A. J.

    2012-04-01

    The past few years have seen remarkable levels of explosive volcanic activity in Iceland and Chile, with four significant eruptions at Chaitén (May 2008), Eyjafjallajökull (April 2010), Grimsvötn (May 2011) and Cordón Caulle (June 2011 - ongoing). The tremendous disruption and economic impact of the Eyjafjallajökull eruption is well known, but each of these events had a significant impact on aviation, sometimes at great distances from the volcano. As of late 2011, volcanic ash from Cordón Caulle was still affecting airports in southern South America, highlighting the potential for extended disruption during long-lived eruptions. Serendipitously, this period of elevated volcanic activity has coincided with an era of unprecedented availability of satellite remote sensing data pertinent to volcanic cloud studies. In particular, NASA's A-Train satellite constellation (including the Aqua, CloudSat, CALIPSO, and Aura satellites) has been flying in formation since 2006, providing synergistic, multi- and hyper-spectral, passive and active observations. Measurements made by A-Train sensors include total column sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric

  8. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    SciTech Connect

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-02-29

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  9. The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-03-01

    This study describes the chemical composition and fluxes of two ~ 2000 m3/s glacial floods which emerged from the Icelandic Mýrdalsjökull and Vatnajökull glaciers into the Múlakvísl and Kaldakvísl rivers in July 2011. Water samples collected during both floods had neutral to alkaline pH and conductivity from 100 to 900 μS/cm. The total dissolved inorganic carbon (DIC), present mostly as HCO3-, was ~ 9 mmol/kg during the flood peak in the Múlakvísl but stabilized at around 1 mmol/kg; a similar behaviour was observed in the Kaldakvísl. Up to 1.5 μmol/kg of H2S was detected. Concentrations of most of the dissolved constituents in the flood waters were comparable to those commonly observed in these rivers. In contrast, the particulate suspended material concentration increased dramatically during the floods and dominated chemical transport during these events. Waters were supersaturated with respect to a number of clays, zeolites, carbonates, and Fe hydroxides. The most soluble elements were Na, Ca, K, Sr, Mn, and Mg, whereas the least soluble were Ti, Al, and REE. This is consistent with the compositions of typical surface waters in basaltic terrains and the compositions of global rivers in general. The toxic metal concentrations were below drinking water limits, suggesting that there was no detrimental effect of flood waters chemistry on the environment. Increased concentration of DOC, formate, and acetate in the flood waters suggests substantial subglacial microbiological activity in the melt water prior to the floods. Reaction path modelling of the flood water chemical evolution suggests that it experienced subglacial water-rock interaction for at least a year in the presence of limited amounts of acid gases (e.g. SO2, HCl and HF). This suggests that the heat source for glacier melting was geothermal rather than volcanic.

  10. Climate effects on volcanism: Influence of ice load variations on magma storage zones with application to Icelandic volcanoes.

    NASA Astrophysics Data System (ADS)

    Albino, F.; Pinel, V.; Sigmundsson, F.

    2011-12-01

    Correlations between deglaciation periods and eruptive activity in the past have been strongly suggested, especially in Iceland, where the end of the last glaciation was characterised by a large pulse in volcanic production. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems with a potential to influence magma production as well as shallow storage. Here, we model stress induced by variation in surface loads and evaluate how the resulting pressure conditions can modulate magmatic activity. We focus on the effect on shallow storage zones and show that ice loading can modify their failure conditions in a manner that depends critically on ice retreat timing and spatial distribution, the shape and depth of magma chambers as well the compressibility of the magma. We study in particular two subglacial volcanoes in Iceland: the Katla volcano under the Mýrdalsjökull ice cap and Grímsvötn at the Vatnajökull ice cap. Numerical calculations have been carried out in axisymmetric geometry for elliptical magma chambers. An elastic model is first used to evaluate the effects of the annual load cycle, due to seasonal variation of ice mass, which indicates an annual modulation of failure conditions on magma chambers at subglacial volcanoes. Our model predicts that, in case of a spherical or horizontally elongated magma chamber, eruptions are more likely when the seasonal snow cover is smallest. This triggering effect is small, around few kPa, but appears consistent with the fact that all the nine last major historical eruptions of Katla volcano occurred in period from May - October when the annual snow load is minimum. Viscous effects are then introduced to evaluate the influence of long term ice thinning on the shallow magma storage zones.

  11. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    PubMed Central

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m−3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  12. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging.

    PubMed

    Prata, A J; Dezitter, F; Davies, I; Weber, K; Birnfeld, M; Moriano, D; Bernardo, C; Vogel, A; Prata, G S; Mather, T A; Thomas, H E; Cammas, J; Weber, M

    2016-05-09

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m(-3) were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft.

  13. Post-glacial landforms dating by lichenometry in Iceland - the accuracy of relative results and conversely

    NASA Astrophysics Data System (ADS)

    Decaulne, Armelle

    2014-05-01

    Lichenometry studies are carried out in Iceland since 1970 all over the country, using various techniques to solve a range of geomorphologic issues, from moraine dating and glacial advances, outwash timing, proglacial river incision, soil erosion, rock-glacier development, climate variations, to debris-flow occurrence and extreme snow-avalanche frequency. Most users have sought to date proglacial landforms in two main areas, around the southern ice-caps of Vatnajökull and Myrdalsjökull; and in Tröllaskagi in northern Iceland. Based on the results of over thirty five published studies, lichenometry is deemed to be successful dating tool in Iceland, and seems to approach an absolute dating technique at least over the last hundred years, under well constrained environmental conditions at local scale. With an increasing awareness of the methodological limitations of the technique, together with more sophisticated data treatments, predicted lichenometric 'ages' are supposedly gaining in robustness and in precision. However, comparisons between regions, and even between studies in the same area, are hindered by the use of different measurement techniques and data processing. These issues are exacerbated in Iceland by rapid environmental changes across short distances and, more generally, by the common problems surrounding lichen species mis-identification in the field; not mentioning the age discrepancy offered by other dating tools, such as tephrochronology. Some authors claim lichenometry can help to a precise reconstruction of landforms and geomorphic processes in Iceland, proposing yearly dating, others includes margin errors in their reconstructions, while some limit its use to generation identifications, refusing to overpass the nature of the gathered data and further interpretation. Finally, can lichenometry be a relatively accurate dating technique or rather an accurate relative dating tool in Iceland?

  14. The vertical distribution of volcanic SO2 plumes measured by IASI

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Grainger, Roy G.; Mather, Tamsin A.; Pyle, David M.; Thomas, Gareth E.; Siddans, Richard; Smith, Andrew J. A.; Dudhia, Anu; Koukouli, Mariliza E.; Balis, Dimitrios

    2016-04-01

    Sulfur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI) on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm-1 (the 7.3 and 8.7 µm SO2 bands) returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors) with the other measurements. The series of analysed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).

  15. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    NASA Astrophysics Data System (ADS)

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-05-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m‑3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft.

  16. Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles

    NASA Astrophysics Data System (ADS)

    Beckett, F. M.; Witham, C. S.; Hort, M. C.; Stevenson, J. A.; Bonadonna, C.; Millington, S. C.

    2015-11-01

    This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density.

  17. Ash dispersal dynamics: state of the art and perspectives

    NASA Astrophysics Data System (ADS)

    Sulpizio, R.

    2013-05-01

    Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.

  18. Preservation potential of subtle glacial landforms based on detailed mapping of recently exposed proglacial areas: application of unmanned aerial vehicle (UAV) and structure-from-motion (SfM)

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra; Ewertowski, Wojciech

    2016-04-01

    Ongoing glacier retreat results in the continuous exposure of proglacial areas. Such areas contain invaluable information about glacial process-form relationships manifest in specific landform assemblages. However, preservation potential of freshly exposed glacial landforms is very low, as proglacial terrains are one of the most dynamic parts of the landscape. Therefore, rapid mapping and geomorphological characterisation of such areas is important from a glaciological and geomorphological point of view for proper understanding and reconstruction of glacier-landform dynamics and chronology of glacial events. Annual patterns of recession and relatively small areas exposed every year, mean that the performing of regular aerial or satellite survey is expensive and therefore impractical. Recent advances in technology enables the development of low-cost alternatives for traditional aerial surveys. Small unmanned aerial vehicles (UAV) can be used to acquire high-resolution (several cm) low-altitude photographs. The UAV-based photographs can be subsequently processed through the structure-from-motion process to generate detailed orthophotomaps and digital elevation models. In this study we present case studies from the forelands of various glaciers on Iceland and Svalbard representing different types of proglacial landscapes: Fláajökull (annual push moraines); Hofellsjökul (bedrock bedforms and push moraines); Fjallsjökull (marginal drainage network); Rieperbreen (crevasse squeeze ridges and longitudinal debris stripes); Ayerbreen (transverse debris ridges); Foxfonna (longitudinal debris stripes);Hørbyebreen (geometric ridge network); Nordenskiöldbreen (fluted till surface); Ebbabreen (controlled moraine complex). UAV campaigns were conducted using a low-cost quadcopter platform. Resultant orthophotos and DEMs enabled mapping and assessment of recent glacial landscape development in different types of glacial landsystems. Results of our study indicate that

  19. Long-period seismic events with strikingly regular temporal patterns on Katla volcano's south flank (Iceland)

    NASA Astrophysics Data System (ADS)

    Sgattoni, Giulia; Jeddi, Zeinab; Gudmundsson, Ólafur; Einarsson, Páll; Tryggvason, Ari; Lund, Björn; Lucchi, Federico

    2016-09-01

    Katla is a threatening volcano in Iceland, partly covered by the Mýrdalsjökull ice cap. The volcano has a large caldera with several active geothermal areas. A peculiar cluster of long-period seismic events started on Katla's south flank in July 2011, during an unrest episode in the caldera that culminated in a glacier outburst. The seismic events were tightly clustered at shallow depth in the Gvendarfell area, 4 km south of the caldera, under a small glacier stream at the southern margin of Mýrdalsjökull. No seismic events were known to have occurred in this area before. The most striking feature of this seismic cluster is its temporal pattern, characterized by regular intervals between repeating seismic events, modulated by a seasonal variation. Remarkable is also the stability of both the time and waveform features over a long time period, around 3.5 years. We have not found any comparable examples in the literature. Both volcanic and glacial processes can produce similar waveforms and therefore have to be considered as potential seismic sources. Discerning between these two causes is critical for monitoring glacier-clad volcanoes and has been controversial at Katla. For this new seismic cluster on the south flank, we regard volcano-related processes as more likely than glacial ones for the following reasons: 1) the seismic activity started during an unrest episode involving sudden melting of the glacier and a jökulhlaup; 2) the glacier stream is small and stagnant; 3) the seismicity remains regular and stable for years; 4) there is no apparent correlation with short-term weather changes, such as rainstorms. We suggest that a small, shallow hydrothermal system was activated on Katla's south flank in 2011, either by a minor magmatic injection or by changes of permeability in a local crack system.

  20. Thermal Stability of Volcanic Ash versus Turbine Ingestion Test Sands: an Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Kueppers, U.; Hess, K.; Dingwell, D. B.; Rickerby, D. S.; Madden, P. C.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. The recent eruption of Eyjafjallajökull drastically brought into common awareness how volcanic activity can affect every day’s life and disrupt air traffic. The presence of solid particles in the air ingested in jet turbines may cause harm as it 1) may deposit on surfaces upon being heated up and 2) abrade upon impact. Particles suspended in the atmosphere may have different origins, including volcanic ash, aeolian sand, or incineration residues, each of them having different chemical and physical characteristics. To date, aircraft turbine operability has been investigated - amongst other tests - through the ingestion of sands whose grains have different mineralogical nature. Due to high cooling rates, volcanic ash is usually made up of glass, i.e. an amorphous phase lacking crystallographic order. Glass and crystal behave very differently to heating up. Glass will soften - and accordingly change shape or stick to surfaces - at temperatures as low as 700 °C, depending on the chemical composition. Crystals however need higher melting temperatures; quartz for example has a melting point at around 1700 °C. Accordingly, the effect of ash on the operational reliability of aircraft turbines may not be judged solely based on knowledge commonly derived from mineral sand ingestion testing. In order to investigate the behaviour upon heating, we performed a series of experiments at ten temperature steps between 700 and 1600 °C. We used three different samples: 1) Ash from the explosive phase of Eyjafjallajökull; 2) MIL E-5007C test sand (MTS), and 3) Arizona Test Dust (ATD). MTS and ATD are commonly used for aircraft turbine

  1. Investigating the use of the Saharan dust index as a tool for the detection of volcanic ash in SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Taylor, Isabelle; Mackie, Shona; Watson, Matthew

    2015-10-01

    Despite the similar spectral signatures of ash and desert dust, relatively little has been done to explore the application of dust detection techniques to the problem of volcanic ash detection. The Saharan dust index (SDI) is routinely implemented for dust monitoring at some centres and could be utilised for volcanic ash detection with little computational expense, thereby providing a product that forecasters already have some familiarity with to complement the suite of existing ash detection tools. We illustrate one way in which the index could be implemented for the purpose of ash detection by applying it to three scenes containing volcanic ash from the 2010 Eyjafjallajökull eruption, Iceland and the 2011 eruption of Puyehue, Chile. It was also applied to an image acquired over Etna in January 2011, where a volcanic plume is clearly visible but is unlikely to contain any ash. These examples demonstrate the potential of the SDI as a tool for ash monitoring under different environmental and atmospheric conditions. In addition to presenting a valuable qualitative product to aid monitoring, this work includes a quantitative assessment of the detection skill using a manually constructed expert ash mask. The optimum implementation of any technique is likely to be dependent on both atmospheric conditions and on the properties of the imaged ash (which is often unknown in a real-time situation). Here we take advantage of access to a 'truth' rarely available in a real-time situation and calculate an ash mask based on the optimum threshold for the specific scene, which is then used to demonstrate the potential of the SDI. The SDI mask is compared to masks calculated from a simplistic implementation of the more traditional split window method, again exploiting our access to the 'truth' to set the most appropriate threshold for each scene, and to a probabilistic method that is implemented without reference to the 'truth' and which provides useful insights into the likely

  2. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland

  3. Detection and estimation of volcanic eruption onset and mass flow rate using weather radar and infrasonic array

    NASA Astrophysics Data System (ADS)

    Marzano, Frank S.; Mereu, Luigi; Montopoli, Mario; Picciotti, Errico; Di Fabio, Saverio; Bonadonna, Costanza; Marchetti, Emanuele; Ripepe, Maurizio

    2015-04-01

    The explosive eruption of sub-glacial Eyjafjallajökull volcano in 2010 was of modest size, but ash was widely dispersed over Iceland and Europe. The Eyjafjallajökull pulsating explosive activity started on April 14 and ended on May 22. The combination of a prolonged and sustained ejection of volcanic ash and persistent northwesterly winds resulted in dispersal the volcanic cloud over a large part of Europe. Tephra dispersal from an explosive eruption is a function of multiple factors, including magma mass flow rate (MFR), degree of magma fragmentation, vent geometry, plume height, particle size distribution (PSD) and wind velocity. One of the most important geophysical parameters, derivable from the analysis of tephra deposits, is the erupted mass, which is essential for the source characterization and assessment of the associated hazards. MFR can then be derived by dividing the erupted mass by the eruption duration (if known) or based on empirical and analytical relations with plume height. Microwave weather radars at C and X band can provide plume height, ash concentration and loading, and, to some extent, PSD and MFR. Radar technology is well established and can nowadays provide fast three-dimensional (3D) scanning antennas together with Doppler and dual polarization capabilities. However, some factors can limit the detection and the accuracy of the radar products aforementioned. For example, the sensitivity of microwave radar measurements depends on the distance between the radar antenna and the target, the transmitter central wavelength, receiver minimum detachable power and the resolution volume. In addition, radar measurements are sensitive to particle sizes larger than few tens of microns thus limiting the radar-based quantitative estimates to the larger portion of the PSD. Volcanic activity produces infrasonic waves (i.e., acoustic waves below 20 Hz), which can propagate in the atmosphere useful for the remote monitoring of volcanic activity. Infrasound

  4. Time needed for first lichen colonization of terminal moraines in the Tröllaskagi peninsula (North Iceland)

    NASA Astrophysics Data System (ADS)

    Andres, Nuria; Palacios, David; Brynjólfsson, Skafti; Sæmundsson, Þorsteinn

    2015-04-01

    The Tröllaskagi peninsula is located in Central North Iceland. The peninsula belong to the Tertiary basaltic areas in Iceland and is characterised by numerous glacially eroded valleys and fjords. The altitude ranges from sea level to 1500 m. Around 150 glaciers, debris covered glaciers and clean glaciers exist in the cirques of the Tröllaskagi peninsula. Lichenometric techniques were applied to date moraines formed by some of these glaciers, especially from 1970-90, establishing growth rates for some species, e.g. 0.5 mm/year for Rizocarpon geographicum. However there is no information available on how long the lichens take to colonize the boulders in a moraine once it has become detached from the retreating glacier. The aim of this paper is to observe how long it takes for the boulders on the moraines to be colonized by lichens in the Tröllaskagi peninsula, where the separation date of a moraine from the retreating glacier tongue is known. Two case studies were used. The first was the surging glacier Búrfellsjökull, in the Búrfelllsdalur valley, an affluent of the Svarfaðardalur valley. The Búrfellsjökull glacier surged in 2001-2004 and the glacial terminus advanced 150-240 m, overrunnig a moraine formed around 1955 and formed a new moraine. About 2-3 years after the surge termination in 2004 the glacial terminus was already retreating and had left the moraine isolated (Brynjólfsson et al. 2012). The other case is the Gljúlfurárjökull glacier, in the Gljúlfurárdalur valley, an affluent of the Skíðadalur valley. It can be seen from the series of aerial photographs that the glacier terminus advanced during the 1990s until the year 2000. In 2004 the glacial terminus was already retreating and had separated from a small moraine formed during the previous advance. Thus, two different glaciers halted and formed one moraine each which they separated from almost similar time. During the detailed field work carried out in August 2014 on both moraines

  5. Snow-ice-tephra-lava interactions during the 2010 Fimmvorduhals eruption

    NASA Astrophysics Data System (ADS)

    Haklar, J.; Edwards, B. R.; Gudmundsson, M. T.

    2010-12-01

    On March 20th a small basaltic fissure opened at the northern edge of Fimmvorduhals, a popular hiking pass between Eyjafjallajökull, to the west, and Myrdalsjökull, to the east. Immediately prior to the eruption, the vent area was covered with typically 1-3 meters of snow and locally snow-covered, isolated remnants of glacial ice. Fieldwork conducted during June and July documented evidence for a variety of different types of interactions between volcanism (tephra and lava) and snow/ice, including direct contact (e.g. ash-covered snow, lava blocks on snow/ice, lava flows on ash-covered snow), indirect melting (e.g. arcuate snow/ice melting patterns at lava flow fronts, partly collapsed sheet lava flows), and the formation of small bomb-cored mounds via post-depositional snow melting. Many of these features are likely ephemeral, and may leave no trace in the geological record; however under certain circumstances they may leave subtle clues that could aide in identifying the presence of snow during eruptions. The field relationships documented are consistent with varied mechanisms of heat transfer during the eruption to the surrounding environment. The arcuate-shaped snow and ice-banks at the edges of flows appear to closely mimic the shape of the adjacent lava lobes. The geometric relationships are consistent with snow/ice melting several meters in front of the advancing flows by radiant heat from the front of the lava lobes. Also, in at least two areas we observed features that are consistent with snow melting beneath lava, possibly by slower heat conduction. One example is a small cave beneath the lava at the lava-snow contact. The other is a ~1 m thick sheet flow that has partly collapsed, forming a fracture that appears to have been controlled by incipient polygonal jointing; melting of underlying snow may have undermined part of the sheet flow based and facilitated its collapse. However, under at least two separate types of conditions lava seems to have

  6. Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation

    NASA Astrophysics Data System (ADS)

    Sulpizio, Roberto; Folch, Arnau; Costa, Antonio; Scaini, Chiara; Dellino, Pierfrancesco

    2012-11-01

    Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallajökull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38 %) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7 days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2 mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallajökull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment

  7. Melting of the glacier base during a small-volume subglacial rhyolite eruption: evidence from Bláhnúkur, Iceland

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; Pinkerton, H.; McGarvie, D. W.; Gilbert, J. S.

    2002-05-01

    Although observations of recent volcanic eruptions beneath Vatnajökull, Iceland have improved the understanding of ice deformation and meltwater drainage, little is known about the processes that occur at the glacier base. We present observations of the products of a small-volume, effusive subglacial rhyolite eruption at Bláhnúkur, Torfajökull, Iceland. Lava bodies, typically 7 m long, have unusual conical morphologies and columnar joint orientations that suggest emplacement within cavities melted into the base of a glacier. Cavities appear to have been steep-walled and randomly distributed. These features can be explained by a simple model of conductive heat loss during the ascent of a lava body to the glacier base. The released heat melts a cavity in the overlying ice. The development of vapour-escape pipes in the waterlogged, permeable breccias surrounding the lava allows rapid heat transfer between lava and ice. The formed meltwater percolates into the breccias, recharging the cooling system and leaving a steam-filled cavity. The slow ascent rates of intrusive rhyolitic magma bodies provide ample time for a cavity to be melted in the ice above, even during the final 10 m of ascent to the glacier base. An equilibrium cavity size is calculated at which melting is balanced by creep closure. This is dependent upon the heat input and the difference between glaciostatic and cavity pressure. The cavity sizes inferred from Bláhnúkur are consistent with a pressure differential of 2-4 MPa, suggesting that the ice was at least 200 m thick. This is consistent with the volcanic stratigraphy, which indicates that the ice exceeded 350 m in thickness. Although this is the first time that a subglacial cavity system of this type has been reconstructed from an ancient volcanic sequence, it shares many characteristics with the modern firn cave system formed by fumarolic melting within the summit crater of Mount Rainier, Washington. At both localities, it appears that

  8. Assimilating Aircraft-based measurements to improve the State of Distal Volcanic Ash Cloud

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Lin, Hai Xiang; Heemink, Arnold; Segers, Arjo; Lu, Sha; Palsson, Thorgeir

    2015-04-01

    The sudden eruption at the 1666 m high, ice-capped Eyjafjallajökull volcano, in south Iceland during 14 April to 23 May 2010, had caused an unprecedented closure of the European and North Atlantic airspace resulting in global economic losses of US5 billion. This has initiated a lot of research on how to improve aviation advice after eruption onset. Good estimation of both the state of volcanic ash cloud and the emission of volcano are crucial for providing a successful aviation advice. Currently most of the approaches, employing satellite-based and ground-based measurements, are in the focus of improving the definition of Eruption Source Parameters (ESPs) such as plume height and mass eruption rate, which are certainly very important for estimating volcano emission and state of volcanic ash cloud near to the volcano. However, for ash cloud state in a far field, these approaches can hardly make improvements. This is mainly because the influence of ESPs on the ash plume becomes weaker as the distance to the volcano is getting farther, thus for a distal plume the information of ESPs will have little influence. This study aims to find an efficient way to improve the state of distal volcanic ash cloud. We use real-life aircraft-based observations, measured along Dutch border between Borken and Twist during the 2010 Eyjafjallajökull eruption, in an data assimilation system combining with a transport model to identify the potential benefit of this kind of observations and the influence on the ash state around Dutch border. We show that assimilating aircraft-based measurements can significantly improve the state of distal ash clouds, and further provide an improved aviation advice on distal ash plume. We compare the performances of different sequential data assimilation methods. The results show standard Ensemble Kalman Filter (EnKF) works better than others, which is because of the strong nonlinearity of the dynamics and the EnKF's resampling Gaussianity nature

  9. Extending Icelandic volcanological network operations into the ice caps

    NASA Astrophysics Data System (ADS)

    Vogfjord, Kristin; Bean, Chris; Roberts, Matthew; Ofeigsson, Benedikt; Guralp Systems Ltd.

    2013-04-01

    Many of Iceland's most active volcanoes are located under glaciers, with limited access for monitoring equipment. In the warming climate however, a few rock outcrops (nunataks) have emerged from the ice permitting some access improvement, but to properly monitor seismic signals from volcanoes deep inside the ice caps, instruments placed in the ice itself are needed. Continuous, real-time operation of monitoring equipment in harsh climate, heavy snow accumulation and icing conditions on a glacier is a considerable challenge. The FP7 project FUTUREVOLC, which focusses on Icelandic volcanoes, aims for the development of a multiparametric volcano monitoring and early warning system. One of the new developments in the project involves strengthening the existing real-time seismic monitoring and analysis systems by extending the permanent network into the Vatnajökull ice cap. The goal is to improve detection and location of seismic signals, such as microseismicity, LP events, ice-quakes and continuous tremor due to volcanic eruptions at the volcanoes under the ice cap. Real-time processing and discrimination of these signals could give early warnings of an imminent eruption. At subglacial volcanoes however, other processes, such as subglacial floods (jökulhlaup) and subglacial hydrothermal systems - boiling due to sudden drainage -also generate continuous tremor and can therefore lead to false eruption alarms. To minimise the number of false alarms, the network and processing will need to discriminate between the different tremor sources by determining their characteristics and track the temporal evolution and location of the source. For this purpose broad-band instruments will be placed on nunataks as well as in the ice and two short-period arrays will be located at the margin of Vatnajökull, close to subglacial flood paths from the Skaftár ice cauldrons. To record ice movements associated with the jökulhlaups, GPS receivers will be placed on outlet glaciers during

  10. Testing hypotheses for the use of Icelandic volcanic ashes as low cost, natural fertilizers

    NASA Astrophysics Data System (ADS)

    Seward, W.; Edwards, B.

    2012-04-01

    Andisols are soils derived from tephra/volcanic bedrock and are generally considered to be fertile for plant growth (cf. University of Hawaii at Manoa, CTAHR). However, few studies have been published examining the immediate effects of the addition of volcanic ash to soils immediately after an eruption. Our research is motivated by unpublished accounts from Icelandic farmers that the growing season following the 2010 Eyjafjallajökull eruption ended with unusually high yields in areas that were covered by ash from the eruption early in the spring. To test the hypothesis that addition of volcanic ash to soil would have no immediate effect on plant growth, we conducted a ~6 week growth experiment in at controlled environment at the Dickinson College Farm. The experiment used relatively fast growing grain seeds as a test crop, controlled watering, known quantities of peat as an organic base, and the following general experimental design: peat was mixed in known but systematically differing proportions with 1) commercial quartz sand, 2) basaltic ash from the 2004 Grimsvötn eruption, and 3) trachyandesite ash from the 2010 Eyjafjallajökull eruption. For all experiments, the seeds growing in the simulated soil created with the two different composition volcanic ash had higher germination rates, higher growth rates, and produced plants that were healthier in appearance than the soil made from peat mixed with quartz sand. Some differences were also noted between the germination and grow rates between the basaltic and trachyandesitic ash experiments as well. Working hypotheses to explain these results include (1) shard shapes and vesicles from volcanic ash provide better water retention than quartz, allowing water to be stored longer and increasing average soil moisture, and (2) chemical nutrients from the ash facilitate germination and growth of plants. Documenting the potential benefits of fresh volcanic ash as a fertilizer is important as use of fresh ash fertlizer

  11. Photogrammetric Retrieval of Etna's Plume Height from SEVIRI and MODIS

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Ganci, G.; Hort, M. K.

    2013-12-01

    Even remote volcanoes can impact the modern society due to volcanic ash dispersion in the atmosphere. A lot of research is currently dedicated to minimizing the impact of volcanic ash on air traffic. But the ash transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height. This is important information for air traffic, to predict ash transport and to estimate the mass flux of the ejected material. The best way to monitor volcanic ash cloud top height (ACTH) on the global level is using satellite remote sensing. The most commonly used method for satellite ACTH compares brightness temperature of the cloud with the atmospheric temperature profile. Because of well-known uncertainties of this method we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously butMODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method has already been tested for the case of the Eyjafjallajökull eruption in April 2010. This case study had almost perfect conditions as the plume was vast and stretching over a homogeneous background - ocean. Here we show results of ACTH estimation during lava fountaining activity of Mount Etna in years 2011-2013. This activity resulted in volcanic ash plumes that are much smaller than

  12. Testing exposure of a jet engine to a dilute volcanic-ash cloud

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Mastin, L. G.; Schneider, D. J.; Holliday, C. R.; Murray, J. J.

    2013-12-01

    An experiment to test the effects of volcanic-ash ingestion by a jet engine is being planned for 2014 by a consortium of U.S. Government agencies and engine manufacturers, under the auspices of NASA's Vehicle Integrated Propulsion Research Program. The experiment, using a 757-type engine, will be an on-ground, on-wing test carried out at Edwards Air Force Base, California. The experiment will involve the use of advanced jet-engine sensor technology for detecting and diagnosing engine health. A primary test objective is to determine the effect on the engine of many hours of exposure to ash concentrations (1 and 10 mg/cu m) representative of ash clouds many 100's to >1000 km from a volcanic source, an aviation environment of great interest since the 2010 Eyjafjallajökull, Iceland, eruption. A natural volcanic ash will be used; candidate sources are being evaluated. Data from previous ash/aircraft encounters, as well as published airborne measurements of the Eyjafjallajökull ash cloud, suggest the ash used should be composed primarily of glassy particles of andesitic to rhyolitic composition (SiO2 of 57-77%), with some mineral crystals, and a few tens of microns in size. Collected ash will be commercially processed less than 63 microns in size with the expectation that the ash particles will be further pulverized to smaller sizes in the engine during the test. For a nominally planned 80 hour test at multiple ash-concentration levels, the test will require roughly 500 kg of processed (appropriately sized) ash to be introduced into the engine core. Although volcanic ash clouds commonly contain volcanic gases such as sulfur dioxide, testing will not include volcanic gas or aerosol interactions as these present complex processes beyond the scope of the planned experiment. The viscous behavior of ash particles in the engine is a key issue in the experiment. The small glassy ash particles are expected to soften in the engine's hot combustion chamber, then stick to cooler

  13. Subglacial melting associated with activity at Bárdarbunga volcano, Iceland, explored using numerical reservoir simulations

    NASA Astrophysics Data System (ADS)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís

    2015-04-01

    Increased seismic activity was observed within the caldera of Bárdarbunga, a central volcano beneath Vatnajökull glacier, on 16 August 2014. The seismicity traced the path of a lateral dyke, initially propagating to the south east of the volcano, before changing course and continuing beyond the northern extent of the glacier. A short fissure eruption occurred at the site of the Holuhraun lavas on 29 August, lasting for approximately 5 hours and producing less than 1 million cubic meters of lava, before recommencing in earnest on 31 August with the large effusive eruption, which is still ongoing at the time of writing. The glacier surface has been monitored aerially since the onset of heightened seismic activity, and the caldera and dyke propagation path surveyed using radar profiling. Ice cauldrons are shallow depressions which form on the glacier surface due to basal melting, as a manifestation of heat flux from below; the melting ice acts as a calorimeter, allowing estimations of heat flux magnitude to be made. Several cauldrons were observed outside the caldera, two to the south east of Bárdarbunga, and three located above the path of the dyke under the Dyngjujökull outlet glacier. The cauldrons range in volume from approximately 0.001 km3 to 0.02 km3. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved. The nature of the heat source required to generate the aforementioned cauldrons is not obvious and two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using analytical and finite element modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. A range of permeabilities has been explored. It is found that an intrusion of a dyke or sill into rocks where the groundwater is near or at the boiling point curve can

  14. A new natural hazards data-base for volcanic ash and SO2 from global satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Stebel, Kerstin; Prata, Fred; Theys, Nicolas; Tampellini, Lucia; Kamstra, Martijn; Zehner, Claus

    2014-05-01

    Over the last few years there has been a recognition of the utility of satellite measurements to identify and track volcanic emissions that present a natural hazard to human populations. Mitigation of the volcanic hazard to life and the environment requires understanding of the properties of volcanic emissions, identifying the hazard in near real-time and being able to provide timely and accurate forecasts to affected areas. Amongst the many ways to measure volcanic emissions, satellite remote sensing is capable of providing global quantitative retrievals of important microphysical parameters such as ash mass loading, ash particle effective radius, infrared optical depth, SO2 partial and total column abundance, plume altitude, aerosol optical depth and aerosol absorbing index. The eruption of Eyjafjallajökull in April May, 2010 led to increased research and measurement programs to better characterize properties of volcanic ash and the need to establish a data-base in which to store and access these data was confirmed. The European Space Agency (ESA) has recognized the importance of having a quality controlled data-base of satellite retrievals and has funded an activity called Volcanic Ash Strategic Initiative Team VAST (vast.nilu.no) to develop novel remote sensing retrieval schemes and a data-base, initially focused on several recent hazardous volcanic eruptions. In addition, the data-base will host satellite and validation data sets provided from the ESA projects Support to Aviation Control Service SACS (sacs.aeronomie.be) and Study on an end-to-end system for volcanic ash plume monitoring and prediction SMASH. Starting with data for the eruptions of Eyjafjallajökull, Grímsvötn, and Kasatochi, satellite retrievals for Puyhue-Cordon Caulle, Nabro, Merapi, Okmok, Kasatochi and Sarychev Peak will eventually be ingested. Dispersion model simulations are also being included in the data-base. Several atmospheric dispersion models (FLEXPART, SILAM and WRF-Chem) are

  15. Modelling of Subglacial Volcanic and Geothermal Activity, during the 2014-15 Bárdarbunga-Holuhraun Eruption and Caldera Collapse

    NASA Astrophysics Data System (ADS)

    Reynolds, H. I.; Gudmundsson, M. T.; Hognadottir, T.

    2015-12-01

    Seismic unrest was observed within the subglacial caldera of Bárdarbunga on 16 August 2014, followed by seismicity tracing the path of a lateral dyke extending underneath the Vatnajökull glacier out to 45 km to the north east of the volcano. A short subaerial fissure eruption occurred at the site of the Holuhraun lavas, just north of the glacier edge on 29 August, before recommencing in earnest on 31 August with a large effusive eruption and accompanying slow caldera collapse, which lasted for approximately 6 months. The glacier surface around Bárdarbunga was monitored using aerial altimeter profiling. Several shallow depressions, known as ice cauldrons, formed around the caldera rim and on Dyngjujökull glacier above the dyke propagation path. The cauldrons range in volume from approximately 0.0003 km3 to 0.02 km3. Two types of melting were observed: high initial heat flux over a period of days which gradually disappears; and slower but more sustained melting rates. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved.The nature of the heat source required to generate these cauldrons is not obvious. Two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using numerical modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. It is found that a magmatic intrusion into rocks where the groundwater is near the boiling point curve can cause rapid increase in geothermal activity, but even a shallow intrusion into a cold groundwater reservoir will have a muted thermal response. Thus, our results indicate that minor subglacial eruptions are the most plausible explanation for the observed rapid melting far from known geothermal areas. These results have implications for the interpretation of thermal signals observed at ice

  16. Temporal Development of Repeated Intrusive Events in a South Iceland Volcanic System, Inferred From InSAR Measurements

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Sigmundsson, F.

    2002-12-01

    We present measurements of volcano deformation from a series of 18 interferograms spanning the years 1993-2000. The detected deformation originates from repeated intrusions in the Eyjafjallaj”kull system, an icecap covered stratovolcano situated in, what is considered to be, a propagating rift zone in southern Iceland. The volcano erupts infrequently, with only two known eruptions in historic time (last 1100 years). The eruptive products are alkaline in composition, with only small volumes produced in recent eruptions. In spite of the apparent silence of this system two intrusive episodes have been detected within the last decade, causing major concern in the local community. In 1994, and again in 1999, seismic unrest associated with magmatic intrusions occurred in the system. Crustal deformation associated with the events was detected by dry-tilt, GPS and interferometry. During the 1994 episode, the center of deformation was situated underneath the icecap, and the area experiencing maximum uplift was therefore within the zone of decorrelation. The deformation shows an oval fringe pattern, which reaches well beyond the icecap, covering more than 300 km2 in total. Up to 15 cm of LOS ("line of sight") displacement is observed. The temporal resolution of the InSAR images during the 1999 intrusive episode is better and it is possible to follow the development of the intrusive event through time. The center of deformation does not coincide with the center from the 1994 event, but is situated just south of the icecap. The deformation during this event amounts to about 20 cm of LOS. Several of the interferograms cover the whole time-span of the 1999 intrusion, but three interferograms cover different periods of the intrusive event. The data set enables us to follow the temporal development of the crustal deformation created by the intrusion, and hence the growth of the intrusion itself through time. A previous study based on forward modeling of GPS and tilt data

  17. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir V.; Burlakov, Vladimir D.; Nevzorov, Aleksei V.; Pravdin, Vladimir L.; Savelieva, Ekaterina S.; Gerasimov, Vladislav V.

    2017-02-01

    There are only four lidar stations in the world which have almost continuously performed observations of the stratospheric aerosol layer (SAL) state over the last 30 years. The longest time series of the SAL lidar measurements have been accumulated at the Mauna Loa Observatory (Hawaii) since 1973, the NASA Langley Research Center (Hampton, Virginia) since 1974, and Garmisch-Partenkirchen (Germany) since 1976. The fourth lidar station we present started to perform routine observations of the SAL parameters in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) in 1986. In this paper, we mainly focus on and discuss the stratospheric background period from 2000 to 2005 and the causes of the SAL perturbations over Tomsk in the 2006-2015 period. During the last decade, volcanic aerosol plumes from tropical Mt. Manam, Soufrière Hills, Rabaul, Merapi, Nabro, and Kelut and extratropical (northern) Mt. Okmok, Kasatochi, Redoubt, Sarychev Peak, Eyjafjallajökull, and Grímsvötn were detected in the stratosphere over Tomsk. When it was possible, we used the NOAA HYSPLIT trajectory model to assign aerosol layers observed over Tomsk to the corresponding volcanic eruptions. The trajectory analysis highlighted some surprising results. For example, in the cases of the Okmok, Kasatochi, and Eyjafjallajökull eruptions, the HYSPLIT air mass backward trajectories, started from altitudes of aerosol layers detected over Tomsk with a lidar, passed over these volcanoes on their eruption days at altitudes higher than the maximum plume altitudes given by the Smithsonian Institution Global Volcanism Program. An explanation of these facts is suggested. The role of both tropical and northern volcanic eruptions in volcanogenic aerosol loading of the midlatitude stratosphere is also discussed. In addition to volcanoes, we considered other possible causes of the SAL perturbations over Tomsk, i.e., the polar stratospheric cloud (PSC) events and smoke plumes from strong forest fires. At least

  18. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  19. Ash plume top height estimation using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, T. H.; Kolmonen, P.; Rodríguez, E.; Sogacheva, L.; Sundström, A.-M.; de Leeuw, G.

    2014-08-01

    An algorithm is presented for the estimation of volcanic ash plume top height using the stereo view of the Advanced Along Track Scanning Radiometer (AATSR) aboard Envisat. The algorithm is based on matching top of the atmosphere (TOA) reflectances and brightness temperatures of the nadir and 55° forward views, and using the resulting parallax to obtain the height estimate. Various retrieval parameters are discussed in detail, several quality parameters are introduced, and post-processing methods for screening out unreliable data have been developed. The method is compared to other satellite observations and in situ data. The proposed algorithm is designed to be fully automatic and can be implemented in operational retrieval algorithms. Combined with automated ash detection using the brightness temperature difference between the 11 and 12 μm channels, the algorithm allows efficient simultaneous retrieval of the horizontal and vertical dispersion of volcanic ash. A case study on the eruption of the Icelandic volcano Eyjafjallajökull in 2010 is presented.

  20. Ash plume top height estimate using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, T. H.; Kolmonen, P.; Rodríguez, E.; Sogacheva, L.; Sundström, A.-M.; de Leeuw, G.

    2014-04-01

    An algorithm is presented for estimation of volcanic ash plume top height using the stereo view of the Advanced Along Track Scanning Radiometer (AATSR) aboard ENVISAT. The algorithm is based on matching the top of atmosphere (TOA) reflectances and brightness temperatures of the nadir and 55° forward views, and using the resulting parallax to obtain the height estimate. Various retrieval parameters are discussed in detail, several quality parameters are introduced, and post-processing methods for screening out unreliable data have been developed. The method is compared against other satellite observations and in-situ data. The proposed algorithm is designed to be fully automatic, and can be implemented into operational retrieval algorithms. Combined with automated ash detection using the brightness temperature difference between the 11 μm and 12 μm channels, the algorithm allows simultaneous retrieval of horizontal and vertical dispersion of volcanic ash efficiently. A case study on the eruption of the Icelandic volcano Eyjafjallajökull in 2010 is presented. The height estimate method results are validated against available satellite and ground based data.

  1. Atmospheric Dispersion Modelling of Volcanic Ash using Data Insertion

    NASA Astrophysics Data System (ADS)

    Wilkins, K. L.; Watson, M.; Kristiansen, N. I.; Webster, H. N.; Thomson, D.; Dacre, H.; Prata, F.

    2015-12-01

    Eruption source parameters in volcanic ash dispersion and transport modelling, such as plume height and eruption rate, can often be highly uncertain. This can lead to significant uncertainties in the position and concentration of the modelled ash cloud downwind of the vent. Methods such as inversion modelling have successfully constrained such uncertainties, but in this work estimation of the eruption source parameters for the atmospheric dispersion model NAME is bypassed by implementing data insertion. Using this method under development, ash cloud properties retrieved from satellite imagery are used to create ash sources downwind from the volcano vent, from which dispersion simulations are initialised. Using the satellite retrievals, a set of simulations are initialised from different times and combined to create forecasts. In other experiments the simulations are sequentially updated using a probabilistic cloud / ash / clear classification scheme to correct the model state over time. Simulations from the Eyjafjallajökull and Grímsvötn eruptions compare well against other established modelling methods and satellite observations.

  2. (210)Pb-(226)Ra disequilibria in young gas-laden magmas.

    PubMed

    Reagan, Mark; Turner, Simon; Handley, Heather; Turner, Michael; Beier, Christoph; Caulfield, John; Peate, David

    2017-03-24

    We present new (238)U-(230)Th-(226)Ra-(210)Pb and supporting data for young lavas from southwest Pacific island arcs, Eyjafjallajökull, Iceland, and Terceira, Azores. The arc lavas have significant (238)U and (226)Ra excesses, whereas those from the ocean islands have moderate (230)Th and (226)Ra excesses, reflecting mantle melting in the presence of a water-rich fluid in the former and mantle melting by decompression in the latter. Differentiation to erupted compositions in both settings appears to have taken no longer than a few millennia. Variations in the ((210)Pb/(226)Ra)0 values in all settings largely result from degassing processes rather than mineral-melt partitioning. Like most other ocean island basalts, the Terceira basalt has a (210)Pb deficit, which we attribute to ~8.5 years of steady (222)Rn loss to a CO2-rich volatile phase while it traversed the crust. Lavas erupted from water-laden magma systems, including those investigated here, commonly have near equilibrium ((210)Pb/(226)Ra)0 values. Maintaining these equilibrium values requires minimal persistent loss or accumulation of (222)Rn in a gas phase. We infer that degassing during decompression of water-saturated magmas either causes these magmas to crystallize and stall in reservoirs where they reside under conditions of near stasis, or to quickly rise towards the surface and erupt.

  3. Society's Growing Vulnerability to Natural Hazards and Implications for Geophysics Research (Invited)

    NASA Astrophysics Data System (ADS)

    Slingo, J.

    2010-12-01

    2010 is shaping up to be a year of unprecedented natural hazards - at least in living memory - which have raised our awareness of our vulnerability, challenged our scientific understanding and questioned our ability to predict and prepare for such events. This talk will take some examples from this year and use them to explore the implications for the research agenda in weather and climate modelling and prediction, and in how to translate our predictions into products and services that address user needs. Specific examples include the eruption of Eyjafjallajökull in Iceland, its impact on the aviation industry and the challenges that it posed to London Volcanic Ash Advisory Centre. The biblical proportions of the floods in Pakistan, and the Russian heat wave, wildfires and crop losses are examples of unprecedented events which have raised questions around climate change and the degree to which such events can be attributed or not to a warming world. The prospects of modelling and predicting these hazardous events and their impacts will be discussed in terms of our capabilities and what investments are needed in model development, supercomputing resources and the science of interdisciplinary impacts. Finally we live in an uncertain world, and preparedness requires us to take account of that uncertainty. The science challenges of moving towards more reliable and confident predictions that take us from uncertainty to probabilities and risk based assessments will be discussed.

  4. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  5. The bioreactivity of the sub-10 μm component of volcanic ash: Soufrière Hills volcano, Montserrat.

    PubMed

    Jones, Timothy; Bérubé, Kelly

    2011-10-30

    With the recent eruption of the Icelandic volcano Eyafallajökull and resulting ash cloud over much of Europe there was considerable concern about possible respiratory hazards. Volcanic ash can contain minerals that are known human respiratory health hazards such as cristobalite. Short-term ash exposures can cause skin sores, respiratory and ocular irritations and exacerbation of pre-existing lung conditions such as asthma. Long-term occupational level exposures to crystalline silicon dioxide can cause lung inflammation, oedema, fibrosis and cancer. The potential health effects would be dependent on factors including mineralogy, surface chemistry, size, and levels and duration of exposure. Bulk ash from the Soufrière Hills volcano was sourced and inhalable (<2.5 μm) ash samples prepared and physicochemically characterised. The fine ash samples were tested for bioreactivity by SDS-PAGE which determined the strength of binding between mineral grains and lung proteins. Selected proteins bound tightly to cristobalite, and bound loosely to other ash components. A positive correlation was seen between the amount of SiO(2) in the sample and the strength of the binding. The strength of binding is a function of the mineral's bioreactivity, and therefore, a potential geo-biomarker of respiratory risk.

  6. Risk perceptions and trust following the 2010 and 2011 Icelandic volcanic ash crises.

    PubMed

    Eiser, J Richard; Donovan, Amy; Sparks, R Stephen J

    2015-02-01

    Eruptions at the Icelandic volcanoes of Eyjafjallajökull (2010) and Grimsvötn (2011) produced plumes of ash posing hazards to air traffic over northern Europe. In imposing restrictions on air traffic, regulators needed to balance the dangers of accidents or aircraft damage against the cost and inconvenience to travelers and industry. Two surveys examined how members of the public viewed the necessity of the imposed restrictions and their trust in different agencies as estimators of the level of risk. Study 1 was conducted with 213 British citizens (112 males, 101 females), who completed questionnaires while waiting for flights at London City Airport during May 2012. Study 2 involved an online survey of 301 Icelandic citizens (172 males, 127 females, 2 undeclared gender) during April 2012. In both samples, there was general support for the air traffic restrictions, especially among those who gave higher estimates of the likelihood of an air accident or mishap having otherwise happened. However, in both countries, the (minority of) respondents who had personally experienced travel disruption were less convinced that these restrictions were all necessary. Scientists, the International Civil Aviation Organization, and (in Iceland) the Icelandic Department of Civil Protection were all highly trusted, and seen as erring on the side of caution in their risk estimates. Airlines were seen as more likely to underestimate any risk. We conclude that perceptions of the balance between risk and caution in judgments under uncertainty are influenced by one's own motives and those attributed to others.

  7. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred.

  8. Emergency hospital visits in association with volcanic ash, dust storms and other sources of ambient particles: a time-series study in Reykjavík, Iceland.

    PubMed

    Carlsen, Hanne Krage; Gislason, Thorarinn; Forsberg, Bertil; Meister, Kadri; Thorsteinsson, Throstur; Jóhannsson, Thorsteinn; Finnbjornsdottir, Ragnhildur; Oudin, Anna

    2015-04-13

    Volcanic ash contributed significantly to particulate matter (PM) in Iceland following the eruptions in Eyjafjallajökull 2010 and Grímsvötn 2011. This study aimed to investigate the association between different PM sources and emergency hospital visits for cardiorespiratory causes from 2007 to 2012. Indicators of PM10 sources; "volcanic ash", "dust storms", or "other sources" (traffic, fireworks, and re-suspension) on days when PM10 exceeded the daily air quality guideline value of 50 µg/m3 were entered into generalized additive models, adjusted for weather, time trend and co-pollutants. The average number of daily emergency hospital visits was 10.5. PM10 exceeded the air quality guideline value 115 out of 2191 days; 20 days due to volcanic ash, 14 due to dust storms (two days had both dust storm and ash contribution) and 83 due to other sources. High PM10 levels from volcanic ash tended to be significantly associated with the emergency hospital visits; estimates ranged from 4.8% (95% Confidence Interval (CI): 0.6, 9.2%) per day of exposure in unadjusted models to 7.3% (95% CI: -0.4, 15.5%) in adjusted models. Dust storms were not consistently associated with daily emergency hospital visits and other sources tended to show a negative association. We found some evidence indicating that volcanic ash particles were more harmful than particles from other sources, but the results were inconclusive and should be interpreted with caution.

  9. Functional Information: Towards Synthesis of Biosemiotics and Cybernetics

    PubMed Central

    Sharov, Alexei A.

    2012-01-01

    Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt). PMID:22368439

  10. Satellite monitoring of African volcanoes by means of RSTVOLC

    NASA Astrophysics Data System (ADS)

    Pergola, Nicola; Coviello, Irina; Falconieri, Alfredo; Filizzola, Carolina; Lacava, Teodosio; Liuzzi, Mariangela; Marchese, Francesco; Paciello, Rossana; Tramutoli, Valerio

    2015-04-01

    RSTVOLC is an algorithm for volcanic hot spot detection from space based on the Robust Satellite Techniques (RST) multi-temporal approach. This algorithm was firstly tested on Mt. Etna area, analyzing a long-term time series of infrared Advanced Very High Resolution Radiometer (AVHRR) satellite records, and was then implemented on data provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) to study a number of volcanoes in different geographic areas, including Asamayama (Japan) and Eyjafjallajökull (Iceland). Recently, RSTVOLC has been exported on data provided by geostationary sensors such as the Spinning Enhanced Visible and Infrared Imager (SEVIRI), onboard Meteosat Second Generation (MSG) satellites, allowing for the timely detection and real time monitoring of thermal volcanic phenomena. In this work, recent results achieved studying some important African volcanoes by means of polar and geostationary satellite data are presented. Outcomes and results achieved by RSTVOLC studying some past Ol Donyo Lengai (Tanzania) eruptions and the recent Nyamuragira (Congo) activity are reported and discussed, also for comparison with other independent hot spot detection techniques. This study confirms that RSTVOLC may be successfully used to monitor volcanoes at a global scale and to detect low level thermal activities, thanks to its intrinsic self-adaptivity to different observational/environmental conditions as well as to its high sensitivity to sublte hot spots, contributing to volcanic risk mitigation.

  11. Future Developments in Modeling and Monitoring of Volcanic Ash Clouds

    NASA Astrophysics Data System (ADS)

    Bonadonna, Costanza; Folch, Arnau; Loughlin, Sue

    2011-03-01

    IAVCEI-WMO Workshop on Ash Dispersal Forecast and Civil Aviation; Geneva, Switzerland, 18-20 October 2010; The April-May 2010 Eyjafjallajökull eruption brought to light the harmful effects of volcanic ash on civil aviation and the importance of robust ash forecasting based on the combination of numerical weather prediction (NWP), volcanic ash transport and dispersal models (VATDMs), and data acquisition. The Workshop on Ash Dispersal Forecast and Civil Aviation has produced a consensual document describing the characteristics and range of application of different VATDMs, identifying the needs of the modeling community, investigating new data acquisition strategies, and discussing how to improve communication between the volcanology community and operational agencies. The workshop was held at the World Meteorological Organization's (WMO) Geneva headquarters under the sponsorship of the Faculty of Sciences of the University of Geneva, the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI), and the canton of Geneva and was organized by scientists from the University of Geneva (Switzerland), the Barcelona Supercomputing Center (Spain), the Aeronautical Meteorology Division of the WMO, and the British Geological Survey (United Kingdom). Fifty-two volcanologists, meteorologists, atmospheric dispersion modelers, and space- and ground-based monitoring specialists from 12 different countries were gathered (attendance was by invitation only), including representatives from six Volcanic Ash Advisory Centers (VAACs) and related institutions.

  12. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  13. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  14. Optical modeling of volcanic ash particles using ellipsoids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo

    2015-05-01

    The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.

  15. 210Pb-226Ra disequilibria in young gas-laden magmas

    NASA Astrophysics Data System (ADS)

    Reagan, Mark; Turner, Simon; Handley, Heather; Turner, Michael; Beier, Christoph; Caulfield, John; Peate, David

    2017-03-01

    We present new 238U-230Th-226Ra-210Pb and supporting data for young lavas from southwest Pacific island arcs, Eyjafjallajökull, Iceland, and Terceira, Azores. The arc lavas have significant 238U and 226Ra excesses, whereas those from the ocean islands have moderate 230Th and 226Ra excesses, reflecting mantle melting in the presence of a water-rich fluid in the former and mantle melting by decompression in the latter. Differentiation to erupted compositions in both settings appears to have taken no longer than a few millennia. Variations in the (210Pb/226Ra)0 values in all settings largely result from degassing processes rather than mineral-melt partitioning. Like most other ocean island basalts, the Terceira basalt has a 210Pb deficit, which we attribute to ~8.5 years of steady 222Rn loss to a CO2-rich volatile phase while it traversed the crust. Lavas erupted from water-laden magma systems, including those investigated here, commonly have near equilibrium (210Pb/226Ra)0 values. Maintaining these equilibrium values requires minimal persistent loss or accumulation of 222Rn in a gas phase. We infer that degassing during decompression of water-saturated magmas either causes these magmas to crystallize and stall in reservoirs where they reside under conditions of near stasis, or to quickly rise towards the surface and erupt.

  16. Glaciological Applications of Terrestrial Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Voytenko, D.; Dixon, T. H.

    2014-12-01

    Terrestrial Radar Interferometry (TRI) is a relatively new ground-based technique that combines the precision and spatial resolution of InSAR with the temporal resolution of GPS. Although TRI can be applied to a variety of fields including bridge and landslide monitoring, it is ideal for studies of the highly dynamic terminal zones of marine-terminating glaciers. Our TRI instrument is the Gamma Portable Radar Interferometer, which operates at 17.2 GHz (1.74 cm wavelength), has two receiving antennas for DEM generation, and generates amplitude and phase images at minute-scale sampling rates. Here we review preliminary results from Breiðamerkurjökull in Iceland and Helheim and Jakobshavn in Greenland. We show that the high sampling rate of the TRI can be used to observe velocity variations at the glacier terminus associated with calving, and the spatial distribution of tidal forcing. Velocity uncertainties, mainly due to atmospheric effects, are typically less than 0.05 m/d. Additionally, iceberg tracking using the amplitude imagery may provide insight into ocean currents near the terminus when fjord or lagoon conditions permit.

  17. Functional Information: Towards Synthesis of Biosemiotics and Cybernetics.

    PubMed

    Sharov, Alexei A

    2010-04-27

    Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt).

  18. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications

    NASA Astrophysics Data System (ADS)

    Stuefer, M.; Freitas, S. R.; Grell, G.; Webley, P.; Peckham, S.; McKeen, S. A.; Egan, S. D.

    2013-04-01

    We describe a new functionality within the Weather Research and Forecasting (WRF) model with coupled Chemistry (WRF-Chem) that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska) and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.

  19. An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake.

    PubMed

    Gaidos, Eric; Marteinsson, Viggo; Thorsteinsson, Thorsteinn; Jóhannesson, Tomas; Rúnarsson, Arni Rafn; Stefansson, Andri; Glazer, Brian; Lanoil, Brian; Skidmore, Mark; Han, Sukkyun; Miller, Mary; Rusch, Antje; Foo, Wilson

    2009-04-01

    In 2006, we sampled the anoxic bottom waters of a volcanic lake beneath the Vatnajökull ice cap (Iceland). The sample contained 5 x 10(5) cells per ml, and whole-cell fluorescent in situ hybridization (FISH) and PCR with domain-specific probes showed these to be essentially all bacteria, with no detectable archaea. Pyrosequencing of the V6 hypervariable region of the 16S ribosomal RNA gene, Sanger sequencing of a clone library and FISH-based enumeration of four major phylotypes revealed that the assemblage was dominated by a few groups of putative chemotrophic bacteria whose closest cultivated relatives use sulfide, sulfur or hydrogen as electron donors, and oxygen, sulfate or CO(2) as electron acceptors. Hundreds of other phylotypes are present at lower abundance in our V6 tag libraries and a rarefaction analysis indicates that sampling did not reach saturation, but FISH data limit the remaining biome to <10-20% of all cells. The composition of this oligarchy can be understood in the context of the chemical disequilibrium created by the mixing of sulfidic lake water and oxygenated glacial meltwater.

  20. The European air traffic management response to volcanic ash crises: towards institutionalised aviation crisis management.

    PubMed

    Dopagne, Jacques

    2011-06-01

    A cloud of ash drifting from the erupting Eyjafjallajökull volcano in Iceland in April and May 2010 covered Europe and created an unprecedented situation. It resulted in an almost complete lockdown of European airspace in the period from 15th to 21st April, 2010: more than 100,000 flights were cancelled, 10 million people were affected and over US$1.8bn was lost by airlines globally. This paper presents the air traffic management (ATM) view of the situation. Through an analysis of the evolution of the events in the affected region, the paper will provide more details on ATM planning, reaction and follow-up actions. Furthermore, the influence of this event on the identification of further improvements needed to advance volcanic procedures internationally will be discussed. Actions undertaken since the end of the event - the establishment of the European Aviation Crisis Coordination Cell, running of the International Civil Aviation Organization VOLCEX 11/01 volcanic ash exercise and European response to the Grimsvötn eruption in May 2011 - will be discussed at the end of the paper.

  1. Linking the North Atlantic to central Europe: a high-resolution Holocene tephrochronological record from northern Germany

    NASA Astrophysics Data System (ADS)

    van den Bogaard, Christel; Schmincke, Hans-Ulrich

    2002-01-01

    A high-resolution Holocene tephrochronology for northern Germany has been established based on systematic tephrostratigraphical analysis of three peat bogs. Microscopic volcanic ash layers have been traced and characterised petrographically and by the chemical composition of the glass shards. At least 37 ash horizons representing 16 different explosive volcanic eruptions have been identified and many can be correlated between the three sites, up to 100 km apart. The tephra layers can be related to Icelandic volcanic sources and some correlated to the eruptions of Askja 1875, Hekla 3, Hekla Selsund, Hekla 4 and Hekla 5, as well as to unspecified eruptions of Icelandic volcanic systems, e.g. Torfajökull. The source volcanoes for some tephra layers remain unidentified. Some tephra layers were known previously from the North Atlantic region (e.g. Sluggan, Glen Garry), others have not been recorded previously in the literature (e.g. microlite tephra). This study provides the first comprehensive Holocene tephrostratigraphical record for northern Germany, complementing the North Atlantic tephrostratigraphical dating framework, effectively extending it into central Europe. The study shows that Icelandic ash layers are even more widespread than hitherto thought.

  2. New Holocene tephras and a proxy climate record from a blanket mire in northern Skye, Scotland

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Barber, K. E.

    2001-12-01

    Four Holocene tephras of Icelandic origin have been identified and geochemically characterised from a water shedding blanket peat sequence on the Trotternish ridge, Isle of Skye, Scotland. Geochemical characterisation of the shards propose the Glen Garry tephra to be present, a tephra layer of Hekla origin incorporating shards from Hekla-4, as well as two new tephras dated by interpolation from a radiocarbon based chronology to ca. 830 cal. yr BP and ca. 2340 cal. yr BP. The new historic tephra has an ambiguous geochemistry and therefore has not been correlated with other known Icelandic historic tephras. The new prehistoric tephra is suggested as originating from the Snæfellsjökull volcano in northwest Iceland and forms an important stratigraphical marker in this Holocene sequence. A proxy climate record has been derived from humification analyses of the peat, which compares well with other regional palaeoclimatic reconstructions, as well as enabling correlations based on tephra geochemical linkages between sites and climatic records at precise times in the past.

  3. Validation of ASH Optical Depth and Layer Height from IASI using Earlinet Lidar Data

    NASA Astrophysics Data System (ADS)

    Balis, D.; Siomos, N.; Koukouli, M.; Clarisse, L.; Carboni, E.; Ventress, L.; Grainger, R.; Mona, L.; Pappalardo, G.

    2016-06-01

    The 2010 eruptions of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. The European Space Agency project "Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards", called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation, using among others ground-based measurements (Koukouli et al., 2014). The validation of volcanic ash levels and height extracted from IASI/MetopA is presented in this work with emphasis on the ash plume height and ash optical depth levels. European Aerosol Research Lidar Network [EARLINET] lidar measurements are compared to different satellite estimates for two eruptive episodes. The validation results are extremely promising within the estimated uncertainties of each of the comparative datasets.

  4. A Summary Case Report on the Health Impacts and Response to the Pakistan Floods of 2010

    PubMed Central

    Shabir, Omar

    2013-01-01

    In July 2010, Pakistan suffered nationwide floods after unprecedented monsoon rains overwhelmed the Indus basin. The ensuing floods claimed 1985 lives, injured 2946 people and affected over 20.2 million people. Seventy-eight out of 121 districts were affected and at one stage one-fifth of the country’s land was inundated with water. Indiscriminate damage was caused to housing, educational and health facilities, communication networks, power plants and grids, irrigation channels, agricultural land and livestock. Over 37 million medical consultations were reported within one year of the floods with acute respiratory infection, skin diseases, acute diarrhoea and suspected malaria forming the most common presentations. Rescue and relief operations were organised through the National Disaster Management Authority and a UN Cluster Approach was adopted for providing humanitarian assistance. The Office for the Coordination of Humanitarian Affairs (OCHA) played a pivotal role in coordinating relief efforts between cluster groups and providing communication platforms for identifying gaps and sharing information. This paper attempts to collate information available in the public domain into a summary report based on key principles described by Kulling et al. (2010) on health crisis reporting. PMID:23591385

  5. Mafic intrusions triggering eruptions in Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2012-04-01

    The last two eruptions in Iceland, Eyjafjallajökull 2010 and Grímsvötn 2011, were both provoked by an intrusion of more mafic magma into pre-existing magmatic system. Injection into the latter volcano, which is located in the main rift-zone of the island, above the presumed centre of the mantle plume and is the most active volcano of Iceland, has been gradual since the last eruption in 2004. In contrast, at Eyjafjallajökull volcano, one of the least active volcano in Iceland and located at the southern part of a propagating rift-zone where extensional tectonics are poorly developed, mafic magma intrusion occurred over less than a year. Beneath Eyjafjallajökull, a silicic intrusion at approximately 6 km depth was recharged with mantle derived alkali basalt that was injected into residual rhyolite from the penultimate eruption in the years 1821-23. The resulting magma mingIing process was highly complex, but careful sampling of tephra during the entire eruption allows the dynamics of the mingling process to be unravelled. Short-lived disequilibria between the gaseous nuclide 210Po and the much less volatile nuclide 210Pb, suggest that basalt accumulated beneath the silicic intrusion over approximately 100 days, or from early January 2010 until the onset of the explosive summit eruption on 14 April. Due to the degassing, crystal fractionation modified the composition of the injected mafic magma producing evolved Fe-and Ti-rich basalt, similar in composition to that of the nearby Katla volcano. This evolved basalt was intruded into the liquid part of the silicic intrusion only a few hours before the onset of the explosive summit eruption. The short time between intrusion and eruption led to the production of very heterogeneous (of basaltic, intermediate and silicic composition) and fine-grained tephra during the first days of explosive eruption. The fine grained tephra resulted from combined effects of magma fragmentation due to degassing of stiff magma rich in

  6. First satellite identification of volcanic carbon monoxide

    NASA Astrophysics Data System (ADS)

    Martínez-Alonso, Sara; Deeter, Merritt N.; Worden, Helen M.; Clerbaux, Cathy; Mao, Debbie; Gille, John C.

    2012-11-01

    Volcanic degassing produces abundant H2O and CO2, as well as SO2, HCl, H2S, S2, H2, HF, CO, and SiF4. Volcanic SO2, HCl, and H2S have been detected from satellites in the past; the remaining species are analyzed in situ or using airborne instruments, with all the consequent limitations in safety and sampling, and at elevated costs. We report identification of high CO concentrations consistent with a volcanic origin (the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions in Iceland) in data from the Measurements of Pollution in the Troposphere instrument (MOPITT) onboard EOS/Terra. The high CO values coincide spatially and temporally with ash plumes emanating from the eruptive centers, with elevated SO2 and aerosol optical thickness, as well as with high CO values in data from the Infrared Atmospheric Sounding Interferometer (IASI), onboard MetOp-A. CO has a positive indirect radiative forcing; climate models currently do not account for volcanic CO emissions. Given global volcanic CO2 emissions between 130 and 440 Tg/year and volcanic CO:CO2 ratios from the literature, we estimate that average global volcanic CO emissions may be on the order of ∼5.5 Tg/year, equivalent to the CO emissions caused by combined fossil fuel and biofuel combustion in Australia.

  7. Identification and tracking of ash clouds from recent explosive eruptions by using multispectral satellite infrared data

    NASA Astrophysics Data System (ADS)

    Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V.

    2012-04-01

    RSTASH is a specific algorithm, based on the general Robust Satellite Techniques (RST) approach, developed to identify and track ash clouds using satellite infrared data. An updated and optimized version of this algorithm, which analyzes even signal measured in the visible spectral band, has recently been developed and implemented on geostationary satellites data, for a better discrimination of ash and weather clouds in daytime. This advanced configuration was firstly tested during the Eyjafjallajökull (Iceland) eruption of April 2010 (by using Spinning Enhanced Visible and Infrared Imager sensor aboard Meteosat Second Generation), showing further improvements in terms of false positives reduction in comparison with standard RSTASH technique. Another experimental configuration of this method, analyzing signal measured in the SEVIRI sulphur dioxide absorption band (at 8.6µm), was also successfully used to qualitatively characterize volcanic plumes emitted by the same volcano in May 2010 in terms of SO2 concentration. Results of these studies are presented and discussed here, together with main achievements obtained monitoring ash cloud emitted during Shinmoedake (Japan) explosive eruption of 26-27 January 2011, exploiting the high temporal resolution of MTSAT Japanese geostationary satellites. Moreover, for both test cases, plume height estimations, obtained by applying two different literature methods, are compared with indipendent both ground- and satellite-based observations. In this work, RSTASH performances in detecting, tracking and characterizing ash clouds are discussed, focusing on main open issues and future perspectives.

  8. Drone based structural mapping at Holuhraun indicates fault reactivation and complexity

    NASA Astrophysics Data System (ADS)

    Mueller, Daniel; Walter, Thomas R.; Steinke, Bastian; Witt, Tanja; Schoepa, Anne; Duerig, Tobi; Gudmundsson, Magnus T.

    2016-04-01

    Accompanied by an intense seismic swarm in August 2014, a dike laterally formed, starting under Icelands Vatnajökull glacier, propagating over a distance of more than 45 km within only two weeks, leading to the largest eruption by volume since the 1783-84 Laki eruption. Along its propagation path, the dike caused intense surface displacements up to meters. Based on seismicity, GPS and InSAR, the propagation has already been analysed and described as segmented lateral dike growth. We now focus on few smaller regions of the dike. We consider the Terrasar-X tandem digital elevation map and aerial photos and find localized zones where structural fissures formed and curved. At these localized, regions we performed a field campaign in summer 2015, applying the close range remote sensing techniques Structure from Motion (SfM) and Terrestrial Laser Scanning (TLS). Over 4 TLS scan were collected, along with over 5,000 aerial images. Point clouds from SfM and TLS are merged and compared, and local structural lineaments analysed. As a result, we obtained an unprecedentedly high-resolution digital elevation map. With this map, we analyse the structural expression of the fissure eruption at the surface and improve understanding on the conditions that influenced the magma propagation path. We elaborate scenarios that lead to complexities of the surface structures and the link to the underlying dike intrusion.

  9. Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry

    NASA Astrophysics Data System (ADS)

    Foresta, L.; Gourmelen, N.; Pálsson, F.; Nienow, P.; Björnsson, H.; Shepherd, A.

    2016-12-01

    We apply swath processing to CryoSat-2 interferometric mode data acquired over the Icelandic ice caps to generate maps of rates of surface elevation change at 0.5 km postings. This high-resolution mapping reveals complex surface elevation changes in the region, related to climate, ice dynamics, and subglacial geothermal and magmatic processes. We estimate rates of volume and mass change independently for the six major Icelandic ice caps, 90% of Iceland's permanent ice cover, for five glaciological years between October 2010 and September 2015. Annual mass balance is highly variable; during the 2014/2015 glaciological year, the Vatnajökull ice cap ( 70% of the glaciated area) experienced positive mass balance for the first time since 1992/1993. Our results indicate that between glaciological years 2010/2011and 2014/2015 Icelandic ice caps have lost 5.8 ± 0.7 Gt a-1 on average, 40% less than the preceding 15 years, contributing 0.016 ± 0.002 mm a-1 to sea level rise.

  10. Estimation of Volcanic Ash Plume Top Height using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo; Kolmonen, Pekka; Sogacheva, Larisa; Sundström, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-04-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's 55° forward and nadir views, and thus the corresponding height. Besides the stereo view, AATSR provides another advantage compared to other satellite based instruments. With AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 µm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. In addition, it is possible to study the effect of using different wavelengths in the height estimate, ranging from visible (555 nm) to thermal infrared (12 µm). The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with existing volcanic ash dispersion models and retrieval methods. We present ACM plume top height estimate results for the Eyjafjallajökull eruption, and comparisons against available ground based and satellite observations.

  11. Chemical and biological availability of hydrocarbons in urban harbor sediments

    USGS Publications Warehouse

    LeBlanc, L.A.; Brownawell, Bruce J.

    2002-01-01

    The degradation of saturated and aromatic hydrocarbons was studied in batch slurry experiments conducted with field-aged sediments, highly impacted by hydrocarbon pollution. Experiments focused on examining the effects of desorption limitations to hydrocarbon mineralization and degradation. Degradation of PAH (e.g., naphthalene, fluorene, acenaphthene) and saturated hydrocarbons was examined in field-aged sediments collected from four sites in greater NY Harbor and western Long Island Sound. The sites were Rikers Island in far western Long Island Sound, Williamsburg Bridge in the East River, Shooters Island in the Arthur Kill, and the Kill Van Kull off Bayonne, New Jersey. Patterns of hydrocarbon desorption and degradation in weathered sediments were complicated by the mixed combustion and oil-derived hydrocarbon sources, and differed markedly from patterns seen in sediments following an oil spill. Rates of degradation in experiments with spiked sediments, especially over short timescales, did not appear to be limited by rates of desorption. This is an abstract of a paper presented at the 224th ACS National Meeting (Boston, MA 8/18-22/2002).

  12. Observations of volcanic Lightning (Invited)

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Behnke, S. A.; Krehbiel, P. R.; Rison, W.; Edens, H. E.; McNutt, S. R.

    2010-12-01

    We have made detailed observations of lightning during four volcanic eruptions using lightning mapping array (LMA) stations. In January 2006 we observed several explosive eruptions from Augustine Volcano in Alaska with two LMA stations. While two stations only gave us the direction to the lightning it gave a detailed time history of the lightning in relationship to the eruption as measured by seismic and acoustic instruments. We inferred that there were two phases (explosive and plume) and three types of lightning (small discharges near the vent, larger discharges in the volcanic column, thunderstorm like lightning in the plume). In May 2008 we mapped lightning in the plume of Chaitan (Chile) three weeks after the initial eruption. In 2009 we observed the entire sequence of explosive eruptions of Redoubt Volcano in Alaska with 4 distant stations. This provided good 2-D locations of the electrical activity. In 2010 we mapped much of the eruption of Eyjafjallajökull using 6 LMA stations that provided 3-D locations. All the observations have reinforced the basic conclusions that we found at the Augustine eruption, and let us expand and refine the these ideas.

  13. Electric environment above European VLF transmitters during the Iceland volcano eruption in spring 2010

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Biagi, P. F.; Al-Haddad, E.; Schwingenschuh, K.; Galopeau, P. H. M.; Besser, B.; Parrot, M.; Prattes, G.; Voller, W.

    2012-04-01

    We report on electric field measurements recorded by the ICE experiment above several VLF transmitters in Europe. The aim is to study the variation of the electric environment above those transmitter stations before and after the eruptions of the Eyjafjallajökull volcano in Iceland in spring 2010. We analyze the VLF amplitude signal recorded by the ICE electric field experiment on board DEMETER micro-satellite. The sun-synchronous orbits of the micro-satellite cover an invariant latitude range between -65° and +65° in a time interval of about 40 minutes. We consider the VLF transmitter signals emitted by the following three stations in Europe: DFY (16.58 kHz, Germany), FTU (18.3 kHz, France), JXN (16.4 kHz, Norway). We study the variation of these VLF signals taking into consideration the signal intensity levels before and after the Iceland volcano eruptions. We show that the VLF sub-ionospheric signals are affected by the disturbances produced by geomagnetic activity. The seasonal and the latitudinal effects may also contribute in the variation of the VLF transmitter signal. In this investigation we discuss the methods which lead us to distinguish between the different signal sources in order to display the electric variation which may occur during the sudden activity of the volcano.

  14. Investigation of boundary layer dynamics, dust and volcanic ash clouds with laser ceilometer

    NASA Astrophysics Data System (ADS)

    Münkel, Christoph; Schäfer, Klaus; Emeis, Stefan

    2013-10-01

    The main purpose of eye-safe laser ceilometers is regular reporting of cloud base height, vertical visibility, and cloud cover. These instruments operate unattended in harsh weather conditions. The application of state-of-the-art electronics increases the quality of backscatter profiles and thus qualifies modern ceilometers for applications beyond cloud base detection. The single lens optics of the ceilometers introduced in this paper results in a compact and robust design and enables their application in campaigns monitoring climate change effects. That is why three of the German Terrestrial Environmental Observatories (TERENO) run by the Karlsruhe Institute of Technology are equipped with a ceilometer. The Technical University of Denmark (DTU) utilizes such an instrument to study arctic cloud formation at Station Nord, Greenland. Recent applications include site assessment for solar energy applications in the Arabic Peninsula and monitoring of Sahara dust cloud and biomass burning plume events over Germany. Backward trajectory calculations with the HYSPLIT trajectory model provided by the NOAA Air Resources Laboratory have been carried out to investigate possible sources, including wood fires in southern France and eruptions of the Eyjafjallajökull and Puyehue- Cordón Caulle volcanoes.

  15. Civil aviation management during explosive volcanic eruptions: A survey on the stakeholders' perspective on the use of tephra dispersal models

    NASA Astrophysics Data System (ADS)

    Scaini, Chiara; Bolić, Tatjana; Folch, Arnau; Castelli, Lorenzo

    2015-03-01

    Impacts of explosive volcanic eruptions on civil aviation were reconsidered after the 2010 Eyjafjallajökull eruption in Iceland, which caused unprecedented disruptions of air traffic operations in Europe. During and after the aviation breakdown of April-May 2010, communication between the involved stakeholders was recognized as a major concern. Due to the complexity and multidisciplinary nature of the topic, a great number of actors are involved, which often have little interaction outside these exceptional events. In this work, we aim at identifying the relationships between the stakeholders involved in aviation management during eruptions, as well as their needs and priorities. We perform an anonymous on-line survey, focused mainly on the use of tephra dispersal models for civil aviation purposes. We collect feedback on recent developments including our current impact assessment research, which produced a GIS-based software tool to estimate impacts on aviation based on tephra dispersal forecasts. Answers allow identifying stakeholders' requirements on ash dispersal forecasts and their use for aviation management purposes. We underline the main differences between three homogeneous groups (aviation managers and employees, modellers and field scientists, other stakeholders) and identify main end-user requirements for developing tools similar to ours. This work provides useful insights for the development of tools to support aviation stakeholders during volcanic eruptions.

  16. 210Pb-226Ra disequilibria in young gas-laden magmas

    PubMed Central

    Reagan, Mark; Turner, Simon; Handley, Heather; Turner, Michael; Beier, Christoph; Caulfield, John; Peate, David

    2017-01-01

    We present new 238U-230Th-226Ra-210Pb and supporting data for young lavas from southwest Pacific island arcs, Eyjafjallajökull, Iceland, and Terceira, Azores. The arc lavas have significant 238U and 226Ra excesses, whereas those from the ocean islands have moderate 230Th and 226Ra excesses, reflecting mantle melting in the presence of a water-rich fluid in the former and mantle melting by decompression in the latter. Differentiation to erupted compositions in both settings appears to have taken no longer than a few millennia. Variations in the (210Pb/226Ra)0 values in all settings largely result from degassing processes rather than mineral-melt partitioning. Like most other ocean island basalts, the Terceira basalt has a 210Pb deficit, which we attribute to ~8.5 years of steady 222Rn loss to a CO2-rich volatile phase while it traversed the crust. Lavas erupted from water-laden magma systems, including those investigated here, commonly have near equilibrium (210Pb/226Ra)0 values. Maintaining these equilibrium values requires minimal persistent loss or accumulation of 222Rn in a gas phase. We infer that degassing during decompression of water-saturated magmas either causes these magmas to crystallize and stall in reservoirs where they reside under conditions of near stasis, or to quickly rise towards the surface and erupt. PMID:28338093

  17. Local and remote infrasound from explosive volcanism

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  18. Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; McGarvie, D. W.; Gilbert, J. S.

    Simple analytical models of subglacial eruptions are presented, which simulate evolving subglacial cavities and volcanic edifices during rhyolitic eruptions beneath temperate glaciers. They show that the relative sizes of cavity and edifice may strongly influence the eruption mechanisms. Intrusive eruptions will occur if the edifice fills the cavity, with rising magma quenched within the edifice and slow melting of ice. Explosive magma-water interaction may occur if a water- or steam-filled gap develops above the edifice. Meltwater is assumed to drain away continuously, but any gap above the edifice will be filled by meltwater or steam. Ductile roof closure will occur if the glacier weight exceeds the cavity pressure and is modelled here using Nye's law. The results show that the effusion rate is an important control on the eruption style, with explosive eruptions favoured by large effusion rates. The models are used to explain contrasting eruption mechanisms during various Quaternary subglacial rhyolite eruptions at Torfajökull, Iceland. Although the models are simplistic, they are first attempts to unravel the complex feedbacks between subglacial eruption mechanisms and glacier response that can lead to a variety of eruptive scenarios and associated hazards.

  19. Neural-Network Approach to Hyperspectral Data Analysis for Volcanic Ash Clouds Monitoring

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Ventress, Lucy; Carboni, Elisa; Grainger, Roy Gordon; Del Frate, Fabio

    2015-11-01

    In this study three artificial neural networks (ANN) were implemented in order to emulate a retrieval model and to estimate the ash Aerosol optical Depth (AOD), particle effective radius (reff) and cloud height from volcanic eruption using hyperspectral remotely sensed data. ANNs were trained using a selection of Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding ash parameters retrieved obtained using the Oxford retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajo ̈kull volcano (Iceland) occurred in 2010. The results of validation provided root mean square error (RMSE) values between neural network outputs and targets lower than standard deviation (STD) of corresponding target outputs, therefore demonstrating the feasibility to estimate volcanic ash parameters using an ANN approach, and its importance in near real time monitoring activities, owing to its fast application. A high accuracy has been achieved for reff and cloud height estimation, while a decreasing in accuracy was obtained when applying the NN approach for AOD estimation, in particular for those values not well characterized during NN training phase.

  20. Uncertainty analysis of a model of wind-blown volcanic plumes.

    PubMed

    Woodhouse, Mark J; Hogg, Andrew J; Phillips, Jeremy C; Rougier, Jonathan C

    Mathematical models of natural processes can be used as inversion tools to predict unobserved properties from measured quantities. Uncertainty in observations and model formulation impact on the efficacy of inverse modelling. We present a general methodology, history matching, that can be used to investigate the effect of observational and model uncertainty on inverse modelling studies. We demonstrate history matching on an integral model of volcanic plumes that is used to estimate source conditions from observations of the rise height of plumes during the eruptions of Eyjafjallajökull, Iceland, in 2010 and Grímsvötn, Iceland, in 2011. Sources of uncertainty are identified and quantified, and propagated through the integral plume model. A preliminary sensitivity analysis is performed to identify the uncertain model parameters that strongly influence model predictions. Model predictions are assessed against observations through an implausibility measure that rules out model inputs that are considered implausible given the quantified uncertainty. We demonstrate that the source mass flux at the volcano can be estimated from plume height observations, but the magmatic temperature, exit velocity and exsolved gas mass fraction cannot be accurately determined. Uncertainty in plume height observations and entrainment coefficients results in a large range of plausible values of the source mass flux. Our analysis shows that better constraints on entrainment coefficients for volcanic plumes and more precise observations of plume height are required to obtain tightly constrained estimates of the source mass flux.

  1. Simulating atmospheric transport of the 2011 Grímsvötn ash cloud using a data insertion update scheme

    NASA Astrophysics Data System (ADS)

    Wilkins, K. L.; Western, L. M.; Watson, I. M.

    2016-09-01

    Effective modelling of atmospheric volcanic ash dispersion is important to ensure aircraft safety, and has been the subject of much study since the Eyjafjallajökull ash crisis in Europe in 2010. In this paper, a novel modelling method is presented, where the atmospheric transport of the 2011 Grímsvötn ash cloud is simulated using a data insertion update scheme. Output from the volcanic ash transport and dispersion model, NAME, is updated using satellite retrievals and the results of a probabilistic ash, cloud and clear sky classification algorithm. A range of configurations of the scheme are compared with each other, in addition to a simple data insertion method presented in a previous study. Results show that simulations in which ash layer heights and depths are updated using the model output generally perform worse in relation to satellite derived ash coverage and ash column loading than simulations that use satellite-retrieved heights and an assumed layer depth of 1.0 km. Simulated ash column loading and concentration tends to be under-predicted using this update scheme, but the timing of the arrival of the ash cloud at Stockholm is well captured, as shown by comparison with lidar-derived mass concentration profiles. Most of the updated simulations in this comparison make small gains in skill on the simple data insertion scheme.

  2. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  3. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    (Rampino and Self 1984, Pyle et al 1996, Self and Rampino 2012). But as yet, there is little evidence for the consequences of this scale of eruption for the climate system (Miles et al 2004), and few data against which to test simulations of stratospheric sulfur-injection 'geoengineering' scenarios of a similar scale and frequency (e.g. English et al 2012). A hint of the new volcano-observing capability came during the eruption of Eyjafjallajökull, Iceland. For a few days in April 2010 meteorological conditions, coupled with a dramatic increase in volcanic ash production, led to the wide dispersal of fine volcanic particles across northern Europe; an event which was widely tracked by ground-based and satellite-borne instruments, augmented by in situ measurements from balloons and aircraft (Bennett et al 2010, Flentje et al 2010, Harrison et al 2010, Stohl et al 2011). Despite the interest in Eyjafjallajökull at the time, this was, geologically, only a very modest eruption with limited sulfur emissions and an impact restricted mainly to the regional troposphere (e.g. Thomas and Prata 2011, Walker et al 2012). Then, in June 2011, a previously dormant volcano in north-east Africa began to erupt violently. Little is known about Nabro, which is a partially collapsed volcano that straddles the Eritrea-Ethiopia border, and has had no known historical activity (Wiart and Oppenheimer 2005). Despite the remote location, and lack of prior warning, the event and its aftermath were remarkably well captured by remote-sensing instruments, as demonstrated in the new letter by Sawamura et al (2012). Using both ground-based and satellite-borne laser-ranging (lidar) data, Sawamura et al (2012) were able to extract detailed information about the nature of the volcanic aerosol layer, and its spread around the globe. The eruption started strongly, with substantial ash plumes for the first 48 h, rising to 9-14 km altitude (Smithsonian Institution 2011, Bourassa et al 2012), that carried at

  4. Compositional time-series from tephra and the temporal evolution of Grímsvötn's magma chamber

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Arna Óladóttir, Bergrun; Larsen, Guőrún

    2010-05-01

    Improved understanding of magma chambers and the related plumbing system is needed for active volcanoes. Their architecture, size and location determine the magma dynamics from source to surface, and the rate of magma transfer is in part controlled by variable sizes and forms of magma chambers. Since these are not constant features but evolve with time, only detailed studies of fine-tuned time-series allow quantitative assessment of their physical evolution, such as their volume. The subglacial volcano Grímsvötn is the most active of all Icelandic volcanoes. Interaction between the hot basaltic magma and glacier melt-water results in tephra formation during each eruption. Careful soil inspection around the Vatnajökull ice-cap has revealed an eruption frequency, higher than 7 eruptions per century. A compositional record of major- and trace element concentrations has been obtained by electron microprobe and laser ablation ICP-MS measurements of tephra glasses for the last 7600 years. We combine these results with more precise data from isotope-dilution mass-spectrometry on historical tephra from the Vatnajökull glacier. The Holcene basalts from Grímsvötn clearly form two distinct compositional groups, G-1 and G2. The group G-1 is characterized by Mg#> 47, K2O< 0.4 wt% and Th< 0.9 ppm, whereas the G-2 magma has more evolved composition. Simple fractional crystallization readily explains the compositional variations within group G-1, while the G-2 magmas have suffered from additional crustal contamination (through AFC). The Holocene tephra record reveals that both magma types are erupted contemporaneously, and even during the same eruption such as produced during the last eruption in 2004. This clearly indicates a polybaric origin of the emitted basalts, and eliminates the possibility of a single well-mixed, steady-state magma chamber beneath Grímsvötn. After the large fissure eruption of Laki (1783-84), which is on the same volcanic system, the composition of

  5. The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-05-01

    The glacial floods, called 'jökulhlaups', are common in Iceland and are of interest to geologists for several reasons. Firstly, the heat source origin - subglacial volcanic eruption or/and subglacial geothermal activity - determines the potential environmental impact of the floods. For example, if the heat was sourced by a volcanic eruption, acid gas input might lead to acidic flood waters and toxic metal release from the host rock. In contrast, geothermal heat melts the ice slowly allowing long-term fluid-rock interaction to neutralize the flood waters, limiting their toxicity. The chemical composition of the flood waters is often the only indicator of the flood triggering mechanism in volcanic and geothermal areas. As such river water chemistry monitoring might be an effective method to predict an upcoming volcanic eruption. Secondly, glacial floods may play an important role in global cycle of elements. Due to high discharge during the events, flood waters can transport large amounts of particulate material. This particulate material has large surface areas, making it especially reactive once it arrives in estuaries. Slow dissolution of particulate material releases micro- and macronutrients which could enhance primary productivity along the coast and in lakes. In July 2011, two ~2000 m3/s glacial floods from the Icelandic Mördalsjökull and Vatnajökull glaciers emerged into the Múlakvísl and Kaldakvísl rivers, respectively. Water samples collected during both floods had neutral to alkaline pH and conductivity from 100 to 900 μS/cm. The total dissolved inorganic carbon (DIC), present mostly as HCO3-, was ~9 mmol/kg during the flood peak in the Múlakvísl river but stabilized at around 1 mmol/kg; a similar trend was observed in the Kaldakvísl river. Concentrations of most dissolved elements in the flood waters were comparable to those commonly observed in these rivers. The concentration of suspended particulate material however, increased dramatically

  6. The future of volcanic ash-aircraft interactions from technical and policy perspectives

    NASA Astrophysics Data System (ADS)

    Casadevall, T. J.; Guffanti, M.

    2010-12-01

    Since the advent of jet-powered flight in the 1960s, the threat of volcanic ash to aviation operations has become widely recognized and the mitigation of this threat has received concerted international attention. At the same time the susceptibility to operational disruption has grown. Technical improvements to airframes, engines, and avionic systems have been made in response to the need for improved fuel efficiency and the demand for increased capacity for passenger and freight traffic. Operational demands have resulted in the growth of extended overseas flight operations (ETOPS), increased flight frequency on air traffic routes, and closer spacing of aircraft on heavily traveled routes. The net result has been great advances in flight efficiency, but also increased susceptibility to flight disruption, especially in heavily traveled regions such as North Atlantic-Europe, North America, and the North Pacific. Advances in ash avoidance procedures, pilot and air manager training, and in detection of ash-related damage and maintenance of aircraft and engines have been spurred by noteworthy eruptions such as Galunggung, Indonesia, 1982; Redoubt, Alaska, 1989-1990; and Pinatubo, Philippines, 1991. Comparable advances have been made in the detection and tracking of volcanic ash clouds using satellite-based remote sensing and numerical trajectory forecast models. Following the April 2010 eruption of Eyjafjallajökull volcano, Iceland, the global aviation community again focused attention on the issue of safe air operations in airspace affected by volcanic ash. The enormous global disruption to air traffic in the weeks after the Eyjafjallajökull eruption has placed added emphasis for the global air traffic management system as well as on the equipment manufacturers to reevaluate air operations in ash-affected airspace. Under the leadership of the International Civil Aviation Organization and the World Meteorological Organization, efforts are being made to address this

  7. Deformation derived from GPS geodesy associated with Bárðarbunga 2014 rifting event in Iceland

    NASA Astrophysics Data System (ADS)

    Ofeigsson, Benedikt Gunnar; Hreinsdóttir, Sigrún; Sigmundsson, Freysteinn; Friðriksdóttir, Hildur; Parks, Michelle; Dumont, Stephanie; Árnadóttir, Þóra; Geirsson, Halldór; Hooper, Andrew; Roberts, Matthew; Bennett, Rick; Sturkell, Erik; Jónsson, Sigurjón; Lafemina, Peter; Jónsson, Þorsteinn; Bergsson, Bergur; Kjartansson, Vilhjálmur; Steinþórsson, Sveinbjörn; Einarsson, Páll; Drouin, Vincent

    2015-04-01

    On August 16, 2014 an intense seismic swarm started below the eastern part of Bárðarbunga Caldera in the north-western corner of Vatnajökull ice-cap, Iceland, marking the onset of the first rifting event in Iceland since the Krafla fires (1975-1984). The migration of the seismicity was corroborated by ground deformation in areas outside the ice cap and on nunataks within the ice cap suggesting a lateral propagation of magma, from the Bárðabunga system. The sesimicity migrated out of the caldera forming a dyke with roughly three segments, changing direction each time until August 28 when the migration stopped around 10 km south of Askja Volcano, eventually leading to a short lived eruption in Holuhraun north of Dyngjujökull. A second fissure eruption started in Holuhraun on August 31 which is still ongoing at the time of this writing. In the months prior to the onset of the activity, subtle signs of inflation where observed on continuous GPS sites around the Bárðarbunga indicating a volume increase in the roots of the volcanic system. When the activity started on August 16, the deformation pattern indicated a simultaneous deflation centered within the caldera and a lateral growth of a dyke also reflected in the migration of seismicity along segments of variable strike. A maximum widening of 1.3 m occurred between stations on opposite sides of the dyke spaced 25 km apart. Significant movements where detected on GPS site more then 80 km away from the tip of dyke. Displacements indicated the fastest rate of widening at any time in the most distal segment of the dyke throughout its evolution. After the dyke stopped propagating, the inflation continued, decaying exponentialy with time. On September 4, five days into the second fissure eruption, the movements associated with the dyke where no longer significant. As the fissure eruption continues, a slowly decaying contraction is observed around the Bárðarbunga central volcano, both shown in the piston like

  8. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2012-12-01

    Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of

  9. The 2014-2015 slow collapse of the Bárðarbunga caldera, Iceland

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Jónsdóttir, Kristín; Roberts, Matthew; Ófeigsson, Benedikt G.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Jarosch, Alexander H.; Pálsson, Finnur; Einarsson, Páll; Sigmundsson, Freysteinn; Drouin, Vincent; Hjörleifsdóttir, Vala; Reynolds, Hannah I.; Dürig, Tobias; Vogfjörd, Kristín; Hensch, Martin; Munoz-Cobo Belart, Joaquin; Oddsson, Björn

    2015-04-01

    The Bárðarbunga caldera is located in central Iceland, under in NW corner of Vatnajökull ice cap. The caldera is about 65 km2 in area, with 500-600 m high topographic rims and is fully covered with up to 800 m thick ice. On 16 August 2014 an intense earthquake swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming a 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull (Sigmundsson et al., 2014). A large basaltic, effusive fissure eruption began in Holuhraun on 31 August that by January had formed a lava field of volume in excess of one cubic kilometre. The collapse of the caldera is expected to have begun a few days after the onset of the earthquake swarm, probably coinciding with the first M5 earthquake. This slow caldera collapse has been monitored through repeated mapping of the gradually increasing subsidence bowl (~80 km2 in December) with airborne profiling of the ice surface, satellite mapping, an online GPS station set up in September on the glacier surface in the centre of the caldera with a strong motion sensor added in November, and indirectly through recording of seismic activity. Satellite interferograms constrain both ice movements and the rate of collapse. The rate of collapse was greatest in the first two weeks or 0.5-1 m/day in the centre, but has since gradually declined with time. The daily rate was 0.1-0.2 m/day in January, when the maximum lowering had reached about 60 m. A gradual widening of the subsidence bowl has been observed since early September. It is asymmetric, deepest in the NE part of the caldera. Downwards displacement extends outside the pre-existing topographic caldera rims, particularly on the south side where the rims have subsided by over 10 meters. Ice-flow modelling indicates that the ice is mostly passively subsiding with the caldera floor. Thus, horizontal ice flow has had little effect on the shape of the subsidence bowl

  10. Unrest at Bárdarbunga: Preparations for possible flooding due to subglacial volcanism

    NASA Astrophysics Data System (ADS)

    Hardardottir, Jorunn; Roberts, Matthew; Pagneux, Emmanuel; Einarsson, Bergur; Thorarinsdottir, Tinna; Johannesson, Tomas; Sigurdsson, Oddur; Egilson, David; Sigurdsson, Gunnar; Imo hydrological-monitoring-team

    2015-04-01

    Located partly beneath northwest Vatnajökull, Iceland, the Bárdarbunga volcanic system comprises an ice-capped central volcano and a fissure swarm extending beyond the ice margin. During the last 1100 years the volcano has erupted on at least 26 occasions. Outburst floods (jökulhlaups) on a scale of >100,000 m3 s-1 are known to have occurred during major explosive eruptions. Repeated jökulhlaups from Bárdarbunga have inundated the Jökulsá á Fjöllum River, which drains over 200 km northwards from the Dyngjujökull outlet glacier to the north coast of Iceland. Depending on the location of the eruption within the 80 km2 caldera, jökulhlaups could also flow northwards along Skjálfandafljót River and towards west and southwest into present-day tributaries of the extensively hydropower-harnessed Thjórsá River. On 16 August 2014, an intense earthquake swarm began within the Bárdarbunga caldera. Seismicity propagated from the caldera, extending ~10 km northwards of the ice margin where a fissure eruption developed in late August and remains ongoing in early January 2015. In connection with the lateral migration of magma from the caldera, the ice surface of Bárdarbunga has lowered by over 60 m; also associated with increased geothermal heat on the caldera rim, as manifested by the development of ice-surface depressions. In preparation for a subglacial eruption in the Bárdarbunga volcanic system, the Icelandic Meteorological Office (IMO) has made several assessments of likely hydrological hazards. Assessments were undertaken on Jökulsá á Fjöllum and Skjálfandafljót at key locations where preliminary evacuation plans for populated areas were made in cooperation with the local police. Floodwater extent was estimated for key infrastructures, such as bridges, telecommunication and power lines for maximum discharge levels ranging from 3,000 to 20,000 m3 s-1. The estimations were made using either simple Manning's calculations or HEC-RAS modelling

  11. Formation of minor moraines in high-mountain environments independent of a primary climatic driver

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, Cianna; Lukas, Sven

    2016-04-01

    compelling discrepancy requires further investigation. References Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Bradwell, T., 2004, Annual Moraines and Summer Temperatures at Lambatungnajökull, Iceland: Arctice, Antarctic, and Alpine Research, v. 36, no. 4, p. 502-508. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.

  12. European collaboration for improved monitoring of Icelandic volcanoes: Status of the FUTUREVOLC project after the initial 18 months

    NASA Astrophysics Data System (ADS)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Vogfjörð, Kristín; Einarsdóttir, Heiðveig Maria; Tumi Gudmundsson, Magnús; Kristinsson, Ingvar; Loughlin, Sue; Ilyinskaya, Evgenia; Hooper, Andrew; Kylling, Arve; Witham, Claire; Bean, Chris; Braiden, Aoife; Ripepe, Maurizio; Prata, Fred; Pétur Heiðarsson, Einar; Other Members Of The Futurevolc Team

    2014-05-01

    The FUTUREVOLC project funded by the European Union (FP7) is devoted to volcanic hazard assessment and establishing an integrated volcanological monitoring procedure through a European collaboration. To reach these objectives the project combines broad expertise from 26 partners from 10 countries, focusing on the four most active volcanoes of Iceland: Grímsvötn, Katla, Hekla and Bárdarbunga. The geological setting of Iceland, the high rate of eruptions and the various eruption styles make this country an optimal natural laboratory to study volcanic processes from crustal depths to the atmosphere. The project, which began on 1 October 2012, integrates advanced monitoring and analytical techniques in an innovative way, focusing on (i) detailed monitoring to improve our understanding of the seismic/magmatic unrest, in order to estimate the amount of magma available for an eruption and to provide early warnings (ii) the dynamics of magma in the conduit and a near real time estimation of the mass eruption rate and (iii) observing and modelling the plume dynamics. The project design considers effective collaboration between partners and aims for efficient cross-disciplinary workflows. A major step during the first 18 months of the project was the installation of additional equipment in the volcanic regions of Iceland to reinforce and complement the existing monitoring. The instruments include: seismometers, GPS stations, MultigGAS detectors, DOAS, infrasonic arrays, electric field sensors, radars, and optical particle sizers. Data streaming is designed to withstand extreme weather conditions. The FUTUREVOLC project has an open data policy for real and near-time data. Implementation of a data hub is currently under way, based on open access to data from the 2010 Eyjafjallajökull eruption. Access to volcano monitoring data through a common interface will allow timely information on magma movements facilitated through combined analysis. A key part of the project is to

  13. Extending permanent volcano monitoring networks into Iceland's ice caps

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    The goals of the FUTUREVOLC project are the establishment of a volcano Supersite in Iceland to enable access to volcanological data from the country's many volcanoes and the development of a multiparametric volcano monitoring and early warning system. However, the location of some of Iceland's most active volcanoes inside the country's largest ice cap, Vatnajökull, makes these goals difficult to achieve as it hinders access and proper monitoring of seismic and deformation signals from the volcanoes. To overcome these obstacles, one of the developments in the project involves experimenting with extending the permanent real-time networks into the ice cap, including installation of stations in the glacier ice. At the onset of the project, only one permanent seismic and GPS site existed within Vatnajökull, on the caldera rim of the Grímsvötn volcano. Two years into the project both seismic and GPS stations have been successfully installed and operated inside the glacier; on rock outcrops as well as on the glacier surface. The specific problems to overcome are (i) harsh weather conditions requiring sturdy and resilient equipment and site installations, (ii) darkness during winter months shutting down power generation for several weeks, (iii) high snow accumulation burying the instruments, solar panels and communication and GPS antennae, and in some locations (iv) extreme icing conditions blocking transmission signals and connection to GPS satellites, as well as excluding the possibility of power generation by wind generators. In 2013, two permanent seismic stations and one GPS station were installed on rock outcrops within the ice cap in locations with 3G connections and powered by solar panels and enough battery storage to sustain operation during the darkest winter months. These sites have successfully operated for over a year with mostly regular maintenance requirements, transmitting data in real-time to IMO for analysis. Preparations for two permanent seismic

  14. Breaking the Seal: Tracking Eruptive and Flood Tremor in Iceland with Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Eibl, E. P. S.; Vogfjord, K. S.; Bean, C. J.; Ying, Y.; Pálsson, F.

    2015-12-01

    Bárðarbunga volcano in Iceland is located beneath Vatnajökull glacier. It erupted from August 29th, 2014 to February 27th, 2015 outside the ice cap after a ca. 50 km long dike had formed, mainly in the subsurface beneath the ice. Both the dike formation and the following effusive eruption were accompanied by continuous, harmonic tremor and tremor bursts. During the eruption these tremor bursts were interpreted as magma-ice interaction, flowing water and magma. This analysis was mainly based on the seismic frequency content and amplitude distributions on the regional seismic network. It was sometimes supported by the detection of cauldrons in the ice on subsequent days. Here we analyse the tremor using three seven-element arrays south- and northwest of the glacier cap (Jökulheimar, Innri Eyrar and Urðarháls). Using array analysis we can better constrain event locations, estimate tremor migration speed and use wavefield slowness tohelp estimate the source depth which can help to constrain the source type. We show that the backazimuths of the main harmonic tremor with dominant energy around 1 Hz correlate well with the extent of the growing lavafield for at least 27 days. Another one day long harmonic tremor episode contained energy up to 5 Hz but dominant at 1 to 2 Hz. The source was located beneath the ice and moved upwards and horizontally (about 42 deg). We compare it to tremor during smaller floods underneath the glacier and discuss a moving water or magma front as source. Elastic full wavefield simulations in models including ice thickness and ice basal topography allow us to strip out path effects thus yielding information about the tremor sources. Indications are that (i) parts of the dike were still evolving well after it had been breached by advancing magma and (ii) that eruptive lava is a significant source of seismic tremor.

  15. Measurements of the complex refractive index of volcanic ash at 450, 546.7, and 650 nm

    NASA Astrophysics Data System (ADS)

    Ball, J. G. C.; Reed, B. E.; Grainger, R. G.; Peters, D. M.; Mather, T. A.; Pyle, D. M.

    2015-08-01

    The detection and quantification of volcanic ash is extremely important to the aviation industry, civil defense organizations, and those in peril from volcanic ashfall. To exploit the remote sensing techniques that are used to monitor a volcanic cloud and return information on its properties, the effective complex refractive index of the volcanic ash is required. This paper presents the complex refractive index determined in the laboratory at 450.0 nm, 546.7 nm, and 650.0 nm for volcanic ash samples from eruptions of Aso (Japan), Grímsvötn (Iceland), Chaitén (Chile), Etna (Italy), Eyjafjallajökull (Iceland), Tongariro (New Zealand), Askja (Iceland), Nisyros (Greece), Okmok (Alaska), Augustine (Alaska), and Spurr (Alaska). The Becke line method was used to measure the real part of the refractive index with an accuracy of 0.01. The values measured differed between eruptions and were in the range 1.51-1.63 at 450.0 nm, 1.50-1.61 at 546.7 nm, and 1.50-1.59 at 650.0 nm. A novel method is introduced to derive the imaginary part of the refractive index from the attenuation of light by ash. The method has a precision in the range 10-3-10-4. The values for the ash imaginary refractive index ranged 0.22-1.70 × 10-3 at 450.0 nm, 0.16-1.93 × 10-3 at 546.7 nm, and 0.15-2.08 × 10-3 at 650.0 nm. The accuracy of Becke and attenuation methods was assessed by measuring the complex refractive index of Hoya neutral density glass and found to have an accuracy of <0.01 and <2 × 10-5 for the real and imaginary parts of the refractive index, respectively.

  16. Methods for mapping and monitoring global glaciovolcanism

    NASA Astrophysics Data System (ADS)

    Curtis, Aaron; Kyle, Philip

    2017-03-01

    The most deadly (Nevado del Ruiz, 1985) and the most costly (Eyjafjallajökull, 2010) eruptions of the last 100 years were both glaciovolcanic. Considering its great importance to studies of volcanic hazards, global climate, and even astrobiology, the global distribution of glaciovolcanism is insufficiently understood. We present and assess three algorithms for mapping, monitoring, and predicting likely centers of glaciovolcanic activity worldwide. Each algorithm intersects buffer zones representing known Holocene-active volcanic centers with existing datasets of snow, ice, and permafrost. Two detection algorithms, RGGA and PZGA, are simple spatial join operations computed from the Randolph Glacier Inventory and the Permafrost Zonation Index, respectively. The third, MDGA, is an algorithm run on all 15 available years of the MOD10A2 weekly snow cover product from the Terra MODIS satellite radiometer. Shortcomings and advantages of the three methods are discussed, including previously unreported blunders in the MOD10A2 dataset. Comparison of the results leads to an effective approach for integrating the three methods. We show that 20.4% of known Holocene volcanic centers host glaciers or areas of permanent snow. A further 10.9% potentially interact with permafrost. MDGA and PZGA do not rely on any human input, rendering them useful for investigations of change over time. An intermediate step in MDGA involves estimating the snow-covered area at every Holocene volcanic center. These estimations can be updated weekly with no human intervention. To investigate the feasibility of an automatic ice-loss alert system, we consider three examples of glaciovolcanism in the MDGA weekly dataset. We also discuss the potential use of PZGA to model past and future glaciovolcanism based on global circulation model outputs. Combined, the three algorithms provide an automated system for understanding the geographic and temporal patterns of global glaciovolcanism which should be of use

  17. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (<63 microns), which individually can have theoretical atmospheric lifetimes that span hours to days. Depending on the injection height, fine ash may be subsequently transported and dispersed by the atmosphere over 100s - 1000s km and can pose a major threat for aviation operations. Recent volcanic eruptions, such as the 2010 Icelandic Eyjafjallajökull event, illustrated how volcanic ash can severely impact commercial air traffic. In order to manage the threat, it is important to have accurate forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine

  18. Controls on the surface chemical reactivity of volcanic ash investigated with probe gases

    NASA Astrophysics Data System (ADS)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.; Bernard, Alain

    2016-09-01

    Increasing recognition that volcanic ash emissions can have significant impacts on the natural and human environment calls for a better understanding of ash chemical reactivity as mediated by its surface characteristics. However, previous studies of ash surface properties have relied on techniques that lack the sensitivity required to adequately investigate them. Here we characterise at the molecular monolayer scale the surfaces of ash erupted from Eyjafjallajökull, Tungurahua, Pinatubo and Chaitén volcanoes. Interrogation of the ash with four probe gases, trimethylamine (TMA; N(CH3)3), trifluoroacetic acid (TFA; CF3COOH), hydroxylamine (HA; NH2OH) and ozone (O3), reveals the abundances of acid-base and redox sites on ash surfaces. Measurements on aluminosilicate glass powders, as compositional proxies for the primary constituent of volcanic ash, are also conducted. We attribute the greater proportion of acidic and oxidised sites on ash relative to glass surfaces, evidenced by comparison of TMA/TFA and HA/O3 uptake ratios, in part to ash interaction with volcanic gases and condensates (e.g., H2O, SO2, H2SO4, HCl, HF) during the eruption. The strong influence of ash surface processing in the eruption plume and/or cloud is further supported by particular abundances of oxidised and reduced sites on the ash samples resulting from specific characteristics of their eruptions of origin. Intense interaction with water vapour may result in a higher fraction of oxidised sites on ash produced by phreatomagmatic than by magmatic activity. This study constitutes the first quantification of ash chemical properties at the molecular monolayer scale, and is an important step towards better understanding the factors that govern the role of ash as a chemical agent within atmospheric, terrestrial, aquatic or biotic systems.

  19. The impacts of the 2014 eruption of Holuhraun in Iceland: the tropospheric equivalent of Mount Pinatubo

    NASA Astrophysics Data System (ADS)

    Platnick, S. E.; Haywood, J. M.; Malavelle, F.; Jones, A.; Bellouin, N.; Boucher, O.; Bauduin, S.; Carslaw, K. S.; Clarisse, L.; Coe, H.; Dalvi, M.; Dhomse, S.; Gettelman, A.; Grosvenor, D.; Hartley, M. E.; Johnson, B. T.; Johnson, C.; Knight, J.; Kristjansson, J. E.; Mann, G.; O'connor, F. M.; Schmidt, A.; Stephens, G. L.; Takahashi, H.; Allan, R. P.; Hawcroft, M.

    2015-12-01

    During the period 31st August September 2014- 28th February 2015, a significant fissure eruption occurred in the Holuhraun area of Iceland. Unlike the well documented eruption of Eyjafjallajökull in 2010, this eruption has received relatively little public attention as the emissions are at low altitude, there is little accompanying ash, and thus there has not been any impact on trans-Atlantic air-traffic. However, the emission rates of sulphur dioxide from the eruption during the first two months was at least four times those from the entire 28 European member states and the continuous nature of the eruption means that by the end of the eruption, the emissions of sulphur dioxide exceeded the total annual emission targets of all of Europe. We provide a comprehensive global modelling estimate of the impact on cloud microphysics and show that the empirical relationship between degassed sulphur and TiO2/FeO ratios derived from prior Icelandic basaltic flood lava has undoubted utility. The impact of the sulphur dioxide cloud droplet size is clearly identified in satellite retrievals over the entire North Atlantic. Pristine clouds of lesser reflectivity were replaced by polluted clouds of higher reflectivity. This eruption provides an ideal test bed for validating models and inter-comparing observations of aerosol-cloud-interactions. Simulations with HadGEM3 including a detailed aerosol-microphysical scheme show excellent agreement with observations of cloud effective radius and cloud droplet number concentration and we use the model to assess the detectability of other variables such as aerosol optical depth, cloud liquid water path, cloud optical depth and radiation forcing. We conclude that, just as the explosive eruption of Pinatubo into the stratosphere provided the basis for many model and satellite analysis and inter-comparisons, the Holuhraun eruption provides a similar counterpart for focussing analyses of tropospheric cloud-aerosol interactions.

  20. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  1. The Hygroscopic Properties of Volcanic Ash and Implications for the Evolution of Volcanic Plumes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Kumar, P.; Dufek, J.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    Volcanic eruptions are long known to have profound impacts on the Earth System and society, which result from the atmospheric emissions and transport of volcanic ash. The microphysical evolution of volcanic plumes is key to understanding their atmospheric lifetime. Volcanic ash is composed primarily of silicate glass and crystal and is injected into an environment initially rich in volcanically derived gases, including water vapor. Limited observational data exists on the physical interactions between the water vapor and ash particles; yet it is thought that these interactions can strongly impact the coagulation efficiency and microphysical evolution of volcanic ash. In this study, we investigate the hygroscopic properties of fine volcanic ash (less than 125 micro-meter diameter) from a variety of sources, including the eruptions of Mount St. Helens in 1980, Tungurahua in 2006, Chaiten in 2008, Redoubt in 2009, and Eyjafjallajökull in 2010. These recent eruptions were selected to encompass a range of composition, crystallinity, and eruptive style. The hygroscopicity of the ash particles is quantified by their ability to nucleate cloud droplets under controlled levels of water vapor supersaturation. The dependence of critical supersaturation vs. dry particle diameter is used to i) explore the origin of particle hygroscopicity (being from the presence of deliquescent soluble material or adsorption onto insoluble surfaces), and, ii) determine the level of humidity required to coat volcanic ash with water, a requirement for large coagulation efficiencies. Our results show that fresh volcanic ash tends to follow adsorption activation theory and supports the suggestion that ash particles are sufficiently hygroscopic to be coated with a monolayer of water under subsaturated conditions. The range of interactions varies strongly, and follows what is expected from their composition. These experiments provide new insights on ash-water interactions, which can be used to

  2. How To Promote Data Quality And Access? Publish It!

    NASA Astrophysics Data System (ADS)

    Carlson, D. J.; Pfeiffenberger, H.

    2011-12-01

    Started during IPY 2007-2008, the Earth System Science Data journal (Copernicus) has now 'tested the waters' of earth system data publishing for approximately 2 years with some success. The journal has published more than 30 data sets, of remarkable breadth and variety, all under a Creative Commons Attribution license. Users can now find well-described, quality-controlled and freely accessible data on soils, permafrost, sediment transport, ice sheets, surface radiation, ocean-atmosphere fluxes, ocean chemistry, gravity fields, and combined radar and web cam observations of the Eyjafjallajökull eruption plume. Several of the data sets derive specifically from IPY or from polar regions, but a large portion, including a substantial special issue on ocean carbon, cover broad temporal and geographic domains; the contributors themselves come from leading science institutions around the world. ESSD has attracted the particular interest of international research teams, particularly those who, as in the case of ocean carbon data, have spent many years gathering, collating and calibrating global data sets under long-term named programs, but who lack within those programs the mechanisms to distribute those data sets widely outside their specialist teams and to ensure proper citation credit for those remarkable collaborative data processing efforts. An in-progress special issue on global ocean plankton function types, again representing years of international data collaboration, provides a further example of ESSD utility to large research programs. We anticipate an interesting test case of parallel special issues with companion science journals - data sets in ESSD to accompany science publications in a prominent research journal. We see the ESSD practices and products as useful steps to increase quality of and access to important data sets.

  3. Improved space borne detection of volcanic ash for real-time monitoring using 3-Band method

    NASA Astrophysics Data System (ADS)

    Guéhenneux, Y.; Gouhier, M.; Labazuy, P.

    2015-02-01

    For over 25 years, thermal infrared data supplied by satellite-based sensors are used to detect and characterize volcanic ash clouds using a commonly accepted method: the 2-Band reverse absorption technique. This method is based on a two-channel difference model using the opposite extinction features of water-ice and ash particles at 11 and 12 μm wavelengths. Although quite efficient with the supervision of a user, this method shows however some limitations for reliable automated detection of volcanic ash in a real-time fashion. Here we explore a method dedicated to the operational monitoring of volcanic ash that combines the 11-12 μm brightness temperature difference (BTD11-12) with a second brightness temperature difference between channels 8.7 μm and 11 μm, (BTD8.7-11). We first achieve a detailed microphysics analysis of different atmospheric aerosols (volcanic ash, water/ice, sulfuric acid, mineral dust) using optical properties (e.g., extinction efficiency, single scattering albedo and asymmetry parameter) calculated by Mie theory, and showing that BTD8.7-11 can be particularly efficient to remove most of artifacts. Then, we tested this method for eight different eruptions between 2005 and 2011 from six different volcanoes (Mount Etna, Piton de la Fournaise, Karthala, Soufriere Hills, Eyjafjallajökull, and Grimsvötn) using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation (MSG) geostationary satellite. We show that between 95.6% and 99.9% of ash-contaminated pixels erroneously identified by the BTD11-12 method (i.e., artifacts) were detected and removed by the 3-Band method. For all eruptions, the 3-Band method shows a high and constant reliability having a false alarm rate in the range 0.002-0.08%, hence allowing operational implementation for automated detection in case of a volcanic crisis.

  4. Asynchronous Little Ice Age glacier fluctuations in Iceland and European Alps linked to shifts in subpolar North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Larsen, Darren J.; Miller, Gifford H.; Geirsdóttir, Áslaug

    2013-10-01

    Records of past glacier fluctuations are an important source of paleoclimate data and provide context for future changes in global ice volume. In the North Atlantic region, glacier chronologies can be used to track the response of terrestrial environments to variations in marine conditions including circulation patterns and sea ice cover. However, the majority of glacier records are discontinuous and temporally restricted, owing in part to the extensive advance of Northern Hemisphere glaciers during the Little Ice Age (LIA), the most recent and severe climate anomaly of the Neoglacial period. Here, we combine an absolutely dated and continuous record of Langjökull ice marginal fluctuations with new reconstructions of sediment flux through the past 1.2 ka using varved sediments from Hvítárvatn, a proglacial lake in Iceland's central highlands. Large spatial and temporal variations in sediment flux related to changing ice cap dimensions are reconstructed from six sediment cores and seismic reflection profiles. Sediment data reveal two discrete phases of ice expansion occurring ca. 1400 to 1550 AD and ca. 1680 to 1890 AD. These advances are separated by a persistent interval of ice retreat, suggesting that a substantial period of warming interrupted LIA cold. The pattern of Icelandic glacier activity contrasts with that of European glaciers but shows strong similarities to reconstructed changes in North Atlantic oceanographic conditions, indicating differing regional responses to coupled ocean-atmosphere-sea ice variations. Our data suggest that subpolar North Atlantic circulation dynamics may have led to coherent asynchronous glacier fluctuations during the mid LIA and highlight the importance of circulation variability in triggering and transmitting multidecadal scale climate changes to nearby terrestrial environments.

  5. Insolation driven extratropical forcing of the annual SST cycle, and ENSO, in the eastern equatorial Pacific over the past 5000 years

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Miller, G. H.; Geirsdottir, A.

    2011-12-01

    Records of past glacier fluctuations are an important source of paleoclimate data and provide context for future changes in global ice volume. In the North Atlantic region, glacier chronologies can be used to track the response of terrestrial environments to variations in marine conditions including circulation patterns and sea ice cover. However, the majority of glacier records are discontinuous and temporally restricted, owing in part to the extensive advance of Northern Hemisphere glaciers during the Little Ice Age (LIA), the most recent and severe climate anomaly of the Neoglacial period. Here, we combine an absolutely dated and continuous record of Langjökull ice marginal fluctuations with new reconstructions of sediment flux through the past 1.2 ka using varved sediments from Hvítárvatn, a proglacial lake in Iceland's central highlands. Large spatial and temporal variations in sediment flux related to changing ice cap dimensions are reconstructed from six sediment cores and seismic reflection profiles. Sediment data reveal two discrete phases of ice expansion occurring ca. 1400 to 1550 AD and ca. 1680 to 1890 AD. These advances are separated by a persistent interval of ice retreat, suggesting that a substantial period of warming interrupted LIA cold. The pattern of Icelandic glacier activity contrasts with that of European glaciers but shows strong similarities to reconstructed changes in North Atlantic oceanographic conditions, indicating differing regional responses to coupled ocean-atmosphere-sea ice variations. Our data suggest that subpolar North Atlantic circulation dynamics may have led to coherent asynchronous glacier fluctuations during the mid LIA and highlight the importance of circulation variability in triggering and transmitting multidecadal scale climate changes to nearby terrestrial environments.

  6. Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Cooling Caused by Major Explosive Eruptions of Evolved Magmas Typical of Island Arcs and Warming Caused by Voluminous Effusive Eruptions of Basaltic Magma Typical of Subaerial Ocean Ridges and Island Chains

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2014-12-01

    Most volcanic eruptions deplete ozone ~6% for a few years, allowing more high-energy, ultraviolet-B radiation to warm earth. Record low levels of total column ozone followed the 1991 explosive eruption of Pinatubo. Yet 6% depletion also followed the smaller and more effusive eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) in Iceland. Explosive volcanoes also eject 10-20 megatons of sulfur dioxide into the lower stratosphere, forming sulfuric-acid aerosols that reflect and diffuse sunlight causing a net cooling of ~0.5°C for 3 years. High rates of explosive volcanos cool earth into ice ages while high rates of effusive basaltic volcanism in Iceland between 11,500 and 9,500 years ago clearly warmed Earth out of the last ice age depositing sulfate recorded in ice cores in Greenland. Basalts from these eruptions are observed as tuyas in Iceland dated during this period. The 25 Dansgaard-Oeschger abrupt warmings are contemporaneous with increased sulfate in Greenland and with the few older dates available for tuyas in Iceland. Extensive flood basalts were formed during the Paleocene Eocene Thermal Maximum and during times of most major mass extinctions when global temperatures rose substantially, with fossil evidence for ozone depletion. Greenhouse-gas theory assumes electromagnetic radiation travels through space as waves and therefore thermal energy reaching earth is proportional to the square of wave amplitude. Thus the change in energy reaching Earth due to ozone depletion is considered small compared to infrared energy absorbed by greenhouse gases. But waves travel in matter and there is no matter in space. Electromagnetic energy is transmitted as frequency, as shown by radio signals, where energy equals frequency times the Planck constant. Thus thermal energy reaching earth when ozone is depleted is 50 times thermal energy involved in greenhouse gases. Global warming from 1970 to 1998 was caused primarily by 3% ozone depletion due to anthropogenic

  7. Asynchronous Little Ice Age glacier fluctuations in Iceland and European Alps linked to shifts in subpolar North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Miller, G. H.; Geirsdottir, A.

    2013-12-01

    Records of past glacier fluctuations are an important source of paleoclimate data and provide context for future changes in global ice volume. In the North Atlantic region, glacier chronologies can be used to track the response of terrestrial environments to variations in marine conditions including circulation patterns and sea ice cover. However, the majority of glacier records are discontinuous and temporally restricted, owing in part to the extensive advance of Northern Hemisphere glaciers during the Little Ice Age (LIA), the most recent and severe climate anomaly of the Neoglacial period. Here, we combine an absolutely dated and continuous record of Langjökull ice marginal fluctuations with new reconstructions of sediment flux through the past 1.2 ka using varved sediments from Hvítárvatn, a proglacial lake in Iceland's central highlands. Large spatial and temporal variations in sediment flux related to changing ice cap dimensions are reconstructed from six sediment cores and seismic reflection profiles. Sediment data reveal two discrete phases of ice expansion occurring ca. 1400 to 1550 AD and ca. 1680 to 1890 AD. These advances are separated by a persistent interval of ice retreat, suggesting that a substantial period of warming interrupted LIA cold. The pattern of Icelandic glacier activity contrasts with that of European glaciers but shows strong similarities to reconstructed changes in North Atlantic oceanographic conditions, indicating differing regional responses to coupled ocean-atmosphere-sea ice variations. Our data suggest that subpolar North Atlantic circulation dynamics may have led to coherent asynchronous glacier fluctuations during the mid LIA and highlight the importance of circulation variability in triggering and transmitting multidecadal scale climate changes to nearby terrestrial environments.

  8. Emergency Hospital Visits in Association with Volcanic Ash, Dust Storms and Other Sources of Ambient Particles: A Time-Series Study in Reykjavík, Iceland

    PubMed Central

    Carlsen, Hanne Krage; Gislason, Thorarinn; Forsberg, Bertil; Meister, Kadri; Thorsteinsson, Throstur; Jóhannsson, Thorsteinn; Finnbjornsdottir, Ragnhildur; Oudin, Anna

    2015-01-01

    Volcanic ash contributed significantly to particulate matter (PM) in Iceland following the eruptions in Eyjafjallajökull 2010 and Grímsvötn 2011. This study aimed to investigate the association between different PM sources and emergency hospital visits for cardiorespiratory causes from 2007 to 2012. Indicators of PM10 sources; “volcanic ash”, “dust storms”, or “other sources” (traffic, fireworks, and re-suspension) on days when PM10 exceeded the daily air quality guideline value of 50 µg/m3 were entered into generalized additive models, adjusted for weather, time trend and co-pollutants. The average number of daily emergency hospital visits was 10.5. PM10 exceeded the air quality guideline value 115 out of 2191 days; 20 days due to volcanic ash, 14 due to dust storms (two days had both dust storm and ash contribution) and 83 due to other sources. High PM10 levels from volcanic ash tended to be significantly associated with the emergency hospital visits; estimates ranged from 4.8% (95% Confidence Interval (CI): 0.6, 9.2%) per day of exposure in unadjusted models to 7.3% (95% CI: −0.4, 15.5%) in adjusted models. Dust storms were not consistently associated with daily emergency hospital visits and other sources tended to show a negative association. We found some evidence indicating that volcanic ash particles were more harmful than particles from other sources, but the results were inconclusive and should be interpreted with caution. PMID:25872017

  9. Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate

    USGS Publications Warehouse

    Mastin, Larry G.

    2014-01-01

    During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.

  10. Influence of volcanic tephra on photovoltaic (PV)-modules: An experimental study with application to the 2010 Eyjafjallajokull eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Zorn, Edgar; Walter, Thomas R.

    2016-04-01

    Large volcanic eruptions may lead to significant tephra dispersion, crossing borders and affecting distant and industrial societies in various ways. While the effects of volcanic ash clouds on the aviation industry have been recognized, damaging effects on the photovoltaic energy sector are poorly investigated. Here we describe the influence of volcanic tephra deposition on photovoltaic (PV) modules that we experimentally analyzed and evaluated. A systematic set of experiments was conducted under controlled conditions using an artificial light source and measuring the electrical power generated from the PV-modules with the aim to determine the dependency of the amount of tephra covering a module and its subsequent loss in power production (measured in voltage and current) as well as the influence of the tephra grain size. We find that a mass of fine tephra has a stronger influence on the PV-modules power generation than the same mass of coarser particles. An application to the fine-grained 2010 Eyjafjallajökull eruption in Iceland and the resulting ash-cloud reveals that the power produced by PV-modules in continental Europe might have been affected significantly. Deposits were thick enough to cause complete failures of PV-modules up to a distance of about 300 km downwind. Although this distance is largely over the ocean in this particular case, our results imply that similar and larger eruptions of other volcanoes elsewhere might harm commercial or private energy production at distances of hundreds to thousands of kilometers from the volcano. Given that volcanic eruptions are frequent and the fact that the PV-industry is growing rapidly, negative impacts are expected in the future, requiring close tephra dispersion monitoring and PV-maintenance strategies.

  11. Deformation of Grímsvötn volcano, Iceland, 1992-2014: Constraints on magma flow in relation to eruptions in 1998, 2004 and 2011

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hreinsdottir, Sigrun; Sturkell, Erik; Ofeigsson, Benedikt; Einarsson, Pall; Roberts, Matthew; Grapenthin, Ronni; Villemin, Thierry; Arnadottir, Thora; Geirsson, Halldor

    2014-05-01

    A time series of ground deformation at Grímsvötn volcano, Iceland from 1992 to 2014 reveals deformation due to plate movements, glacial-isostatic uplift in response to the melting of the Vatnajökull ice cap, annual changes due to snow loading and magma movements. GPS measurements have been made at one nunatak, conducted intermittently since 1992 and continuously since 2004. During this period eruptions have occurred at Grímsvötn in 1998, 2004 and 2011. The component of displacement related to magma movements is obtained after the time series are corrected for signals due to other processes. Uplift and displacement away from the caldera occurs between eruptions at a rate of few cm/yr, interrupted by sudden co-eruptive subsidence and displacement towards the caldera (up to half a meter). This inflation/deflation pattern suggests deformation driven by pressure change in an upper crustal magma chamber, similar to other highly active calderas in Iceland such as Askja and Krafla. A simple model of pressure change variation in a magma chamber at shallow depth, with variable inflow between eruptions and outflow during eruptions can explain the observed deformation pattern. The erupted volume of magma in the 2011 eruption is about 10 times larger than the inferred co-eruptive volume change, attributed to compressibility of magma in the chamber. The magma compressibility is inferred to have remained constant during the 2011 eruption, as about constant scale factor is found during that eruption between eruption rate and displacement rate. This scale factor is, however, about five times lower for the 2004 eruption. This difference implies higher compressibility of magma in the shallow Grímsvötn magma chamber during the 2011 eruption compared to 2004, assuming the active part of the Grimsvötn magma plumbing system remained the same in both eruptions.

  12. Estimation of volcanic ash emission profiles using ceilometer measurements and transport models

    NASA Astrophysics Data System (ADS)

    Chan, Ka Lok; Geiß, Alexander; Gasteiger, Josef; Wagner, Frank; Wiegner, Matthias

    2016-04-01

    In recent years, the number of active remote sensing systems grows rapidly, since several national weather services initiated ceilometer networks. These networks are excellent tools to monitor the dispersion of volcanic ash clouds and to validate chemical transport models. Moreover, it is expected that the can be used to refine model calculations to better predict situations that might be dangerous for aviation. As a ceilometer can be considered as a simple single-wavelength backscatter lidar, quantitative aerosol profile information, i.e., the aerosol backscatter coefficient (βp) profile, can be derived provided that the ceilometer is calibrated. Volcanic ash concentration profile can then be estimated by using prior optical properties of volcanic ash. These profiles are then used for the inverse calculation of the emission profile of the volcanic eruption, thus, improving one of the most critical parameters of the numerical simulation. In this study, the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) is used to simulate the dispersion of volcanic ash. We simulate the distribution of ash for a given time/height grid, in order to compute the sensitivity functions for each measurements. As an example we use ceilometer measurements of the German weather service to reconstruct the temporal and spatial emission profile of Eyjafjallajökull eruption in April 2010. We have also examined the sensitivity of the retrieved emission profiles to different measurement parameters, e.g., geolocation of the measurement sites, total number of measurement sites, temporal and vertical resolution of the measurements, etc. The first results show that ceilometer measurements in principle are feasible for the inversion of volcanic ash emission profiles.

  13. Climate Throughout Geologic Time Was Cooled by Sequences of Explosive Volcanic Eruptions Forming Aerosols That Reflect and Scatter Ultraviolet Solar Radiation and Warmed by Relatively Continuous Extrusion of Basaltic Lava that Depletes Ozone, Allowing More Solar Ultraviolet Radiation to Reach Earth

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2015-12-01

    Active volcanoes of all sizes and eruptive styles, emit chlorine and bromine gases observed to deplete ozone. Effusive, basaltic volcanic eruptions, typical in Hawaii and Iceland, extrude large lava flows, depleting ozone and causing global warming. Major explosive volcanoes also deplete ozone with the same emissions, causing winter warming, but in addition eject megatons of water and sulfur dioxide into the lower stratosphere where they form sulfuric-acid aerosols whose particles grow large enough to reflect and scatter ultraviolet sunlight, causing net global cooling for a few years. The relative amounts of explosive and effusive volcanism are determined by the configuration of tectonic plates moving around Earth's surface. Detailed studies of climate change throughout geologic history, and since 1965, are not well explained by greenhouse-gas theory, but are explained quite clearly at OzoneDepletionTheory.info. Ozone concentrations vary substantially by the minute and show close relationships to weather system highs and lows (as pointed out by Dobson in the 1920s), to the height of the tropopause, and to the strength and location of polar vortices and jet streams. Integrating the effects of volcanism on ozone concentrations and the effects of ozone concentrations on synoptic weather patterns should improve weather forecasting. For example, the volcano Bárðarbunga, in central Iceland, extruded 85 km2 of basaltic lava between August 29, 2014, and February 28, 2015, having a profound effect on weather. Most surprising, more than a week before the March 4 eruption of Eyjafjallajökull in 2010, substantial amounts of ozone were released in the vicinity of the volcano precisely when surface deformation showed that magma first began moving up from sills below 4 km depth. Ozone similarly appears to have been emitted 3.5 months before the Pinatubo eruption in 1991. Readily available daily maps of ozone concentrations may allow early warning of an imminent volcanic

  14. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  15. Moving Toward a Globally Harmonized Volcanic Ash Forecast System: Anchorage and Tokyo VAAC Best Practices on Collaboration

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Moore, D.; Igarashi, Y.

    2014-12-01

    Since the eruption of Eyjafjallajökull in 2010, there has been an increased awareness on the need for better collaboration between the Volcanic Ash Advisory Centers (VAACs). Work through the International Civil Aviation Organization (ICAO) International Airways Volcano Watch Operations Group (IAVWOPSG) and International Airways Volcano Task Force (IAVTF) brought increased awareness and focus to this challenge. A VAAC Best Practices group was formed out of these larger meetings and focused on VAAC specific issues of importance. Collaboration was one of the topics under consideration. Some ideas and procedures for an effective, yet easy, method for the VAACs to collaborate have been discussed. Implementation has been mainly on a VAAC to VAAC basis, however a more consolidated process needs to be developed and agreed upon between all VAACs in order to successfully move toward harmonization. Collaboration procedures and tools are being considered. The National Weather Service (NWS) Alaska Region has been looking at collaborative software to help the VAACs identify the presence of ash and forecast the plume both in the horizontal and vertical. Having an interactive graphical interface within the forecast operation may help to ensure consistency across VAAC boundaries. Existing chat software within NWS is being investigated to allow Tokyo and Anchorage VAAC to "chat" about forecast issues in real time. This capability is being tested through scenarios. The Anchorage and Tokyo VAACs participated in a series of meetings in Tokyo in March 2014. Collaboration was a major topic of discussion. This paper will outline some of the efforts being undertaken between the Anchorage and Tokyo VAACs as a result of these meetings and subsequent dialogue.

  16. The Staring OBservations of the Atmosphere (SOBA) Mission Concept

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Johnson, Matthew S.; Chen, Rick; Quincy, Allison; Fladeland, Matthew

    2016-01-01

    The Staring OBservations of the Atmosphere (SOBA) Mission is a concept that was developed and matured under the guidance of the NASA Ames Project EXellence (APEX) program. If funded, it will provide an unprecedented opportunity to improve ash transport forecasts and climate model simulations associated with volcanic eruptions. NASA and National science objectives require a better understanding of volcanic aerosol and trace gas emissions, transport, chemical transformation, and deposition, since they impact Earth's climate and atmospheric composition, human health, and aviation safety. Natural hazards such as the 2010 eruption of the Eyjafjallajökull volcano in Iceland demonstrated how existing remote-sensing assets were inadequate for individual volcanic event monitoring. During this eruption, available instruments were unable to provide data necessary to initialize volcanic plume transport models so that they could accurately predict the quantity and location of volcanic ash. As a result, thousands of flights around the world were grounded unnecessarily, at great expense. Volcanoes can also play a large role in regulation of the Earth's climate, so SOBA observations will also be used to evaluate and improve volcanic aerosol and trace gas simulation in chemical transport models (CTMs) and global climate models (GCMs). We propose the development of an airborne remote sensing concept and field campaign that will respond to an eruption and provide near real time observations of a volcanic plume, specifically ash injection height, transport, aerosol microphysical physical properties, and the location and concentration of sulfur dioxide (SO2) (sulfate (SO42-) aerosol precursor). This airborne system will utilize a depolarization sensitive, downward looking Light Detection And Ranging (lidar) instrument and an ultraviolet (UV) imaging spectrometer, and will provide data to be ingested by volcanic ash advisory models. Furthermore, the lessons learned in the development

  17. FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Macedonio, G.

    2016-02-01

    Eruption source parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1-D (one-dimensional) cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in the presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an effective grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the effective particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland). The modular structure of the code facilitates the implementation in the future code versions of more quantitative ash aggregation parameterization as further observations and experiment data will be available for better constraining ash aggregation processes.

  18. FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation

    NASA Astrophysics Data System (ADS)

    Folch, Arnau; Costa, Antonio; Macedonio, Giovanni

    2016-04-01

    Eruption Source Parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1D cross-section averaged eruption column model based on the Buoyant Plume Theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an "effective" grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice-versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the "effective" particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland). The modular structure of the code facilitates the implementation in the future code versions of more quantitative ash aggregation parameterization as further observations and experiments data will be available for better constraining ash aggregation processes.

  19. Global Volcano Model

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  20. The Effects of Ice on the Frictional Electrification of Plumes

    NASA Astrophysics Data System (ADS)

    Méndez Harper, J.; Courtland, L. M.; Dufek, J.

    2015-12-01

    Studies of the Redoubt (2009), Eyjafjallajökull (2010), and the Cordón Caulle (2011) eruptions and associated electrical activity suggest that ice is a catalyst for the generation of plume lightning [Behnke et al., 2012; Arason et al., 2011; Nicora et al., 2013]. Indeed, the number lightning flashes in the umbrella and convective regions of the plume seems to correlate with lower, ice-forming temperatures. As in conventional thunderstorms, electric charge accumulation and separation in cold plumes may arise from the interplay between ice grains and graupel. However, charging may also be driven by triboelectrification (frictional charging), resulting from collisions between ice and ash grains. Decades of research have shown that fluidized granular materials comprising species of distinct composition often produce more efficient electrification than the interaction of chemically identical particles under similar hydrodynamic regime [e.g. Forward et al., 2009]. Thus, tribocharging in a combined ice and silicate granular flow is likely to yield grains with higher charges than those encountered in a flow composed solely of silicate grains, facilitating the generation of lightning [Méndez Harper and Dufek, 2015, submitted]. To indagate this hypothesis, we have developed a novel methodology to measure the time-dependent charging of individual micron-sized particles in both dry, silicate flows and silicate plus ice flows. Pure ash runs are conducted in a dry (<1 % humidity) environment with a temperature variation of -40o to 25o C. Runs involving ice are performed between -40o and 2o C, permitting us to quantify charging in the mixture as water transmogrifies from solid ice to a more mush-like substance. Additionally, we report on how collisional energy and rates influence electrification in these granular materials. We show that, although the variations in ash composition (basalt to rhyolite) tend to be of little consequence for charging, the presence of a water phase

  1. Probabilistic detection of volcanic ash using a Bayesian approach

    PubMed Central

    Mackie, Shona; Watson, Matthew

    2014-01-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into “ash” and “ash free” classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes “ash” and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Key Points Presentation of a probabilistic volcanic ash detection scheme Method for calculation of probability density function for ash observations Demonstration of a remote sensing technique for monitoring volcanic ash hazards PMID:25844278

  2. Retrieval of volcanic ash and ice cloud physical properties together with gas concentration from IASI measurements using the AVL model

    NASA Astrophysics Data System (ADS)

    Kochenova, S.; De Mazière, M.; Kumps, N.; Vandenbussche, S.; Kerzenmacher, T.

    2013-05-01

    Observation and tracking of volcanic aerosols are important for preventing possible aviation hazards and determining the influence of aerosols on climate. The useful information primary includes the concentration, particle size and altitude of aerosol load. Moreover, volcanic eruptions are usually accompanied by strong emissions of SO2 and enhanced concentrations of H2O in the atmosphere. Volcanic ash particles can also catalyze the formation of ice clouds by serving as cloud nuclei. Hyperspectral infrared sounders, such as IASI (Infrared Atmospheric Sounding Interferometer), have proven to be powerful tools for capturing volcanic aerosol and ice cloud signatures and enhanced volcanic gas concentrations. Information on atmospheric constituents is extracted from such hyperspectral measurements with the help of radiative transfer (RT) codes capable of solving both direct and inverse RT problems. We will demonstrate the retrieval of aerosol and ice cloud physical properties together with gas concentration from IASI measurements with the help of the AVL RT model. AVL is one of the 'code combination packages' which are becoming more and more popular in the scientific domain. It consists of several codes, each of which handles a specific set of physics-related tasks. The codes function smoothly as a whole due to the use of a special interface. AVL is perfectly suitable (i) to model the propagation of UV-visible-IR radiation through a coupled atmosphere-surface system for a wide range of atmospheric, spectral and geometrical conditions; and (ii) to retrieve vertical gas profiles and aerosol concentration through the use of its embedded retrieval algorithm on the basis of an optimal estimation method (OEM). The retrievals are performed for IASI measurements (radiance, Level 1C product) carried out over Eyjafjallajökull volcano, Iceland, in April 2010.

  3. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    SciTech Connect

    Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E.B.; Singh, T.; Webley, P.

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  4. Advances in Monitoring, Modelling and Forecasting Volcanic Ash Plumes over the Past 5 Years and the Impact on Preparedness from the London VAAC Perspective

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Lisk, I.

    2015-12-01

    Hosted and run by the Met Office, the London VAAC (Volcanic Ash Advisory Centre) is responsible for issuing advisories on the location and likely dispersion of ash clouds originating from volcanoes in the North East Atlantic, primarily from Iceland. These advisories and additional guidance products are used by the civil aviation community to make decisions on airspace flight management. London VAAC has specialist forecasters who use a combination of volcano source data, satellite-based, ground-based and aircraft observations, weather forecast models and dispersion models. Since the eruption of the Icelandic volcano Eyjafjallajökull in 2010, which resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace, London VAAC has been active in further developing its volcanic ash monitoring, modelling and forecasting capabilities, collaborating with research organisations, industry, other VAACs, Meteorological Services and the Volcano Observatory in Iceland. It has been necessary to advance operational capabilities to address evolving requirements, including for more quantitative assessments of volcanic ash in the atmosphere. Here we summarise advances in monitoring, modelling and forecasting of volcanic ash plumes over the past 5 years from the London VAAC perspective, and the realization of science into operations. We also highlight the importance of collaborative activities, such as the 'VAAC Best Practice' Workshop, where information is exchanged between all nine VAACs worldwide on the operational practices in monitoring and forecasting volcanic ash, with the aim of working toward a more harmonized service for decision makers in the aviation community. We conclude on an evaluation of how better we are prepared for the next significant ash-rich Icelandic eruption, and the challenges still remaining.

  5. The Icelandic volcanic aeolian environment: Processes and impacts - A review

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur

    2016-03-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust production is on the order of 30-40 million tons annually, some traveling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.

  6. The Evolving Structure of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Bursik, M. I.

    2015-12-01

    Processes acting in nascent volcanic clouds within seconds to hours of eruption (e.g., ash aggregation, ice nucleation, gravity waves) set the stage for subsequent advection and diffusion of volcanic ash, hence strongly influence aviation hazards and atmospheric impacts, but are very difficult to observe. Young plumes initially spread by gravity in the crosswind direction due to density differences with the surrounding stratified atmosphere. Subsequently, plumes lose their density contrast with the atmosphere and are advected as lenses of aerosol and gas, slowly thinning, spreading and dispersing as shearing and small scale turbulence act at their margins, and as fine ash settles out. Since 2006, satellite observations from NASA's A-Train constellation, including the CALIOP lidar and CloudSat radar, have provided tantalizing glimpses of young volcanic clouds in the first few hours of atmospheric residence. These unique observations, although spatially limited, provide insight into the evolving structure of young volcanic clouds from an optically thick, vertically extensive initial state to thin layers confined to a limited altitude range. Layered volcanic clouds may develop due to the existence of alternating turbulent and stable layers in the free troposphere and stratosphere. Turbulent layers retain particles longer than do quiescent layers because the turbulence retains particles in suspension. Particles fall more rapidly through the quiescent layers by single particle settling, or more rapidly because of convective sedimentation. The result is a distinct, banded ash cloud structure. We present A-Train satellite observations of volcanic clouds at various stages of evolution from several recent eruptions (including Kelut, Redoubt, Chaitén, Eyjafjallajökull, Okmok and Kasatochi) and also show the results of preliminary model simulations of the development of volcanic cloud layering.

  7. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  8. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water

    NASA Astrophysics Data System (ADS)

    Bau, Michael; Tepe, Nathalie; Mohwinkel, Dennis

    2013-02-01

    The rare earth elements (REE) are a group of trace elements that have short marine residence times and that in river, lake and marine surface waters are typically associated with organic and inorganic particles. Explosive volcanic eruptions, such as the 2010 eruptions of Eyjafjallajökull volcano in Iceland, produce volcanic ash particles which can be an important source of iron and other nutrients for aquatic organisms. To become bioavailable, however, this iron needs to be solubilized by complexing agents, such as siderophores. A well-studied example of such a chelator is the biogenic siderophore desferrioxamin-B (DFOB). Based on results from incubation experiments with glacial meltwater-rich river waters from southern Iceland, which are rich in suspended volcanic ash and that had been incubated with and without DFOB, respectively, we here show that siderophores not only enhance the release of iron, but also promote the mobilization of REE from these particles. In the presence of DFOB, partial dissolution of volcanic ash (and presumably other lithic particles) produces a flux of dissolved REE into ambient waters, that is characterized by depletion of the light REE over the middle REE and by selective enrichment of cerium, due to the formation of dissolved Ce(IV)-DFOB complexes. In siderophore-rich environments, this siderophore-bound REE flux has the potential to modify the concentrations and distribution of the dissolved REE and of the isotopic composition of dissolved Nd in glacial meltwaters, river waters and seawater and might be a component of the boundary effects between shelf sediments and seawater, which are assumed to account for the “missing Nd flux” to seawater. Thermodynamic data further suggest that siderophore-promoted element mobilization could also be important for other polyvalent (trace) elements, such as Hf.

  9. Science verification of operational aerosol and cloud products for TROPOMI on Sentinel-5 precursor

    NASA Astrophysics Data System (ADS)

    Lelli, Luca; Gimeno-Garcia, Sebastian; Sanders, Abram; Sneep, Maarten; Rozanov, Vladimir V.; Kokhanvosky, Alexander A.; Loyola, Diego; Burrows, John P.

    2016-04-01

    With the approaching launch of the Sentinel-5 precursor (S-5P) satellite, scheduled by mid 2016, one preparatory task of the L2 working group (composed by the Institute of Environmental Physics IUP Bremen, the Royal Netherlands Meteorological Institute KNMI De Bilt, and the German Aerospace Center DLR Oberpfaffenhofen) has been the assessment of biases among aerosol and cloud products, that are going to be inferred by the respective algorithms from measurements of the platform's payload TROPOspheric Monitoring Instrument (TROPOMI). The instrument will measure terrestrial radiance with varying moderate spectral resolutions from the ultraviolet throughout the shortwave infrared. Specifically, all the operational and verification algorithms involved in this comparison exploit the sensitivity of molecular oxygen absorption (the A-band, 755-775 nm, with a resolution of 0.54 nm) to changes in optical and geometrical parameters of tropospheric scattering layers. Therefore, aerosol layer height (ALH) and thickness (AOT), cloud top height (CTH), thickness (COT) and albedo (CA) are the targeted properties. First, the verification of these properties has been accomplished upon synchronisation of the respective forward radiative transfer models for a variety of atmospheric scenarios. Then, biases against independent techniques have been evaluated with real measurements of selected GOME-2 orbits. Global seasonal bias assessment has been carried out for CTH, CA and COT, whereas the verification of ALH and AOT is based on the analysis of the ash plume emitted by the icelandic volcanic eruption Eyjafjallajökull in May 2010 and selected dust scenes off the Saharan west coast sensed by SCIAMACHY in year 2009.

  10. Particle sedimentation and diffusive convection in volcanic ash-clouds

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, A. M.

    2013-04-01

    Understanding the longevity of volcanic ash-clouds generated by powerful explosive eruptions is a long standing problem for assessing volcanic hazards and the nature and time scale of volcanic forcings on climate change. It is well known that the lateral spreading and longevity of these clouds is influenced by stratospheric winds, particle settling and turbulent diffusion. Observations of the recent 2010 Eyjafjallajökull and 2011 Grimsvötn umbrella clouds, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process governing the cloud dynamics is the production of internal layering. Here, we use analog experiments on turbulent particle-laden umbrella clouds to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability. Where umbrella clouds are particularly enriched in fine ash, this "particle diffusive convection" strongly influences the cloud longevity. More generally, cloud residence time will depend on fluxes due to both individual settling and diffusive convection. We develop a new sedimentation model that includes both sedimentation processes, and which is found to capture real-time measurements of the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. A key result is that these combined sedimentation processes enhance the fallout of fine particles relative to expectations from individual settling suggesting that particle aggregation is not the only mechanism required to explain volcanic umbrella longevity.

  11. Impact of volcanic ash plume aerosol on cloud microphysics

    NASA Astrophysics Data System (ADS)

    Martucci, G.; Ovadnevaite, J.; Ceburnis, D.; Berresheim, H.; Varghese, S.; Martin, D.; Flanagan, R.; O'Dowd, C. D.

    2012-03-01

    This study focuses on the dispersion of the Eyjafjallajökull volcanic ash plume over the west of Ireland, at the Mace Head Supersite, and its influence on cloud formation and microphysics during one significant event spanning May 16th and May 17th, 2010. Ground-based remote sensing of cloud microphysics was performed using a K a-band Doppler cloud RADAR, a LIDAR-ceilometer and a multi-channel microwave-radiometer combined with the synergistic analysis scheme SYRSOC ( Synergistic Remote Sensing Of Cloud). For this case study of volcanic aerosol interaction with clouds, cloud droplet number concentration (CDNC), liquid water content (LWC), and droplet effective radius ( reff) and the relative dispersion were retrieved. A unique cloud type formed over Mace Head characterized by layer-averaged maximum, mean and standard deviation values of the CDNC, reff and LWC: Nmax = 948 cm -3, N¯=297cm, σ=250cm, reff max = 35.5 μm, r¯=4.8μm, σ=4.4μm, LWC=0.23gm, LWC¯=0.055gm, σ=0.054gm, respectively. The high CDNC, for marine clean air, were associated with large accumulation mode diameter (395 nm) and a hygroscopic growth factor consistent with sulphuric acid aerosol, despite being almost exclusively internally mixed in submicron sizes. Additionally, the Condensation Nuclei (CN, d > 10 nm) to Cloud Condensation Nuclei (CCN) ratio, CCN:CN ˜1 at the moderately low supersaturation of 0.25%. This case study illustrates the influence of volcanic aerosols on cloud formation and microphysics and shows that volcanic aerosol can be an efficient CCN.

  12. Near Real Time Detection and Tracking of the EYJAFJÖLL (iceland) Ash Cloud by the RST (robust Satellite Technique) Approach

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Filizzola, C.; Marchese, F.; Paciello, R.; Pergola, N.; Sannazzaro, F.

    2010-12-01

    Volcanic ash clouds, besides to be an environmental issue, represent a serious problem for air traffic and an important economic threat for aviation companies. During the recent volcanic crisis due to the April-May 2010 eruption of Eyjafjöll (Iceland), ash clouds became a real problem for common citizens as well: during the first days of the eruption thousands of flights were cancelled disrupting hundred of thousands of passengers. Satellite remote sensing confirmed to be a crucial tool for monitoring this kind of events, spreading for thousands of kilometres with a very rapid space-time dynamics. Especially weather satellites, thanks to their high temporal resolution, may furnish a fundamental contribution, providing frequently updated information. However, in this particular case ash cloud was accompanied by a sudden and significant emission of water vapour, due to the ice melting of Eyjafjallajökull glacier, making satellite ash detection and discrimination very hard, especially in the first few days of the eruption, exactly when accurate information were mostly required in order to support emergency management. Among the satellite-based techniques for near real-time detection and tracking of ash clouds, the RST (Robust Satellite Technique) approach, formerly named RAT - Robust AVHRR Technique, has been long since proposed, demonstrating high performances both in terms of reliability and sensitivity. In this paper, results achieved by using RST-based detection schemes, applied during the Eyjafjöll eruption were presented. MSG-SEVIRI (Meteosat Second Generation - Spinning Enhanced and Visible Infrared Imager) records, with a temporal sampling of 15 minutes, were used applying a standard as well as an advanced RST configuration, which includes the use of SO2 absorption band together with TIR and MIR channels. Main outcomes, limits and possible future improvements were also discussed.

  13. How temperature-dependent elasticity alters host rock/magmatic reservoir models: A case study on the effects of ice-cap unloading on shallow volcanic systems

    NASA Astrophysics Data System (ADS)

    Bakker, Richard R.; Frehner, Marcel; Lupi, Matteo

    2016-12-01

    In geodynamic numerical models of volcanic systems, the volcanic basement hosting the magmatic reservoir is often assumed to exhibit constant elastic parameters with a sharp transition from the host rocks to the magmatic reservoir. We assess this assumption by deriving an empirical relation between elastic parameters and temperature for Icelandic basalts by conducting a set of triaxial compression experiments between 200 °C and 1000 °C. Results show a significant decrease of Young's modulus from ∼38 GPa to less than 4.7 GPa at around 1000 °C. Based on these laboratory data, we develop a 2D axisymmetric finite-element model including temperature-dependent elastic properties of the volcanic basement. As a case study, we use the Snæfellsjökull volcanic system, Western Iceland to evaluate pressure differences in the volcanic edifice and basement due to glacial unloading of the volcano. First, we calculate the temperature field throughout the model and assign elastic properties accordingly. Then we assess unloading-driven pressure differences in the magma chamber at various depths in models with and without temperature-dependent elastic parameters. With constant elastic parameters and a sharp transition between basement and magma chamber we obtain results comparable to other studies. However, pressure changes due to surface unloading become smaller when using more realistic temperature-dependent elastic properties. We ascribe this subdued effect to a transition zone around the magma chamber, which is still solid rock but with relatively low Young's modulus due to high temperatures. We discuss our findings in the light of volcanic processes in proximity to the magma chamber, such as roof collapse, dyke injection, or deep hydrothermal circulation. Our results aim at quantifying the effects of glacial unloading on magma chamber dynamics and volcanic activity.

  14. Mapping of magnetic chrons: paleomagnetic polarity map of East Iceland, 0-13 Myr

    NASA Astrophysics Data System (ADS)

    Helgason, Johann

    2016-04-01

    Through data on palaeomagnetism, stratigraphy and radiometric age dating an immense database on magnetic chrons has been established for the lava succession in Iceland (e.g. Kristjánsson, 2008). Correlation of magnetic chrons with the geomagnetic time scale provides a reasonable age estimate for vast stratigraphic sequences. The basalt lava succession in Iceland has a thickness of tens of kilometers. The magnetostratigraphic data offer, through the help of paleomagnetism and radiometric dating, a detailed timing of events in the evolution of the Iceland mantle plume region. Yet a magnetic polarity map for Iceland has been lacking but during the last 50 years, comprehensive stratigraphic mapping has paved the way for a magnetic polarity map in various parts of Iceland. Here, such a map is presented for a segment of East Iceland, i.e. for lavas ranging in age from 0 to 13 M yr. The map is a compilation based on various studies into the cliff section and stratigraphic work performed by numerous research initiatives, both in relation to hydroelectric research as well as academic projects. References: Kristjánsson, L., 2008. Paleomagnetic research on Icelandic lava flows. Jökull, 58, 101-116. Helgason, J., Duncan, R.A., Franzson, H., Guðmundsson, Á., and M. Riishuus., 2015. Magnetic polarity map of Akrafjall and Skarðsheiði and new 40Ar-39Ar age dating from West Iceland., Presentation at the spring conference of the Icelandic Geological Society, held on March 13th 2015 at the University of Iceland.

  15. Coupled pulsing of lava fountains: Video monitoring reveals systematic height and velocity variations of adjacent vents

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2014-05-01

    Lava fountains are a common eruption form at basaltic volcanoes. Many of the lava fountains occur at fissure eruptions, associated with the alignment of active vents. We observed that the lava fountain pulses may occur in chorus at several adjacent vents, implying that activity at these vents is coupled. The mechanisms behind such a coupling of adjacent lava fountains and the underlying connection between the different craters are not fully understood, however. Here we employ video images to measure the height, width and velocity of the ejecta leaving the vent. With a Sobel edge-detection algorithm, our aim is to measure the height of the different fountains occurring along fissure eruptions. Video data acquired from Puu'oo (Hawaii) and from Eyjafjallajökull (Iceland) are showing major similarities in fountaining behavior. Based on the fountain activity times series we estimate the sign and degree of correlation of the different vents. We find that the height and velocity of adjacent lava fountains are often in chorus. The velocity is calculated by a correlation in the Fourier space of contiguous images. We observed that episodically and sporadically the correlation regime can change. Despite these changes, both the frequency of the lava pulses and the eruption and rest time between the pulses remain similar for adjacent lava fountains, implying, a controlling process in the magma feeder system itself. We interpret the initial vertical velocity at the vent to be proportional to the extent of bubbles, and layers of bubbles rising. Lateral migration of fountains and their dynamics, in turn, is associated to lateral magma and gas flow or inclined layers of bubbles developing along the fissure at depth. Systematic recording and analysis of video data from different volcanoes hence result in a better understanding of the mechanisms of parallel and non-parallel lava fountain pulses.

  16. Lightning climatology of exoplanets and brown dwarfs guided by Solar system data

    NASA Astrophysics Data System (ADS)

    Hodosán, G.; Helling, Ch.; Asensio-Torres, R.; Vorgul, I.; Rimmer, P. B.

    2016-10-01

    Clouds form on extrasolar planets and brown dwarfs where lightning could occur. Lightning is a tracer of atmospheric convection, cloud formation and ionization processes as known from the Solar system, and may be significant for the formation of prebiotic molecules. We study lightning climatology for the different atmospheric environments of Earth, Venus, Jupiter and Saturn. We present lightning distribution maps for Earth, Jupiter and Saturn, and flash densities for these planets and Venus, based on optical and/or radio measurements from the World Wide Lightning Location Network and Sferics Timing and Ranging Network radio networks, the Lightning Imaging Sensor/Optical Transient Detector satellite instruments, the Galileo, Cassini, New Horizons and Venus Express spacecraft. We also present flash densities calculated for several phases of two volcano eruptions, Eyjafjallajökull's (2010) and Mt Redoubt's (2009). We estimate lightning rates for sample, transiting and directly imaged extrasolar planets and brown dwarfs. Based on the large variety of exoplanets, six categories are suggested for which we use the lightning occurrence information from the Solar system. We examine lightning energy distributions for Earth, Jupiter and Saturn. We discuss how strong stellar activity may support lightning activity. We provide a lower limit of the total number of flashes that might occur on transiting planets during their full transit as input for future studies. We find that volcanically very active planets might show the largest lightning flash densities. When applying flash densities of the large Saturnian storm from 2010/11, we find that the exoplanet HD 189733b would produce high lightning occurrence even during its short transit.

  17. Revealing the aerosol radiative impact of volcanic ash on synoptic time scales

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Rieger, Daniel; Gasch, Philipp; Förstner, Jochen; Vogel, Bernhard

    2016-04-01

    Including the interactions of aerosols with radiation in weather forecast models often leads to perturbations of the temperature field even at locations not directly influenced by the regarded aerosols. They arise out of signals propagating with the speed of sound leading to abrupt changes in cloud cover. The temperature perturbations due to these changes hamper the quantification of the aerosol radiative impact as they can appear in the same order of magnitude. In order to reveal the aerosol radiative impact on synoptic time scales we introduce a new method to separate the aerosol induced temperature effect from atmospheric perturbations. We simulated the impact of volcanic ash aerosol on radiation with the new global to regional scale modelling system ICON-ART (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases; Rieger et al., 2015). Within ICON-ART the radiative fluxes and cooling rates are calculated with the RRTM (Rapid Radiative Transfer Model; Mlawer et al., 1997) for 30 longwave and shortwave bands. To determine the optical properties of the prognostic ash aerosol, Mie calculations were conducted for a compilation of ash refractive indices. We obtain a significant change in 2 m temperature of up to several Kelvin for the Puyehue-Cordon Caulle eruption in 2011. In addition to the temperature effect the atmospheric stability is modified and as a consequence the ash concentrations. The temperature effect during the Eyjafjallajökull eruption in 2010 over Europe is much less pronounced. Nevertheless, we are able to show the impact of volcanic ash on the state of the atmosphere by this eruption.

  18. ICON-ART 1.0 - a new online-coupled model system from the global to regional scale

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Bangert, M.; Bischoff-Gauss, I.; Förstner, J.; Lundgren, K.; Reinert, D.; Schröter, J.; Vogel, H.; Zängl, G.; Ruhnke, R.; Vogel, B.

    2015-06-01

    We present the first stage of a new online-coupled global to regional-scale modeling framework for the simulation of the spatiotemporal evolution of aerosols and trace gases. The underlying meteorological model is the new nonhydrostatic model system ICON (ICOsahedral Nonhydrostatic) which allows a local grid refinement with two-way interactions between the grids. We develop the extension ART (Aerosol and Reactive Trace gases) with the goal of simulating interactions between trace substances and the state of the atmosphere. Within this paper, we present the basic equations and give an overview of the physical parameterizations as well as numerical methods we use. First applications of the new model system for trace gases, monodisperse particles and polydisperse particles are shown. The simulated distribution of two very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2) reflecting the fast upward transport shows a good agreement with observations and previous model studies. Also, the shape of the simulated tropical profiles is well reproduced. As an example for the treatment of monodisperse particles we present the simulated ash plume of the Eyjafjallajökull eruption in April 2010. Here, a novel approach for the source function is applied. The pattern of the simulated distribution of volcanic ash particles shows a good agreement with previous studies. As an example for the treatment of a polydisperse aerosol, where number densities and mass concentrations are accounted for, we simulated the annual emissions of sea salt. We obtain a total emission flux of 26.0 Pg yr-1 and an emission flux of particles with diameter less than 10 μm of 7.36 Pg yr-1.

  19. ICON-ART 1.0 - a new online-coupled model system from the global to regional scale

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Bangert, M.; Bischoff-Gauss, I.; Förstner, J.; Lundgren, K.; Reinert, D.; Schröter, J.; Vogel, H.; Zängl, G.; Ruhnke, R.; Vogel, B.

    2015-01-01

    We present the first stage of a new online-coupled global to regional scale modelling framework for the simulation of the spatiotemporal evolution of aerosols and trace gases. The underlying meteorological model is the new nonhydrostatic model system ICON (ICOsahedral Nonhydrostatic) which allows a local grid refinement with two-way interactions between the grids. We develop the extension ART (Aerosol and Reactive Trace gases) with the goal to simulate interactions between trace substances and the state of the atmosphere. Within this paper, we present the basic equations and give an overview of the physical parameterizations as well as numerical methods we use. First applications of the new model system for trace gases, monodisperse particles and polydisperse particles are shown. The simulated distribution of two very short-lived substances, Bromoform (CHBr3) and Dibrommethane (CH2Br2) reflecting the fast upward transport shows a good agreement with observations and previous model studies. Also, the shape of the simulated tropical profiles is well reproduced. As an example for the treatment of monodisperse particles we present the simulated ash plume of the Eyjafjallajökull eruption in April 2010. Here, a novel approach for the source function is applied. The pattern of the simulated distribution of volcanic ash particles shows an agreement with previous studies. As an example for the treatment of a polydisperse aerosol, where number densities and mass concentrations are accounted for, we simulated the annual emissions of sea salt. We obtain a total emission flux of 26.0 Pg yr-1 and an emission flux of particles with diameter less than 10 μm of 7.36 Pg yr-1.

  20. Detailed sedimentology and geomorphology elucidate mechanisms of formation of modern and historical sequences of minor moraines in the European Alps

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, Cianna; Lukas, Sven

    2016-04-01

    moraines here formed as push moraines in two groups separated by a former proglacial basin and are composed dominantly of pre-existing proglacial outwash gravel through efficient bulldozing of the glacier front (Lukas, 2012). These findings show a range of mechanisms responsible for moraine formation. Furthermore, basal freeze-on processes incorporating subglacial sediment (till) have not been recorded in high-mountain moraine formation, suggesting a commonality of seasonal climatic controls between the glacier dynamics of high-mountain glaciers and those in more lowland, maritime settings. References Andersen, J.L., and Sollid, J.L., 1971, Glacial Chronology and Glacial Geomorphology in the Marginal Zones of the Glaciers, Midtdalsbreen and Nigardsbreen, South Norway: Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, v. 25, no. 1, p. 1-38, doi: 10.1080/00291957108551908. Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Evans, D.J.A., and Benn, D.I., 2004, A Practical Guide to the Study of Glacial Sediments: Hodder Education, London, United Kingdom. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Kjær, K.H., and Krüger, J., 2001, The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland: Sedimentology, v. 48, p. 935-952. Krüger, J., 1995, Origin, chronology and climatological significance of annual-moraine ridges at Myrdalsjökull, Iceland: The Holocene, v. 5, no. 4, p. 420-427. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v

  1. Forecast communication through the newspaper Part 1: Framing the forecaster

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.

    2015-04-01

    This review is split into two parts both of which address issues of forecast communication of an environmental disaster through the newspaper during a period of crisis. The first part explores the process by which information passes from the scientist or forecaster, through the media filter, to the public. As part of this filter preference, omission, selection of data, source, quote and story, as well as placement of the same information within an individual piece or within the newspaper itself, can serve to distort the message. The result is the introduction of bias and slant—that is, the message becomes distorted so as to favor one side of the argument against another as it passes through the filter. Bias can be used to support spin or agenda setting, so that a particular emphasis becomes placed on the story which exerts an influence on the reader's judgment. The net result of the filter components is either a negative (contrary) or positive (supportive) frame. Tabloidization of the news has also resulted in the use of strong, evocative, exaggerated words, headlines and images to support a frame. I illustrate these various elements of the media filter using coverage of the air space closure due to the April 2010 eruption of Eyjafjallajökull (Iceland). Using the British press coverage of this event it is not difficult to find examples of all media filter elements, application of which resulted in bias against the forecast and forecaster. These actors then became named and blamed. Within this logic, it becomes only too easy for forecasters and scientists to be framed in a negative way through blame culture. The result is that forecast is framed in such a way so as to cause the forecaster to be blamed for all losses associated with the loss-causing event. Within the social amplification of risk framework (SARF), this can amplify a negative impression of the risk, the event and the response. However, actions can be taken to avoid such an outcome. These actions

  2. Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.

    2015-12-01

    The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates

  3. The 2011 Grímsvötn Eruption From High Rate Geodesy

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, S.; Grapenthin, R.; Sigmundsson, F.; Roberts, M. J.; Holmjarn, J.; Geirsson, H.; Arnadottir, T.; Bennett, R. A.; Villemin, T.; Ofeigsson, B. G.; Sturkell, E. C.

    2011-12-01

    High rate geodetic measurements at volcanoes can give displacements at sub second intervals, revealing surface deformation associated with magma movements. The Grímsvötn volcano lies beneath the Vatnajökull icecap, Iceland, limiting the near field monitoring efforts to a single nunatak, Mt. Grímsfjall, on the southern caldera rim. A 5 Hz GPS station and an electronic tilt meter are located at Grímsfjall. The colocation of these instruments (GPS and tilt station) allows us to relate the observed surface deformation to pressure change in a magma chamber assuming a simple Mogi source within an elastic half space. During the 21-28 May 2011 Grímsvötn eruption a continuous stream of data, despite the eruption plume and lightning, was transmitted to Reykjavík. The tiltmeter measures N-S and E-W components of tilt, the N-S component was recorded at 100 samples per second (sps) but the E-W component at 4 sps. The high rate data from the GPS station at Grímsfjall (GFUM) were analyzed using the Track part of GAMIT/GLOBK. We produced kinematic solutions at 5 Hz and 1 Hz intervals using reference stations in 40-120 km distance of the volcano. To minimize multipath effects we applied sidereal filtering and stacked the individual solutions to further improve the signal to noise ratio. The resulting deformation time series suggests a rapid pressure drop starting about 50 minutes prior to the onset of the eruption when over 20 km high plume formed. The characteristics of the GPS and tilt data time series suggests that the main signal was induced by a single source of fixed location and geometry throughout the eruption; a shallow magma chamber. Small deviations in displacement direction prior to the onset of the eruption can be explained by the opening of the feeder dike. We see a total displacement of 57 cm in direction ˜N38.5°W and down at the GPS station, suggesting a source depth of ~1.7 km. About 20% of the displacement preceded the eruption and more than 95% took

  4. Lidar data assimilation for improved analyses of volcanic aerosol events

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    data in a variational data assimilation algorithm. The implemented method is tested by the assimilation of CALIPSO attenuated backscatter data that were taken during the eruption of the Eyjafjallajökull volcano in April 2010. It turned out that the implemented module is fully capable to integrate unexpected aerosol events in an automatic way into reasonable analyses. The estimations of the aerosol mass concentrations showed promising properties for the application of observations that are taken by lidar systems with both, higher and lower sophistication than CALIOP.

  5. A Description of Sub-Equatorial Volcanic Structures Consistent with Sub-Ice Magmatism East of Nepenthes Mensae, Mars.

    NASA Astrophysics Data System (ADS)

    Caprarelli, G.; de Pablo Hernandez, M. A.

    2014-12-01

    41, 1584. [4] Jakobsson and Gudmundsson (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58, 179-196.

  6. Effects of ice-cap unloading on shallow magmatic reservoirs

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Frehner, Marcel; Lupi, Matteo

    2015-04-01

    One of the effects of global warming is the increase of volcanic activity. Glacial melting has been shown to cause visco-elastic relaxation of the upper mantle, which in turn promotes upwelling of magmas through the crust. To date, the effects of ice-cap melting on shallow (i.e., less than 10 km depth) plumbing systems of volcanoes are still not clear. We investigate the pressure changes due to glacial unloading around a magmatic reservoir by combining laboratory and numerical methods. As a case study we focus on Snæfellsjökull, a volcano in Western Iceland whose ice cap is currently melting 1.25 meters (thickness) per year. Our approach is as follows: we obtain representative rock samples from the field, preform tri-axial deformation tests at relevant pressure and temperature (PT) conditions and feed the results into a numerical model in which the stress fields before and after ice cap removal are compared. A suite of deformation experiments were conducted using a Paterson-type tri-axial deformation apparatus. All experiments were performed at a constant strain rate of 10-5 s-1, while varying the PT conditions. We applied confining pressures between 50 and 150 MPa and temperatures between 200 and 1000 ° C. Between 200 and 800 ° C we observe a localized deformation and a slight decrease of the Young's modulus from 41 to 38 GPa. Experiments at 900 and 1000 ° C exhibit macroscopically ductile behavior and a marked reduction of the Young's modulus down to 4 GPa at 1000 ° C. These results are used to construct a numerical finite-element model in which we approximate the volcanic edifice and basement by a 2D axisymmetric half-space. We first calculate the steady-state temperature field in the volcanic system and assign the laboratory-derived temperature-dependent Young's modulus to every element of the model. Then the pressure in the edifice is calculated for two scenarios: with and without ice cap. The comparison between the two scenarios allows us estimate the

  7. When Is a Diffusion Profile Not a Diffusion Profile? the Importance of Initial State Assumptions in Diffusion Modelling

    NASA Astrophysics Data System (ADS)

    Morgan, D. J.; Chamberlain, K. J.; Kahl, M.; Potts, N. J.; Pankhurst, M. J.; Wilson, C. J. N.

    2014-12-01

    Over the past 20 years, diffusion chronometers have evolved from a niche tool into one of routine application, with more practitioners, new tools and increasingly large datasets. As we expand the horizons of diffusional geochronometry, it is worth taking stock of developments in methodologies and data acquisition, and taking time to revisit the underpinnings of the technique. Data collected as part of recent projects on Campi Flegrei, the Bishop Tuff and Fimmvörðuháls-Eyjafjallajökull are here used to investigate the initial state assumption, an absolutely vital aspect underpinning most diffusional work and one that is rarely evaluated despite its fundamental importance. To illustrate the nature of the problem we consider two widely-used element-mineral systems for felsic and mafic systems, respectively. First, barium and strontium profiles within sanidine crystals, modelled independently, can give strongly contrasting timescales from the same crystal zone. We can reconcile the datasets only for a situation where the initial boundary within the crystal was not a sharp step function, but relatively fuzzy before diffusion onset. This fuzziness effectively starts both chronometers off with an apparent, and false, pre-existing timescale, impacting the slower-diffusing barium much more strongly than the faster-diffusing strontium, yielding thousands of years of non-existent diffusion history. By combining both elements, a starting width of tens of microns can be shown, shortening the true diffusive timescales from tens of thousands of years to hundreds. Second, in olivine, we encounter different growth-related problems. Here, Fe-Mg interdiffusion occurs at a rate comparable to growth, with the compound nature of zonation making it difficult to extract the diffusion component. This requires a treatment of changing boundary conditions and sequential growth to generate the curvature seen in natural data, in order to recover timescales for anything but the outermost

  8. Tephra fallout hazards at Quito International Airport (Ecuador)

    NASA Astrophysics Data System (ADS)

    Volentik, Alain C. M.; Houghton, Bruce F.

    2015-06-01

    Tephra fallout is the most widespread hazard posed by explosive volcanic eruptions. The 2010 explosive eruption of Eyjafjallajökull in Iceland significantly exposed the vulnerability of aviation operations to volcanic ash. The presence of fine ash in the atmosphere forced authorities to close most of European airspace for almost a week. A worldwide study of airport operations disrupted by volcanic eruptions (Guffanti et al., Nat Hazards 51:287-302, 2009) showed significant past exposure to tephra fall of the old international airport (OUIO) in Quito, Ecuador. A new international airport, Mariscal Sucre International Airport (UIO), located 15 km due east to OUIO, started operations on February 20, 2013. Given its location close to the old airport, UIO is also at risk for tephra fallout in the future. We identified five volcanoes capable of producing tephra hazard at UIO. Three (Guagua Pichincha, Reventador, and Tungurahua) are currently active and have recently disrupted aviation operations in Ecuador. The other two (Cotopaxi and Pululagua) are not currently active, but any future eruption from these two volcanoes would probably be explosive, hence capable of producing tephra hazard to UIO. As eruption parameters and wind profiles cannot be forecast in advance, we used a probabilistic approach to quantify the probability of tephra accumulation exceeding 1 mm and 1 cm (regarded as non-conservative and conservative bounds for airport disruption) following an explosive eruption from each volcano. Each eruptive parameter was randomly sampled within a predefined distribution, and wind profiles are randomly sampled within a 5-year dataset. The probability of tephra accumulation reaching 1 mm and 1 cm at UIO is 14.3-19.9 and 2.5-5.8 %, respectively, for Cotopaxi; 17.5-19.9 and 7-7.7 %, respectively, for Guagua Pichincha; and 44.3-44.8 and 18.8-24.9 %, respectively, for Pululagua. According to our results, Reventador and Tungurahua are not likely to yield tephra

  9. The eruption in Holuhraun, NE Iceland 2014-2015: Real-time monitoring and influence of landscape on lava flow

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Ingibjörg; Höskuldsson, Ármann; Thordarson, Thor; Bartolini, Stefania; Becerril, Laura; Marti Molist, Joan; Þorvaldsson, Skúli; Björnsson, Daði; Höskuldsson, Friðrik

    2016-04-01

    within the EU VETOOLS project, aiming to improve response to future events. Monitoring the site was carried out throughout 2015, including the cooling of the lava in relation to thickness and inflation history. This also included mapping of hydrology in the Dyngjujökull outwash plane, development of ponds where the lava blocked previous river channels.

  10. Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations

    NASA Astrophysics Data System (ADS)

    Zerefos, Christos S.; Eleftheratos, Kostas; Kapsomenakis, John; Solomos, Stavros; Inness, Antje; Balis, Dimitris; Redondas, Alberto; Eskes, Henk; Allaart, Marc; Amiridis, Vassilis; Dahlback, Arne; De Bock, Veerle; Diémoz, Henri; Engelmann, Ronny; Eriksen, Paul; Fioletov, Vitali; Gröbner, Julian; Heikkilä, Anu; Petropavlovskikh, Irina; Jarosławski, Janusz; Josefsson, Weine; Karppinen, Tomi; Köhler, Ulf; Meleti, Charoula; Repapis, Christos; Rimmer, John; Savinykh, Vladimir; Shirotov, Vadim; Siani, Anna Maria; Smedley, Andrew R. D.; Stanek, Martin; Stübi, René

    2017-01-01

    This study examines the adequacy of the existing Brewer network to supplement other networks from the ground and space to detect SO2 plumes of volcanic origin. It was found that large volcanic eruptions of the last decade in the Northern Hemisphere have a positive columnar SO2 signal seen by the Brewer instruments located under the plume. It is shown that a few days after the eruption the Brewer instrument is capable of detecting significant columnar SO2 increases, exceeding on average 2 DU relative to an unperturbed pre-volcanic 10-day baseline, with a mean close to 0 and σ = 0.46, as calculated from the 32 Brewer stations under study. Intercomparisons with independent measurements from the ground and space as well as theoretical calculations corroborate the capability of the Brewer network to detect volcanic plumes. For instance, the comparison with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment-2) SO2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses in the case of the Kasatochi eruption. Unfortunately, due to sparsity of satellite data, the significant positive departures seen in the Brewer and other ground networks following the Eyjafjallajökull, Bárðarbunga and Nabro eruptions could not be statistically confirmed by the data from satellite overpasses. A model exercise from the MACC (Monitoring Atmospheric Composition and Climate) project shows that the large increases in SO2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local pollution sources or ship emissions but were clearly linked to the volcanic eruption. Sulfur dioxide positive departures in Europe following Bárðarbunga could be traced by other networks from the free troposphere down to the surface (AirBase (European air quality database) and EARLINET (European Aerosol Research Lidar Network)). We propose that by combining Brewer data with that

  11. Models for regionalizing economic data and their applications within the scope of forensic disaster analyses

    NASA Astrophysics Data System (ADS)

    Schmidt, Hanns-Maximilian; Wiens, rer. pol. Marcus, , Dr.; Schultmann, rer. pol. Frank, Prof. _., Dr.

    2015-04-01

    The impact of natural hazards on the economic system can be observed in many different regions all over the world. Once the local economic structure is hit by an event direct costs instantly occur. However, the disturbance on a local level (e.g. parts of city or industries along a river bank) might also cause monetary damages in other, indirectly affected sectors. If the impact of an event is strong, these damages are likely to cascade and spread even on an international scale (e.g. the eruption of Eyjafjallajökull and its impact on the automotive sector in Europe). In order to determine these special impacts, one has to gain insights into the directly hit economic structure before being able to calculate these side effects. Especially, regarding the development of a model used for near real-time forensic disaster analyses any simulation needs to be based on data that is rapidly available or easily to be computed. Therefore, we investigated commonly used or recently discussed methodologies for regionalizing economic data. Surprisingly, even for German federal states there is no official input-output data available that can be used, although it might provide detailed figures concerning economic interrelations between different industry sectors. In the case of highly developed countries, such as Germany, we focus on models for regionalizing nationwide input-output table which is usually available at the national statistical offices. However, when it comes to developing countries (e.g. South-East Asia) the data quality and availability is usually much poorer. In this case, other sources need to be found for the proper assessment of regional economic performance. We developed an indicator-based model that can fill this gap because of its flexibility regarding the level of aggregation and the composability of different input parameters. Our poster presentation brings up a literature review and a summary on potential models that seem to be useful for this specific task

  12. A space-borne, multi-parameter, Virtual Volcano Observatory for the real-time, anywhere-anytime support to decision-making during eruptive crises

    NASA Astrophysics Data System (ADS)

    Ferrucci, F.; Tampellini, M.; Loughlin, S. C.; Tait, S.; Theys, N.; Valks, P.; Hirn, B.

    2013-12-01

    Tair, Erta Ale, Manda Hararo, Dalafilla, Nabro, Ol Doinyo Lengai, Nyiamulagira, Nyiragongo, Etna, Stromboli, Eyjafjallajökull, Grimsvötn, Soufriere Hills) showing radiant fluxes above ~0.5 GW and/or SO2 columns in excess of ~6 DU. Porting of automated thermal algorithms on MTSAT's JAMI (orbiting at 145°E) was developed on the eruptions of Merapi, Semeru Kliuchevskoi, Bezymianny and Shiveluch in 2006-2007, calibrated on the frequent activity of Batu Tara, and demonstrated on the 2012-2013 large eruption of Tolbachik.

  13. Towards an operational lidar network across the UK

    NASA Astrophysics Data System (ADS)

    Adam, Mariana; Horseman, Andrew; Turp, Myles; Buxmann, Joelle; Sugier, Jacqueline

    2015-04-01

    The Met Office has been operating a ceilometer network since 2012. This network consists of 11 Jenoptik Nimbus ceilometers (operating at 1064 nm) and 32 Vaisala ceilometers (25 CL31, operating at 910 nm and 7 CT25 operating at 905 nm). The data are available in near real time (NRT) (15 min for Jenoptik and 1 h for Vaisala). In 2014, six additional stations from Met Éireann (Ireland) were added to the network (5 CL31 and 1 CT25). Visualisation of attenuated backscatter and cloud base height are available from http://www.metoffice.gov.uk/public/lidarnet/lcbr-network.html. The main customers are the Met Office Hazard Centre which provides a quick response to customers requiring forecast information to manage a wide variety of environmental incidents and the London Volcanic Ash Advisory Centre (VAAC), also based at the Met Office, which monitor volcanic ash events. As a response to the strong impact of the Eyjafjallajökull eruption in 2010, the UK Civil Aviation Authority (CAA) financed a lidar - sunphotometer network for NRT monitoring of the volcanic ash. This new network will consist of nine fixed sites and one mobile unit, each equipped with a lidar and a sunphotometer. The sunphotometers were acquired from Cimel Electronique (CE318-NE DPS9). The lidars were acquired from Raymetrics. They operate at 355 nm and have receiving channels at 355 nm (parallel and perpendicular polarization) and 387 nm (N2 Raman). The first two lidar systems were deployed in November 2014 at Camborne (SW England) and the data are under evaluation. The network is planned to be operational in 2016. Initially, the NRT data will consist of quick look plots of the total range corrected signal and volume depolarization ratio from lidar and aerosol optical depth from sunphotometer (including 355nm, through interpolation). During EGU presentation, the following features will be emphasized: IT considerations for the operational network, data quality assurance (including error estimates) for the

  14. Inversion Technique for Estimating Emissions of Volcanic Ash from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Pelley, Rachel; Cooke, Michael; Manning, Alistair; Thomson, David; Witham, Claire; Hort, Matthew

    2014-05-01

    modelled plume both near to and far from the volcano. The system has been tested using data from the 2010 Eyjafajallajökull eruption and the 2011 Grímsvötn eruption. "This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright."

  15. Eruption Source Parameters for Recent Icelandic Eruptions and Their Implications for Duration and Termination of Events

    NASA Astrophysics Data System (ADS)

    Thordarson, T.

    2015-12-01

    Since 1947, Iceland has featured 26 volcanic eruptions (2.5 eruptions/year). These include events at the central volcanoes Hekla, Eyjafjallajökull, Grímsvötn and Askja and the fissure eruptions of Surtsey 1963-67 and Nornahraun 2014-15. Of these, 11 are effusive, 8 are mixed (explosive to effusive) and 6 are within-glacier events. Surtsey is the only emergent submarine event (1309 days; 1 km3). Duration of effusive eruptions spans 0.3 to 181 days, with volume, average and peak magma discharge ranging from 10-5-1.6 km3, 0.5-123 m3/s and 1-370 m3/s. Similarly, the mixed events have durations spanning 2.8 to 393 days with volume, average and peak magma discharge ranging from 0.03-0.87 km3, 14-617 m3/s and 50-35600 m3/s. Duration of within-glacier events spans 4.4 to 14 days with volume, average and peak magma discharge ranging from 0.05-0.27 km3, 9-440 m3/s and 400-14000 m3/s. The discharge profiles for these eruptions are highly variable. Mixed eruptions often feature intense discharge (1500 to 40000 m3/s) at the onset of eruption (lasting hours), but some start in a much more subdued manner (500-1000 m3/s). This initial phase is followed by low (3-20 m3/s) magma discharge lasting for weeks to months that normally terminates abruptly. The onset of effusive eruptions is typified by modest discharge (10's to 100's m3/s). They can be very abrupt (<1 day), or drawn out for weeks to months with discharge dropping steadily throughout. The within-glacier events are short-lived explosive events, although with highly varied intensity (see above), and appear to terminate rather abruptly. Plots of eruption duration against size or discharge exhibits no systematic correlation suggesting that none of the eruption source parameters exert principal control on eruption duration or termination. However, these parameters may play a role in conjunction with other factors such as the nature of the lithostratigraphic succession and the local stress field at the eruption site.

  16. Inter-rifting Deformation in an Extensional Rift Segment; the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Masterlark, T.; Sigmundsson, F.; Arnadottir, T.; Feigl, K. L.

    2006-12-01

    The Northern Volcanic Zone (NVZ) in Iceland is an extensional rift segment, forming a sub-aerial exposure of a part of the Mid-Atlantic ridge. The NVZ is bounded to the south by the Icelandic mantle plume, currently beneath the Vatnajökull ice cap, and to the north by the Tjörnes Fracture zone, a transform zone connecting the offset on- and offshore rift segments of the Mid-Atlantic ridge. Based on geologic and tectonic mapping, the NVZ has been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. The two fissure swarms with known activity in historic time are, based on geodetic and seismic data, interpreted to have associated shallow crustal magma chambers. These central volcanoes are furthermore the only with caldera collapses associated, reflecting on the maturity of the systems. A series of newly formed InSAR images of the NVZ, spanning the interval from 1993-2006, have been formed, revealing a complex interplay of several tectonic and magmatic processes. Deformation from two subsiding shallow sources appear at the sites of the known crustal magma chambers. Furthermore, subsidence is occurring at varying degrees within the associated relatively narrow fissure swarms (15-20 km). However, the horizontal plate spreading signal is not confined to the fissure systems, and appears to be distributed over a much wider zone (about 100 km). This wide zone of horizontal spreading has previously been measured with campaign GPS surveys. A broad area of uplift situated about 18 km to the north of one of the subsidence centres (Krafla) suggests a deep seated pressurization source near the crust mantle boundary. Movements on previously unrecognized faults are apparent in the data, correlating well with the location of earthquake epicentres from minor seismic activity. Finally, utilization of geothermal resources in the Krafla area affects the deformation fields created by magmatic and tectonic processes, further

  17. Did Iceland's icecaps disappear in the Warm Early Holocene?

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Miller, G. H.; Black, J.; Thordarson, T.

    2002-12-01

    We address the magnitude of Holocene climate change in the North Atlantic region, especially the warmth of the early Holocene, by reconstructing changes in Langjokull, one of the four largest icecaps on Iceland today. Outlet glaciers from Langjokull drained into Hvitarvatn, a large (12 x 3 km; 70 m deep) lake until AD 1945, and continue to dominate sedimentation in the lake at present. If the icecap disappeared in the early Holocene, sedimentation would have been slow and dominated by fluvially transported sediment. When glacial erosion occurs in the catchment, sedimentation rates increase and grain size decreases. When outlet glaciers calve directly into the lake, ice-rafted detritus (IRD) occurs. Because Iceland's climate, and therefore glacier mass balance, is highly sensitive to ocean/atmosphere changes in the North Atlantic, the status of Iceland's glaciers provides a sensitive monitor of North Atlantic climate change throughout the Holocene. Seismic reflection data divide the history of sedimentation into five well-defined episodes: The basin is floored by an acoustically chaotic seismic unit with an undulating upper contact (till). Ponded on the basal seismic unit is a seismic facies 10 to >30 m thick showing prograding reflection characteristics with common hard reflectors indicating deltaic deposition (deglaciation). Unit 3 is a 3-to-5-m-thick, acoustically transparent, suggesting lacustrine sedimentation without episodes of rapid sedimentation. The upper two seismic units are characterized by closely spaced strong horizontal seismic reflectors indicative of glacier-dominated sedimentation (Neoglaciation). To evaluate the long-term status of Langj”kull we cored on a bedrock high, where sedimentation is dominated by suspension settling. We sampled 13 m of sediment in two 5.4 m cores, reaching most of the way through seismic unit 3. Seismic Units 1 and 2 (upper10 m) are laminated, with the laminations increasing in definition and thickness towards the

  18. Development of the atmospheric volcanic monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Petersen, G. N.; Bjornsson, H.; Arason, P.; von Löwis, S.; Sigurøsson, G. S.; Karlsdóttir, S.

    2012-04-01

    The development of the atmospheric volcanic plume monitoring system has escalated since the eruption of Eyjafjallajökull in 2010. Radars provide a near-real time capability to observe volcanic eruptions both day and night. At high latitudes this is important, over the darkest periods of winter when radar and satellite images are the only means of measurements. Also weather conditions can be such at any time of the year that they obscure observations from survey flights and even from satellites. Prior to and during the 39 days eruption in 2010 only one operational radar was installed in Iceland, the fixed C-band radar at Keflavík International Airport. The main purpose of this radar is weather monitoring but it can simultaneously be used for volcanic plume monitoring within a radius of 480 km. The radar has been used for plume monitoring since 1991 when an eruption started in Hekla, only a few days after the installation of the radar. Since November 2010 a X-band dual polarization radar has been on loan from the Italian Civil Protection Agency to the Icelandic Meteorological Office (IMO) and during the eruption in Grímsvötn in 2011 the combined system, together with visual observations, gave a good picture of the eruption. Also, in cooperation with the UK National Centre for Atmospheric Science (NCAS) a Lidar has been operating in South-Iceland since May 2011. The Lidar was moved to Keflavík airport during the Grímsvötn eruption to monitor the atmosphere above the airport and assist in decision making regarding openings and closures of the airport. In 2012 a second fixed position C-band weather radar will be installed in East-Iceland. This means that the geophysically active region in both south and northeast of Iceland will be covered. In addition, the International Civil Aviation Organization (ICAO) has financed two X-band mobile radars to be installed and used in Iceland, solely for volcanic plume monitoring, with the first one becoming operational in

  19. Growth of volcanic ash aggregates in the presence of liquid water and ice: an experimental approach

    NASA Astrophysics Data System (ADS)

    Van Eaton, Alexa R.; Muirhead, James D.; Wilson, Colin J. N.; Cimarelli, Corrado

    2012-11-01

    Key processes influencing the aggregation of volcanic ash and hydrometeors are examined with an experimental method employing vibratory pan aggregation. Mechanisms of aggregation in the presence of hail and ice pellets, liquid water (≤30 wt%), and mixed water phases are investigated at temperatures of 18 and -20 °C. The experimentally generated aggregates, examined in hand sample, impregnated thin sections, SEM imagery, and X-ray microtomography, closely match natural examples from phreatomagmatic phases of the 27 ka Oruanui and 2010 Eyjafjallajökull eruptions. Laser diffraction particle size analysis of parent ash and aggregates is also used to calculate the first experimentally derived aggregation coefficients that account for changing liquid water contents and subzero temperatures. These indicate that dry conditions (<5-10 wt% liquid) promote strongly size selective collection of sub-63 μm particles into aggregates (given by aggregation coefficients >1). In contrast, liquid-saturated conditions (>15-20 wt% liquid) promote less size selective processes. Crystalline ice was also capable of preferentially selecting volcanic ash <31 μm under liquid-free conditions in a two-stage process of electrostatic attraction followed by ice sintering. However, this did not accumulate more than a monolayer of ash at the ice surface. These quantitative relationships may be used to predict the timescales and characteristics of aggregation, such as aggregate size spectra, densities, and constituent particle size characteristics, when the initial size distribution and water content of a volcanic cloud are known. The presence of an irregularly shaped, millimeter-scale vacuole at the center of natural aggregates was also replicated during interaction of ash and melting ice pellets, followed by sublimation. Fine-grained rims were formed by adding moist aggregates to a dry mixture of sub-31 μm ash, which adhered by electrostatic forces and sparse liquid bridges. From this, we

  20. The Icelandic volcanological data node and data service

    NASA Astrophysics Data System (ADS)

    Vogfjord, Kristin; Sigmundsson, Freysteinn; Futurevolc Team

    2013-04-01

    scientists and stakeholders, and enabling the generation of products and services useful for civil protection, societal infrastructure and international aviation. The 2010 Eyjafjallajökull eruption demonstrated that eruption and dispersion of volcanic ash in the atmosphere can have far-reaching detrimental effects on aviation. The aviation community is therefore an important stakeholder in volcano monitoring, but interaction between the two communities is not well established. Traditionally Met Offices provide services vital to aviation safety and therefore have strong ties to the aviation community, with internationally established protocols for interaction. The co-habitation of a Met Office with a VO establishes a firm connection between these communities and allows adaptation of already established protocols to facilitate access to information and development of services for aviation, as well as sources of support for the VO.

  1. Thermodynamics and fluid dynamics of effusive subglacial eruptions

    NASA Astrophysics Data System (ADS)

    Höskuldsson, A.; Sparks, R. S. J.

    We consider the thermodynamic and fluid dynamic processes that occur during subglacial effusive eruptions. Subglacial eruptions typically generate catastrophic floods (jökulhlaups) due to melting of ice by lava and generation of a large water cavity. We consider the heat transfer from basaltic and rhyolitic lava eruptions to the ice for typical ranges of magma discharge and geometry of subglacial lavas in Iceland. Our analysis shows that the heat flux out of cooling lava is large enough to sustain vigorous natural convection in the surrounding meltwater. In subglacial eruptions the temperature difference driving convection is in the range 10-100 °C. Average temperature of the meltwater must exceed 4 °C and is usually substantially greater. We calculate melting rates of the walls of the ice cavity in the range 1-40m/day, indicating that large subglacial lakes can form rapidly as observed in the 1918 eruption of Katla and the 1996 eruption of Gjálp fissure in Vatnajökull. The volume changes associated with subglacial eruptions can cause large pressure changes in the developing ice cavity. These pressure changes can be much larger than those associated with variation of bedrock and glacier surface topography. Previous models of water-cavity stability based on hydrostatic and equilibrium conditions may not be applicable to water cavities produced rapidly in volcanic eruptions. Energy released by cooling of basaltic lava at the temperature of 1200 °C results in a volume deficiency due to volume difference between ice and water, provided that heat exchange efficiency is greater than approximately 80%. A negative pressure change inhibits escape of water, allowing large cavities to build up. Rhyolitic eruptions and basaltic eruptions, with less than approximately 80% heat exchange efficiency, cause positive pressure changes promoting continual escape of meltwater. The pressure changes in the water cavity can cause surface deformation of the ice. Laboratory

  2. Development and validation of a 3D Lattice Boltzmann model for volcano aeroacoustics

    NASA Astrophysics Data System (ADS)

    Brogi, Federico; Bonadonna, Costanza; Ripepe, Maurizio; Chopard, Bastien; Malaspinas, Orestis; Latt, Jonas; Falcone, Jean-Luc

    2015-04-01

    for running more realistic simulations. 3D LB model simulations for turbulent jet aeroacoustics have been accurately validated. Both mean flow and acoustic results are in good agreement with theory and experimental data available in literature. Xu H., Sagaut P., (2013), Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods. J. Comput. Physic 245, 14-42. Lagrava D., Malaspinas O., Lätt J. (2012), Advances in multi-domain lattice Boltzmann grid refinement. J. Comput. Physics 231, 14, 4808-4822. Ripepe, M., C. Bonadonna, A. Folch, D. Delle Donne, G. Lacanna, E. Marchetti, and A. Höskuldsson (2013), Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption, Earth Planet. Sci. Lett., 366, 112-12.

  3. Silicic volcanism in Iceland: Composition and distribution within the active volcanic zones

    NASA Astrophysics Data System (ADS)

    Jónasson, Kristján

    2007-01-01

    Silicic volcanic rocks within the active volcanic zones of Iceland are mainly confined to central volcanoes. The volcanic zones of Iceland can be divided into rift zones and flank zones. Each of these zones contains several central volcanoes, most of which have produced minor amounts of silicic rocks. The silicic rocks occur as lavas and domes or as tephra layers, welded tuffs and ignimbrites, formed both in effusive and explosive eruptions. They tend to be glassy or very fine-grained, containing small amounts of phenocrysts. Plagioclase (andesine-oligoclase), anorthoclase or occasionally sanidine coexist with minerals such as augite, fayalite, pigeonite, orthopyroxene and magnetite. Quartz phenocrysts are exceedingly rare. Zoning of phenocrysts is limited and the pattern is variable. A set of 90 samples representing all active central volcanoes that have erupted silicic rocks was analysed for major- and trace-elements. The silicic rocks can be classified as dacites, trachytes, low-alkali rhyolites and alkalic rhyolites. Some of the trachytes and alkalic rhyolites are peralkaline (mostly comenditic). Trachytes and alkalic rhyolites are only found within the flank zones, while dacites and low-alkali rhyolites are mostly confined to the rift zones. The Icelandic rhyolites plot close to the thermal minimum in the "granite" system, while dacites and trachytes plot within the plagioclase field and towards the alkali feldspar temperature minimum. The silicic rocks are relatively Fe-rich and Ca-poor indicating low water pressure in the source. Trace element concentrations follow similar patterns in most central volcanoes. Exceptions are Torfajökull where silicic rocks display a negative correlation of Ba to Th and unusually high Th-contents, and the western flank zone where Ba-concentrations are highly variable. The ratios of different high field-strength elements are generally similar within each central volcano or region, which probably reflects different ratios in the

  4. Occupational Exposure to Endocrine-Disrupting Chemicals and Birth Weight and Length of Gestation: A European Meta-Analysis

    PubMed Central

    Birks, Laura; Casas, Maribel; Garcia, Ana M.; Alexander, Jan; Barros, Henrique; Bergström, Anna; Bonde, Jens Peter; Burdorf, Alex; Costet, Nathalie; Danileviciute, Asta; Eggesbø, Merete; Fernández, Mariana F.; González-Galarzo, M. Carmen; Hanke, Wojciech; Jaddoe, Vincent; Kogevinas, Manolis; Kull, Inger; Lertxundi, Aitana; Melaki, Vasiliki; Andersen, Anne-Marie Nybo; Olea, Nicolás; Polanska, Kinga; Rusconi, Franca; Santa-Marina, Loreto; Santos, Ana Cristina; Vrijkotte, Tanja; Zugna, Daniela; Nieuwenhuijsen, Mark; Cordier, Sylvaine; Vrijheid, Martine

    2016-01-01

    , Hanke W, Jaddoe V, Kogevinas M, Kull I, Lertxundi A, Melaki V, Andersen AM, Olea N, Polanska K, Rusconi F, Santa-Marina L, Santos AC, Vrijkotte T, Zugna D, Nieuwenhuijsen M, Cordier S, Vrijheid M. 2016. Occupational exposure to endocrine-disrupting chemicals and birth weight and length of gestation: a European meta-analysis. Environ Health Perspect 124:1785–1793; http://dx.doi.org/10.1289/EHP208 PMID:27152464

  5. Reconstruction of flux and altitude of volcanic SO2 emissions from satellite observations: implications for volcanological and atmospherical studies.

    NASA Astrophysics Data System (ADS)

    Boichu, Marie; Clarisse, Lieven; Péré, Jean-Christophe; Herbin, Hervé; Goloub, Philippe; Thieuleux, François; Khvorostyanov, Dmitry; Ducos, Fabrice; Clerbaux, Cathy; Tanré, Didier

    2016-04-01

    Volcanic sulphur dioxide (SO2) degassing is a crucial indicator of the sub-surface volcanic activity, which is widely used today for volcano monitoring and hazard assessment purposes. Volcanic SO2 is also important regarding atmospherical studies. More easily detectable from space, SO2 can be used as a proxy of the presence of ash to anticipate air traffic issues caused by explosive eruptions. Moreover, volcanic SO2 strongly impacts air quality but also climate following its conversion to radiatively-active sulphate aerosols. However, the accurate assessment of these various impacts is currently hampered by the poor knowledge of volcanic SO2 emissions, which can substantially vary with time, in terms of flux and altitude. To fulfil this need, we propose a strategy relying on satellite observations, which consequently allows for monitoring the eruptive activity of any remote volcano. The method consists in assimilating snapshots of the SO2 load, provided by infrared or ultraviolet satellite observations, in an inversion scheme that involves the use of a chemistry-transport model to describe the dispersion of SO2 released in the atmosphere. Applied on Eyjafjallajökull (Iceland) and Etna (Italy) eruption case-studies, this procedure allows for retrospectively reconstructing both the flux and altitude of the SO2 emissions with an hourly resolution. We show the improvement gained in the simulations and forecasts of the location and mass load of volcanic SO2 clouds using such a detailed reconstruction of emissions. For calibration-validation purpose, we compared our satellite-derived time-series of the SO2 flux with ground-based observations available on Etna. This comparison indicates a good agreement during ash-poor phases of the eruption. However, large discrepancies are observed during the ash-rich paroxysmal phase as a result of enhanced plume opacity affecting ground-based ultraviolet spectroscopic retrievals. Therefore, the SO2 emission rate derived from the

  6. What controls the explosivity of subglacial rhyolite in Iceland?

    NASA Astrophysics Data System (ADS)

    Owen, J.; Tuffen, H.; McGarvie, D. W.

    2012-04-01

    The eruption controls of subglacial rhyolite are poorly understood but this is of key importance in mitigating hazards. In subaerial rhyolite eruptions the pre-eruptive volatile content and degassing path are considered to be the primary controls of explosivity, but is this also the case when rhyolitic eruptions occur under ice? We present the first pre-eruptive volatile content and degassing path data for subglacial rhyolite eruptions, comparing three edifices of contrasting eruption style from the Torfajökull complex in South Iceland[1]. Volatile concentrations were measured using infra-red spectroscopy (FTIR) and Secondary Ion Mass Spectroscopy (SIMS). SE Rauðfossafjöll is a large volume (~1 km3) explosively erupted tuya, Dalakvísl (~0.2 km3) is an entirely subglacial edifice that has both explosive and effusive deposits and Bláhnúkur is a small volume (<0.1 km3), effusive and entirely subglacial edifice[2]. High pre-eruptive H2O contents can be linked with the eruptions of SE Rauðfossafjöll and Dalakvísl whilst Bláhnúkur contains H2O-poor melt inclusions. Furthermore, there is variation in the eruptive products of Dalakvísl, with the explosive deposits containing a slightly higher pre-eruptive H2O content than the effusive deposits. In terms of degassing paths, SE Rauðfossafjöll and the explosive deposits on Dalakvísl show evidence of closed system degassing whilst Bláhnúkur and the effusive deposits on Dalakvísl show evidence of open system degassing. It therefore appears that the explosivity of subglacial rhyolite eruptions is primarily controlled by the pre-eruptive magma volatile content and degassing path, rather than ice thickness or meltwater hydrology, as previous speculated[3] [1] McGarvie (2009) JVGR, 185(4): 357-389 [2] Owen et al. (in review) Bull Vol. [3] Tuffen et al. (2007) Ann Glac, 45(1): 87-94

  7. Experimental generation of volcanic lightning

    NASA Astrophysics Data System (ADS)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  8. The Role of Convective Instabilities from Ash Clouds in Proximal Deposition of Fine Ash

    NASA Astrophysics Data System (ADS)

    Manzella, I.; Bonadonna, C.; Phillips, J.; Monnard, H.

    2014-12-01

    Gravitational instabilities forming at the bottom of spreading volcanic clouds have been observed in many explosive eruptions. They can generate vertical fingers which have been observed to have higher concentrations than the associated plumes. Characterization of volcanic fingers only relies on qualitative observations and quantitative analysis of dedicated experiments. For the first time we present a quantitative description of volcanic fingers developed during the Eyjafjallajökull 2010 eruption (Iceland) as a combination of video imaging and deposit observations. We conclude that the observed fingers on May 4th, 2010 moved downwards at a speed of 1±0.5 m s-1 and were advected laterally by the local wind at a similar speed as the associated cloud (e.g. about 8.5±0.8 m s-1). They continuously formed at the base of the cloud from about 1.4 km from the vent, with an average width and spacing of 168±26 m and 180±60 m, respectively. We could also correlate the sedimentation of fingers with observations of various types of particles aggregates with calculated velocities ranging between 0.1 and 7 m/s. We conclude that the aggregates with the largest terminal velocities sedimented independently of the fingers, while smaller aggregates could form either in the cloud or in the fingers. We have complemented our field data with dedicated experiments in order to investigate the evolution of particle concentration in the mixing region that results from propagation of turbulent convective instabilities. The experimental configuration was similar to that of previous studies with an aqueous suspension of water and spherical glass beads initially overlying a lower density sugar solution. Experiments demonstrate that once fingers are developed, they control sedimentation. In fact, particles are embedded in the fluid and cannot settle individually. This confirms that when settling driven instabilities is the dominating dynamics, particles are likely to settle faster following

  9. A comparison of new, old and future densiometic techniques as applied to volcanologic study.

    NASA Astrophysics Data System (ADS)

    Pankhurst, Matthew; Moreland, William; Dobson, Kate; Þórðarson, Þorvaldur; Fitton, Godfrey; Lee, Peter

    2015-04-01

    The density of any material imposes a primary control upon its potential or actual physical behaviour in relation to its surrounds. It follows that a thorough understanding of the physical behaviour of dynamic, multi-component systems, such as active volcanoes, requires knowledge of the density of each component. If we are to accurately predict the physical behaviour of synthesized or natural volcanic systems, quantitative densiometric measurements are vital. The theoretical density of melt, crystals and bubble phases may be calculated using composition, structure, temperature and pressure inputs. However, measuring the density of natural, non-ideal, poly-phase materials remains problematic, especially if phase specific measurement is important. Here we compare three methods; Archimedes principle, He-displacement pycnometry and X-ray micro computed tomography (XMT) and discuss the utility and drawbacks of each in the context of modern volcanologic study. We have measured tephra, ash and lava from the 934 AD Eldgjá eruption (Iceland), and the 2010 AD Eyjafjallajökull eruption (Iceland), using each technique. These samples exhibit a range of particle sizes, phases and textures. We find that while the Archimedes method remains a useful, low-cost technique to generate whole-rock density data, relative precision is problematic at small particles sizes. Pycnometry offers a more precise whole-rock density value, at a comparable cost-per-sample. However, this technique is based upon the assumption pore spaces within the sample are equally available for gas exchange, which may or may not be the case. XMT produces 3D images, at resolutions from nm to tens of µm per voxel where X-ray attenuation is a qualitative measure of relative electron density, expressed as greyscale number/brightness (usually 16-bit). Phases and individual particles can be digitally segmented according to their greyscale and other characteristics. This represents a distinct advantage over both

  10. Estimates of mass eruption rates in Icelandic eruptions 1913-2015

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Dürig, Tobias; Larsen, Gudrún

    2016-04-01

    the last 1200 years several eruptions have been much larger. For example the eruption of Laki in 1783 was an order of magnitude larger than the largest effusive eruptions of 1913-2015. The same applies to e.g. Öræfajökull in 1362, being an order of magnitude larger than the explosive eruptions that occurred in the period analysed here.

  11. Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Bernhardt, H.; Hiesinger, H.; Reiss, D.; Ivanov, M.; Erkeling, G.

    2013-09-01

    We present new insights into possible formation mechanisms and implications for previously identified landforms of putative glacio-fluvial origin along the southern rim of the Argyre basin on Mars. We compiled a detailed geomorphologic map of the study area and conducted morphometric and stratigraphic analyses of specific features, e.g., esker-like sinuous ridges on layered terrain. Based on their morphology and orientations, we subdivided the sinuous ridges on the southern Argyre basin floor into two populations, which could reflect changing conditions of glacial retreat. With the transition and oblique path methods we quantified the ice thickness of the glacier under which the first, lesser degraded, population of ridges probably formed. Our results imply an ice sheet thickness of ~2 km and at least ~100,000-150,000 km³ of ice on the southern floor of the Argyre basin during the time those ridges were deposited (>30× the volume of Vatnajökull, Iceland). The second population of ridges is more degraded and shows layers occasionally extending into the surrounding layered terrain. Comparisons with the morphology surrounding the Piedmont-style Malaspina Glacier in Alaska show similarities, suggesting population II formed during a glacial retreat involving back- and downwasting of stagnant ice lying beneath fresh outwash sediments, creating degraded and layered lag deposits around the emerging eskers. If outwash sediments were fed by the same drainage source as the eskers, sections of layers can extend from a given ridge into the surrounding deposits. The differences between the two ridge populations are probably a result of the subglacial drainage direction changing from northward to north-eastward around 3.6 Ga ago. This was likely coupled with the deposition of less or no outwash sediments resulting in a decrease of lag deposits. A subsequent phase of stagnant glacial retreat left no terminal moraines and largely preserved the population I ridges, thus implying

  12. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and

  13. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  14. Monitoring the Continuous Surface Motion of Glaciers by Low-Cost GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Völksen, Christof; Mayer, Christoph

    2015-04-01

    framework which is placed on the surface of the glacier. Here we observed continuously the melting process of the glacier surface during the ablation season 2014, which reduced the glacier elevation at this location by 2 m. A similar experiment was also applied on the glacier Mýrdalsjökull in Iceland. Even though the experiment did not last over the entire winter we could observe a significant difference in the motion of the glacier. During the summer the resulting horizontal velocity was almost 22 m/a, while the average over the entire year was estimated to 13 m/a.

  15. Failure mechanisms during melt injection along dykes in Iceland

    NASA Astrophysics Data System (ADS)

    White, Robert S.; Agustsdottir, Thorbjorg; Greenfield, Tim; Green, Robert; Brandsdottir, Bryndis; Woods, Jennifer; Pugh, David

    2015-04-01

    We show moment tensor solutions from seismicity produced during two extremely well monitored dyke injections in the mid-crust of Iceland. They demonstrate failure by double couple mechanisms with little or no volumetric component. The inferred failure planes are consistently orientated parallel to the dyke, from which we infer that the seismicity is produced primarily by breaking chilled magma emplaced during an earlier injection episode. The first dyke injection was at Upptyppingar in 2007 in the Northern Rift Zone of Iceland. Melt was injected in the mid-crust from 17.5 to 13.5 km depth over a 9 month period before freezing in situ. The dyke was inclined with a dip of approximately 50 degrees. The second dyke was injected sub-horizontally from Bárðarbunga at a depth of about 7 km over a two week period in late August 2014 until it erupted 45 km away in Holuhraun. The Holuhraun eruption precisely reoccupied old craters from a late eighteenth century (c. 1797) eruption. The petrology of the eighteenth century basalts suggests that the melt also came from Bárðarbunga. It is likely therefore that the 2014 dyke closely followed the earlier eighteenth century dyke path. Both dyke injections were monitored by a dense seismic network of broad-band three-component seismic stations deployed and operated from 2006 to the present by the University of Cambridge in collaboration with the Institute of Earth Sciences, University of Iceland. These enable well constrained hypocentral locations and moment tensor solutions to be made. At its present peak the network consists of over 75 broadband seismometers. Fifteen additional seismometers were deployed in the days immediately following the onset of the dyke injection, including four seismometers on the Vatnajökull ice cap beneath which the dyke propagated and the remainder on Holuhraun surrounding the eventual eruption site: indeed two of the seismometers had to be rescued shortly before they were encroached by the advancing

  16. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    NASA Astrophysics Data System (ADS)

    Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Bernath, P. F.; Duck, T. J.; Waugh, D. L.; Tarasick, D. W.; Andrews, S.; Aruffo, E.; Bailey, L. J.; Barrett, E.; Bauguitte, S. J.-B.; Curry, K. R.; Di Carlo, P.; Chisholm, L.; Dan, L.; Forster, G.; Franklin, J. E.; Gibson, M. D.; Griffin, D.; Helmig, D.; Hopkins, J. R.; Hopper, J. T.; Jenkin, M. E.; Kindred, D.; Kliever, J.; Le Breton, M.; Matthiesen, S.; Maurice, M.; Moller, S.; Moore, D. P.; Oram, D. E.; O'Shea, S. J.; Owen, R. C.; Pagniello, C. M. L. S.; Pawson, S.; Percival, C. J.; Pierce, J. R.; Punjabi, S.; Purvis, R. M.; Remedios, J. J.; Rotermund, K. M.; Sakamoto, K. M.; da Silva, A. M.; Strawbridge, K. B.; Strong, K.; Taylor, J.; Trigwell, R.; Tereszchuk, K. A.; Walker, K. A.; Weaver, D.; Whaley, C.; Young, J. C.

    2013-07-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from < 1 day to ~<45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the

  17. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    NASA Astrophysics Data System (ADS)

    Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Bernath, P. F.; Duck, T. J.; Waugh, D. L.; Tarasick, D. W.; Andrews, S.; Aruffo, E.; Bailey, L. J.; Barrett, E.; Bauguitte, S. J.-B.; Curry, K. R.; Di Carlo, P.; Chisholm, L.; Dan, L.; Forster, G.; Franklin, J. E.; Gibson, M. D.; Griffin, D.; Helmig, D.; Hopkins, J. R.; Hopper, J. T.; Jenkin, M. E.; Kindred, D.; Kliever, J.; Le Breton, M.; Matthiesen, S.; Maurice, M.; Moller, S.; Moore, D. P.; Oram, D. E.; O'Shea, S. J.; Owen, R. Christopher; Pagniello, C. M. L. S.; Pawson, S.; Percival, C. J.; Pierce, J. R.; Punjabi, S.; Purvis, R. M.; Remedios, J. J.; Rotermund, K. M.; Sakamoto, K. M.; da Silva, A. M.; Strawbridge, K. B.; Strong, K.; Taylor, J.; Trigwell, R.; Tereszchuk, K. A.; Walker, K. A.; Weaver, D.; Whaley, C.; Young, J. C.

    2013-02-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of airmasses that contain the emission products from seasonal boreal wildfires and how these airmasses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada. The planned July 2010 deployment of the ARA was postponed by 12 months because of activities related to the dispersal of material emitted by the Eyjafjallajökull volcano. However, most other planned model and measurement activities, including ground-based measurements at the Dalhousie University Ground Station (DGS), enhanced ozonesonde launches, and measurements at the Pico Atmospheric Observatory in the Azores, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 included the same measurements, but included the ARA, special satellite observations and a more comprehensive measurement suite at the DGS. The high-frequency aircraft data provided a comprehensive snapshot of the pyrogenic plumes from wildfires. The coordinated ground-based and sonde data provided detailed but spatially-limited information that put the aircraft data into context of the longer burning season. We coordinated aircraft vertical profiles and overpasses of the NASA Tropospheric Emission Spectrometer and the Canadian Atmospheric Chemistry Experiment. These space-borne data, while less precise than other data, helped to relate the two-week measurement campaign to larger geographical and longer temporal scales. We interpret these data using a range of chemistry models: from a near-explicit gas-phase chemical mechanism, which tests out understanding of the underlying chemical mechanism, to regional and global 3-D models of atmospheric

  18. Using VHF Lightning Observations to Monitor Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Krehbiel, P. R.; Rison, W.; Edens, H. E.

    2011-12-01

    Lightning is an integral part of explosive volcanic eruptions and volcanic lightning measurements are a useful tool for volcano monitoring. VHF measurements of volcanic lightning can be made remotely, at distances of up to 100 km. A strategically placed network of 6 or more VHF ground stations could locate lightning in eruption columns from several regional volcanoes, and a minimum of two stations could be used to monitor a single volcano. Such a network would be particularly useful for detection or confirmation of explosive activity in situations where volcanoes are remotely located, and thus lack visual observations, or are not well instrumented with seismic networks. Furthermore, clouds are fully transparent to VHF signals, making lightning detection possible even when weather obscures visual observations. Recent VHF observations of volcanic lightning at Augustine Volcano (Alaska, USA, 2006), Redoubt Volcano (Alaska, USA, 2009) and Eyjafjallajökull (Iceland, 2010) have shown that two basic types of VHF signals are observed during volcanic eruptions, one of which is unique to volcanic activity. The unique signal, referred to as a 'continual RF' signal, was caused by very high rates of small 'vent discharges' occurring directly above the vent in the eruption column and was unlike any observations of lightning in meteorological thunderstorms. Vent discharges were observed to begin immediately following an explosive eruption. The second type of signal is from conventional lightning discharges, such as upward directed 'near-vent lightning' and isolated 'plume lightning.' Near-vent lightning was observed to begin 1-2 minutes following the onset of an explosive eruption while plume lightning began 4 or more minutes after the onset. At Redoubt the plume lightning occurred at such high rates that it rivaled lightning rates of supercell thunderstorms on the Great Plains of the United States. While both types of lightning signals can be used as indicators that explosive

  19. Heavy precipitation events in northern Switzerland

    NASA Astrophysics Data System (ADS)

    Giannakaki, Paraskevi; Martius, Olivia

    2013-04-01

    Heavy precipitation events in the Alpine region often cause floods, rock-falls and mud slides with severe consequences for population and economy. Breaking synoptic Rossby waves located over western Europe, play a central role in triggering such heavy rain events in southern Switzerland (e.g. Massacand et al. 1998). In contrast, synoptic scale structures triggering heavy precipitation on the north side of the Swiss Alps and orographic effects have so far not been studied comprehensively. An observation based high resolution precipitation data set for Switzerland and the Alps (MeteoSwiss) is used to identify heavy precipitation events affecting the north side of the Swiss Alps for the time period 1961-2010. For these events a detailed statistical and dynamical analysis of the upper level flow is conducted using ECMWFs ERA-40 and ERA-Interim reanalysis data sets. For the analysis north side of the Swiss Alps is divided in two investigation areas north-eastern and western Switzerland following the Swiss climate change scenarios (Bey et al. 2011). A subjective classification of upper level structures triggering heavy precipitation events in the areas of interest is presented. Four classes are defined based on the orientation and formation of the dynamical tropopause during extreme events in the northern part of Switzerland and its sub-regions. The analysis is extended by a climatology of breaking waves and cut-offs following the method of Wernli and Sprenger (2007) to examine their presence and location during extreme events. References Bey I., Croci-Maspoli M., Fuhrer J., Kull C, Appenzeller C., Knutti R. and Schär C. Swiss Climate Change Scenarios CH2011, C2SM, MeteoSwiss, ETH, NCCR Climate, OcCC (2011), http://dx.doi.org/10.3929/ethz-a-006720559 Massacand A., H. Wernli, and H.C. Davies, 1998. Heavy precipitation on the Alpine South side: An upper-level precursor. Geophys. Res. Lett., 25, 1435-1438. MeteoSwiss 2011. Documentation of Meteoswiss grid-data products

  20. The Ash that Closed Europe's Airspace in 2010

    NASA Astrophysics Data System (ADS)

    Gislason, S. R.; Alfredsson, H.; Olsson, J.; Eiriksdottir, E.; Oskarsson, N.; Hassenkam, T.; Nedel, S.; Bovet, N.; Hem, C.; Balogh, Z.; Dideriksen, K.; Stipp, S. L.

    2011-12-01

    On 14 April 2010, when meltwater from the Eyjafjallajökull glacier mixed with hot magma, an explosive phreato-magmatic eruption sent unusually fine-grained ash into the jet stream. It quickly dispersed over Europe. Previous airplane encounters with ash had caused sand blasted windows and particles melted inside jet engines, causing them to fail. Therefore, air traffic was grounded for several days. Concerns also arose about health risks from fallout, because ash can transport acids as well as toxic compounds. Studies on ash are usually made on material collected far from the source, where it could have mixed with other atmospheric particles, or after exposure to water as rain or fog, which would alter surface composition. In this study, a unique set of dry ash samples was collected during the explosive eruption and compared with fresh ash with the same bulk composition from a later more typical magmatic event, when meltwater did not have access to the magma.[1] Up to 70 mass % of the phreato-magmatic ash particles, collected 60 km from the source, was <60 μm in diameter, 22% was <10 μm and 11% was ≤ 4.4 μm. The finest grain size was found in the centre of the "collapsed" plume. The magmatic ash was coarser and its surface area was an order of magnitude smaller than for the explosive ash. The relative concentration of surface salts down to 10 nm depth was significantly lower on the explosive ash than the magmatic ash, because less volatile compounds were available to condense on the surfaces when water and steam were present. Instead, they dissolved in the meltwater and were transported as solutes in the ensuing floodwaters. The surface salts dissolved rapidly when exposed to experimental and natural waters, releasing pollutants and nutrients. Some of the salts further enhanced bulk dissolution of the ash. The particles of phreato-magmatic ash that reached Europe in the jet stream were especially sharp and hard, therefore abrasive, over their entire size range

  1. Retrieval of ash properties from IASI measurements

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy J.; McGarragh, Gregory; Carboni, Elisa; Smith, Andrew J.; Grainger, Roy G.

    2016-11-01

    A new optimal estimation algorithm for the retrieval of volcanic ash properties has been developed for use with the Infrared Atmospheric Sounding Interferometer (IASI). The retrieval method uses the wave number range 680-1200 cm-1, which contains window channels, the CO2 ν2 band (used for the height retrieval), and the O3 ν3 band.Assuming a single infinitely (geometrically) thin ash plume and combining this with the output from the radiative transfer model RTTOV, the retrieval algorithm produces the most probable values for the ash optical depth (AOD), particle effective radius, plume top height, and effective radiating temperature. A comprehensive uncertainty budget is obtained for each pixel. Improvements to the algorithm through the use of different measurement error covariance matrices are explored, comparing the results from a sensitivity study of the retrieval process using covariance matrices trained on either clear-sky or cloudy scenes. The result showed that, due to the smaller variance contained within it, the clear-sky covariance matrix is preferable. However, if the retrieval fails to pass the quality control tests, the cloudy covariance matrix is implemented.The retrieval algorithm is applied to scenes from the Eyjafjallajökull eruption in 2010, and the retrieved parameters are compared to ancillary data sources. The ash optical depth gives a root mean square error (RMSE) difference of 0.46 when compared to retrievals from the MODerate-resolution Imaging Spectroradiometer (MODIS) instrument for all pixels and an improved RMSE of 0.2 for low optical depths (AOD < 0.1). Measurements from the Facility for Airborne Atmospheric Measurements (FAAM) and Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) flight campaigns are used to verify the retrieved particle effective radius, with the retrieved distribution of sizes for the scene showing excellent consistency. Further, the plume top altitudes are compared to derived cloud-top altitudes from the Cloud

  2. The Nd-isotopic fingerprinting of North Atlantic water masses and its influences from local sources such as Iceland

    NASA Astrophysics Data System (ADS)

    Frank, N.; Waldner, A.; Christophe, C.; Montagna, P.; Dubois-Dauphin, Q.; Wu, Q.

    2014-12-01

    The 143Nd/144Nd ratio of seawater has become a valuable tracer of north Atlantic circulation patterns, driven by continental runoff, boundary exchange and water mass advection and mixing. A region of particular interest is the overflow across the Iceland - Scotland Ridge injecting water from the Arctic Ocean into the Iceland basin. However, Iceland itself constitutes a singularity in terms of the release of radiogenic 143Nd/144Nd to seawater, due to leaching of young volcanic basalts, whereas the Atlantic is dominated by less radiogenic Nd inputs from old Canadian crustal rocks and the European continent. Hence, release of volcanic material may affect the Nd-isotopic composition of water masses recirculating throughout the sub-polar gyre. This is of major importance regarding the use of Nd isotopes in sediments and corals to trace changes of recirculation patterns in the past. Here, seawater was analysed on three transects (local to basin scale) to fingerprint advection patterns as well as local radiogenic Nd sources in the sub-polar gyre domain. The first local transect followed open ocean water on to the shelf near the outflow of the Vatnajökull glacier. It demonstrates that freshwater runoff modifies the open ocean Nd signature only very close to the shelf (<40km near the outflow) and thus reflects a very local feature unlikely possible to alter the predominant water mass composition of Northeast Atlantic water or the underlying Iceland-Scotland Overflow Water. The second transect follows the Iceland shelfbreak from north-east towards the Reykjanes ridge and includes seawater samples near the recently formed volcanic island of Surtsey. Again no major modification of the Atlantic water mass compositions is observed, besides samples in direct vicinity of Surtsey island where local release of Nd modifies seawater ɛNd (-14) to values as high as -6. Finally we have monitored the isotopic composition of water masses along a North-South transect from Iceland towards

  3. Magma storage depths in the Eastern Volcanic Zone of Iceland: disentangling disequilibrium and tuning thermobarometers

    NASA Astrophysics Data System (ADS)

    Neave, D.; Maclennan, J.; Thordarson, T.; Hartley, M. E.; Buisman, I.; Namur, O.; Halldorsson, S. A.

    2015-12-01

    The Eastern Volcanic Zone (EVZ) is the most volcanically productive of Iceland's neovolcanic zones. In addition to being the source of numerous small but disruptive eruptions, such Eyjafjallajökull in 2010 and Grímsvötn in 2011, the EVZ is notable for generating very large eruptions such as the environmentally impacting Laki eruption in 1783-84 and the widely dispersed Saksunarvatn Ash. Thus, investigating the plumbing systems of volcanoes in the EVZ not only reveals information about magma reservoir behaviour and crustal structure, but also has important implications for hazard management. However, in order to obtain reliable estimates of pre-eruptive magma storage conditions and depths from minerals a number of conditions need to be met first. Firstly, all estimates of pre-eruptive conditions need to be placed into petrogenetic frameworks that consider the extensive disequilibrium that results not only from fractionation, but also from magma mixing and crystal mush entrainment. Secondly, it is important to verify that the mineral-melt equilibrium, i.e. thermobarometeric, models used are well calibrated at the expected conditions of magma storage. Using a range of techniques including QEMSCAN imaging, textural analysis and geochemical microanalysis of crystals, glasses and melt inclusions, we present internally consistent models of magma evolution and storage for a number of eruptions in the EVZ, including Laki and the 10ka Grímsvötn tephra series (i.e. Saksunarvatn Ash). All eruptions studied preserve evidence of mixing and crystallisation of primitive melts in the mid-crust (8-20 km) followed by crystallisation of evolved and, in general, more incompatible element-enriched melts in the shallow crust (0-8 km) shortly before eruption. Substantial uncertainties in storage depths nevertheless remain because of incomplete calibration of clinopyroxene-melt equilibria at mid-crustal pressures. As part of an ongoing experimental campaign on Icelandic magma

  4. Style of Plate Spreading Derived from the 2008-2014 Velocity Field Across the Northern Volcanic Zone of Iceland

    NASA Astrophysics Data System (ADS)

    Drouin, V.; Sigmundsson, F.; Hreinsdottir, S.; Ofeigsson, B.; Sturkell, E.; Einarsson, P.

    2015-12-01

    The Northern Volcanic Zone (NVZ) of Iceland is a subaerial part of the divergent boundary between the North-American and Eurasian Plates. At this latitude, the full spreading between the plates is accommodated by the NVZ. We derived the plate boundary velocity field from GPS campaign and continuous measurements between 2008 and 2014, a time period free of any magma intrusion. Average velocities were estimated in the ITRF08 reference frame. The overall extension is consistent with 18 mm/yr in the 104°N direction spreading, in accordance with the MORVEL2010 plate motion model. We find that a 40km-wide band along the plate boundary accommodates about 75% of the full plate velocities. Within this zone, the average strain rate is approximately 0.35 μstrain/yr. The deformation field and the strain rate are, however, much affected by other sources of deformations in the NVZ. These include magmatic sources at the most active volcanic centers, glacial rebound near the ice-caps and geothermal power-plant water extraction. Magmatic sources include a shallow magma chamber deflation under Askja caldera, as well as under Þeistareykir and eventual deep magma inflation north of Krafla volcano. Vatnajökull ice cap melting causes large uplift and outward displacements in the southern part of the NVZ. The two geothermal power-plants near Krafla are inducing local deflations. Our GPS velocities show a 35° change in the direction of the plate boundary axis north of Askja volcano that we infer to be linked to the geometric arrangement of volcanic systems within the NVZ.We use a simple arctangent model to describe the plate spreading to provide constraints on the location and the locking depth of the spreading axis. For that purpose we divided the area in short overlapping segments having the same amount of GPS points along the plate spreading direction and inverted for the location of the center of the spreading axis and locking depth. With this simple model we can account for most

  5. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  6. Analysis of aerosol optical properties from continuous sun-sky radiometer measurements at Halley and Rothera, Antarctica over seven years

    NASA Astrophysics Data System (ADS)

    Campanelli, Monica; Estellés, Victor; Colwell, Steve; Shanklin, Jonathan; Ningombam, Shantikumar S.

    2015-04-01

    back-trajectories were considered in order to understand the origin of these particles (if locally produced or due to large scale transport ) and to verify if the events in the two sites are related or not. In addition some single days' events, showing both high aerosol optical thickness and absorption, were also studied. References: Campanelli et al, 2012, "Monitoring of Eyjafjallajökull volcanic aerosol by the new European Skynet Radiometers (ESR) network", Atmospheric Environment 48 (2012) 33-45 Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., Holben, B., 1996. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Applied Optics 35, 2672- 2686.

  7. Toward an integrated Volcanic Ash Observing System in Europe

    NASA Astrophysics Data System (ADS)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  8. Multiple subglacial till deposition: A modern exemplar for Quaternary palaeoglaciology

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Roberts, David H.; Evans, Sian C.

    2016-08-01

    The sedimentology of a vertical succession of alternating beds of massive and fissile diamictons on a þorisjökull plateau icefield outlet foreland is employed to assess the evolution of subglacial traction tills at the margins of active temperate glaciers with deformable substrates, where tills appear to form sub-marginal incrementally thickened wedges that display multiple till emplacement events, potentially of annual scale. Lodged boulders display strong A-axes and surface striae alignments which parallel surface flutings, indicating that fluting construction and till emplacement were related to moulding by consistent glacier flow from the SSW during the Little Ice Age. In contrast, clast macrofabrics at the sub-boulder size, not unlike those reported from other Icelandic tills, are not as strong as would be expected in a subglacially sheared medium, indicating shear strains too low for a steady state strain signature. This separation of fabric data has isolated the strain signatures of the lodgement and deformation components of subglacial traction till, whereby the orientations of the largest, lodged clasts record high cumulative shear strains and those of the sub-boulder sized clasts record greater susceptibility to deformation of their enclosing matrix. This is likely due to the effect of clast collisions in clast rich till and the perturbations set up by the numerous large boulders, consistent with observations on till fabrics in flutings and around lodged clasts. A/B plane macrofabric data display unusually high degrees of isotropy, reflective of the more variable orientations of A/B planes, which are thought to reflect A/B plane susceptibility to dip parallel or anastomosing shear planes. A wide range of clast angularity values reflects the localized input of freshly plucked and hence relatively highly angular blocks to the deforming layer, a characteristic of stepped bedrock profiles beneath the snouts of mountain glaciers. Finally, we hypothesize that

  9. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data