A Communication-Optimal Framework for Contracting Distributed Tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei
Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, our framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of our frameworkmore » on up to 262,144 cores of BG/Q supercomputer using five tensor contraction examples.« less
LDRD final report : leveraging multi-way linkages on heterogeneous data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlavy, Daniel M.; Kolda, Tamara Gibson
2010-09-01
This report is a summary of the accomplishments of the 'Leveraging Multi-way Linkages on Heterogeneous Data' which ran from FY08 through FY10. The goal was to investigate scalable and robust methods for multi-way data analysis. We developed a new optimization-based method called CPOPT for fitting a particular type of tensor factorization to data; CPOPT was compared against existing methods and found to be more accurate than any faster method and faster than any equally accurate method. We extended this method to computing tensor factorizations for problems with incomplete data; our results show that you can recover scientifically meaningfully factorizations withmore » large amounts of missing data (50% or more). The project has involved 5 members of the technical staff, 2 postdocs, and 1 summer intern. It has resulted in a total of 13 publications, 2 software releases, and over 30 presentations. Several follow-on projects have already begun, with more potential projects in development.« less
2011-01-01
present performance statistics to explain the scalability behavior. Keywords-atmospheric models, time intergrators , MPI, scal- ability, performance; I...across inter-element bound- aries. Basis functions are constructed as tensor products of Lagrange polynomials ψi (x) = hα(ξ) ⊗ hβ(η) ⊗ hγ(ζ)., where hα
A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei
Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution thatmore » can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.« less
Peng, Bo; Kowalski, Karol
2017-09-12
The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, N b , ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows [Formula: see text] versus [Formula: see text] cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from [Formula: see text] to [Formula: see text] with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C 60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10 -4 to 10 -3 to give acceptable compromise between efficiency and accuracy.
Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text
Xin, Yu; Hochberg, Ephraim; Joshi, Rohit; Uzuner, Ozlem; Szolovits, Peter
2015-01-01
Objective Extracting medical knowledge from electronic medical records requires automated approaches to combat scalability limitations and selection biases. However, existing machine learning approaches are often regarded by clinicians as black boxes. Moreover, training data for these automated approaches at often sparsely annotated at best. The authors target unsupervised learning for modeling clinical narrative text, aiming at improving both accuracy and interpretability. Methods The authors introduce a novel framework named subgraph augmented non-negative tensor factorization (SANTF). In addition to relying on atomic features (e.g., words in clinical narrative text), SANTF automatically mines higher-order features (e.g., relations of lymphoid cells expressing antigens) from clinical narrative text by converting sentences into a graph representation and identifying important subgraphs. The authors compose a tensor using patients, higher-order features, and atomic features as its respective modes. We then apply non-negative tensor factorization to cluster patients, and simultaneously identify latent groups of higher-order features that link to patient clusters, as in clinical guidelines where a panel of immunophenotypic features and laboratory results are used to specify diagnostic criteria. Results and Conclusion SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified latent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate the latent groups of higher-order features. PMID:25862765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition ofmore » the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...
2017-03-08
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel W.
Coupled-cluster methods provide highly accurate models of molecular structure by explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix-matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy efficient manner. We achieve up to 240 speedup compared with the best optimized shared memory implementation. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures, (Cray XC30&XC40, BlueGene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance. Nevertheless, we preserve a uni ed interface to both programming models to maintain the productivity of computational quantum chemists.« less
HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.
Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee
2017-08-01
Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Sparse Tensor Decomposition for Haplotype Assembly of Diploids and Polyploids.
Hashemi, Abolfazl; Zhu, Banghua; Vikalo, Haris
2018-03-21
Haplotype assembly is the task of reconstructing haplotypes of an individual from a mixture of sequenced chromosome fragments. Haplotype information enables studies of the effects of genetic variations on an organism's phenotype. Most of the mathematical formulations of haplotype assembly are known to be NP-hard and haplotype assembly becomes even more challenging as the sequencing technology advances and the length of the paired-end reads and inserts increases. Assembly of haplotypes polyploid organisms is considerably more difficult than in the case of diploids. Hence, scalable and accurate schemes with provable performance are desired for haplotype assembly of both diploid and polyploid organisms. We propose a framework that formulates haplotype assembly from sequencing data as a sparse tensor decomposition. We cast the problem as that of decomposing a tensor having special structural constraints and missing a large fraction of its entries into a product of two factors, U and [Formula: see text]; tensor [Formula: see text] reveals haplotype information while U is a sparse matrix encoding the origin of erroneous sequencing reads. An algorithm, AltHap, which reconstructs haplotypes of either diploid or polyploid organisms by iteratively solving this decomposition problem is proposed. The performance and convergence properties of AltHap are theoretically analyzed and, in doing so, guarantees on the achievable minimum error correction scores and correct phasing rate are established. The developed framework is applicable to diploid, biallelic and polyallelic polyploid species. The code for AltHap is freely available from https://github.com/realabolfazl/AltHap . AltHap was tested in a number of different scenarios and was shown to compare favorably to state-of-the-art methods in applications to haplotype assembly of diploids, and significantly outperforms existing techniques when applied to haplotype assembly of polyploids.
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach
Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei
2015-01-01
Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies. PMID:26705505
Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach.
Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei
2015-08-01
Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies.
Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.
Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N
2017-05-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.
Tensor-GMRES method for large sparse systems of nonlinear equations
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1994-01-01
This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.
Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej
2015-09-01
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.
Tensor Toolbox for MATLAB v. 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kola, Tamara; Bader, Brett W.; Acar Ataman, Evrim NMN
Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.
Simultaneous Tensor Decomposition and Completion Using Factor Priors.
Chen, Yi-Lei; Hsu, Chiou-Ting Candy; Liao, Hong-Yuan Mark
2013-08-27
Tensor completion, which is a high-order extension of matrix completion, has generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called Simultaneous Tensor Decomposition and Completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data, and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.
2016-05-11
AFRL-AFOSR-JP-TR-2016-0046 Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization U Kang Korea...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect...Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386
Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction
Luo, Yuan; Ahmad, Faraz S.; Shah, Sanjiv J.
2017-01-01
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that may benefit from improved subtyping in order to better characterize its pathophysiology and to develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have significant differences in underlying pathophysiology and differential response to therapies. Tensor factorization also allows for better interpretability by supporting dimensionality reduction and identifying latent groups of data for meaningful summarization of both features and disease outcomes. In this narrative review, we analyze the modest literature on the application of tensor factorization to related biomedical fields including genotyping and phenotyping. Based on the cited work including work of our own, we suggest multiple tensor factorization formulations capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or accounting for interactions between genetic variants at different -omic hierarchies. We encourage extensive experimental studies to tackle challenges in applying tensor factorization for precision medicine in HFpEF, including effectively incorporating existing medical knowledge, properly accounting for uncertainty, and efficiently enforcing sparsity for better interpretability. PMID:28116551
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Simultaneous tensor decomposition and completion using factor priors.
Chen, Yi-Lei; Hsu, Chiou-Ting; Liao, Hong-Yuan Mark
2014-03-01
The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.
Newton-based optimization for Kullback-Leibler nonnegative tensor factorizations
Plantenga, Todd; Kolda, Tamara G.; Hansen, Samantha
2015-04-30
Tensor factorizations with nonnegativity constraints have found application in analysing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g. count data), which leads to sparse tensors that can be modelled by sparse factor matrices. In this paper, we investigate efficient techniques for computing an appropriate canonical polyadic tensor factorization based on the Kullback–Leibler divergence function. We propose novel subproblem solvers within the standard alternating block variable approach. Our new methods exploit structure and reformulate the optimization problem as small independent subproblems. We employ bound-constrained Newton andmore » quasi-Newton methods. Finally, we compare our algorithms against other codes, demonstrating superior speed for high accuracy results and the ability to quickly find sparse solutions.« less
Grid-search Moment Tensor Estimation: Implementation and CTBT-related Application
NASA Astrophysics Data System (ADS)
Stachnik, J. C.; Baker, B. I.; Rozhkov, M.; Friberg, P. A.; Leifer, J. M.
2017-12-01
This abstract presents a review work related to moment tensor estimation for Expert Technical Analysis at the Comprehensive Test Ban Treaty Organization. In this context of event characterization, estimation of key source parameters provide important insights into the nature of failure in the earth. For example, if the recovered source parameters are indicative of a shallow source with large isotropic component then one conclusion is that it is a human-triggered explosive event. However, an important follow-up question in this application is - does an alternative hypothesis like a deeper source with a large double couple component explain the data approximately as well as the best solution? Here we address the issue of both finding a most likely source and assessing its uncertainty. Using the uniform moment tensor discretization of Tape and Tape (2015) we exhaustively interrogate and tabulate the source eigenvalue distribution (i.e., the source characterization), tensor orientation, magnitude, and source depth. The benefit of the grid-search is that we can quantitatively assess the extent to which model parameters are resolved. This provides a valuable opportunity during the assessment phase to focus interpretation on source parameters that are well-resolved. Another benefit of the grid-search is that it proves to be a flexible framework where different pieces of information can be easily incorporated. To this end, this work is particularly interested in fitting teleseismic body waves and regional surface waves as well as incorporating teleseismic first motions when available. Being that the moment tensor search methodology is well-established we primarily focus on the implementation and application. We present a highly scalable strategy for systematically inspecting the entire model parameter space. We then focus on application to regional and teleseismic data recorded during a handful of natural and anthropogenic events, report on the grid-search optimum, and discuss the resolution of interesting and/or important recovered source properties.
TWave: High-Order Analysis of Functional MRI
Barnathan, Michael; Megalooikonomou, Vasileios; Faloutsos, Christos; Faro, Scott; Mohamed, Feroze B.
2011-01-01
The traditional approach to functional image analysis models images as matrices of raw voxel intensity values. Although such a representation is widely utilized and heavily entrenched both within neuroimaging and in the wider data mining community, the strong interactions among space, time, and categorical modes such as subject and experimental task inherent in functional imaging yield a dataset with “high-order” structure, which matrix models are incapable of exploiting. Reasoning across all of these modes of data concurrently requires a high-order model capable of representing relationships between all modes of the data in tandem. We thus propose to model functional MRI data using tensors, which are high-order generalizations of matrices equivalent to multidimensional arrays or data cubes. However, several unique challenges exist in the high-order analysis of functional medical data: naïve tensor models are incapable of exploiting spatiotemporal locality patterns, standard tensor analysis techniques exhibit poor efficiency, and mixtures of numeric and categorical modes of data are very often present in neuroimaging experiments. Formulating the problem of image clustering as a form of Latent Semantic Analysis and using the WaveCluster algorithm as a baseline, we propose a comprehensive hybrid tensor and wavelet framework for clustering, concept discovery, and compression of functional medical images which successfully addresses these challenges. Our approach reduced runtime and dataset size on a 9.3 GB finger opposition motor task fMRI dataset by up to 98% while exhibiting improved spatiotemporal coherence relative to standard tensor, wavelet, and voxel-based approaches. Our clustering technique was capable of automatically differentiating between the frontal areas of the brain responsible for task-related habituation and the motor regions responsible for executing the motor task, in contrast to a widely used fMRI analysis program, SPM, which only detected the latter region. Furthermore, our approach discovered latent concepts suggestive of subject handedness nearly 100x faster than standard approaches. These results suggest that a high-order model is an integral component to accurate scalable functional neuroimaging. PMID:21729758
Roy, Sujoy; Yun, Daqing; Madahian, Behrouz; Berry, Michael W.; Deng, Lih-Yuan; Goldowitz, Daniel; Homayouni, Ramin
2017-01-01
In this study, we developed and evaluated a novel text-mining approach, using non-negative tensor factorization (NTF), to simultaneously extract and functionally annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors using non-negative tensor factorization (NTF) across 16 different approximation ranks. Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs are functionally relevant. One advantage of this method is that it can discover potentially new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq datasets as gold standard, we show that the precision of our method for predicting gene–TF associations is significantly higher than chance. In addition, we demonstrate that the terms in each ATM can be used to suggest new GO classifications to genes and TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction and functional annotation of transcriptional regulatory networks from unstructured text, as well as for literature based discovery. A web tool called Transcriptional Regulatory Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/tremel, was built to enable browsing and searching of ATMs. PMID:28894735
Tensor hypercontraction. II. Least-squares renormalization
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Tensor hypercontraction. II. Least-squares renormalization.
Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David
2012-12-14
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Tensor form factor for the D → π(K) transitions with Twisted Mass fermions.
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a preliminary lattice calculation of the D → π and D → K tensor form factors fT (q2) as a function of the squared 4-momentum transfer q2. ETMC recently computed the vector and scalar form factors f+(q2) and f0(q2) describing D → π(K)lv semileptonic decays analyzing the vector current and the scalar density. The study of the weak tensor current, which is directly related to the tensor form factor, completes the set of hadronic matrix element regulating the transition between these two pseudoscalar mesons within and beyond the Standard Model where a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV and with the valence heavy quark in the mass range from ≃ 0.7 mc to ≃ 1.2mc. The matrix element of the tensor current are determined for a plethora of kinematical conditions in which parent and child mesons are either moving or at rest. As for the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data. We will present preliminary results on the removal of such hypercubic lattice effects.
Towards a large-scale scalable adaptive heart model using shallow tree meshes
NASA Astrophysics Data System (ADS)
Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf
2015-10-01
Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.
Dictionary-Based Tensor Canonical Polyadic Decomposition
NASA Astrophysics Data System (ADS)
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
Peng, Bo; Kowalski, Karol
2017-01-25
In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
In this letter, we introduce the reverse Cuthill-McKee (RCM) algorithm, which is often used for the bandwidth reduction of sparse tensors, to transform the two-electron integral tensors to their block diagonal forms. By further applying the pivoted Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates the low-rank factorization of the high-dimensional tensor contractions that are usually encountered in post-Hartree-Fock calculations. In this letter, we discuss the second-order Møller-Plesset (MP2) method and linear coupled- cluster model with doublesmore » (L-CCD) as two simple examples to demonstrate the efficiency of the RCM-CD technique in representing two-electron integrals in a compact form.« less
Federated Tensor Factorization for Computational Phenotyping
Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian
2017-01-01
Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.
NASA Astrophysics Data System (ADS)
Cyganek, Boguslaw; Smolka, Bogdan
2015-02-01
In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.
Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Andrew J.; Pu, Yunchen; Sun, Yannan
We introduce new dictionary learning methods for tensor-variate data of any order. We represent each data item as a sum of Kruskal decomposed dictionary atoms within the framework of beta-process factor analysis (BPFA). Our model is nonparametric and can infer the tensor-rank of each dictionary atom. This Kruskal-Factor Analysis (KFA) is a natural generalization of BPFA. We also extend KFA to a deep convolutional setting and develop online learning methods. We test our approach on image processing and classification tasks achieving state of the art results for 2D & 3D inpainting and Caltech 101. The experiments also show that atom-rankmore » impacts both overcompleteness and sparsity.« less
On the tidal-energy tensor for two homogeneous coaxial ellipsoids
NASA Astrophysics Data System (ADS)
Caimmi, R.; Secco, L.
2001-10-01
The tidal-energy tensor for two homogeneous and coaxial ellipsoids, one lying completely within the other, is investigated in connection with the tidal action exerted by the outer ellipsoid on the inner one. Making reference to the explicit expression found in a previous paper of ours, it is shown that the generic component of the tidal-energy tensor, (i) may be expressed as the product of the corresponding component of the self-energy tensor related to the inner ellipsoid, by the density ratio, and the shape factor ratio, and (ii) equals the one due to any homogeneous, outer ellipsoid, for which the product of the density and a specified shape factor remains unchanged; in particular, the outer ellipsoid may be similar and similarly placed with respect to the inner one. In addition, an explicit expression for the Clausius-virial tensor is derived. Analogous results for the corresponding scalar quantities are also given. Further attention is paid to the particular case of spheroids.
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.
Yao, Kun; Herr, John E; Toth, David W; Mckintyre, Ryker; Parkhill, John
2018-02-28
Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry.
A molecular quantum spin network controlled by a single qubit.
Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit
2017-08-01
Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.
2012-08-01
model appears in cosmic microwave background analysis [10] which solves min A,Y λ 2 trace ( (ABY − X)>C−1(ABY − X) ) + r(Y), subject to A ∈ D (1.5...and “×n” represent outer product and tensor-matrix multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most
Perera, Ajith; Gauss, Jürgen; Verma, Prakash; Morales, Jorge A
2017-04-28
We present a parallel implementation to compute electron spin resonance g-tensors at the coupled-cluster singles and doubles (CCSD) level which employs the ACES III domain-specific software tools for scalable parallel programming, i.e., the super instruction architecture language and processor (SIAL and SIP), respectively. A unique feature of the present implementation is the exact (not approximated) inclusion of the five one- and two-particle contributions to the g-tensor [i.e., the mass correction, one- and two-particle paramagnetic spin-orbit, and one- and two-particle diamagnetic spin-orbit terms]. Like in a previous implementation with effective one-electron operators [J. Gauss et al., J. Phys. Chem. A 113, 11541-11549 (2009)], our implementation utilizes analytic CC second derivatives and, therefore, classifies as a true CC linear-response treatment. Therefore, our implementation can unambiguously appraise the accuracy of less costly effective one-particle schemes and provide a rationale for their widespread use. We have considered a large selection of radicals used previously for benchmarking purposes including those studied in earlier work and conclude that at the CCSD level, the effective one-particle scheme satisfactorily captures the two-particle effects less costly than the rigorous two-particle scheme. With respect to the performance of density functional theory (DFT), we note that results obtained with the B3LYP functional exhibit the best agreement with our CCSD results. However, in general, the CCSD results agree better with the experimental data than the best DFT/B3LYP results, although in most cases within the rather large experimental error bars.
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael
2017-05-01
Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.
Cotič, Živa; Rees, Rebecca; Wark, Petra A; Car, Josip
2016-10-19
In 2013, there was a shortage of approximately 7.2 million health workers worldwide, which is larger among family physicians than among specialists. eLearning could provide a potential solution to some of these global workforce challenges. However, there is little evidence on factors facilitating or hindering implementation, adoption, use, scalability and sustainability of eLearning. This review aims to synthesise results from qualitative and mixed methods studies to provide insight on factors influencing implementation of eLearning for family medicine specialty education and training. Additionally, this review aims to identify the actions needed to increase effectiveness of eLearning and identify the strategies required to improve eLearning implementation, adoption, use, sustainability and scalability for family medicine speciality education and training. A systematic search will be conducted across a range of databases for qualitative studies focusing on experiences, barriers, facilitators, and other factors related to the implementation, adoption, use, sustainability and scalability of eLearning for family medicine specialty education and training. Studies will be synthesised by using the framework analysis approach. This study will contribute to the evaluation of eLearning implementation, adoption, use, sustainability and scalability for family medicine specialty training and education and the development of eLearning guidelines for postgraduate medical education. PROSPERO http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42016036449.
gamAID: Greedy CP tensor decomposition for supervised EHR-based disease trajectory differentiation.
Henderson, Jette; Ho, Joyce; Ghosh, Joydeep
2017-07-01
We propose gamAID, an exploratory, supervised nonnegative tensor factorization method that iteratively extracts phenotypes from tensors constructed from medical count data. Using data from diabetic patients who later on get diagnosed with chronic kidney disorder (CKD) as well as diabetic patients who do not receive a CKD diagnosis, we demonstrate the potential of gamAID to discover phenotypes that characterize patients who are at risk for developing a disease.
Gravitational wave memory in an expanding universe
NASA Astrophysics Data System (ADS)
Tolish, Alexander; Wald, Robert
2016-03-01
We investigate the gravitational wave memory effect in an expanding FLRW spacetime. We find that if the gravitational field is decomposed into gauge-invariant scalar, vector, and tensor modes after the fashion of Bardeen, only the tensor mode gives rise to memory, and this memory can be calculated using the retarded Green's function associated with the tensor wave equation. If locally similar radiation source events occur on flat and FLRW backgrounds, we find that the resulting memories will differ only by a redshift factor, and we explore whether or not this factor depends on the expansion history of the FLRW universe. We compare our results to related work by Bieri, Garfinkle, and Yau.
Multi-view non-negative tensor factorization as relation learning in healthcare data.
Hang Wu; Wang, May D
2016-08-01
Discovering patterns in co-occurrences data between objects and groups of concepts is a useful task in many domains, such as healthcare data analysis, information retrieval, and recommender systems. These relational representations come from objects' behaviors in different views, posing a challenging task of integrating information from these views to uncover the shared latent structures. The problem is further complicated by the high dimension of data and the large ratio of missing data. We propose a new paradigm of learning semantic relations using tensor factorization, by jointly factorizing multi-view tensors and searching for a consistent underlying semantic space across each views. We formulate the idea as an optimization problem and propose efficient optimization algorithms, with a special treatment of missing data as well as high-dimensional data. Experiments results show the potential and effectiveness of our algorithms.
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
Kastner, Monika; Sayal, Radha; Oliver, Doug; Straus, Sharon E; Dolovich, Lisa
2017-08-01
Chronic diseases are a significant public health concern, particularly in older adults. To address the delivery of health care services to optimally meet the needs of older adults with multiple chronic diseases, Health TAPESTRY (Teams Advancing Patient Experience: Strengthening Quality) uses a novel approach that involves patient home visits by trained volunteers to collect and transmit relevant health information using e-health technology to inform appropriate care from an inter-professional healthcare team. Health TAPESTRY was implemented, pilot tested, and evaluated in a randomized controlled trial (analysis underway). Knowledge translation (KT) interventions such as Health TAPESTRY should involve an investigation of their sustainability and scalability determinants to inform further implementation. However, this is seldom considered in research or considered early enough, so the objectives of this study were to assess the sustainability and scalability potential of Health TAPESTRY from the perspective of the team who developed and pilot-tested it. Our objectives were addressed using a sequential mixed-methods approach involving the administration of a validated, sustainability survey developed by the National Health Service (NHS) to all members of the Health TAPESTRY team who were actively involved in the development, implementation and pilot evaluation of the intervention (Phase 1: n = 38). Mean sustainability scores were calculated to identify the best potential for improvement across sustainability factors. Phase 2 was a qualitative study of interviews with purposively selected Health TAPESTRY team members to gain a more in-depth understanding of the factors that influence the sustainability and scalability Health TAPESTRY. Two independent reviewers coded transcribed interviews and completed a multi-step thematic analysis. Outcomes were participant perceptions of the determinants influencing the sustainability and scalability of Health TAPESTRY. Twenty Health TAPESTRY team members (53% response rate) completed the NHS sustainability survey. The overall mean sustainability score was 64.6 (range 22.8-96.8). Important opportunities for improving sustainability were better staff involvement and training, clinical leadership engagement, and infrastructure for sustainability. Interviews with 25 participants (response rate 60%) showed that factors influencing the sustainability and scalability of Health TAPESTRY emerged across two dimensions: I) Health TAPESTRY operations (development and implementation activities undertaken by the central team); and II) the Health TAPESTRY intervention (factors specific to the intervention and its elements). Resource capacity appears to be an important factor to consider for Health TAPESTRY operations as it was identified across both sustainability and scalability factors; and perceived lack of interprofessional team and volunteer resource capacity and the need for stakeholder buy-in are important considerations for the Health TAPESTRY intervention. We used these findings to create actionable recommendations to initiate dialogue among Health TAPESTRY team members to improve the intervention. Our study identified sustainability and scalability determinants of the Health TAPESTRY intervention that can be used to optimize its potential for impact. Next steps will involve using findings to inform a guide to facilitate sustainability and scalability of Health TAPESTRY in other jurisdictions considering its adoption. Our findings build on the limited current knowledge of sustainability, and advances KT science related to the sustainability and scalability of KT interventions.
NASA Astrophysics Data System (ADS)
Anderson, David; Yunes, Nicolás
2017-09-01
Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.
Tensor Fukunaga-Koontz transform for small target detection in infrared images
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli
2016-09-01
Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.
Ward identities and combinatorics of rainbow tensor models
NASA Astrophysics Data System (ADS)
Itoyama, H.; Mironov, A.; Morozov, A.
2017-06-01
We discuss the notion of renormalization group (RG) completion of non-Gaussian Lagrangians and its treatment within the framework of Bogoliubov-Zimmermann theory in application to the matrix and tensor models. With the example of the simplest non-trivial RGB tensor theory (Aristotelian rainbow), we introduce a few methods, which allow one to connect calculations in the tensor models to those in the matrix models. As a byproduct, we obtain some new factorization formulas and sum rules for the Gaussian correlators in the Hermitian and complex matrix theories, square and rectangular. These sum rules describe correlators as solutions to finite linear systems, which are much simpler than the bilinear Hirota equations and the infinite Virasoro recursion. Search for such relations can be a way to solving the tensor models, where an explicit integrability is still obscure.
Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement.
Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh
2017-08-01
Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In
Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At lowmore » frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T; Chapman, C; Lawrence, T
2015-06-15
Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to themore » Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines after brain irradiation. NIH NS064973.« less
A Fermi-degenerate three-dimentional optical lattice clock
NASA Astrophysics Data System (ADS)
Goban, Akihisa; Campbell, Sara; Hutson, Ross; Marti, G. Edward; Sonderhouse, Lindsay; Robinson, John; Zhang, Wei; Ye, Jun
2017-04-01
The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, tighter limits on fundamental constant variation, and improved tests of relativity. Recent progress in optical lattice clock to the accuracy of 2E-18 has benefited from the understanding of atomic interactions. Also the precision of clock spectroscopy has been applied to explore many-body interactions including SU(N) symmetry. In our previous 1D optical lattice, atomic interactions cause suppression and broadening of the atomic resonance, limiting the clock stability. To overcome this limitation, we demonstrate a scalable solution that takes advantage of the high density of a degenerate Fermi gas in a three-dimensional optical lattice to protect against on-site interaction shifts. Using an ultrastable laser, we achieve an unprecedented level of atom-light coherence, reaching a spectroscopic quality factor 5.2E15. We investigate clock systematics unique to this design; on-site interactions are resolved so that their contribution to clock shifts is orders of magnitude suppressed compared to the 1D optical lattice experiments. Also, we measure the combined scalar and tensor magic wavelengths for state-independent trapping along all three lattice axes. We acknowledge support from NIST, DARPA and the NSF JILA Physics Frontier Center.
Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.
Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai
2016-03-01
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
FLRW Cosmology from Yang-Mills Gravity
NASA Astrophysics Data System (ADS)
Katz, Daniel
2013-04-01
We extend to basic cosmology the subject of Yang-Mills gravity - a theory of gravity based on local translational gauge invariance in flat spacetime. It has been shown that this particular gauge invariance leads to tensor factors in the macroscopic limit of the equations of motion of particles which plays the same role as the metric tensor of General Relativity. The assumption that this ``effective metric" tensor takes on the standard FLRW form is our starting point. Equations analogous to the Friedman equations are derived and then solved in closed form for the three special cases of a universe dominated by 1) matter, 2) radiation, and 3) dark energy. We find that the solutions for the scale factor are similar to, but distinct from, those found in the corresponding GR based treatment.
Symmetric factorization of the conformation tensor in viscoelastic fluid models
NASA Astrophysics Data System (ADS)
Thomases, Becca; Balci, Nusret; Renardy, Michael; Doering, Charles
2010-11-01
The positive definite symmetric polymer conformation tensor possesses a unique symmetric square root that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow. When expressed in terms of the velocity field and the symmetric square root of the conformation tensor, these models' equations of motion formally constitute an evolution in a Hilbert space with a total energy functional that defines a norm. Moreover, this formulation is easily implemented in direct numerical simulations resulting in significant practical advantages in terms of both accuracy and stability.
BCYCLIC: A parallel block tridiagonal matrix cyclic solver
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.
2010-09-01
A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.
NASA Astrophysics Data System (ADS)
Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing
2017-07-01
The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy of soils and granular rocks during deformation, for instance during landslides, and to use the evolution of the conductivity tensor to monitor mechanical properties.
FLRW Cosmology from Yang-Mills Gravity with Translational Gauge Symmetry
NASA Astrophysics Data System (ADS)
Katz, Daniel
2013-03-01
We extend to basic cosmology the subject of Yang-Mills gravity — a theory of gravity based on local translational gauge invariance in flat space-time. It has been shown that this particular gauge invariance leads to tensor factors in the macroscopic limit of the equations of motion of particles which plays the same role as the metric tensor of general relativity (GR). The assumption that this "effective metric" tensor takes on the standard FLRW form is our starting point. Equations analogous to the Friedmann equations are derived and then solved in closed form for the three special cases of a universe dominated by (1) matter, (2) radiation and (3) dark energy. We find that the solutions for the scale factor are similar to, but distinct from, those found in the corresponding GR based treatment.
Solving differential equations with unknown constitutive relations as recurrent neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.
We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less
Intrinsic Decomposition of The Stretch Tensor for Fibrous Media
NASA Astrophysics Data System (ADS)
Kellermann, David C.
2010-05-01
This paper presents a novel mechanism for the description of fibre reorientation based on the decomposition of the stretch tensor according to a given material's intrinsic constitutive properties. This approach avoids the necessity for fibre directors, structural tensors or specialised model such as the ideal fibre reinforced model, which are commonly applied to the analysis of fibre kinematics in the finite deformation of fibrous media for biomechanical problems. The proposed approach uses Intrinsic-Field Tensors (IFTs) that build upon the linear orthotropic theory presented in a previous paper entitled Strongly orthotropic continuum mechanics and finite element treatment. The intrinsic decomposition of the stretch tensor therein provides superior capacity to represent the intermediary kinematics driven by finite orthotropic ratios, where the benefits are predominantly expressed in cases of large deformation as is typical in the biomechanical studies. Satisfaction of requirements such as Material Frame-Indifference (MFI) and Euclidean objectivity are demonstrated here—these factors being necessary for the proposed IFTs to be valid tensorial quantities. The resultant tensors, initially for the simplest case of linear elasticity, are able to describe the same fibre reorientation as would the contemporary approaches such as with use of structural tensors and the like, while additionally being capable of showing results intermediary to classical isotropy and the infinitely orthotropic representations. This intermediary case is previously unreported.
Ghose, R; Fushman, D; Cowburn, D
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Ghose, Ranajeet; Fushman, David; Cowburn, David
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.
Scalability in Distance Education: "Can We Have Our Cake and Eat It Too?"
ERIC Educational Resources Information Center
Laws, R. Dwight; Howell, Scott L.; Lindsay, Nathan K.
2003-01-01
The decision to increase distance education enrollment hinges on the factors of pedagogical effectiveness, interactivity, audience, faculty incentives, retention, program type, and profitability. A complex interplay exists among these scalability concerns (i.e., issues related to meeting the growing enrollment demand), and any program's approach…
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu; Hohenstein, Edward G.
2014-05-14
We apply orbital-weighted least-squares tensor hypercontraction decomposition of the electron repulsion integrals to accelerate the coupled cluster singles and doubles (CCSD) method. Using accurate and flexible low-rank factorizations of the electron repulsion integral tensor, we are able to reduce the scaling of the most vexing particle-particle ladder term in CCSD from O(N{sup 6}) to O(N{sup 5}), with remarkably low error. Combined with a T{sub 1}-transformed Hamiltonian, this leads to substantial practical accelerations against an optimized density-fitted CCSD implementation.
Cosmic microwave background probes models of inflation
NASA Technical Reports Server (NTRS)
Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.
1992-01-01
Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.
Unified tensor model for space-frequency spreading-multiplexing (SFSM) MIMO communication systems
NASA Astrophysics Data System (ADS)
de Almeida, André LF; Favier, Gérard
2013-12-01
This paper presents a unified tensor model for space-frequency spreading-multiplexing (SFSM) multiple-input multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings, followed by a space-frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers) adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal space-frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based receiver is illustrated by means of computer simulation results under realistic channel and system parameters.
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
NASA Astrophysics Data System (ADS)
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.
Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano
2016-11-01
Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains
Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano
2016-01-01
Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363
Design for Scalability: A Case Study of the River City Curriculum
ERIC Educational Resources Information Center
Clarke, Jody; Dede, Chris
2009-01-01
One-size-fits-all educational innovations do not work because they ignore contextual factors that determine an intervention's efficacy in a particular local situation. This paper presents a framework on how to design educational innovations for scalability through enhancing their adaptability for effective usage in a wide variety of settings. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Neelesh; Verma, R. C.; Dhir, Rohit
2011-01-01
In this paper, we investigate phenomenologically two-body weak decays of the bottom mesons emitting pseudoscalar/vector meson and a tensor meson. Form factors are obtained using the improved Isgur-Scora-Grinstein-Wise II model. Consequently, branching ratios for the Cabibbo-Kobayashi-Maskawa-favored and Cabibbo-Kobayashi-Maskawa-suppressed decays are calculated.
Lambda-universe in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
2009-09-01
We present a lambda-Universe, in scalar-tensor gravity, reviewing Berman and Trevisan’s inflationary case (Berman and Trevisan in Int. J. Theor. Phys., 2009) and then we find a solution for an accelerating power-law scale-factor. The negativity of cosmic pressure implies acceleration of the expansion, even with Λ<0. The cosmological term, and the coupling “constant”, are in fact, time-varying.
Quantitative analysis of hypertrophic myocardium using diffusion tensor magnetic resonance imaging
Tran, Nicholas; Giannakidis, Archontis; Gullberg, Grant T.; Seo, Youngho
2016-01-01
Abstract. Systemic hypertension is a causative factor in left ventricular hypertrophy (LVH). This study is motivated by the potential to reverse or manage the dysfunction associated with structural remodeling of the myocardium in this pathology. Using diffusion tensor magnetic resonance imaging, we present an analysis of myocardial fiber and laminar sheet orientation in ex vivo hypertrophic (6 SHR) and normal (5 WKY) rat hearts using the covariance of the diffusion tensor. First, an atlas of normal cardiac microstructure was formed using the WKY b0 images. Then, the SHR and WKY b0 hearts were registered to the atlas. The acquired deformation fields were applied to the SHR and WKY heart tensor fields followed by the preservation of principal direction (PPD) reorientation strategy. A mean tensor field was then formed from the registered WKY tensor images. Calculating the covariance of the registered tensor images about this mean for each heart, the hypertrophic myocardium exhibited significantly increased myocardial fiber derangement (p=0.017) with a mean dispersion of 38.7 deg, and an increased dispersion of the laminar sheet normal (p=0.030) of 54.8 deg compared with 34.8 deg and 51.8 deg, respectively, in the normal hearts. Results demonstrate significantly altered myocardial fiber and laminar sheet structure in rats with hypertensive LVH. PMID:27872872
Influence of the Proton Pressure Tensor on the Turbulent Velocity Spectrum at Ion Kinetic Scales
NASA Astrophysics Data System (ADS)
Vasquez, B. J.; Markovskii, S.
2011-12-01
Numerical hybrid simulations with particle protons and fluid electrons are presented for turbulent fluctuations with spatial variations in a plane perpendicular to the background magnetic field. The steepened portion of the proton bulk velocity spectrum is found at smaller wavenumbers for larger background proton temperature. The velocity spectrum is determined, in part, by the proton pressure tensor. The proton pressure tensor is shown to possess non-gyrotropic and finite off-diagonal components in the places where the turbulent fluctuations have developed strong gradients. Proton demagnetization at these places is a factor in the departure from a Maxwellian velocity distribution function. How demagnetization could connect with both reversible and effectively irreversible aspects of the pressure tensor is considered. The effectively irreversible aspect corresponds to the net heating of the protons and to the dissipation of the turbulent energy cascade.
A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.
Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano
2015-01-01
This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222
Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.
Polymer stress tensor in turbulent shear flows.
L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil
2005-01-01
The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent flows of increasing complexity. First is isotropic turbulence, then anisotropic (but homogenous) shear turbulence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer stress tensor attains a universal structure in the limit of large Deborah number De > 1. We present analytic results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the turbulent velocity fluctuations are strongly correlated with the polymer's elongation: there appear high-quality "hydroelastic" waves in which turbulent kinetic energy turns into polymer potential energy and vice versa. These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure. We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic stress tensor. This component is smaller than the streamwise component by a factor proportional to De2. Finally we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag reduction by polymers.
Low-Rank Tensor Subspace Learning for RGB-D Action Recognition.
Jia, Chengcheng; Fu, Yun
2016-07-09
Since RGB-D action data inherently equip with extra depth information compared with RGB data, recently many works employ RGB-D data in a third-order tensor representation containing spatio-temporal structure to find a subspace for action recognition. However, there are two main challenges of these methods. First, the dimension of subspace is usually fixed manually. Second, preserving local information by finding intraclass and inter-class neighbors from a manifold is highly timeconsuming. In this paper, we learn a tensor subspace, whose dimension is learned automatically by low-rank learning, for RGB-D action recognition. Particularly, the tensor samples are factorized to obtain three Projection Matrices (PMs) by Tucker Decomposition, where all the PMs are performed by nuclear norm in a close-form to obtain the tensor ranks which are used as tensor subspace dimension. Additionally, we extract the discriminant and local information from a manifold using a graph constraint. This graph preserves the local knowledge inherently, which is faster than the previous way by calculating both the intra-class and inter-class neighbors of each sample. We evaluate the proposed method on four widely used RGB-D action datasets including MSRDailyActivity3D, MSRActionPairs, MSRActionPairs skeleton and UTKinect-Action3D datasets, and the experimental results show higher accuracy and efficiency of the proposed method.
Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki
2015-12-01
Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Viable tensor-to-scalar ratio in a symmetric matter bounce
NASA Astrophysics Data System (ADS)
Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.
2018-01-01
Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.
NASA Astrophysics Data System (ADS)
Zábranová, Eliška; Matyska, Ctirad
2014-10-01
After the 2010 Maule and 2011 Tohoku earthquakes the spheroidal modes up to 1 mHz were clearly registered by the Global Geodynamic Project (GGP) network of superconducting gravimeters (SG). Fundamental parameters in synthetic calculations of the signals are the quality factors of the modes. We study the role of their uncertainties in the centroid-moment-tensor (CMT) inversions. First, we have inverted the SG data from selected GGP stations to jointly determine the quality factors of these normal modes and the three low-frequency CMT components, Mrr,(Mϑϑ-Mφφ)/2 and Mϑφ, that generate the observed SG signal. We have used several-days-long records to minimize the trade-off between the quality factors and the CMT but it was not eliminated completely. We have also inverted each record separately to get error estimates of the obtained parameters. Consequently, we have employed the GGP records of 60-h lengths for several published modal-quality-factor sets and inverted only the same three CMT components. The obtained CMT tensors are close to the solution from the joint Q-CMT inversion of longer records and resulting variability of the CMT components is smaller than differences among routine agency solutions. Reliable low-frequency CMT components can thus be obtained for any quality factors from the studied sets.
Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng
2017-01-01
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385
Susceptibility Tensor Imaging (STI) of the Brain
Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu
2016-01-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
NASA Astrophysics Data System (ADS)
Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.
2018-03-01
The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.
Scalable Planning and Learning for Multiagent POMDPs
2015-01-01
Scalable Planning and Learning for Multiagent POMDPs Christopher Amato CSAIL, MIT Cambridge, MA 02139 camato@csail.mit.edu Frans A. Oliehoek...state of a special POMDP, called a BA- POMDP. The BA-POMDP can be extended to the multiagent setting ( Amato and Oliehoek 2013), yielding the Bayes...2012; Amato et al. 2013) in the form of factored Dec-POMDPs (Oliehoek, Whiteson, and Spaan 2013; Pajarinen and Pel- tonen 2011) and networked
NASA Astrophysics Data System (ADS)
Saif, S.; Brownlee, S. J.
2017-12-01
Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.
Tensor-driven extraction of developmental features from varying paediatric EEG datasets.
Kinney-Lang, Eli; Spyrou, Loukianos; Ebied, Ahmed; Chin, Richard Fm; Escudero, Javier
2018-05-21
Constant changes in developing children's brains can pose a challenge in EEG dependant technologies. Advancing signal processing methods to identify developmental differences in paediatric populations could help improve function and usability of such technologies. Taking advantage of the multi-dimensional structure of EEG data through tensor analysis may offer a framework for extracting relevant developmental features of paediatric datasets. A proof of concept is demonstrated through identifying latent developmental features in resting-state EEG. Approach. Three paediatric datasets (n = 50, 17, 44) were analyzed using a two-step constrained parallel factor (PARAFAC) tensor decomposition. Subject age was used as a proxy measure of development. Classification used support vector machines (SVM) to test if PARAFAC identified features could predict subject age. The results were cross-validated within each dataset. Classification analysis was complemented by visualization of the high-dimensional feature structures using t-distributed Stochastic Neighbour Embedding (t-SNE) maps. Main Results. Development-related features were successfully identified for the developmental conditions of each dataset. SVM classification showed the identified features could accurately predict subject at a significant level above chance for both healthy and impaired populations. t-SNE maps revealed suitable tensor factorization was key in extracting the developmental features. Significance. The described methods are a promising tool for identifying latent developmental features occurring throughout childhood EEG. © 2018 IOP Publishing Ltd.
Brownian thermal noise in functional optical surfaces
NASA Astrophysics Data System (ADS)
Kroker, S.; Dickmann, J.; Rojas Hurtado, C. B.; Heinert, D.; Nawrodt, R.; Levin, Y.; Vyatchanin, S. P.
2017-07-01
We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor. This paper shows how to relate this form factor to Maxwell's stress tensor computed on all interfaces of the moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013), 10.1103/PhysRevD.88.042001] utilizing a simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those of the exact analysis in the present paper. The relation between the form factor and Maxwell's stress tensor implies a close correlation between the optical properties of functional optical surfaces and thermal noise.
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data.
Liu, Yuanyuan; Shang, Fanhua; Jiao, Licheng; Cheng, James; Cheng, Hong
2015-11-01
In recent years, low-rank tensor completion (LRTC) problems have received a significant amount of attention in computer vision, data mining, and signal processing. The existing trace norm minimization algorithms for iteratively solving LRTC problems involve multiple singular value decompositions of very large matrices at each iteration. Therefore, they suffer from high computational cost. In this paper, we propose a novel trace norm regularized CANDECOMP/PARAFAC decomposition (TNCP) method for simultaneous tensor decomposition and completion. We first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, and then achieve a convex combination problem of much smaller-scale matrix trace norm minimization. Finally, we develop an efficient algorithm based on alternating direction method of multipliers to solve our problem. The promising experimental results on synthetic and real-world data validate the effectiveness of our TNCP method. Moreover, TNCP is significantly faster than the state-of-the-art methods and scales to larger problems.
Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200×
Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian
2015-01-01
How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ‘edible’, ‘fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we accelerate any CMTF solver, so that it runs within a few minutes instead of tens of hours to a day, while maintaining good accuracy? We introduce TURBO-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, by up to 200×, along with an up to 65 fold increase in sparsity, with comparable accuracy to the baseline. We apply TURBO-SMT to BRAINQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. TURBO-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. PMID:26473087
Hydrogen bonds in betaine-acid (1:1) crystals revealed by Raman and 13C chemical shift tensors
NASA Astrophysics Data System (ADS)
Ilczyszyn, Marek; Ilczyszyn, Maria M.
2017-06-01
H-bonds of five betaine-acid (1:1) crystals are considered by analysis of tensors based on the Raman scissoring mode and 13C chemical shift of the betaine -CO1O2- carboxylate group. The leading structural factor in these systems is the strongest H-bond linking the betaine and the acidic moieties, (O1⋯H-O)com. The Raman and NMR tensors are strongly related to its character and to the R(O1⋯O)com distance. Very high molecular polarizability variation due to the scissoring vibration was found for the betaine-selenious acid crystal. The probable reason is modest network of H-bonds in this case and relatively high proton polarizability of these bonds.
Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite
NASA Astrophysics Data System (ADS)
Yang, X.; Cleveland, M.
2016-12-01
We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.
Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin
2017-10-24
The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.
Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; ...
2015-01-01
We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditionermore » results in faster linear solve times but the ILU preconditioner exhibits better scalability. In addition, a weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. We show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.« less
Iso-vector form factors of the delta and nucleon in QCD sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozpineci, A.
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, N. C., E-mail: natalia.docarmocarvalho@research.uwa.edu.au; Le Floch, J-M.; Tobar, M. E.
The Y{sub 2}SiO{sub 5} (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of amore » few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.« less
Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste
2013-03-01
Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupledmore » cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.« less
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
Song, Chenchen; Martinez, Todd J.
2017-08-29
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. Furthermore, the resulting energy conservation in micro-canonical AIMD demonstrates that the implementationmore » provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.« less
Pryce-Hoyle Tensor in a Combined Einstein-Cartan-Brans-Dicke Model
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
2009-03-01
In addition to introducing matter injection through a scalar field determined by Pryce-Hoyle tensor, we also combine it with a BCDE (Brans-Dicke-Einstein-Cartan) theory with lambda-term developed earlier by Berman (Astrophys. Space Sci. 314:79-82, 2008), for inflationary scenario. It involves a variable cosmological constant, which decreases with time, jointly with energy density, cosmic pressure, shear, vorticity, and Hubble’s parameter, while the scale factor, total spin and scalar field increase exponentially. The post-inflationary fluid resembles a perfect one, though total spin grows, but not the angular speed (Berman, in Astrophys. Space Sci. 312:275, 2007). The Pryce-Hoyle tensor, which can measured by the number of injected particles per unit proper volume and time, as well as shear and vorticity, can be neglected in the aftermath of inflation (“no-hair”).
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
NASA Astrophysics Data System (ADS)
Song, Chenchen; Martínez, Todd J.
2017-10-01
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. The resulting energy conservation in micro-canonical AIMD demonstrates that the implementation provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chenchen; Martinez, Todd J.
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. Furthermore, the resulting energy conservation in micro-canonical AIMD demonstrates that the implementationmore » provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.« less
Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach
NASA Astrophysics Data System (ADS)
Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin
2017-08-01
Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, So
2003-11-20
We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes commonmore » binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ).« less
Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.
Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas
2017-03-28
We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.
Classical stability of sudden and big rip singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrow, John D.; Lip, Sean Z. W.
2009-08-15
We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.
Primordial perturbations from dilaton-induced gauge fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kiwoon; Choi, Ki-Young; Kim, Hyungjin
2015-10-01
We study the primordial scalar and tensor perturbations in inflation scenario involving a spectator dilaton field. In our setup, the rolling spectator dilaton causes a tachyonic instability of gauge fields, leading to a copious production of gauge fields in the superhorizon regime, which generates additional scalar and tensor perturbations through gravitational interactions. Our prime concern is the possibility to enhance the tensor-to-scalar ratio r relative to the standard result, while satisfying the observational constraints. To this end, we allow the dilaton field to be stabilized before the end of inflation, but after the CMB scales exit the horizon. We showmore » that for the inflaton slow roll parameter ε ∼> 10{sup −3}, the tensor-to-scalar ratio in our setup can be enhanced only by a factor of O(1) compared to the standard result. On the other hand, for smaller ε corresponding to a lower inflation energy scale, a much bigger enhancement can be achieved, so that our setup can give rise to an observably large r∼> 10{sup −2} even when ε|| 10{sup −3}. The tensor perturbation sourced by the spectator dilaton can have a strong scale dependence, and is generically red-tilted. We also discuss a specific model to realize our scenario, and identify the parameter region giving an observably large r for relatively low inflation energy scales.« less
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-01-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-08-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
Characterizing and Discovering Spatiotemporal Social Contact Patterns for Healthcare.
Yang, Bo; Pei, Hongbin; Chen, Hechang; Liu, Jiming; Xia, Shang
2017-08-01
During an epidemic, the spatial, temporal and demographic patterns of disease transmission are determined by multiple factors. In addition to the physiological properties of the pathogens and hosts, the social contact of the host population, which characterizes the reciprocal exposures of individuals to infection according to their demographic structure and various social activities, are also pivotal to understanding and predicting the prevalence of infectious diseases. How social contact is measured will affect the extent to which we can forecast the dynamics of infections in the real world. Most current work focuses on modeling the spatial patterns of static social contact. In this work, we use a novel perspective to address the problem of how to characterize and measure dynamic social contact during an epidemic. We propose an epidemic-model-based tensor deconvolution framework in which the spatiotemporal patterns of social contact are represented by the factors of the tensors. These factors can be discovered using a tensor deconvolution procedure with the integration of epidemic models based on rich types of data, mainly heterogeneous outbreak surveillance data, socio-demographic census data and physiological data from medical reports. Using reproduction models that include SIR/SIS/SEIR/SEIS models as case studies, the efficacy and applications of the proposed framework are theoretically analyzed, empirically validated and demonstrated through a set of rigorous experiments using both synthetic and real-world data.
Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra
2016-05-31
In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal periventricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periventricular white matter astrocyte and aquaporin-4 levels. Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of periventricular white matter pathology in communicating hydrocephalus.
NASA Astrophysics Data System (ADS)
Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian
2018-06-01
Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.
NASA Astrophysics Data System (ADS)
Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian
2018-03-01
Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.
Relativistic analysis of stochastic kinematics
NASA Astrophysics Data System (ADS)
Giona, Massimiliano
2017-10-01
The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.
Integrability conditions for Killing-Yano tensors and conformal Killing-Yano tensors
NASA Astrophysics Data System (ADS)
Batista, Carlos
2015-01-01
The integrability conditions for the existence of a conformal Killing-Yano tensor of arbitrary order are worked out in all dimensions and expressed in terms of the Weyl tensor. As a consequence, the integrability conditions for the existence of a Killing-Yano tensor are also obtained. By means of such conditions, it is shown that in certain Einstein spaces one can use a conformal Killing-Yano tensor of order p to generate a Killing-Yano tensor of order (p -1 ) . Finally, it is proved that in maximally symmetric spaces the covariant derivative of a Killing-Yano tensor is a closed conformal Killing-Yano tensor and that every conformal Killing-Yano tensor is uniquely decomposed as the sum of a Killing-Yano tensor and a closed conformal Killing-Yano tensor.
Complex conductivity of organic-rich shales
NASA Astrophysics Data System (ADS)
Woodruff, W. F.; Revil, A.; Torres-Verdin, C.
2013-12-01
We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The components of the formation factor and connectivity (tortuosity) tensors Fij and Tij (affecting the bulk and surface conductivity, respectively) are correlated as Fij=TijΦ. Both conductivity and connectivity tensors share the same eigenvectors; the anisotropy ratio is equivalent in TI media. At high pore water salinity, surface and quadrature conductivity share the same bulk tortuosity; when surface conductivity dominates (low salinity), conductivity is controlled by the surface conductance, and the tortuosity of electrical current along mineral surfaces usually higher than that of the pore water. We developed two distinct SIP measurement protocols to obtain the tensor: (1) azimuthal sampling and inversion of phasor potentials through the full-field solution of the Laplace equation; (2) direct measurement of complex conductivity eigenvalues by polarized, single-component stimulus current. Experiments also include unsaturated and saturated measurements with three brines of known salinity and pH, at log-distributed frequencies ranging 1 mHz to 45 kHz. Both azimuthal spectra and eigenvalue spectra validate the theoretical model and illustrate the effectiveness of the protocols themselves. We obtain the textural tensors and invert key parameters including Archie exponents and CEC, and characterize the relaxation phenomena associated with kerogen content and maturity for multiphase fluid systems.
Nucleon form factors from quenched lattice QCD with domain wall fermions
NASA Astrophysics Data System (ADS)
Sasaki, Shoichi; Yamazaki, Takeshi
2008-07-01
We present a quenched lattice calculation of the weak nucleon form factors: vector [FV(q2)], induced tensor [FT(q2)], axial vector [FA(q2)] and induced pseudoscalar [FP(q2)] form factors. Our simulations are performed on three different lattice sizes L3×T=243×32, 163×32, and 123×32 with a lattice cutoff of a-1≈1.3GeV and light quark masses down to about 1/4 the strange quark mass (mπ≈390MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6fm)3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q2≈0.1GeV2) are accessible. The q2 dependences of form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector form factors are well described by the dipole form, while the induced pseudoscalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA/gV=FA(0)/FV(0)=1.219(38) and the pseudoscalar coupling gP=mμFP(0.88mμ2)=8.15(54), where the errors are statistical errors only. These values agree with experimental values from neutron β decay and muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
Solution of Einsteins Equation for Deformation of a Magnetized Neutron Star
NASA Astrophysics Data System (ADS)
Rizaldy, R.; Sulaksono, A.
2018-04-01
We studied the effect of very large and non-uniform magnetic field existed in the neutron star on the deformation of the neutron star. We used in our analytical calculation, multipole expansion of the tensor metric and the momentum-energy tensor in Legendre polynomial expansion up to the quadrupole order. In this way we obtain the solutions of Einstein’s equation with the correction factors due to the magnetic field are taken into account. We obtain from our numerical calculation that the degree of deformation (ellipticity) is increased when the the mass is decreased.
Gluing operation and form factors of local operators in N = 4 Super Yang-Mills theory
NASA Astrophysics Data System (ADS)
Bolshov, A. E.
2018-04-01
The gluing operation is an effective way to get form factors of both local and non-local operators starting from different representations of on-shell scattering amplitudes. In this paper it is shown how it works on the example of form factors of operators from stress-tensor operator supermultiplet in Grassmannian and spinor helicity representations.
Development of a Human Brain Diffusion Tensor Template
Peng, Huiling; Orlichenko, Anton; Dawe, Robert J.; Agam, Gady; Zhang, Shengwei; Arfanakis, Konstantinos
2009-01-01
The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the development of a white matter atlas. Previous efforts to produce a DTI brain template have been compromised by factors related to image quality, the effectiveness of the image registration approach, the appropriateness of subject inclusion criteria, the completeness and accuracy of the information summarized in the final template. The purpose of this work was to develop a DTI human brain template using techniques that address the shortcomings of previous efforts. Therefore, data containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-group with relatively similar diffusion characteristics (20–40 years of age), using an appropriate DTI acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional anisotropy images was employed. DTI brain templates containing median and mean tensors were produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is characterized by higher image sharpness, provides the ability to distinguish smaller white matter fiber structures, contains fewer image artifacts, than previously developed templates, and to our knowledge, is one of only two templates produced based on a relatively large number of subjects. Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group level than mean tensors. Finally, white matter fiber tractography was applied on the template and several fiber-bundles were traced. PMID:19341801
Development of a human brain diffusion tensor template.
Peng, Huiling; Orlichenko, Anton; Dawe, Robert J; Agam, Gady; Zhang, Shengwei; Arfanakis, Konstantinos
2009-07-15
The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the development of a white matter atlas. Previous efforts to produce a DTI brain template have been compromised by factors related to image quality, the effectiveness of the image registration approach, the appropriateness of subject inclusion criteria, and the completeness and accuracy of the information summarized in the final template. The purpose of this work was to develop a DTI human brain template using techniques that address the shortcomings of previous efforts. Therefore, data containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-group with relatively similar diffusion characteristics (20-40 years of age), using an appropriate DTI acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional anisotropy images was employed. DTI brain templates containing median and mean tensors were produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is characterized by higher image sharpness, provides the ability to distinguish smaller white matter fiber structures, contains fewer image artifacts, than previously developed templates, and to our knowledge, is one of only two templates produced based on a relatively large number of subjects. Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group level than mean tensors. Finally, white matter fiber tractography was applied on the template and several fiber-bundles were traced.
Stedmon, Alex W; Eachus, Peter; Baillie, Les; Tallis, Huw; Donkor, Richard; Edlin-White, Robert; Bracewell, Robert
2015-03-01
Individuals trying to conceal knowledge from interrogators are likely to experience raised levels of stress that can manifest itself across biological, physiological, psychological and behavioural factors, providing an opportunity for detection. Using established research paradigms an innovative scalable interrogation was designed in which participants were given a 'token' that represented information they had to conceal from interviewers. A control group did not receive a token and therefore did not have to deceive the investigators. The aim of this investigation was to examine differences between deceivers and truth-tellers across the four factors by collecting data for cortisol levels, sweat samples, heart-rate, respiration, skin temperature, subjective stress ratings and video and audio recordings. The results provided an integrated understanding of responses to interrogation by those actively concealing information and those acting innocently. Of particular importance, the results also suggest, for the first time in an interrogation setting, that stressed individuals may secrete a volatile steroid based marker that could be used for stand-off detection. The findings are discussed in relation to developing a scalable interrogation protocol for future research in this area. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
A new Weyl-like tensor of geometric origin
NASA Astrophysics Data System (ADS)
Vishwakarma, Ram Gopal
2018-04-01
A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.
Development of the Tensoral Computer Language
NASA Technical Reports Server (NTRS)
Ferziger, Joel; Dresselhaus, Eliot
1996-01-01
The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.
The Invar tensor package: Differential invariants of Riemann
NASA Astrophysics Data System (ADS)
Martín-García, J. M.; Yllanes, D.; Portugal, R.
2008-10-01
The long standing problem of the relations among the scalar invariants of the Riemann tensor is computationally solved for all 6ṡ10 objects with up to 12 derivatives of the metric. This covers cases ranging from products of up to 6 undifferentiated Riemann tensors to cases with up to 10 covariant derivatives of a single Riemann. We extend our computer algebra system Invar to produce within seconds a canonical form for any of those objects in terms of a basis. The process is as follows: (1) an invariant is converted in real time into a canonical form with respect to the permutation symmetries of the Riemann tensor; (2) Invar reads a database of more than 6ṡ10 relations and applies those coming from the cyclic symmetry of the Riemann tensor; (3) then applies the relations coming from the Bianchi identity, (4) the relations coming from commutations of covariant derivatives, (5) the dimensionally-dependent identities for dimension 4, and finally (6) simplifies invariants that can be expressed as product of dual invariants. Invar runs on top of the tensor computer algebra systems xTensor (for Mathematica) and Canon (for Maple). Program summaryProgram title:Invar Tensor Package v2.0 Catalogue identifier:ADZK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZK_v2_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3 243 249 No. of bytes in distributed program, including test data, etc.:939 Distribution format:tar.gz Programming language:Mathematica and Maple Computer:Any computer running Mathematica versions 5.0 to 6.0 or Maple versions 9 and 11 Operating system:Linux, Unix, Windows XP, MacOS RAM:100 Mb Word size:64 or 32 bits Supplementary material:The new database of relations is much larger than that for the previous version and therefore has not been included in the distribution. To obtain the Mathematica and Maple database files click on this link. Classification:1.5, 5 Does the new version supersede the previous version?:Yes. The previous version (1.0) only handled algebraic invariants. The current version (2.0) has been extended to cover differential invariants as well. Nature of problem:Manipulation and simplification of scalar polynomial expressions formed from the Riemann tensor and its covariant derivatives. Solution method:Algorithms of computational group theory to simplify expressions with tensors that obey permutation symmetries. Tables of syzygies of the scalar invariants of the Riemann tensor. Reasons for new version:With this new version, the user can manipulate differential invariants of the Riemann tensor. Differential invariants are required in many physical problems in classical and quantum gravity. Summary of revisions:The database of syzygies has been expanded by a factor of 30. New commands were added in order to deal with the enlarged database and to manipulate the covariant derivative. Restrictions:The present version only handles scalars, and not expressions with free indices. Additional comments:The distribution file for this program is over 53 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time:One second to fully reduce any monomial of the Riemann tensor up to degree 7 or order 10 in terms of independent invariants. The Mathematica notebook included in the distribution takes approximately 5 minutes to run.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.
Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L
The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.
Williams, Alex H; Kim, Tony Hyun; Wang, Forea; Vyas, Saurabh; Ryu, Stephen I; Shenoy, Krishna V; Schnitzer, Mark; Kolda, Tamara G; Ganguli, Surya
2018-06-27
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Databases post-processing in Tensoral
NASA Technical Reports Server (NTRS)
Dresselhaus, Eliot
1994-01-01
The Center for Turbulent Research (CTR) post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, introduced in this document and currently existing in prototype form, is the foundation of this effort. Tensoral provides a convenient and powerful protocol to connect users who wish to analyze fluids databases with the authors who generate them. In this document we introduce Tensoral and its prototype implementation in the form of a user's guide. This guide focuses on use of Tensoral for post-processing turbulence databases. The corresponding document - the Tensoral 'author's guide' - which focuses on how authors can make databases available to users via the Tensoral system - is currently unwritten. Section 1 of this user's guide defines Tensoral's basic notions: we explain the class of problems at hand and how Tensoral abstracts them. Section 2 defines Tensoral syntax for mathematical expressions. Section 3 shows how these expressions make up Tensoral statements. Section 4 shows how Tensoral statements and expressions are embedded into other computer languages (such as C or Vectoral) to make Tensoral programs. We conclude with a complete example program.
The 1/ N Expansion of Tensor Models with Two Symmetric Tensors
NASA Astrophysics Data System (ADS)
Gurau, Razvan
2018-06-01
It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.
The Weyl curvature tensor, Cotton-York tensor and gravitational waves: A covariant consideration
NASA Astrophysics Data System (ADS)
Osano, Bob
1 + 3 covariant approach to cosmological perturbation theory often employs the electric part (Eab), the magnetic part (Hab) of the Weyl tensor or the shear tensor (σab) in a phenomenological description of gravitational waves. The Cotton-York tensor is rarely mentioned in connection with gravitational waves in this approach. This tensor acts as a source for the magnetic part of the Weyl tensor which should not be neglected in studies of gravitational waves in the 1 + 3 formalism. The tensor is only mentioned in connection with studies of “silent model” but even there the connection with gravitational waves is not exhaustively explored. In this study, we demonstrate that the Cotton-York tensor encodes contributions from both electric and magnetic parts of the Weyl tensor and in directly from the shear tensor. In our opinion, this makes the Cotton-York tensor arguably the natural choice for linear gravitational waves in the 1 + 3 covariant formalism. The tensor is cumbersome to work with but that should negate its usefulness. It is conceivable that the tensor would equally be useful in the metric approach, although we have not demonstrated this in this study. We contend that the use of only one of the Weyl tensor or the shear tensor, although phenomenologically correct, leads to loss of information. Such information is vital particularly when examining the contribution of gravitational waves to the anisotropy of an almost-Friedmann-Lamitre-Robertson-Walker (FLRW) universe. The recourse to this loss is the use Cotton-York tensor.
Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias
2014-06-01
The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.
Ardekani, Siamak; Selva, Luis; Sayre, James; Sinha, Usha
2006-11-01
Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.
Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias
2014-01-01
The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662
A Review of Tensors and Tensor Signal Processing
NASA Astrophysics Data System (ADS)
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
NASA Astrophysics Data System (ADS)
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
NASA Astrophysics Data System (ADS)
Hou, Zhenlong; Huang, Danian
2017-09-01
In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.
Nano-optical conveyor belt with waveguide-coupled excitation.
Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping
2016-02-01
We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.
PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A
2012-01-01
At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM.more » To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.« less
Tensor Algebra Library for NVidia Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less
Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus
2013-01-01
Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Inversion of gravity gradient tensor data: does it provide better resolution?
NASA Astrophysics Data System (ADS)
Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.
2016-04-01
The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.
Freistühler, Heinrich; Temple, Blake
2014-06-08
CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.
Exact solutions to quadratic gravity
NASA Astrophysics Data System (ADS)
Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.
2017-04-01
Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
Freistühler, Heinrich; Temple, Blake
2014-01-01
Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
The beaming of subhalo accretion
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.
2016-10-01
We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.
C%2B%2B tensor toolbox user manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plantenga, Todd D.; Kolda, Tamara Gibson
2012-04-01
The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.
NASA Astrophysics Data System (ADS)
Tsogbayar, Tsednee; Yeager, Danny L.
2017-01-01
We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.
Similar Tensor Arrays - A Framework for Storage of Tensor Array Data
NASA Astrophysics Data System (ADS)
Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans
This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.
Electromagnetic stress tensor for an amorphous metamaterial medium
NASA Astrophysics Data System (ADS)
Wang, Neng; Wang, Shubo; Ng, Jack
2018-03-01
We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.
Nonsingular, big-bounce cosmology from spinor-torsion coupling
NASA Astrophysics Data System (ADS)
Popławski, Nikodem
2012-05-01
The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.
Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond
NASA Astrophysics Data System (ADS)
Wan, Noel H.; Mouradian, Sara; Englund, Dirk
2018-04-01
Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano-scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes—directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.
Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-01-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159
Spherical Tensor Calculus for Local Adaptive Filtering
NASA Astrophysics Data System (ADS)
Reisert, Marco; Burkhardt, Hans
In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.
Nakamoto, Beau K; Jahanshad, Neda; McMurtray, Aaron; Kallianpur, Kalpana J; Chow, Dominic C; Valcour, Victor G; Paul, Robert H; Marotz, Liron; Thompson, Paul M; Shikuma, Cecilia M
2012-08-01
HIV-associated neurocognitive disorder remains prevalent in HIV-infected individuals despite effective antiretroviral therapy. As these individuals age, comorbid cerebrovascular disease will likely impact cognitive function. Effective tools to study this impact are needed. This study used diffusion tensor imaging (DTI) to characterize brain microstructural changes in HIV-infected individuals with and without cerebrovascular risk factors. Diffusion-weighted MRIs were obtained in 22 HIV-infected subjects aged 50 years or older (mean age = 58 years, standard deviation = 6 years; 19 males, three females). Tensors were calculated to obtain fractional anisotropy (FA) and mean diffusivity (MD) maps. Statistical comparisons accounting for multiple comparisons were made between groups with and without cerebrovascular risk factors. Abnormal glucose metabolism (i.e., impaired fasting glucose, impaired glucose tolerance, or diabetes mellitus) was associated with significantly higher MD (false discovery rate (FDR) critical p value = 0.008) and lower FA (FDR critical p value = 0.002) in the caudate and lower FA in the hippocampus (FDR critical p value = 0.004). Pearson correlations were performed between DTI measures in the caudate and hippocampus and age- and education-adjusted composite scores of global cognitive function, memory, and psychomotor speed. There were no detectable correlations between the neuroimaging measures and measures of cognition. In summary, we demonstrate that brain microstructural abnormalities are associated with abnormal glucose metabolism in the caudate and hippocampus of HIV-infected individuals. Deep gray matter structures and the hippocampus may be vulnerable in subjects with comorbid abnormal glucose metabolism, but our results should be confirmed in further studies.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
Tensor model order reduction, recursive tensor model identification, input design for tensor model identification, software development for nonlinear feedback control laws based upon tensors, and development of the CATNAP software package for tensor modeling, identification and simulation were studied. The last of these are discussed.
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik
2007-01-01
In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.
Charmless hadronic B decays into a tensor meson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hai-Yang; C. N. Yang Institute for Theoretical Physics, State University of New York Stony Brook, Stony Brook, New York 11794; Yang, Kwei-Chou
2011-02-01
Two-body charmless hadronic B decays involving a tensor meson in the final state are studied within the framework of QCD factorization (QCDF). Because of the G-parity of the tensor meson, both the chiral-even and chiral-odd two-parton light-cone distribution amplitudes of the tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit. Our main results are: (i) In the naieve factorization approach, the decays such as B{sup -}{yields}K{sub 2}*{sup 0}{pi}{sup -} and B{sup 0}{yields}K{sub 2}*{sup -}{pi}{sup +} with a tensor meson emitted are prohibited because a tensor meson cannot be created frommore » the local V-A or tensor current. Nevertheless, the decays receive nonfactorizable contributions in QCDF from vertex, penguin and hard spectator corrections. The experimental observation of B{sup -}{yields}K{sub 2}*{sup 0}{pi}{sup -} indicates the importance of nonfactorizable effects. (ii) For penguin-dominated B{yields}TP and TV decays, the predicted rates in naieve factorization are usually too small by 1 to 2 orders of magnitude. In QCDF, they are enhanced by power corrections from penguin annihilation and nonfactorizable contributions. (iii) The dominant penguin contributions to B{yields}K{sub 2}*{eta}{sup (')} arise from the processes: (a) b{yields}sss{yields}s{eta}{sub s} and (b) b{yields}sqq{yields}qK{sub 2}* with {eta}{sub q}=(uu+dd)/{radical}(2) and {eta}{sub s}=ss. The interference, constructive for K{sub 2}*{eta}{sup '} and destructive for K{sub 2}*{eta}, explains why {Gamma}(B{yields}K{sub 2}*{eta}{sup '})>>{Gamma}(B{yields}K{sub 2}*{eta}). (iv) We use the measured rates of B{yields}K{sub 2}*({omega},{phi}) to extract the penguin-annihilation parameters {rho}{sub A}{sup TV} and {rho}{sub A}{sup VT} and the observed longitudinal polarization fractions f{sub L}(K{sub 2}*{omega}) and f{sub L}(K{sub 2}*{phi}) to fix the phases {phi}{sub A}{sup VT} and {phi}{sub A}{sup TV}. (v) The experimental observation that f{sub T}/f{sub L}<<1 for B{yields}K{sub 2}*(1430){phi}, whereas f{sub T}/f{sub L}{approx}1 for B{yields}K{sub 2}*(1430){omega} with f{sub T} being the transverse polarization fraction, can be accommodated in QCDF, but it cannot be dynamically explained at first place. For penguin-dominated B{yields}TV decays, we find f{sub L}(K{sub 2}*{rho}){approx}f{sub L}(K{sub 2}*{omega}){approx}0.65, whereas f{sub L}(K*f{sub 2}){approx}0.93. It will be of great interest to measure f{sub L} for these modes to test QCDF. Theoretically, transverse polarization is expected to be small in tree-dominated B{yields}TV decays except for the a{sub 2}{sup -}{rho}{sup 0}, a{sub 2}{sup -}{rho}{sup +}, K{sub 2}*{sup 0}K*{sup -} and K{sub 2}*{sup 0}K*{sup 0} modes. (vi) For tree-dominated decays, their rates are usually very small except for the a{sub 2}{sup 0}({pi}{sup -},{rho}{sup -}), a{sub 2}{sup +}({pi}{sup -},{rho}{sup -}) and f{sub 2}({pi}{sup -},{rho}{sup -}) modes with branching fractions of order 10{sup -6} or even larger.« less
Visualizing second order tensor fields with hyperstreamlines
NASA Technical Reports Server (NTRS)
Delmarcelle, Thierry; Hesselink, Lambertus
1993-01-01
Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
Turbo-SMT: Parallel Coupled Sparse Matrix-Tensor Factorizations and Applications
Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian
2016-01-01
How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ’edible’, ’fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we enhance any CMTF solver, so that it can operate on potentially very large datasets that may not fit in main memory? We introduce Turbo-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, produces sparse and interpretable solutions, and parallelizes any CMTF algorithm, producing sparse and interpretable solutions (up to 65 fold). Additionally, we improve upon ALS, the work-horse algorithm for CMTF, with respect to efficiency and robustness to missing values. We apply Turbo-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Turbo-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. Finally, we demonstrate the generality of Turbo-SMT, by applying it on a Facebook dataset (users, ’friends’, wall-postings); there, Turbo-SMT spots spammer-like anomalies. PMID:27672406
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
Diffusion tensor analysis with invariant gradients and rotation tangents.
Kindlmann, Gordon; Ennis, Daniel B; Whitaker, Ross T; Westin, Carl-Fredrik
2007-11-01
Guided by empirically established connections between clinically important tissue properties and diffusion tensor parameters, we introduce a framework for decomposing variations in diffusion tensors into changes in shape and orientation. Tensor shape and orientation both have three degrees-of-freedom, spanned by invariant gradients and rotation tangents, respectively. As an initial demonstration of the framework, we create a tunable measure of tensor difference that can selectively respond to shape and orientation. Second, to analyze the spatial gradient in a tensor volume (a third-order tensor), our framework generates edge strength measures that can discriminate between different neuroanatomical boundaries, as well as creating a novel detector of white matter tracts that are adjacent yet distinctly oriented. Finally, we apply the framework to decompose the fourth-order diffusion covariance tensor into individual and aggregate measures of shape and orientation covariance, including a direct approximation for the variance of tensor invariants such as fractional anisotropy.
Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F
2011-11-07
Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.
NASA Astrophysics Data System (ADS)
Hohenstein, Edward G.; Parrish, Robert M.; Sherrill, C. David; Turney, Justin M.; Schaefer, Henry F.
2011-11-01
Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.
Learning to represent spatial transformations with factored higher-order Boltzmann machines.
Memisevic, Roland; Hinton, Geoffrey E
2010-06-01
To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.
2016-10-01
are related to mechanism of injury as well as white matter integrity using diffusion tensor imaging (DTI). We are also collecting and analyzing...APOE ε4] and brain-derived neurotrophic factor [BDNF]) to brain integrity , neuropsychological functioning, and neurobehavioral outcome. 15. SUBJECT...contribution of genetic factors (Apolipoprotein-E ε-4 [APOE ε4] and brain-derived neurotrophic factor [BDNF]) to brain integrity , neuropsychological
Wang, Lingling; Huan, Guo; Momen, Roya; Azizi, Alireza; Xu, Tianlv; Kirk, Steven R; Filatov, Michael; Jenkins, Samantha
2017-06-29
A quantum theory of atoms in molecules (QTAIM) and stress tensor analysis was applied to analyze intramolecular interactions influencing the photoisomerization dynamics of a light-driven rotary molecular motor. For selected nonadiabatic molecular dynamics trajectories characterized by markedly different S 1 state lifetimes, the electron densities were obtained using the ensemble density functional theory method. The analysis revealed that torsional motion of the molecular motor blades from the Franck-Condon point to the S 1 energy minimum and the S 1 /S 0 conical intersection is controlled by two factors: greater numbers of intramolecular bonds before the hop-time and unusually strongly coupled bonds between the atoms of the rotor and the stator blades. This results in the effective stalling of the progress along the torsional path for an extended period of time. This finding suggests a possibility of chemical tuning of the speed of photoisomerization of molecular motors and related molecular switches by reshaping their molecular backbones to decrease or increase the degree of coupling and numbers of intramolecular bond critical points as revealed by the QTAIM/stress tensor analysis of the electron density. Additionally, the stress tensor scalar and vector analysis was found to provide new methods to follow the trajectories, and from this, new insight was gained into the behavior of the S 1 state in the vicinity of the conical intersection.
Tensoral for post-processing users and simulation authors
NASA Technical Reports Server (NTRS)
Dresselhaus, Eliot
1993-01-01
The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.
ERIC Educational Resources Information Center
Greaney, Mary L.; Puleo, Elaine; Bennett, Gary G.; Haines, Jess; Viswanath, K.; Gillman, Matthew W.; Sprunck-Harrild, Kim; Coeling, Molly; Rusinak, Donna; Emmons, Karen M.
2014-01-01
Background: Many U.S. adults have multiple behavioral risk factors, and effective, scalable interventions are needed to promote population-level health. In the health care setting, interventions are often provided in print, although accessible to nearly everyone, are brief (e.g., pamphlets), are not interactive, and can require some logistics…
Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin
2015-07-28
We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.
A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault Tolerant MPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursey, Joshua J; Naughton, III, Thomas J; Vallee, Geoffroy R
The lack of fault tolerance is becoming a limiting factor for application scalability in HPC systems. The MPI does not provide standardized fault tolerance interfaces and semantics. The MPI Forum's Fault Tolerance Working Group is proposing a collective fault tolerant agreement algorithm for the next MPI standard. Such algorithms play a central role in many fault tolerant applications. This paper combines a log-scaling two-phase commit agreement algorithm with a reduction operation to provide the necessary functionality for the new collective without any additional messages. Error handling mechanisms are described that preserve the fault tolerance properties while maintaining overall scalability.
Predefined three tier business intelligence architecture in healthcare enterprise.
Wang, Meimei
2013-04-01
Business Intelligence (BI) has caused extensive concerns and widespread use in gathering, processing and analyzing data and providing enterprise users the methodology to make decisions. Different from traditional BI architecture, this paper proposes a new BI architecture, Top-Down Scalable BI architecture with defining mechanism for enterprise decision making solutions and aims at establishing a rapid, consistent, and scalable multiple applications on multiple platforms of BI mechanism. The two opposite information flows in our BI architecture offer the merits of having the high level of organizational prospects and making full use of the existing resources. We also introduced the avg-bed-waiting-time factor to evaluate hospital care capacity.
Automatic deformable diffusion tensor registration for fiber population analysis.
Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V
2008-01-01
In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
2010-11-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved.
Dynamic full-scalability conversion in scalable video coding
NASA Astrophysics Data System (ADS)
Lee, Dong Su; Bae, Tae Meon; Thang, Truong Cong; Ro, Yong Man
2007-02-01
For outstanding coding efficiency with scalability functions, SVC (Scalable Video Coding) is being standardized. SVC can support spatial, temporal and SNR scalability and these scalabilities are useful to provide a smooth video streaming service even in a time varying network such as a mobile environment. But current SVC is insufficient to support dynamic video conversion with scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion methods for QoS adaptive video streaming in SVC. To accomplish full scalability dynamic conversion, we develop corresponding bitstream extraction, encoding and decoding schemes. At the encoder, we insert the IDR NAL periodically to solve the problems of spatial scalability conversion. At the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. Real time extraction is achieved by using this information. Finally, we develop the decoder so that it can manage the changing scalability. Experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Surface‐wave Green’s tensors in the near field
Haney, Matt; Nakahara, Hisashi
2014-01-01
We demonstrate the connection between theoretical expressions for the correlation of ambient noise Rayleigh and Love waves and the exact surface‐wave Green’s tensors for a point force. The surface‐wave Green’s tensors are well known in the far‐field limit. On the other hand, the imaginary part of the exact Green’s tensors, including near‐field effects, arises in correlation techniques such as the spatial autocorrelation (SPAC) method. Using the imaginary part of the exact Green’s tensors from the SPAC method, we find the associated real part using the Kramers–Kronig relations. The application of the Kramers–Kronig relations is not straightforward, however, because the causality properties of the different tensor components vary. In addition to the Green’s tensors for a point force, we also derive expressions for a general point moment tensor source.
Turbulent fluid motion 2: Scalars, vectors, and tensors
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1991-01-01
The author shows that the sum or difference of two vectors is a vector. Similarly the sum of any two tensors of the same order is a tensor of that order. No meaning is attached to the sum of tensors of different orders, say u(sub i) + u(sub ij); that is not a tensor. In general, an equation containing tensors has meaning only if all the terms in the equation are tensors of the same order, and if the same unrepeated subscripts appear in all the terms. These facts will be used in obtaining appropriate equations for fluid turbulence. With the foregoing background, the derivation of appropriate continuum equations for turbulence should be straightforward.
Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition.
Liu, Yuanyuan; Shang, Fanhua; Fan, Wei; Cheng, James; Cheng, Hong
2016-12-01
Low-rank tensor completion (LRTC) has successfully been applied to a wide range of real-world problems. Despite the broad, successful applications, existing LRTC methods may become very slow or even not applicable for large-scale problems. To address this issue, a novel core tensor trace-norm minimization (CTNM) method is proposed for simultaneous tensor learning and decomposition, and has a much lower computational complexity. In our solution, first, the equivalence relation of trace norm of a low-rank tensor and its core tensor is induced. Second, the trace norm of the core tensor is used to replace that of the whole tensor, which leads to two much smaller scale matrix TNM problems. Finally, an efficient alternating direction augmented Lagrangian method is developed to solve our problems. Our CTNM formulation needs only O((R N +NRI)log(√{I N })) observations to reliably recover an N th-order I×I×…×I tensor of n -rank (r,r,…,r) , compared with O(rI N-1 ) observations required by those tensor TNM methods ( I > R ≥ r ). Extensive experimental results show that CTNM is usually more accurate than them, and is orders of magnitude faster.
Tensor gauge condition and tensor field decomposition
NASA Astrophysics Data System (ADS)
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
The Topology of Symmetric Tensor Fields
NASA Technical Reports Server (NTRS)
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Phasic action of the tensor muscle modulates the calling song in cicadas
Fonseca; Hennig
1996-01-01
The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 3040 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (010 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.
Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity
NASA Astrophysics Data System (ADS)
Kugo, T.; Ohashi, K.
2002-12-01
An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.
The energy-momentum tensor(s) in classical gauge theories
Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...
2016-07-12
We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.
Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields
Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.
2009-01-01
We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor field. PMID:19540791
Killing(-Yano) tensors in string theory
NASA Astrophysics Data System (ADS)
Chervonyi, Yuri; Lunin, Oleg
2015-09-01
We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.
Tensor calculus: unlearning vector calculus
NASA Astrophysics Data System (ADS)
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-02-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can serve as a bridge for vector calculus into tensor calculus.
Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera
2018-01-01
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.
On the Tensorial Nature of Fluxes in Continuous Media.
ERIC Educational Resources Information Center
Stokes, Vijay Kumar; Ramkrishna, Doraiswami
1982-01-01
Argues that mass and energy fluxes in a fluid are vectors. Topics include the stress tensor, theorem for tensor fields, mass flux as a vector, stress as a second order tensor, and energy flux as a tensor. (SK)
A Scalable Distributed Syntactic, Semantic, and Lexical Language Model
2012-09-01
Here pa(τ) denotes the set of parent states of τ. If the recursive factorization refers to a graph , then we have a Bayesian network (Lauritzen 1996...Broadly speaking, however, the recursive factorization can refer to a representation more complicated than a graph with a fixed set of nodes and edges...factored language (FL) model (Bilmes and Kirchhoff 2003) is close to the smoothing technique we propose here, the major difference is that FL
ERIC Educational Resources Information Center
Orey, Michael; Koenecke, Lynne; Snider, Richard C.; Perkins, Ross A.; Holmes, Glen A.; Lockee, Barbara B.; Moller, Leslie A.; Harvey, Douglas; Downs, Margaret; Godshalk, Veronica M.
2003-01-01
Contains four articles covering trends and issues on distance learning including: the experience of two learners learning via the Internet; a systematic approach to determining the scalability of a distance education program; identifying factors that affect learning community development and performance in asynchronous distance education; and…
Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems
NASA Technical Reports Server (NTRS)
Reifler, Frank; Morris, Randall
1994-01-01
Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.
Erratum to Surface‐wave green’s tensors in the near field
Haney, Matthew M.; Hisashi Nakahara,
2016-01-01
Haney and Nakahara (2014) derived expressions for surface‐wave Green’s tensors that included near‐field behavior. Building on the result for a force source, Haney and Nakahara (2014) further derived expressions for a general point moment tensor source using the exact Green’s tensors. However, it has come to our attention that, although the Green’s tensors were correct, the resulting expressions for a general point moment tensor source were missing some terms. In this erratum, we provide updated expressions with these missing terms. The inclusion of the missing terms changes the example given in Haney and Nakahara (2014).
NASA Astrophysics Data System (ADS)
Chen, Y.; Huang, L.
2017-12-01
Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.
NASA Astrophysics Data System (ADS)
Dolgov, S. V.; Smirnov, A. P.; Tyrtyshnikov, E. E.
2014-04-01
We consider numerical modeling of the Farley-Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.
Logamediate Inflation in f(T) Teleparallel Gravity
NASA Astrophysics Data System (ADS)
Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars
2017-02-01
We study logamediate inflation in the context of f(T) teleparallel gravity. f(T)-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f(T)-gravity model which is sourced by a canonical scalar field. Assuming a power-law f(T) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f(T)-gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezazadeh, Kazem; Karami, Kayoomars; Abdolmaleki, Asrin, E-mail: rezazadeh86@gmail.com
We study logamediate inflation in the context of f ( T ) teleparallel gravity. f ( T )-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f ( T )-gravity model which is sourced by a canonical scalar field. Assuming a power-law f ( T ) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationarymore » scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f ( T )-gravity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, Konstantin; Shashkov, Mikhail
2011-01-11
We construct a new mimetic tensor artificial viscosity on general polygonal and polyhedral meshes. The tensor artificial viscosity is based on a mimetic discretization of coordinate invariant operators, divergence of a tensor and gradient of a vector. The focus of this paper is on the symmetric form, div ({mu},{var_epsilon}(u)), of the tensor artificial viscosity where {var_epsilon}(u) is the symmetrized gradient of u and {mu}, is a tensor. The mimetic discretizations of this operator is derived for the case of a full tensor coefficient {mu}, that may reflect a shock direction. We demonstrate performance of the new viscosity for the Nohmore » implosion, Sedov explosion and Saltzman piston problems in both Cartesian and axisymmetric coordinate systems.« less
Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems
Li, Zhining; Zhang, Yingtang; Yin, Gang
2018-01-01
The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544
Tensor-based spatiotemporal saliency detection
NASA Astrophysics Data System (ADS)
Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen
2018-03-01
This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.
Tensor network method for reversible classical computation
NASA Astrophysics Data System (ADS)
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
Genten: Software for Generalized Tensor Decompositions v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel
Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.
The Kummer tensor density in electrodynamics and in gravity
NASA Astrophysics Data System (ADS)
Baekler, Peter; Favaro, Alberto; Itin, Yakov; Hehl, Friedrich W.
2014-10-01
Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, K. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four T, which is antisymmetric in its first two and its last two indices: T=-T=-T. Thus, K∼T3, see Eq. (46). (i) If T is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized Fresnel wave surfaces for propagating light. In the reversible case, the wave surfaces turn out to be Kummer surfaces as defined in algebraic geometry (Bateman 1910). (ii) If T is identified with the curvature tensor R of a Riemann-Cartan spacetime, then K∼R3 and, in the special case of general relativity, K reduces to the Kummer tensor of Zund (1969). This K is related to the principal null directions of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose K irreducibly under the 4-dimensional linear group GL(4,R) and, subsequently, under the Lorentz group SO(1,3).
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE
Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S.
2017-01-01
Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order-k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k}. We derive general inequalities between the lp-norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm (p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations. PMID:28286347
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Relativistic interpretation of the nature of the nuclear tensor force
NASA Astrophysics Data System (ADS)
Zong, Yao-Yao; Sun, Bao-Yuan
2018-02-01
The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.
Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S
2017-05-01
Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.
FOS: A Factored Operating Systems for High Assurance and Scalability on Multicores
2012-08-01
computing. It builds on previous work in distributed and microkernel OSes by factoring services out of the kernel, and then further distributing each...2 3.0 Methods, Assumptions, and Procedures (System Design) .................................................. 4 3.1 Microkernel ...cooperating servers. We term such a service a fleet. Figure 2 shows the high-level architecture of fos. A small microkernel runs on every core
Inflationary tensor perturbations after BICEP2.
Caligiuri, Jerod; Kosowsky, Arthur
2014-05-16
The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
Gravitoelectromagnetic analogy based on tidal tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, L. Filipe O.; Herdeiro, Carlos A. R.
2008-07-15
We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less
Obtaining orthotropic elasticity tensor using entries zeroing method.
NASA Astrophysics Data System (ADS)
Gierlach, Bartosz; Danek, Tomasz
2017-04-01
A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal rotation. Computations were parallelized with OpenMP to decrease computational time what enables different tensors to be processed by different threads. As a result the distributions of rotated tensor entries values were obtained. For the entries which were to be zeroed we can observe almost normal distributions having mean equal to zero or sum of two normal distributions having inverse means. Non-zero entries represent different distributions with two or three maxima. Analysis of obtained results shows that described method produces consistent values of quaternions used to rotate tensors. Despite of less complex target function in a process of optimization in comparison to common approach, entries zeroing method provides results which can be applied to obtain an orthotropic tensor with good reliability. Modification of the method can produce also a tool for obtaining effective tensors belonging to another symmetry classes. This research was supported by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.
Tensor scale: An analytic approach with efficient computation and applications☆
Xu, Ziyue; Saha, Punam K.; Dasgupta, Soura
2015-01-01
Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor scale” using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc interpolation methods. PMID:26236148
Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J
2015-01-01
Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p < 0.01). Two-tensor UKF tractography provides the ability to trace a larger volume AF than single-tensor streamline tractography in the setting of peritumoral edema in brain tumor patients.
Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven
2016-05-11
Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai; ...
2017-10-23
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
Notes on super Killing tensors
NASA Astrophysics Data System (ADS)
Howe, P. S.; Lindström, U.
2016-03-01
The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.
Tensor Train Neighborhood Preserving Embedding
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2018-05-01
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.
Rubinstein, Robert; Kurien, Susan; Cambon, Claude
2015-06-22
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.
NASA Astrophysics Data System (ADS)
Akpan, N. Ikot; Hassan, Hassanabadi; Tamunoimi, M. Abbey
2015-12-01
The Dirac equation with Hellmann potential is presented in the presence of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT), and Hulthen-type tensor (HLT) interactions by using Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions are obtained approximately within the framework of spin and pseudospin symmetries limit. We have also reported some numerical results and figures to show the effects of the tensor interactions. Special cases of the potential are also discussed.
Geometry of Lax pairs: Particle motion and Killing-Yano tensors
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David
2013-01-01
A geometric formulation of the Lax pair equation on a curved manifold is studied using the phase-space formalism. The corresponding (covariantly conserved) Lax tensor is defined and the method of generation of constants of motion from it is discussed. It is shown that when the Hamilton equations of motion are used, the conservation of the Lax tensor translates directly to the well-known Lax pair equation, with one matrix identified with components of the Lax tensor and the other matrix constructed from the (metric) connection. A generalization to Clifford objects is also discussed. Nontrivial examples of Lax tensors for geodesic and charged particle motion are found in spacetimes admitting a hidden symmetry of Killing-Yano tensors.
On Lovelock analogs of the Riemann tensor
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
MRI diffusion tensor reconstruction with PROPELLER data acquisition.
Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T
2004-02-01
MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.
NASA Astrophysics Data System (ADS)
Ricciardone, Angelo; Tasinato, Gianmassimo
2018-02-01
We develop a scenario of inflation with spontaneously broken time and space diffeomorphisms, with distinctive features for the primordial tensor modes. Inflationary tensor fluctuations are not conserved outside the horizon, and can acquire a mass during the inflationary epoch. They can evade the Higuchi bound around de Sitter space, thanks to interactions with the fields driving expansion. Correspondingly, the primordial stochastic gravitational wave background (SGWB) is characterised by a tuneable scale dependence, and can be detectable at interferometer scales. In this set-up, tensor non-Gaussianity can be parametrically enhanced in the squeezed limit. This induces a coupling between long and short tensor modes, leading to a specific quadrupolar anisotropy in the primordial SGWB spectrum, which can be used to build estimators for tensor non-Gaussianity. We analyse how our inflationary system can be tested with interferometers, also discussing how an interferometer can be sensitive to a primordial anisotropic SGWB.
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
Entanglement branching operator
NASA Astrophysics Data System (ADS)
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
The problem of obtaining an explicit representation for the fourth invariant of geodesic motion (generalized Carter constant) of an arbitrary stationary axisymmetric vacuum spacetime generated from an Ernst potential is considered. The coupling between the nonlocal curvature content of the spacetime as encoded in the Weyl tensor, and the existence of a Killing tensor is explored and a constructive, algebraic test for a fourth-order Killing tensor suggested. The approach used exploits the variables defined for the Baecklund transformations to clarify the relationship between Weyl curvature, constants of geodesic motion, expressed as Killing tensors, and the solution-generation techniques. A new symmetricmore » noncovariant formulation of the Killing equations is given. This formulation transforms the problem of looking for fourth-order Killing tensors in 4D into one of looking for four interlocking two-manifolds admitting fourth-order Killing tensors in 2D.« less
Nucleon form factors with 2+1 flavor dynamical domain-wall fermions
NASA Astrophysics Data System (ADS)
Yamazaki, Takeshi; Aoki, Yasumichi; Blum, Tom; Lin, Huey-Wen; Ohta, Shigemi; Sasaki, Shoichi; Tweedie, Robert; Zanotti, James
2009-06-01
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with Nf=2+1 dynamical domain-wall fermions and Iwasaki gauge actions at β=2.13, corresponding to a cutoff a-1=1.73GeV, and a spatial volume of (2.7fm)3. The up and down-quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2
Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images
ERIC Educational Resources Information Center
Barmpoutis, Angelos
2009-01-01
Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…
NASA Technical Reports Server (NTRS)
Sirlin, Samuel W.
1993-01-01
Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.
Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons
NASA Astrophysics Data System (ADS)
Leiter, Darryl
2000-04-01
In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.
A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-01-01
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313
A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-02-25
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.
Tensor-based Dictionary Learning for Spectral CT Reconstruction
Zhang, Yanbo; Wang, Ge
2016-01-01
Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628
An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU
NASA Astrophysics Data System (ADS)
Lyakh, Dmitry I.
2015-04-01
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).
Local recovery of lithospheric stress tensor from GOCE gravitational tensor
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi
2017-04-01
The sublithospheric stress due to mantle convection can be computed from gravity data and propagated through the lithosphere by solving the boundary-value problem of elasticity for the Earth's lithosphere. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics (SHs) or Legendre polynomials is involved in the expressions. Here, new relations between the SH coefficients of the stress and gravitational tensor elements are presented. Thereafter, integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer mission (GOCE), in 2009 November, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.
Comparative study of methods for recognition of an unknown person's action from a video sequence
NASA Astrophysics Data System (ADS)
Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun
2009-02-01
This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.
Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.
Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo
2018-06-01
Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.
Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J
2002-01-01
The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.
Nonlinear motion of cantilevered SWNT and Its Meaning to Phonon Dynamics
NASA Astrophysics Data System (ADS)
Koh, Heeyuen; Cannon, James; Chiashi, Shohei; Shiomi, Junichiro; Maruyama, Shigeo
2013-03-01
Based on the finding that the lowest frequency mode of cantilevered SWNT is described by the continuum beam theory in frequency domain, we considered its effect of the symmetric structure for the coupling of orthogonal transverse modes to explain the nonlinear motion of free thermal vibration. This nonlinear motion calculated by our molecular dynamics simulation, once regarded as noise, is observed to have the periodic order with duffing and beating, which is dependent on aspect ratio and temperature. It could be dictated by the governing equation from the Green Lagrangian strain tensor. The nonlinear beam equation from strain tensor described the motion well for various models which has different aspect ratio in molecular dynamics simulation. Since this motion is nothing but the interaction between 2nd mode of radial, tangential mode and 1st longitudinal mode, it was found that Green Lagrangian strain tensor is capable to deal such coupling. The free thermal motion of suspended SWNT is also considered without temperature gradient. The Q factor measured by this theoretical analysis will be discussed. Part of this work was financially supported by Grant-in-Aid for Scientific Research (19054003 and 22226006), and Global COE Program 'Global Center for Excellence for Mechanical Systems Innovation'
Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang
2009-06-01
A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.
Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects
Gorelenkov, Nikolai N.; Zakharov, Leonid E.
2018-04-27
Here, we formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Consideredmore » effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem.« less
Ergodic actions of SμU(2) on C∗-algebras from II1 subfactors
NASA Astrophysics Data System (ADS)
Pinzari, Claudia; Roberts, John E.
2010-03-01
To a proper inclusion N⊂M of II factors of finite Jones index [M:N], we associate an ergodic C∗-action of the quantum group SμU(2) (or more generally of certain groups Ao(F)). The higher relative commutant N'∩M can be identified with the spectral space of the rth tensor power u of the defining representation of the quantum group. The index and the deformation parameter are related by -1≤μ<0 and [M:N]=|μ+μ-1|. This ergodic action may be thought of as a virtual subgroup of SμU(2) in the sense of Mackey arising from the tensor category generated by the N-bimodule NMN. μ is negative as NMN is a real bimodule.
Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N.; Zakharov, Leonid E.
Here, we formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Consideredmore » effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem.« less
High quality-factor fano metasurface comprising a single resonator unit cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.
A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.
Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Chen, Guowei; Itoh, Kenichi; Sato, Takuro
Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.
Tensor Calculus: Unlearning Vector Calculus
ERIC Educational Resources Information Center
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector
NASA Astrophysics Data System (ADS)
Garfinkle, David; Glass, E. N.
2013-03-01
Methods are presented for finding Killing-Yano tensors, conformal Killing-Yano tensors, and conformal Killing vectors in spacetimes with a hypersurface orthogonal Killing vector. These methods are similar to a method developed by the authors for finding Killing tensors. In all cases one decomposes both the tensor and the equation it satisfies into pieces along the Killing vector and pieces orthogonal to the Killing vector. Solving the separate equations that result from this decomposition requires less computing than integrating the original equation. In each case, examples are given to illustrate the method.
Killing-Yano tensors of order n - 1
NASA Astrophysics Data System (ADS)
Batista, Carlos
2014-08-01
The properties of a Killing-Yano tensor of order n-1 in an n-dimensional manifold are investigated. The integrability conditions are worked out and all metrics admitting a Killing-Yano tensor of order n-1 are found. A connection between such tensors and a generalization of the concept of angular momentum is pointed out. A theorem on how to generate closed conformal Killing vectors using the symmetries of a manifold is proved and used to find all Killing-Yano tensors of order n-1 of a maximally symmetric space.
Decomposition of a symmetric second-order tensor
NASA Astrophysics Data System (ADS)
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
On physical property tensors invariant under line groups.
Litvin, Daniel B
2014-03-01
The form of physical property tensors of a quasi-one-dimensional material such as a nanotube or a polymer can be determined from the point group of its symmetry group, one of an infinite number of line groups. Such forms are calculated using a method based on the use of trigonometric summations. With this method, it is shown that materials invariant under infinite subsets of line groups have physical property tensors of the same form. For line group types of a family of line groups characterized by an index n and a physical property tensor of rank m, the form of the tensor for all line group types indexed with n > m is the same, leaving only a finite number of tensor forms to be determined.
Local White Matter Geometry from Diffusion Tensor Gradients
Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik
2009-01-01
We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:19896542
Local White Matter Geometry from Diffusion Tensor Gradients
Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik
2010-01-01
We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:20426006
Nonperturbative study of the four gluon vertex
NASA Astrophysics Data System (ADS)
Binosi, D.; Ibañez, D.; Papavassiliou, J.
2014-09-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
Getting More Scientists to Revamp Teaching
ERIC Educational Resources Information Center
Vicens, Quentin; Caspersen, Michael E.
2014-01-01
Despite extensive evidence in favor of student-centered teaching practices over traditional lecturing, most science faculty do not embrace these modes of instruction. Professional development efforts are plentiful, but they can lack in impact or scalability, or both. The factors that determine professional development quality within a research…
Volume in moment tensor space in terms of distance
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2017-07-01
Suppose that we want to assess the extent to which some large collection of moment tensors is concentrated near a fixed moment tensor m. We are naturally led to consider the distribution of the distances of the moment tensors from m. This distribution, however, can only be judged in conjunction with the distribution of distances from m for randomly chosen moment tensors. In cumulative form, the latter distribution is the same as the fractional volume \\hat{V}(ω ) of the set of all moment tensors that are within distance ω of m. This definition of \\hat{V}(ω ) assumes that a reasonable universe {M} of moment tensors has been specified at the outset and that it includes the original collection as a subset. Our main goal in this article is to derive a formula for \\hat{V}(ω ) when {M} is the set [Λ]_{U} of all moment tensors having a specified eigenvalue triple Λ. We find that \\hat{V}(ω ) depends strongly on Λ, and we illustrate the dependence by plotting the derivative curves \\hat{V}^' }(ω ) for various seismologically relevant Λs. The exotic and unguessable shapes of these curves underscores the futility of interpreting the distribution of distances for the original moment tensors without knowing \\hat{V}(ω ) or \\hat{V}^' }(ω ). The derivation of the formula for \\hat{V}(ω ) relies on a certain ϕ σz coordinate system for [Λ]_{U}, which we treat in detail. Our underlying motivation for the paper is the estimation of uncertainties in moment tensor inversion.
NASA Astrophysics Data System (ADS)
Alvizuri, Celso; Silwal, Vipul; Krischer, Lion; Tape, Carl
2017-04-01
A seismic moment tensor is a 3 × 3 symmetric matrix that provides a compact representation of seismic events within Earth's crust. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms at each grid point and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P(V ), where P(V ) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V . The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M. We apply the method to data from events in different regions and tectonic settings: small (Mw < 2.5) events at Uturuncu volcano in Bolivia, moderate (Mw > 4) earthquakes in the southern Alaska subduction zone, and natural and man-made events at the Nevada Test Site. Moment tensor uncertainties allow us to better discriminate among moment tensor source types and to assign physical processes to the events.
APPROXIMATING SYMMETRIC POSITIVE SEMIDEFINITE TENSORS OF EVEN ORDER*
BARMPOUTIS, ANGELOS; JEFFREY, HO; VEMURI, BABA C.
2012-01-01
Tensors of various orders can be used for modeling physical quantities such as strain and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity constraint, which can be satisfied only with tensors of even order. Although the space P02m of 2mth-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity constraint directly on P02m is usually not straightforward computationally because there is no known analytic description of P02m for m > 1. In this paper, we propose a novel approach for enforcing the positivity constraint on even-order tensors by approximating the cone P02m for the cases 0 < m < 3, and presenting an explicit characterization of the approximation Σ2m ⊂ Ω2m for m ≥ 1, using the subset Ω2m⊂P02m of semi-definite tensors that can be written as a sum of squares of tensors of order m. Furthermore, we show that this approximation leads to a non-negative linear least-squares (NNLS) optimization problem with the complexity that equals the number of generators in Σ2m. Finally, we experimentally validate the proposed approach and we present an application for computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images. PMID:23285313
Tensor Rank Preserving Discriminant Analysis for Facial Recognition.
Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo
2017-10-12
Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.
Random SU(2) invariant tensors
NASA Astrophysics Data System (ADS)
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU
Lyakh, Dmitry I.
2015-01-05
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less
On improving the efficiency of tensor voting.
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim
2011-11-01
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.
NASA Astrophysics Data System (ADS)
Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng
2015-09-01
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
Uni10: an open-source library for tensor network algorithms
NASA Astrophysics Data System (ADS)
Kao, Ying-Jer; Hsieh, Yun-Da; Chen, Pochung
2015-09-01
We present an object-oriented open-source library for developing tensor network algorithms written in C++ called Uni10. With Uni10, users can build a symmetric tensor from a collection of bonds, while the bonds are constructed from a list of quantum numbers associated with different quantum states. It is easy to label and permute the indices of the tensors and access a block associated with a particular quantum number. Furthermore a network class is used to describe arbitrary tensor network structure and to perform network contractions efficiently. We give an overview of the basic structure of the library and the hierarchy of the classes. We present examples of the construction of a spin-1 Heisenberg Hamiltonian and the implementation of the tensor renormalization group algorithm to illustrate the basic usage of the library. The library described here is particularly well suited to explore and fast prototype novel tensor network algorithms and to implement highly efficient codes for existing algorithms.
Inference of segmented color and texture description by tensor voting.
Jia, Jiaya; Tang, Chi-Keung
2004-06-01
A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.
Measuring Nematic Susceptibilities from the Elastoresistivity Tensor
NASA Astrophysics Data System (ADS)
Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian
The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.
Classification of materials for conducting spheroids based on the first order polarization tensor
NASA Astrophysics Data System (ADS)
Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB
2017-09-01
Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.
Relationship between radial compressive modulus of elasticity and shear modulus of wood
Jen Y. Liu; Robert J. Ross
2005-01-01
Wood properties in transverse compression are difficult to determine because of such factors as anatomical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, considered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the reference coordinate system changes its orientation. In this...
NASA Technical Reports Server (NTRS)
Chrzanowski, P. L.; Misner, C. W.
1974-01-01
The scalar, electromagnetic, and gravitational geodesic-synchrotron-radiation (GSR) spectra are determined for the case of a test particle moving on a highly relativistic circular orbit about a rotating (Kerr) black hole. It is found that the spectral shape depends only weakly on the value of the angular-momentum parameter (a/M) of the black hole, but the total radiated power drops unexpectedly for a value of at least 0.95 and vanishes as the value approaches unity. A spin-dependent factor (involving the inner product of the polarization of a radiated quantum with the source) is isolated to explain the dependence of the spectral shape on the spin of the radiated field. Although the scalar wave equation is solved by separation of variables, this procedure is avoided for the vector and tensor cases by postulating a sum-over-states expansion for the Green's function similar to that found to hold in the scalar case. The terms in this sum, significant for GSR, can then be evaluated in the geometric-optics approximation without requiring the use of vector or tensor spherical harmonics.
Hanrath, Michael; Engels-Putzka, Anna
2010-08-14
In this paper, we present an efficient implementation of general tensor contractions, which is part of a new coupled-cluster program. The tensor contractions, used to evaluate the residuals in each coupled-cluster iteration are particularly important for the performance of the program. We developed a generic procedure, which carries out contractions of two tensors irrespective of their explicit structure. It can handle coupled-cluster-type expressions of arbitrary excitation level. To make the contraction efficient without loosing flexibility, we use a three-step procedure. First, the data contained in the tensors are rearranged into matrices, then a matrix-matrix multiplication is performed, and finally the result is backtransformed to a tensor. The current implementation is significantly more efficient than previous ones capable of treating arbitrary high excitations.
Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding.
Westin, Carl-Fredrik; Szczepankiewicz, Filip; Pasternak, Ofer; Ozarslan, Evren; Topgaard, Daniel; Knutsson, Hans; Nilsson, Markus
2014-01-01
In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).
Factorization breaking of A d T for polarized deuteron targets in a relativistic framework
Jeschonnek, Sabine; Van Orden, J. W.
2017-04-17
We discuss the possible factorization of the tensor asymmetrymore » $$A^T_d$$ measured for polarized deuteron targets within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane wave impulse approximation and if $p$-waves are neglected. Our numerical results show a strong factorization breaking once final state interactions are included. We also compare the $d$-wave content of the wave functions with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity to the d-wave probability of the various wave functions.« less
Prescribed curvature tensor in locally conformally flat manifolds
NASA Astrophysics Data System (ADS)
Pina, Romildo; Pieterzack, Mauricio
2018-01-01
A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.
Conformal Yano-Killing Tensors in General Relativity
NASA Astrophysics Data System (ADS)
Jezierski, Jacek
2011-09-01
How CYK tensors appear in General Relativity? Geometric definition of the asymptotic flat spacetime: strong asymptotic flatness, which guarantees well defined total angular momentum [2, 3, 4] Conserved quantities - asymptotic charges (ℐ, 𝓲0) [2, 3, 4, 5, 6, 9] Quasi-local mass and "rotational energy" for Kerr black hole [5] Constants of motion along geodesics and symmetric Killing tensors [5, 6] Spacetimes possessing CYK tensor [10]: Minkowski (quadratic polynomials) [5] (Anti-)deSitter (natural construction) [7, 8, 9] Kerr (type D spacetime) [5] Taub-NUT (new symmetric conformal Killing tensors) [6] Other applications: Symmetries of Dirac operator Symmetries of Maxwell equations
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Hassanabadi, Hassan; Obong, Hillary Patrick; Mehraban, H.; Yazarloo, Bentol Hoda
2015-07-01
The effects of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT) and generalized tensor (GLT) interactions are investigated in the Dirac theory with Schiöberg and Manning-Rosen potentials within the framework of spin and pseudospin symmetries using the Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions have been approximately obtained in the case of spin and pseudospin symmetries. We have also reported some numerical results and figures to show the effects these tensor interactions.
LiDAR point classification based on sparse representation
NASA Astrophysics Data System (ADS)
Li, Nan; Pfeifer, Norbert; Liu, Chun
2017-04-01
In order to combine the initial spatial structure and features of LiDAR data for accurate classification. The LiDAR data is represented as a 4-order tensor. Sparse representation for classification(SRC) method is used for LiDAR tensor classification. It turns out SRC need only a few of training samples from each class, meanwhile can achieve good classification result. Multiple features are extracted from raw LiDAR points to generate a high-dimensional vector at each point. Then the LiDAR tensor is built by the spatial distribution and feature vectors of the point neighborhood. The entries of LiDAR tensor are accessed via four indexes. Each index is called mode: three spatial modes in direction X ,Y ,Z and one feature mode. Sparse representation for classification(SRC) method is proposed in this paper. The sparsity algorithm is to find the best represent the test sample by sparse linear combination of training samples from a dictionary. To explore the sparsity of LiDAR tensor, the tucker decomposition is used. It decomposes a tensor into a core tensor multiplied by a matrix along each mode. Those matrices could be considered as the principal components in each mode. The entries of core tensor show the level of interaction between the different components. Therefore, the LiDAR tensor can be approximately represented by a sparse tensor multiplied by a matrix selected from a dictionary along each mode. The matrices decomposed from training samples are arranged as initial elements in the dictionary. By dictionary learning, a reconstructive and discriminative structure dictionary along each mode is built. The overall structure dictionary composes of class-specified sub-dictionaries. Then the sparse core tensor is calculated by tensor OMP(Orthogonal Matching Pursuit) method based on dictionaries along each mode. It is expected that original tensor should be well recovered by sub-dictionary associated with relevant class, while entries in the sparse tensor associated with other classed should be nearly zero. Therefore, SRC use the reconstruction error associated with each class to do data classification. A section of airborne LiDAR points of Vienna city is used and classified into 6classes: ground, roofs, vegetation, covered ground, walls and other points. Only 6 training samples from each class are taken. For the final classification result, ground and covered ground are merged into one same class(ground). The classification accuracy for ground is 94.60%, roof is 95.47%, vegetation is 85.55%, wall is 76.17%, other object is 20.39%.
Maximizing Resource Utilization in Video Streaming Systems
ERIC Educational Resources Information Center
Alsmirat, Mohammad Abdullah
2013-01-01
Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…
Educational Leadership in Singapore: Tight Coupling, Sustainability, Scalability, and Succession
ERIC Educational Resources Information Center
Dimmock, Clive; Tan, Cheng Yong
2013-01-01
Purpose: While Singapore's outstanding educational achievements are well known worldwide, there is a disproportionate paucity of literature on school leadership practices that contribute to and support pedagogical initiatives that--along with socio-cultural factors--are normally considered responsible for its educational success. The aim of this…
ERIC Educational Resources Information Center
Marin Quintero, Maider J.
2013-01-01
The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…
Ida, Ramsey; De Clerk, Maurice; Wu, Gang
2006-01-26
We report a computational study for the 17O NMR tensors (electric field gradient and chemical shielding tensors) in crystalline uracil. We found that N-H...O and C-H...O hydrogen bonds around the uracil molecule in the crystal lattice have quite different influences on the 17O NMR tensors for the two C=O groups. The computed 17O NMR tensors on O4, which is involved in two strong N-H...O hydrogen bonds, show remarkable sensitivity toward the choice of cluster model, whereas the 17O NMR tensors on O2, which is involved in two weak C-H...O hydrogen bonds, show much smaller improvement when the cluster model includes the C-H...O hydrogen bonds. Our results demonstrate that it is important to have accurate hydrogen atom positions in the molecular models used for 17O NMR tensor calculations. In the absence of low-temperature neutron diffraction data, an effective way to generate reliable hydrogen atom positions in the molecular cluster model is to employ partial geometry optimization for hydrogen atom positions using a cluster model that includes all neighboring hydrogen-bonded molecules. Using an optimized seven-molecule model (a total of 84 atoms), we were able to reproduce the experimental 17O NMR tensors to a reasonably good degree of accuracy. However, we also found that the accuracy for the calculated 17O NMR tensors at O2 is not as good as that found for the corresponding tensors at O4. In particular, at the B3LYP/6-311++G(d,p) level of theory, the individual 17O chemical shielding tensor components differ by less than 10 and 30 ppm from the experimental values for O4 and O2, respectively. For the 17O quadrupole coupling constant, the calculated values differ by 0.30 and 0.87 MHz from the experimental values for O4 and O2, respectively.
NASA Astrophysics Data System (ADS)
Alvizuri, C. R.; Tape, C.
2017-12-01
A seismic moment tensor is a 3×3 symmetric matrix that characterizes the far-field seismic radiation from a source, whether it be an earthquake, volcanic event, explosion. We estimate full moment tensors and their uncertainties for the North Korea declared nuclear test and for a collocated event that occurred eight minutes later. The nuclear test and the subsequent event occurred on September 3, 2017 at around 03:30 and 03:38 UTC time. We perform a grid search over the six-dimensional space of moment tensors, generating synthetic waveforms at each moment tensor grid point and then evaluating a misfit function between the observed and synthetic waveforms. The synthetic waveforms are computed using a 1-D structure model for the region; this approximation requires careful assessment of time shifts between data and synthetics, as well as careful choice of the bandpass for filtering. For each moment tensor we characterize its uncertainty in terms of waveform misfit, a probability function, and a confidence curve for the probability that the true moment tensor lies within the neighborhood of the optimal moment tensor. For each event we estimate its moment tensor using observed waveforms from all available seismic stations within a 2000-km radius. We use as much of the waveform as possible, including surface waves for all stations, and body waves above 1 Hz for some of the closest stations. Our preliminary magnitude estimates are Mw 5.1-5.3 for the first event and Mw 4.7 for the second event. Our results show a dominantly positive isotropic moment tensor for the first event, and a dominantly negative isotropic moment tensor for the subsequent event. As expected, the details of the probability density, waveform fit, and confidence curves are influenced by the structural model, the choice of filter frequencies, and the selection of stations.
NASA Astrophysics Data System (ADS)
Bičák, Jiří; Schmidt, Josef
2016-01-01
The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. "on physical grounds" in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the "generalized linear symmetric Landau-Lifshitz" tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.
Tensor-based dynamic reconstruction method for electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.
2017-03-01
Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.
On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity
NASA Astrophysics Data System (ADS)
Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia
2008-11-01
Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).
Tensor sufficient dimension reduction
Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth
2015-01-01
Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304
NASA Astrophysics Data System (ADS)
Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong
2017-12-01
In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.
PREFACE: 1st Tensor Polarized Solid Target Workshop
NASA Astrophysics Data System (ADS)
2014-10-01
These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.
Yokokura, Ana Valéria Carvalho Pires; Silva, Antônio Augusto Moura da; Fernandes, Juliana de Kássia Braga; Del-Ben, Cristina Marta; Figueiredo, Felipe Pinheiro de; Barbieri, Marco Antonio; Bettiol, Heloisa
2017-12-18
This study aimed to assess the dimensional structure, reliability, convergent validity, discriminant validity, and scalability of the Perceived Stress Scale (PSS). The sample consisted of 1,447 pregnant women in São Luís (Maranhão State) and 1,400 in Ribeirão Preto (São Paulo State), Brazil. The 14 and 10-item versions of the scale were assessed using confirmatory factor analysis, using weighted least squares means and variance (WLSMV). In both cities, the two-factor models (positive factors, measuring resilience to stressful situations, and negative factors, measuring stressful situations) showed better fit than the single-factor models. The two-factor models for the complete (PSS14) and reduced scale (PSS10) showed good internal consistency (Cronbach's alpha ≥ 0.70). All the factor loadings were ≥ 0.50, except for items 8 and 12 of the negative dimension and item 13 of the positive dimension. The correlations between both dimensions of stress and psychological violence showed the expected magnitude (0.46-0.59), providing evidence of an adequate convergent construct validity. The correlations between the scales' positive and negative dimensions were around 0.74-0.78, less than 0.85, which suggests adequate discriminant validity. Extracted mean variance and scalability were slightly higher for PSS10 than for PSS14. The results were consistent in both cities. In conclusion, the single-factor solution is not recommended for assessing stress in pregnant women. The reduced, 10-item two-factor scale appears to be more appropriate for measuring perceived stress in pregnant women.
Moment Tensor Analysis of Shallow Sources
NASA Astrophysics Data System (ADS)
Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.
2015-12-01
A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
Conservation laws and stress-energy-momentum tensors for systems with background fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk; The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD; Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de
2012-10-15
This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics inmore » media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.« less
Barmpoutis, Angelos
2010-01-01
Registration of Diffusion-Weighted MR Images (DW-MRI) can be achieved by registering the corresponding 2nd-order Diffusion Tensor Images (DTI). However, it has been shown that higher-order diffusion tensors (e.g. order-4) outperform the traditional DTI in approximating complex fiber structures such as fiber crossings. In this paper we present a novel method for unbiased group-wise non-rigid registration and atlas construction of 4th-order diffusion tensor fields. To the best of our knowledge there is no other existing method to achieve this task. First we define a metric on the space of positive-valued functions based on the Riemannian metric of real positive numbers (denoted by ℝ+). Then, we use this metric in a novel functional minimization method for non-rigid 4th-order tensor field registration. We define a cost function that accounts for the 4th-order tensor re-orientation during the registration process and has analytic derivatives with respect to the transformation parameters. Finally, the tensor field atlas is computed as the minimizer of the variance defined using the Riemannian metric. We quantitatively compare the proposed method with other techniques that register scalar-valued or diffusion tensor (rank-2) representations of the DWMRI. PMID:20436782
Induced matter brane gravity and Einstein static universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less
An infinite swampland of U(1) charge spectra in 6D supergravity theories
NASA Astrophysics Data System (ADS)
Taylor, Washington; Turner, Andrew P.
2018-06-01
We analyze the anomaly constraints on 6D supergravity theories with a single abelian U(1) gauge factor. For theories with charges restricted to q = ±1 , ±2 and no tensor multiplets, anomaly-free models match those models that can be realized from F-theory compactifications almost perfectly. For theories with tensor multiplets or with larger charges, the F-theory constraints are less well understood. We show, however, that there is an infinite class of distinct massless charge spectra in the "swampland" of theories that satisfy all known quantum consistency conditions but do not admit a realization through F-theory or any other known approach to string compactification. We also compare the spectra of charged matter in abelian theories with those that can be realized from breaking nonabelian SU(2) and higher rank gauge symmetries.
Some remarks on the genesis of scalar-tensor theories
NASA Astrophysics Data System (ADS)
Goenner, Hubert
2012-08-01
Between 1941 and 1962, scalar-tensor theories of gravitation were suggested four times by different scientists in four different countries. The earliest originator, the Swiss mathematician W. Scherrer, was virtually unknown until now whereas the chronologically latest pair gave their names to a multitude of publications on Brans-Dicke theory. P. Jordan, one of the pioneers of quantum mechanics and quantum field theory, and Y. Thiry, known by his book on celestial mechanics, a student of the mathematician Lichnerowicz, complete the quartet. Diverse motivations for and conceptual interpretations of their theories will be discussed as well as relations among them. Also, external factors like language, citation habits, or closeness to the mainstream are considered. It will become clear why Brans-Dicke theory, although structurally a déjà-vu, superseded all the other approaches.
On the magnetic polarizability tensor of US coinage
NASA Astrophysics Data System (ADS)
Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O'Toole, Michael D.; Peyton, Anthony J.
2018-03-01
The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.
The Topology of Three-Dimensional Symmetric Tensor Fields
NASA Technical Reports Server (NTRS)
Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus
1994-01-01
We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.
Ryu-Takayanagi formula for symmetric random tensor networks
NASA Astrophysics Data System (ADS)
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.
NASA Astrophysics Data System (ADS)
Sulyok, G.
2017-07-01
Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.
NASA Technical Reports Server (NTRS)
McGuire, Tim
1998-01-01
In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.
NASA Astrophysics Data System (ADS)
MacDonald, B.; Finot, M.; Heiken, B.; Trowbridge, T.; Ackler, H.; Leonard, L.; Johnson, E.; Chang, B.; Keating, T.
2009-08-01
Skyline Solar Inc. has developed a novel silicon-based PV system to simultaneously reduce energy cost and improve scalability of solar energy. The system achieves high gain through a combination of high capacity factor and optical concentration. The design approach drives innovation not only into the details of the system hardware, but also into manufacturing and deployment-related costs and bottlenecks. The result of this philosophy is a modular PV system whose manufacturing strategy relies only on currently existing silicon solar cell, module, reflector and aluminum parts supply chains, as well as turnkey PV module production lines and metal fabrication industries that already exist at enormous scale. Furthermore, with a high gain system design, the generating capacity of all components is multiplied, leading to a rapidly scalable system. The product design and commercialization strategy cooperate synergistically to promise dramatically lower LCOE with substantially lower risk relative to materials-intensive innovations. In this paper, we will present the key design aspects of Skyline's system, including aspects of the optical, mechanical and thermal components, revealing the ease of scalability, low cost and high performance. Additionally, we will present performance and reliability results on modules and the system, using ASTM and UL/IEC methodologies.
A distributed-memory approximation algorithm for maximum weight perfect bipartite matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydin; Li, Xiaoye S.
We design and implement an efficient parallel approximation algorithm for the problem of maximum weight perfect matching in bipartite graphs, i.e. the problem of finding a set of non-adjacent edges that covers all vertices and has maximum weight. This problem differs from the maximum weight matching problem, for which scalable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization where sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64, are widely used due to the lack of scalable alternatives. To overcome this limitation, we proposemore » a fully parallel distributed memory algorithm that first generates a perfect matching and then searches for weightaugmenting cycles of length four in parallel and iteratively augments the matching with a vertex disjoint set of such cycles. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, He; Luo, Li -Shi; Li, Rui
To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less
Huang, He; Luo, Li -Shi; Li, Rui; ...
2018-05-17
To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, Dmitry I.
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less
Visualization of 3-D tensor fields
NASA Technical Reports Server (NTRS)
Hesselink, L.
1996-01-01
Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.
A closed-form solution to tensor voting: theory and applications.
Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard
2012-08-01
We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.
The role of tensor force in heavy-ion fusion dynamics
NASA Astrophysics Data System (ADS)
Guo, Lu; Simenel, Cédric; Shi, Long; Yu, Chong
2018-07-01
The tensor force is implemented into the time-dependent Hartree-Fock (TDHF) theory so that both exotic and stable collision partners, as well as their dynamics in heavy-ion fusion, can be described microscopically. The role of tensor force on fusion dynamics is systematically investigated for 40Ca +40Ca , 40Ca +48Ca , 48Ca +48Ca , 48Ca +56Ni , and 56Ni +56Ni reactions which vary by the total number of spin-unsaturated magic numbers in target and projectile. A notable effect on fusion barriers and cross sections is observed by the inclusion of tensor force. The origin of this effect is analyzed. The influence of isoscalar and isovector tensor terms is investigated with the TIJ forces. These effects of tensor force in fusion dynamics are essentially attributed to the shift of low-lying vibration states of colliding partners and nucleon transfer in the asymmetric reactions. Our calculations of above-barrier fusion cross sections also show that tensor force does not significantly affect the dynamical dissipation at near-barrier energies.
Balbus, Steven A
2016-10-18
A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.
Theory of electron g-tensor in bulk and quantum-well semiconductors
NASA Astrophysics Data System (ADS)
Lau, Wayne H.; Flatte', Michael E.
2004-03-01
We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).
Development of the GEM-TPC X-ray Polarimeter with the Scalable Readout System
NASA Astrophysics Data System (ADS)
Kitaguchi, Takao; Hayato, Asami; Iwakiri, Wataru; Takeuchi, Yoko; Kubota, Megu; Nishida, Kazuki; Enoto, Teruaki; Tamagawa, Toru
2018-02-01
We have developed a gaseous Time Projection Chamber (TPC) containing a single-layered foil of a gas electron multiplier (GEM) to open up a new window on cosmic X-ray polarimetry in the 2-10 keV band. The micro-pattern TPC polarimeter in combination with the Scalable Readout System produced by the RD51 collaboration has been built as an engineering model to optimize detector parameters and improve polarimeter sensitivity. The polarimeter was characterized with unpolarized X-rays from an X-ray generator in a laboratory and polarized X-rays on the BL32B2 beamline at the SPring-8 synchrotron radiation facility. Preliminary results show that the polarimeter has a comparable modulation factor to a prototype of the flight one.
A lightweight scalable agarose-gel-synthesized thermoelectric composite
NASA Astrophysics Data System (ADS)
Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy
2018-03-01
Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.
NASA Astrophysics Data System (ADS)
Lei, Yuguo; Schaffer, David V.
2013-12-01
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.
Perovskite Technology is Scalable, But Questions Remain about the Best
Methods | News | NREL Perovskite Technology is Scalable, But Questions Remain about the Best Methods News Release: Perovskite Technology is Scalable, But Questions Remain about the Best Methods NREL be used on a larger surface. The NREL researchers examined potential scalable deposition methods
NASA Astrophysics Data System (ADS)
Batista, Carlos
2015-04-01
The integrability conditions for the existence of Killing-Yano tensors or, equivalently, covariantly closed conformal Killing-Yano tensors, in the presence of torsion are worked out. As an application, all metrics and torsions compatible with the existence of a Killing-Yano tensor of order n -1 are obtained. Finally, the issue of defining a maximally symmetric space with respect to connections with torsion is addressed.
Estimation of Uncertainties of Full Moment Tensors
2017-10-06
Nevada Test Site (tab. 1 of Ford et al., 2009). Figure 1 shows the three regions and the stations used within the moment tensor inversions . For the...and additional bandpass filtering, were applied during the moment tensor inversions . We use high-frequency P waves for the Uturuncu and NTS events...reliable when we align the P waves on the observed P arrival time. 3.2 Methods Seismic moment tensor inversion requires specifying a misfit function
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David
2013-08-07
Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).
Randomized interpolative decomposition of separated representations
NASA Astrophysics Data System (ADS)
Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory
2015-01-01
We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.
Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir
2016-08-01
In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.
A distinguishing gravitational property for gravitational equation in higher dimensions
NASA Astrophysics Data System (ADS)
Dadhich, Naresh
2016-03-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.
On the energy-momentum tensor in Moyal space
Balasin, Herbert; Blaschke, Daniel N.; Gieres, François; ...
2015-06-26
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another starproduct. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the latter two procedures are incompatible with each other if couplings of gaugemore » fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice-versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line.« less
NASA Astrophysics Data System (ADS)
Alvizuri, Celso R.
We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalog: (1) 6 isotropic events, (2) 5 tensional crack events, and (3) a swarm of 14 events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes. A seismic moment tensor is a 3x3 symmetric matrix that provides a compact representation of a seismic source. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms for each moment tensor and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M0 for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M0, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P( V), where P(V) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V. The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M0. We apply the method to data from events in different regions and tectonic settings: 63 small (M w 4) earthquakes in the southern Alaska subduction zone, and 12 earthquakes and 17 nuclear explosions at the Nevada Test Site. Characterization of moment tensor uncertainties puts us in better position to discriminate among moment tensor source types and to assign physical processes to the events.
Relational Learning via Collective Matrix Factorization
2008-06-01
well-known example of such a schema is pLSI- pHITS [13], which models document-word counts and document-document citations: E1 = words and E2 = E3...relational co- clustering include pLSI, pLSI- pHITS , the symmetric block models of Long et. al. [23, 24, 25], and Bregman tensor clustering [5] (which can...to pLSI- pHITS In this section we provide an example where the additional flexibility of collective matrix factorization leads to better results; and
2007-04-16
velocity of the fluid mesh, P is the relative pressure, xr is the position vector, τ is the deviatoric stress tensor, D is the rate of deformation...corresponds to a slip factor of zero. The slip factor determines how much of the fluid and structure forces are mutually exchanged. Equations 22 and 23...updated from last to first. viii.Average the fluid pressure (This step eliminates the pressure checker-boarding effect and allows use of equal
ERIC Educational Resources Information Center
Pardini, Matteo; Elia, Maurizio; Garaci, Francesco G.; Guida, Silvia; Coniglione, Filadelfo; Krueger, Frank; Benassi, Francesca; Gialloreti, Leonardo Emberti
2012-01-01
Recent evidence points to white-matter abnormalities as a key factor in autism physiopathology. Using Diffusion Tensor Imaging, we studied white-matter structural properties in a convenience sample of twenty-two subjects with low-functioning autism exposed to long-term augmentative and alternative communication, combined with sessions of cognitive…
Quality Scalability Aware Watermarking for Visual Content.
Bhowmik, Deepayan; Abhayaratne, Charith
2016-11-01
Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.
NASA Astrophysics Data System (ADS)
Dyer, Oliver T.; Ball, Robin C.
2017-03-01
We develop a new algorithm for the Brownian dynamics of soft matter systems that evolves time by spatially correlated Monte Carlo moves. The algorithm uses vector wavelets as its basic moves and produces hydrodynamics in the low Reynolds number regime propagated according to the Oseen tensor. When small moves are removed, the correlations closely approximate the Rotne-Prager tensor, itself widely used to correct for deficiencies in Oseen. We also include plane wave moves to provide the longest range correlations, which we detail for both infinite and periodic systems. The computational cost of the algorithm scales competitively with the number of particles simulated, N, scaling as N In N in homogeneous systems and as N in dilute systems. In comparisons to established lattice Boltzmann and Brownian dynamics algorithms, the wavelet method was found to be only a factor of order 1 times more expensive than the cheaper lattice Boltzmann algorithm in marginally semi-dilute simulations, while it is significantly faster than both algorithms at large N in dilute simulations. We also validate the algorithm by checking that it reproduces the correct dynamics and equilibrium properties of simple single polymer systems, as well as verifying the effect of periodicity on the mobility tensor.
Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Zhengcheng; Wen Xiaogang
2009-10-15
We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less
Virtual viewpoint generation for three-dimensional display based on the compressive light field
NASA Astrophysics Data System (ADS)
Meng, Qiao; Sang, Xinzhu; Chen, Duo; Guo, Nan; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan
2016-10-01
Virtual view-point generation is one of the key technologies the three-dimensional (3D) display, which renders the new scene image perspective with the existing viewpoints. The three-dimensional scene information can be effectively recovered at different viewing angles to allow users to switch between different views. However, in the process of multiple viewpoints matching, when N free viewpoints are received, we need to match N viewpoints each other, namely matching C 2N = N(N-1)/2 times, and even in the process of matching different baselines errors can occur. To address the problem of great complexity of the traditional virtual view point generation process, a novel and rapid virtual view point generation algorithm is presented in this paper, and actual light field information is used rather than the geometric information. Moreover, for better making the data actual meaning, we mainly use nonnegative tensor factorization(NTF). A tensor representation is introduced for virtual multilayer displays. The light field emitted by an N-layer, M-frame display is represented by a sparse set of non-zero elements restricted to a plane within an Nth-order, rank-M tensor. The tensor representation allows for optimal decomposition of a light field into time-multiplexed, light-attenuating layers using NTF. Finally, the compressive light field of multilayer displays information synthesis is used to obtain virtual view-point by multiple multiplication. Experimental results show that the approach not only the original light field is restored with the high image quality, whose PSNR is 25.6dB, but also the deficiency of traditional matching is made up and any viewpoint can obtained from N free viewpoints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Xue, Wei, E-mail: yw366@cam.ac.uk, E-mail: wei.xue@sissa.it
We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experimentsmore » do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.« less
A gravitational energy–momentum and the thermodynamic description of gravity
NASA Astrophysics Data System (ADS)
Acquaviva, G.; Kofroň, D.; Scholtz, M.
2018-05-01
A proposal for the gravitational energy–momentum tensor, known in the literature as the square root of Bel–Robinson tensor (SQBR), is analyzed in detail. Being constructed exclusively from the Weyl part of the Riemann tensor, such tensor encapsulates the geometric properties of free gravitational fields in terms of optical scalars of null congruences: making use of the general decomposition of any energy–momentum tensor, we explore the thermodynamic interpretation of such geometric quantities. While the matter energy–momentum is identically conserved due to Einstein’s field equations, the SQBR is not necessarily conserved and dissipative terms could arise in its vacuum continuity equation. We discuss the possible physical interpretations of such mathematical properties.
Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization
Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.; ...
2018-01-02
To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less
Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.
To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less
Active subspace: toward scalable low-rank learning.
Liu, Guangcan; Yan, Shuicheng
2012-12-01
We address the scalability issues in low-rank matrix learning problems. Usually these problems resort to solving nuclear norm regularized optimization problems (NNROPs), which often suffer from high computational complexities if based on existing solvers, especially in large-scale settings. Based on the fact that the optimal solution matrix to an NNROP is often low rank, we revisit the classic mechanism of low-rank matrix factorization, based on which we present an active subspace algorithm for efficiently solving NNROPs by transforming large-scale NNROPs into small-scale problems. The transformation is achieved by factorizing the large solution matrix into the product of a small orthonormal matrix (active subspace) and another small matrix. Although such a transformation generally leads to nonconvex problems, we show that a suboptimal solution can be found by the augmented Lagrange alternating direction method. For the robust PCA (RPCA) (Candès, Li, Ma, & Wright, 2009 ) problem, a typical example of NNROPs, theoretical results verify the suboptimality of the solution produced by our algorithm. For the general NNROPs, we empirically show that our algorithm significantly reduces the computational complexity without loss of optimality.
Spacetimes with Killing tensors. [for Einstein-Maxwell fields with certain spinor indices
NASA Technical Reports Server (NTRS)
Hughston, L. P.; Sommers, P.
1973-01-01
The characteristics of the Killing equation and the Killing tensor are discussed. A conformal Killing tensor is of interest inasmuch as it gives rise to a quadratic first integral for null geodesic orbits. The Einstein-Maxwell equations are considered together with the Bianchi identity and the conformal Killing tensor. Two examples for the application of the considered relations are presented, giving attention to the charged Kerr solution and the charged C-metric.
Derivation of revised formulae for eddy viscous forces used in the ocean general circulation model
NASA Technical Reports Server (NTRS)
Chou, Ru Ling
1988-01-01
Presented is a re-derivation of the eddy viscous dissipation tensor commonly used in present oceanographic general circulation models. When isotropy is imposed, the currently-used form of the tensor fails to return to the laplacian operator. In this paper, the source of this error is identified in a consistent derivation of the tensor in both rectangular and earth spherical coordinates, and the correct form of the eddy viscous tensor is presented.
Dissipation consistent fabric tensor definition from DEM to continuum for granular media
NASA Astrophysics Data System (ADS)
Li, X. S.; Dafalias, Y. F.
2015-05-01
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.
NASA Astrophysics Data System (ADS)
Yamada, Kazuhiko; Asanuma, Miwako; Honda, Hisashi; Nemoto, Takahiro; Yamazaki, Toshio; Hirota, Hiroshi
2007-10-01
We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for each carboxylate group in polycrystalline L-alanine and L-phenylalanine. The magic angle spinning (MAS) and stationary 17O NMR spectra of these compounds were obtained at 9.4, 14.1, and 16.4 T. Analyzes of these 17O NMR spectra yielded reliable experimental NMR parameters including 17O CS tensor components, 17O quadrupole coupling parameters, and the relative orientations between the 17O CS and EFG tensors. The extensive quantum chemical calculations at both the restricted Hartree-Fock and density-functional theories were carried out with various basis sets to evaluate the quality of quantum chemical calculations for the 17O NMR tensors in L-alanine. For 17O CS tensors, the calculations at the B3LYP/D95 ∗∗ level could reasonably reproduce 17O CS tensors, but they still showed some discrepancies in the δ11 components by approximately 36 ppm. For 17O EFG calculations, it was advantageous to use calibrated Q value to give acceptable CQ values. The calculated results also demonstrated that not only complete intermolecular hydrogen-bonding networks to target oxygen in L-alanine, but also intermolecular interactions around the NH3+ group were significant to reproduce the 17O NMR tensors.
Dibb, Russell; Liu, Chunlei
2017-06-01
To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Tranos, Markos D.
2018-02-01
Synthetic heterogeneous fault-slip data as driven by Andersonian compressional stress tensors were used to examine the efficiency of best-fit stress inversion methods in separating them. Heterogeneous fault-slip data are separated only if (a) they have been driven by stress tensors defining 'hybrid' compression (R < 0.375), and their σ1 axes differ in trend more than 30° (R = 0) or 50° (R = 0.25). Separation is not feasible if they have been driven by (b) 'real' (R ≥ 0.375) and 'hybrid' compressional tensors having their σ1 axes in similar trend, or (c) 'real' compressional tensors. In case (a), the Stress Tensor Discriminator Faults (STDF) exist in more than 50% of the activated fault slip data while in cases (b) and (c), they exist in percentages of much less than 50% or not at all. They constitute a necessary discriminatory tool for the establishment and comparison of two compressional stress tensors determined by a best-fit stress inversion method. The best-fit stress inversion methods are not able to determine more than one 'real' compressional stress tensor, as far as the thrust stacking in an orogeny is concerned. They can only possibly discern stress differences in the late-orogenic faulting processes, but not between the main- and late-orogenic stages.
An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.
Energy-momentum tensor of perturbed tachyon matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokela, Niko; Department of Mathematics and Physics, University of Haifa at Oranim, Tivon 36006; Jaervinen, Matti
2009-05-15
We add an initial nonhomogeneous perturbation to an otherwise homogeneous condensing tachyon background and compute its spacetime energy-momentum tensor from world-sheet string theory. We show that in the far future the energy-momentum tensor corresponds to nonhomogeneous pressureless tachyon matter.
A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid
NASA Astrophysics Data System (ADS)
Yazadjiev, Stoytcho S.
We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.
Q-space trajectory imaging for multidimensional diffusion MRI of the human brain
Westin, Carl-Fredrik; Knutsson, Hans; Pasternak, Ofer; Szczepankiewicz, Filip; Özarslan, Evren; van Westen, Danielle; Mattisson, Cecilia; Bogren, Mats; O’Donnell, Lauren; Kubicki, Marek; Topgaard, Daniel; Nilsson, Markus
2016-01-01
This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture. PMID:26923372
Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory.
Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M; Dean, David S
2018-02-28
Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory
NASA Astrophysics Data System (ADS)
Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M.; Dean, David S.
2018-02-01
Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.
Stueber, Dirk; Grant, David M
2002-09-04
The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.
Multiway modeling and analysis in stem cell systems biology
2008-01-01
Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. PMID:18625054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Ben, Mauro, E-mail: mauro.delben@chem.uzh.ch; Hutter, Jürg, E-mail: hutter@chem.uzh.ch; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles.more » Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH{sub 3}, CO{sub 2}, formic acid, and benzene.« less
Curvature tensors unified field equations on SEXn
NASA Astrophysics Data System (ADS)
Chung, Kyung Tae; Lee, Il Young
1988-09-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.
Abelian tensor hierarchy in 4D N = 1 conformal supergravity
NASA Astrophysics Data System (ADS)
Aoki, Shuntaro; Higaki, Tetsutaro; Yamada, Yusuke; Yokokura, Ryo
2016-09-01
We consider Abelian tensor hierarchy in four-dimensional N = 1 supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce p-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the super-forms. As a result, each of form fields is expressed by a single gauge invariant superfield. We also show the relation between the superspace formalism and the superconformal tensor calculus.
1987-03-01
would be transcribed as L =AX - V where L, X, and V are the vectors of constant terms, parametric corrections , and b_o bresiduals, respectively. The...tensor. a Just as du’ represents the parametric corrections in tensor notations, the necessary associated metric tensor a’ corresponds to the variance...observations, n residuals, and 0 n- parametric corrections to X (an initial set of parameters), respectively. b 0 b The vctor L is formed as 1. L where
Adaptive format conversion for scalable video coding
NASA Astrophysics Data System (ADS)
Wan, Wade K.; Lim, Jae S.
2001-12-01
The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Interface induced spin-orbit interaction in silicon quantum dots and prospects of scalability
NASA Astrophysics Data System (ADS)
Ferdous, Rifat; Wai, Kok; Veldhorst, Menno; Hwang, Jason; Yang, Henry; Klimeck, Gerhard; Dzurak, Andrew; Rahman, Rajib
A scalable quantum computing architecture requires reproducibility over key qubit properties, like resonance frequency, coherence time etc. Randomness in these properties would necessitate individual knowledge of each qubit in a quantum computer. Spin qubits hosted in Silicon (Si) quantum dots (QD) is promising as a potential building block for a large-scale quantum computer, because of their longer coherence times. The Stark shift of the electron g-factor in these QDs has been used to selectively address multiple qubits. From atomistic tight-binding studies we investigated the effect of interface non-ideality on the Stark shift of the g-factor in a Si QD. We find that based on the location of a monoatomic step at the interface with respect to the dot center both the sign and magnitude of the Stark shift change. Thus the presence of interface steps in these devices will cause variability in electron g-factor and its Stark shift based on the location of the qubit. This behavior will also cause varying sensitivity to charge noise from one qubit to another, which will randomize the dephasing times T2*. This predicted device-to-device variability is experimentally observed recently in three qubits fabricated at a Si/Si02 interface, which validates the issues discussed.
TNSPackage: A Fortran2003 library designed for tensor network state methods
NASA Astrophysics Data System (ADS)
Dong, Shao-Jun; Liu, Wen-Yuan; Wang, Chao; Han, Yongjian; Guo, G.-C.; He, Lixin
2018-07-01
Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of tensors, including contraction, permutation, reshaping tensors, SVD and so on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.
Rational first integrals of geodesic equations and generalised hidden symmetries
NASA Astrophysics Data System (ADS)
Aoki, Arata; Houri, Tsuyoshi; Tomoda, Kentaro
2016-10-01
We discuss novel generalisations of Killing tensors, which are introduced by considering rational first integrals of geodesic equations. We introduce the notion of inconstructible generalised Killing tensors, which cannot be constructed from ordinary Killing tensors. Moreover, we introduce inconstructible rational first integrals, which are constructed from inconstructible generalised Killing tensors, and provide a method for checking the inconstructibility of a rational first integral. Using the method, we show that the rational first integral of the Collinson-O’Donnell solution is not inconstructible. We also provide several examples of metrics admitting an inconstructible rational first integral in two and four-dimensions, by using the Maciejewski-Przybylska system. Furthermore, we attempt to generalise other hidden symmetries such as Killing-Yano tensors.
Loop optimization for tensor network renormalization
NASA Astrophysics Data System (ADS)
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
NASA Astrophysics Data System (ADS)
Sameer, M. Ikhdair; Majid, Hamzavi
2013-09-01
Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Ramezani-Arani, R.
2012-11-01
The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.
NASA Astrophysics Data System (ADS)
Kao, Honn; Jian, Pei-Ru; Ma, Kuo-Fong; Huang, Bor-Shouh; Liu, Chun-Chi
Reliable determination of source parameters for offshore earthquakes east of Taiwan with mb<5.5 was a difficult task because of the poor azimuthal coverage by local network and the lack of signals at teleseismic distances. We take advantage of the recently established “Broadband Array in Taiwan for Seismology” (BATS) to invert seismic moment tensors for 7 such events occurred in 1996. To cope with different patterns of background noise and unknown structural details, we utilize variable frequency bands in the inversion and adapt a two-step procedure to select best velocity models for individual epicenter-station paths. Our results are consistent with the overall patterns of regional collision and indicate that the resulting compressive stress has caused significant intraplate deformation within the Philippine Sea plate. Simulation of the region's geological evolution and orogenic processes should take this factor into account and allow the Philippine Sea plate to deform internally.
Pseudoscalar Meson Electroproduction and Transversity
NASA Astrophysics Data System (ADS)
Goldstein, Gary R.; Liuti, Simonetta
2011-02-01
Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, JPC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.
f(R)-gravity from Killing tensors
NASA Astrophysics Data System (ADS)
Paliathanasis, Andronikos
2016-04-01
We consider f(R)-gravity in a Friedmann-Lemaître-Robertson-Walker spacetime with zero spatial curvature. We apply the Killing tensors of the minisuperspace in order to specify the functional form of f(R) and for the field equations to be invariant under Lie-Bäcklund transformations, which are linear in momentum (contact symmetries). Consequently, the field equations to admit quadratic conservation laws given by Noether’s theorem. We find three new integrable f(R)-models, for which, with the application of the conservation laws, we reduce the field equations to a system of two first-order ordinary differential equations. For each model we study the evolution of the cosmological fluid. We find that for each integrable model the cosmological fluid has an equation of state parameter, in which there is linear behavior in terms of the scale factor which describes the Chevallier, Polarski and Linder parametric dark energy model.
Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging
NASA Astrophysics Data System (ADS)
Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai
2017-10-01
Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.
Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals
Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.
2018-03-20
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Tensor perturbations during inflation in a spatially closed Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu
2017-05-01
In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited tomore » the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.« less
Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less
Octupolar tensors for liquid crystals
NASA Astrophysics Data System (ADS)
Chen, Yannan; Qi, Liqun; Virga, Epifanio G.
2018-01-01
A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald, R. E., II; Bernhard, T.; Haeberlen, U.
1993-01-01
Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper themore » authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is essential. The main purpose of this work is to investigate this relationship for the amide hydrogen CS tensor. The amide hydrogen CS tensor will also provide orientational information for peptide bonds in proteins complementary to that from the nitrogen CS and EFG tensors and the nitrogen-hydrogen heteronuclear dipole-dipole coupling which have been used previously to determine protein structures by solid-state NMR spectroscopy. This information will be particularly valuable because the amide hydrogen CS tensor is not axially symmetric. In addition, the use of the amide hydrogen CS interaction in high-field solid-state NMR experiments will increase the available resolution among peptide sites.« less
Monitoring the refinement of crystal structures with {sup 15}N solid-state NMR shift tensor data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalakewich, Keyton; Eloranta, Harriet; Harper, James K.
The {sup 15}N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated {sup 15}N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more thanmore » the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of {sup 15}N tensors at natural abundance is challenging and this limitation is overcome by improved {sup 1}H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental {sup 15}N tensors are at least 5 times more sensitive to crystal structure than {sup 13}C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts.« less
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI⋆
Barmpoutis, Angelos; Jian, Bing; Vemuri, Baba C.; Shepherd, Timothy M.
2009-01-01
In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (PSD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the PSD property. There have been several published articles in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positive semi-definite constraint, which is a fundamental constraint since negative values of the diffusivity coefficients are not meaningful. In our methods, we parameterize the 4th order tensors as a sum of squares of quadratic forms by using the so called Gram matrix method from linear algebra and its relation to the Hilbert’s theorem on ternary quartics. This parametric representation is then used in a nonlinear-least squares formulation to estimate the PSD tensors of order 4 from the data. We define a metric for the higher-order tensors and employ it for regularization across the lattice. Finally, performance of this model is depicted on synthetic data as well as real DW-MRI from an isolated rat hippocampus. PMID:17633709
de Wit, Bianca; Badcock, Nicholas A.; Grootswagers, Tijl; Hardwick, Katherine; Teichmann, Lina; Wehrman, Jordan; Williams, Mark; Kaplan, David Michael
2017-01-01
Active research-driven approaches that successfully incorporate new technology are known to catalyze student learning. Yet achieving these objectives in neuroscience education is especially challenging due to the prohibitive costs and technical demands of research-grade equipment. Here we describe a method that circumvents these factors by leveraging consumer EEG-based neurogaming technology to create an affordable, scalable, and highly portable teaching laboratory for undergraduate courses in neuroscience. This laboratory is designed to give students hands-on research experience, consolidate their understanding of key neuroscience concepts, and provide a unique real-time window into the working brain. Survey results demonstrate that students found the lab sessions engaging. Students also reported the labs enhanced their knowledge about EEG, their course material, and neuroscience research in general. PMID:28690430
Kaluza-Klein two-brane-worlds cosmology at low energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feranie, S.; Arianto; Zen, Freddy P.
2010-04-15
We study two (4+n)-dimensional branes embedded in (5+n)-dimensional spacetime. Using the gradient expansion approximation, we find that the effective theory is described by (4+n)-dimensional scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions. In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann equation depends on the equations of state of the brane matter, and the dark radiation term naturally appears. In the nonstatic case we take a relation between the external and internalmore » scale factors of the form b(t)=a{sup {gamma}(t)} in which the brane world evolves with two scale factors. In this case, the induced Friedmann equation on the brane is modified in the effective gravitational constant and the term proportional to a{sup -4{beta}.} For dark radiation, we find {gamma}=-2/(1+n). Finally, we discuss the issue of conformal frames which naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame may become nonstatic in the Einstein frame.« less
NASA Astrophysics Data System (ADS)
Laassiri, M.; Hamzaoui, E.-M.; Cherkaoui El Moursli, R.
2018-02-01
Inside nuclear reactors, gamma-rays emitted from nuclei together with the neutrons introduce unwanted backgrounds in neutron spectra. For this reason, powerful extraction methods are needed to extract useful neutron signal from recorded mixture and thus to obtain clearer neutron flux spectrum. Actually, several techniques have been developed to discriminate between neutrons and gamma-rays in a mixed radiation field. Most of these techniques, tackle using analogue discrimination methods. Others propose to use some organic scintillators to achieve the discrimination task. Recently, systems based on digital signal processors are commercially available to replace the analog systems. As alternative to these systems, we aim in this work to verify the feasibility of using a Nonnegative Tensor Factorization (NTF) to blind extract neutron component from mixture signals recorded at the output of fission chamber (WL-7657). This last have been simulated through the Geant4 linked to Garfield++ using a 252Cf neutron source. To achieve our objective of obtaining the best possible neutron-gamma discrimination, we have applied the two different NTF algorithms, which have been found to be the best methods that allow us to analyse this kind of nuclear data.
Role of the ρ meson in the description of pion electroproduction experiments
NASA Astrophysics Data System (ADS)
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Obukhovsky, Igor T.
2007-08-01
We study the p(e,e'π+)n reaction in the framework of an effective Lagrangian approach including nucleon, π and ρ meson degrees of freedom and show the importance of the ρ-meson t-pole contribution to σT, the transverse part of cross section. We test two different field representations of the ρ meson, vector and tensor, and find that the tensor representation of the ρ meson is more reliable in the description of the existing data. In particular, we show that the ρ-meson t-pole contribution, including the interference with an effective nonlocal contact term, sufficiently improves the description of the recent JLab data at invariant mass W≲2.2 GeV and Q2≲2.5 GeV2/c2. A “soft” variant of the strong πNN and ρNN form factors is also found to be compatible with these data. On the basis of the successful description of both the σL and σT parts of the cross section we discuss the importance of taking into account the σT data when extracting the charge pion form factor Fπ from σL.
Network selection, Information filtering and Scalable computation
NASA Astrophysics Data System (ADS)
Ye, Changqing
This dissertation explores two application scenarios of sparsity pursuit method on large scale data sets. The first scenario is classification and regression in analyzing high dimensional structured data, where predictors corresponds to nodes of a given directed graph. This arises in, for instance, identification of disease genes for the Parkinson's diseases from a network of candidate genes. In such a situation, directed graph describes dependencies among the genes, where direction of edges represent certain causal effects. Key to high-dimensional structured classification and regression is how to utilize dependencies among predictors as specified by directions of the graph. In this dissertation, we develop a novel method that fully takes into account such dependencies formulated through certain nonlinear constraints. We apply the proposed method to two applications, feature selection in large margin binary classification and in linear regression. We implement the proposed method through difference convex programming for the cost function and constraints. Finally, theoretical and numerical analyses suggest that the proposed method achieves the desired objectives. An application to disease gene identification is presented. The second application scenario is personalized information filtering which extracts the information specifically relevant to a user, predicting his/her preference over a large number of items, based on the opinions of users who think alike or its content. This problem is cast into the framework of regression and classification, where we introduce novel partial latent models to integrate additional user-specific and content-specific predictors, for higher predictive accuracy. In particular, we factorize a user-over-item preference matrix into a product of two matrices, each representing a user's preference and an item preference by users. Then we propose a likelihood method to seek a sparsest latent factorization, from a class of over-complete factorizations, possibly with a high percentage of missing values. This promotes additional sparsity beyond rank reduction. Computationally, we design methods based on a ``decomposition and combination'' strategy, to break large-scale optimization into many small subproblems to solve in a recursive and parallel manner. On this basis, we implement the proposed methods through multi-platform shared-memory parallel programming, and through Mahout, a library for scalable machine learning and data mining, for mapReduce computation. For example, our methods are scalable to a dataset consisting of three billions of observations on a single machine with sufficient memory, having good timings. Both theoretical and numerical investigations show that the proposed methods exhibit significant improvement in accuracy over state-of-the-art scalable methods.
Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands
2015-09-01
the various techniques that can be used to improve the performance of a circularly polarized microstrip patch antenna . These adjustments include... microstrip antenna . 15. SUBJECT TERMS Patch Antenna , Circular Polarization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Frequency Structural Simulator (HFSS) has allowed engineers to create scalable multiband microstrip antennas . Several factors were taken into
Development of solar wind shock models with tensor plasma pressure for data analysis
NASA Technical Reports Server (NTRS)
Abraham-Shrauner, B.
1975-01-01
The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged.
Conformal Yano-Killing Tensors for Space-times with Cosmological Constant
NASA Astrophysics Data System (ADS)
Czajka, P.; Jezierski, J.
We present a new method for constructing conformal Yano-Killing tensors in five-di\\-men\\-sio\\-nal Anti-de Sitter space-time. The found tensors are represented in two different coordinate systems. We also discuss, in terms of CYK tensors, global charges which are well defined for asymptotically (five-dimensional) Anti-de Sitter space-time. Additionally in Appendix we present our own derivation of conformal Killing one-forms in four-dimensional Anti-de Sitter space-time as an application of the Theorem presented in the paper.
Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited
NASA Astrophysics Data System (ADS)
Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.
The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.
Renormalization group contraction of tensor networks in three dimensions
NASA Astrophysics Data System (ADS)
García-Sáez, Artur; Latorre, José I.
2013-02-01
We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three-dimensional quantum system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.
Bespoke analogue space-times: meta-material mimics
NASA Astrophysics Data System (ADS)
Schuster, Sebastian; Visser, Matt
2018-06-01
Modern meta-materials allow one to construct electromagnetic media with almost arbitrary bespoke permittivity, permeability, and magneto-electric tensors. If (and only if) the permittivity, permeability, and magneto-electric tensors satisfy certain stringent compatibility conditions, can the meta-material be fully described (at the wave optics level) in terms of an effective Lorentzian metric—an analogue spacetime. We shall consider some of the standard black-hole spacetimes of primary interest in general relativity, in various coordinate systems, and determine the equivalent meta-material susceptibility tensors in a laboratory setting. In static black hole spacetimes (Schwarzschild and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the horizon. In stationary black hole spacetimes (Kerr and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the ergo-surface.
Raman scattering tensors in thymine molecule from an ab initio MO calculation
NASA Astrophysics Data System (ADS)
Tsuboi, Masamichi; Kumakura, Akiko; Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ushizawa, Koichi; Ueda, Toyotoshi
1997-03-01
Ab initio SCF MO calculations have been made of the thymine molecule for the permanent polarizability and the polarizability derivatives with respect to the normal coordinates. The latter correspond to the components of the Raman tensors, and each of these tensors was brought into a visualized form by a transformation of the tensor axes into the principal system. For a comparison with such computational findings, a polarized Raman spectroscopic measurement has been made of a single crystal of thymine with 488.0 nm excitation. For most of the in-plane vibrations, calculated tensors were found to be well correlated with the observed Raman scattering anisotropy. On the basis of such correlations, discussions are given as for the polarizability oscillations caused by the atomic displacements in the molecule.
Spin Manipulating Vector and Tensor Polarized Deuterons Stored in COSY
NASA Astrophysics Data System (ADS)
Morozov, Vassili; Krisch, Alan; Leonova, Maria; Raymond, Richard; Sivers, Dennis; Wong, Victor; Yonehara, Katsuya; Bechstedt, Ulf; Gebel, Ralf; Lehrach, Andreas; Lorentz, Bernd; Maier, Rudolf; Schnase, Alexander; Stockhorst, Hans; Eversheim, Dieter; Hinterberger, Frank; Rohdjess, Heiko; Ulbrich, Kay
2004-05-01
We recently studied spin flipping and spin manipulation of a simultaneously vector and tensor polarized deuteron beam stored in the COSY Cooler Synchrotron at 1.85 GeV/c. Using the EDDA detector we calibrated vector and tensor analyzing powers, which were earlier unknown at this energy; thus, we were able to obtain the absolute values for both the vector and tensor polarizations. We manipulated the deuteron's polarization using a new water-cooled ferrite rf dipole, by adiabatically sweeping its frequency through an rf-induced spin resonance. We first experimentally determined the resonance's frequency and then varied the dipole's frequency range and frequency ramp time. This allowed us to maximize the vector polarization spin-flip efficiency to about 97 ± 1%. We also studied the interesting tensor polarization manipulation in considerable detail.
An eigenvalue localization set for tensors and its applications.
Zhao, Jianxing; Sang, Caili
2017-01-01
A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al . (Linear Algebra Appl. 481:36-53, 2015) and Huang et al . (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of [Formula: see text]-tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang et al ., the advantage of our results is that, without considering the selection of nonempty proper subsets S of [Formula: see text], we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of [Formula: see text]-tensors. Finally, numerical examples are given to verify the theoretical results.
Computer Tensor Codes to Design the War Drive
NASA Astrophysics Data System (ADS)
Maccone, C.
To address problems in Breakthrough Propulsion Physics (BPP) and design the Warp Drive one needs sheer computing capabilities. This is because General Relativity (GR) and Quantum Field Theory (QFT) are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available “symbolic manipulator” codes. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in GR and QFT. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the design of the Warp Drive. It is thus suggested that NASA would be a suitable organization to establish standards in symbolic tensor calculus and anyone working in BPP should adopt these standards. Alternatively other institutions, like CERN in Europe, might consider the challenge of starting the preliminary implementation of a Universal Tensor Code to design the Warp Drive.
Atomic-batched tensor decomposed two-electron repulsion integrals
NASA Astrophysics Data System (ADS)
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-01
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
Stochastic analysis of transverse dispersion in density‐coupled transport in aquifers
Welty, Claire; Kane, Allen C.; Kauffman, Leon J.
2003-01-01
Spectral perturbation techniques have been used previously to derive integral expressions for dispersive mixing in concentration‐dependent transport in three‐dimensional, heterogeneous porous media, where fluid density and viscosity are functions of solute concentration. Whereas earlier work focused on evaluating longitudinal dispersivity in isotropic media and incorporating the result in a mean one‐dimensional transport model, the emphasis of this paper is on evaluation of the complete dispersion tensor, including the more general case of anisotropic media. Approximate analytic expressions for all components of the macroscopic dispersivity tensor are derived, and the tensor is shown to be asymmetric. The tensor is separated into its symmetric and antisymmetric parts, where the symmetric part is used to calculate the principal components and principal directions of dispersivity, and the antisymmetric part of the tensor is shown to modify the velocity of the solute body compared to that of the background fluid. An example set of numerical simulations incorporating the tensor illustrates the effect of density‐coupled dispersivity on a sinking plume in an aquifer. The simulations show that the effective transverse vertical spreading in a sinking plume to be significantly greater than would be predicted by a standard density‐coupled transport model that does not incorporate the coupling in the dispersivity tensor.
Atomic-batched tensor decomposed two-electron repulsion integrals.
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-07
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
NASA Astrophysics Data System (ADS)
Rababaah, Haroun; Shirkhodaie, Amir
2009-04-01
The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.
A scalable quantum computer with ions in an array of microtraps
Cirac; Zoller
2000-04-06
Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).
A scalable healthcare information system based on a service-oriented architecture.
Yang, Tzu-Hsiang; Sun, Yeali S; Lai, Feipei
2011-06-01
Many existing healthcare information systems are composed of a number of heterogeneous systems and face the important issue of system scalability. This paper first describes the comprehensive healthcare information systems used in National Taiwan University Hospital (NTUH) and then presents a service-oriented architecture (SOA)-based healthcare information system (HIS) based on the service standard HL7. The proposed architecture focuses on system scalability, in terms of both hardware and software. Moreover, we describe how scalability is implemented in rightsizing, service groups, databases, and hardware scalability. Although SOA-based systems sometimes display poor performance, through a performance evaluation of our HIS based on SOA, the average response time for outpatient, inpatient, and emergency HL7Central systems are 0.035, 0.04, and 0.036 s, respectively. The outpatient, inpatient, and emergency WebUI average response times are 0.79, 1.25, and 0.82 s. The scalability of the rightsizing project and our evaluation results show that the SOA HIS we propose provides evidence that SOA can provide system scalability and sustainability in a highly demanding healthcare information system.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
Tensor completion for estimating missing values in visual data.
Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping
2013-01-01
In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependent relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC an- HaLRTC the former is more efficient to obtain a low accuracy solution and the latter is preferred if a high-accuracy solution is desired.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2011-04-21
Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.
Comparison of scalar measures used in magnetic resonance diffusion tensor imaging.
Bahn, M M
1999-07-01
The tensors derived from diffusion tensor imaging describe complex diffusion in tissues. However, it is difficult to compare tensors directly or to produce images that contain all of the information of the tensor. Therefore, it is convenient to produce scalar measures that extract desired aspects of the tensor. These measures map the three-dimensional eigenvalues of the diffusion tensor into scalar values. The measures impose an order on eigenvalue space. Many invariant scalar measures have been introduced in the literature. In the present manuscript, a general approach for producing invariant scalar measures is introduced. Because it is often difficult to determine in clinical practice which of the many measures is best to apply to a given situation, two formalisms are introduced for the presentation, definition, and comparison of measures applied to eigenvalues: (1) normalized eigenvalue space, and (2) parametric eigenvalue transformation plots. All of the anisotropy information contained in the three eigenvalues can be retained and displayed in a two-dimensional plot, the normalized eigenvalue plot. An example is given of how to determine the best measure to use for a given situation by superimposing isometric contour lines from various anisotropy measures on plots of actual measured eigenvalue data points. Parametric eigenvalue transformation plots allow comparison of how different measures impose order on normalized eigenvalue space to determine whether the measures are equivalent and how the measures differ. These formalisms facilitate the comparison of scalar invariant measures for diffusion tensor imaging. Normalized eigenvalue space allows presentation of eigenvalue anisotropy information. Copyright 1999 Academic Press.
Tropine, Andrei; Dellani, Paulo D; Glaser, Martin; Bohl, Juergen; Plöner, Till; Vucurevic, Goran; Perneczky, Axel; Stoeter, Peter
2007-04-01
To differentiate fibroblastic meningiomas, usually considered to be of a hard consistency, from other benign subtypes using diffusion tensor imaging (DTI). From DTI data sets of 30 patients with benign meningiomas, we calculated diffusion tensors and mean diffusivity (MD) and fractional anisotropy (FA) maps as well as barycentric maps representing the geometrical shape of the tensors. The findings were compared to postoperative histology. The study was approved by the local ethics committee, and informed consent was given by the patients. According to one-way analysis of variance (ANOVA), FA was the best parameter to differentiate between the subtypes (F=32.2; p<0.0001). Regarding tensor shape, endothelial meningiomas were represented by spherical tensors (80%) corresponding to isotropic diffusion, whereas the fibroblastic meningiomas showed a high percentage (43%) of nonspherical tensors, indicating planar or longitudinal diffusion. The difference was highly significant (F=28.4; p<0.0001) and may be due to the fascicular arrangement of long spindle-shaped tumor cells and the high content of intra- and interfascicular fibers as shown in the histology. In addition, a capsule-like rim of the in-plane diffusion surrounded most meningiomas irrespective of their histological type. If these results correlate to the intraoperative findings of meningioma consistency, DTI-based measurement of FA and analysis of the shape of the diffusion tensor is a promising method to differentiate between fibroblastic and other subtypes of benign meningiomas in order to get information about their "hard" or "soft" consistency prior to removal. Copyright (c) 2007 Wiley-Liss, Inc.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-clustermore » level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.« less
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Liang, Song; Ruan, Yong; Huang, Jie
2008-10-01
During the urbanization process, when facing complex requirements of city development, ever-growing urban data, rapid development of planning business and increasing planning complexity, a scalable, extensible urban planning management information system is needed urgently. PM2006 is such a system that can deal with these problems. In response to the status and problems in urban planning, the scalability and extensibility of PM2006 are introduced which can be seen as business-oriented workflow extensibility, scalability of DLL-based architecture, flexibility on platforms of GIS and database, scalability of data updating and maintenance and so on. It is verified that PM2006 system has good extensibility and scalability which can meet the requirements of all levels of administrative divisions and can adapt to ever-growing changes in urban planning business. At the end of this paper, the application of PM2006 in Urban Planning Bureau of Suzhou city is described.
NASA Astrophysics Data System (ADS)
Gu, Chengwei; Zeng, Dong; Lin, Jiahui; Li, Sui; He, Ji; Zhang, Hao; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Huang, Jing; Chen, Bo; Zhao, Dazhe; Chen, Wufan; Ma, Jianhua
2018-06-01
Myocardial perfusion computed tomography (MPCT) imaging is commonly used to detect myocardial ischemia quantitatively. A limitation in MPCT is that an additional radiation dose is required compared to unenhanced CT due to its repeated dynamic data acquisition. Meanwhile, noise and streak artifacts in low-dose cases are the main factors that degrade the accuracy of quantifying myocardial ischemia and hamper the diagnostic utility of the filtered backprojection reconstructed MPCT images. Moreover, it is noted that the MPCT images are composed of a series of 2/3D images, which can be naturally regarded as a 3/4-order tensor, and the MPCT images are globally correlated along time and are sparse across space. To obtain higher fidelity ischemia from low-dose MPCT acquisitions quantitatively, we propose a robust statistical iterative MPCT image reconstruction algorithm by incorporating tensor total generalized variation (TTGV) regularization into a penalized weighted least-squares framework. Specifically, the TTGV regularization fuses the spatial correlation of the myocardial structure and the temporal continuation of the contrast agent intake during the perfusion. Then, an efficient iterative strategy is developed for the objective function optimization. Comprehensive evaluations have been conducted on a digital XCAT phantom and a preclinical porcine dataset regarding the accuracy of the reconstructed MPCT images, the quantitative differentiation of ischemia and the algorithm’s robustness and efficiency.
On the cosmology of scalar-tensor-vector gravity theory
NASA Astrophysics Data System (ADS)
Jamali, Sara; Roshan, Mahmood; Amendola, Luca
2018-01-01
We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.
Tudela, Raúl; Muñoz-Moreno, Emma; López-Gil, Xavier; Soria, Guadalupe
2017-01-01
Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.
Closed Conformal Killing-Yano Tensor and Uniqueness of Generalized Kerr-NUT-de Sitter Spacetime
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi
We classify all spacetimes with a rank-2 closed conformal Killing-Yano tensor. They give a generalization of Kerr-NUT-de Sitter spacetime. The Einstein condition is explicitly solved. The Kerr-NUT-de Sitter spacetime is obtained as a spacetime with a non-degenerate CKY tensor.
Statistics of pressure fluctuations in decaying isotropic turbulence.
Kalelkar, Chirag
2006-04-01
We present results from a systematic direct-numerical simulation study of pressure fluctuations in an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion, isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostructures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present numerical tests (in the viscous case) of some conjectures of Ohkitani [Phys. Fluids A 5, 2570 (1993)] and Ohkitani and Kishiba [Phys. Fluids 7, 411 (1995)] concerning the pressure-Hessian and the strain-rate tensors, for the unforced, incompressible, three-dimensional Euler equations.
NASA Astrophysics Data System (ADS)
Akhtar, S. S.; Hussain, T.; Bokhari, A. H.; Khan, F.
2018-04-01
We provide a complete classification of static plane symmetric space-times according to conformal Ricci collineations (CRCs) and conformal matter collineations (CMCs) in both the degenerate and nondegenerate cases. In the case of a nondegenerate Ricci tensor, we find a general form of the vector field generating CRCs in terms of unknown functions of t and x subject to some integrability conditions. We then solve the integrability conditions in different cases depending upon the nature of the Ricci tensor and conclude that the static plane symmetric space-times have a 7-, 10- or 15-dimensional Lie algebra of CRCs. Moreover, we find that these space-times admit an infinite number of CRCs if the Ricci tensor is degenerate. We use a similar procedure to study CMCs in the case of a degenerate or nondegenerate matter tensor. We obtain the exact form of some static plane symmetric space-time metrics that admit nontrivial CRCs and CMCs. Finally, we present some physical applications of our obtained results by considering a perfect fluid as a source of the energy-momentum tensor.
NASA Astrophysics Data System (ADS)
Popławski, Nikodem
2014-01-01
We propose a theory of gravitation, in which the affine connection is the only dynamical variable describing the gravitational field. We construct a simple dynamical Lagrangian density that is entirely composed from the connection, via its curvature and torsion, and is a polynomial function of its derivatives. It is given by the contraction of the Ricci tensor with a tensor which is inverse to the symmetric, contracted square of the torsion tensor, . We vary the total action for the gravitational field and matter with respect to the affine connection, assuming that the matter fields couple to the connection only through . We derive the resulting field equations and show that they are identical with the Einstein equations of general relativity with a nonzero cosmological constant if the tensor is regarded as proportional to the metric tensor. The cosmological constant is simply a constant of proportionality between the two tensors, which together with and provides a natural system of units in gravitational physics. This theory therefore provides a physical construction of the metric as a polynomial function of the connection, and explains dark energy as an intrinsic property of spacetime.
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka
2018-06-01
The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
NASA Astrophysics Data System (ADS)
Macleod, Alexander J.; Noble, Adam; Jaroszynski, Dino A.
2017-05-01
The Abraham-Minkowski controversy is the debate surrounding the "correct" form of the energy-momentum tensor of light in a medium. Over a century of theoretical and experimental studies have consistently produced conflicting results, with no consensus being found on how best to describe the influence of a material on the propagation of light. It has been argued that the total energy-momentum tensor for each of the theories, which includes both wave and material components, are equal. The difficulty in separating the full energy-momentum tensor is generally attributed to the fact that one cannot obtain the energy-momentum tensor of the medium for real materials. Non-linear electrodynamics provides an opportunity to approach the debate from an all optical set up, where the role of the medium is replaced by the vacuum under the influence of a strong background field. We derive, from first principles, the general form of the energy-momentum tensor in such theories, and use our results to shed some light on this long standing issue.
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459
Traffic speed data imputation method based on tensor completion.
Ran, Bin; Tan, Huachun; Feng, Jianshuai; Liu, Ying; Wang, Wuhong
2015-01-01
Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.
Traffic Speed Data Imputation Method Based on Tensor Completion
Ran, Bin; Feng, Jianshuai; Liu, Ying; Wang, Wuhong
2015-01-01
Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches. PMID:25866501
Why did Einstein reject the November tensor in 1912-1913, only to come back to it in November 1915?
NASA Astrophysics Data System (ADS)
Weinstein, Galina
2018-05-01
The question of Einstein's rejection of the November tensor is re-examined in light of conflicting answers by several historians. I discuss these conflicting conjectures in view of three questions that should inform our thinking: Why did Einstein reject the November tensor in 1912, only to come back to it in 1915? Why was it hard for Einstein to recognize that the November tensor is a natural generalization of Newton's law of gravitation? Why did it take him three years to realize that the November tensor is not incompatible with Newton's law? I first briefly describe Einstein's work in the Zurich Notebook. I then discuss a number of interpretive conjectures formulated by historians and what may be inferred from them. Finally, I offer a new combined conjecture that answers the above questions.
Unsupervised Tensor Mining for Big Data Practitioners.
Papalexakis, Evangelos E; Faloutsos, Christos
2016-09-01
Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.
Reducing tensor magnetic gradiometer data for unexploded ordnance detection
Bracken, Robert E.; Brown, Philip J.
2005-01-01
We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic gradiometer system (TMGS) for detection of buried unexploded ordnance (UXO). In order to achieve a useful result, we designed a data-reduction procedure that resulted in a realistic magnetic gradient tensor and devised a simple way of viewing complicated tensor data, not only to assess the validity of the final resulting tensor, but also to preview the data at interim stages of processing. The final processed map of the surveyed area clearly shows a sharp anomaly that peaks almost directly over the target UXO. This map agrees well with a modeled map derived from dipolar sources near the known target locations. From this agreement, it can be deduced that the reduction process is valid, making the prototype TMGS a foundation for development of future systems and processes.
Correlators in tensor models from character calculus
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.
2017-11-01
We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz) character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.
Tensor products of process matrices with indefinite causal structure
NASA Astrophysics Data System (ADS)
Jia, Ding; Sakharwade, Nitica
2018-03-01
Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.
A General Sparse Tensor Framework for Electronic Structure Theory
Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I.; ...
2017-01-24
Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. But, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We then avoid cumbersome machine-generatedmore » code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.« less
NASA Astrophysics Data System (ADS)
Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.
2017-12-01
When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).
Bryce, David L; Bultz, Elijah B; Aebi, Dominic
2008-07-23
Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
Axial point groups: rank 1, 2, 3 and 4 property tensor tables.
Litvin, Daniel B
2015-05-01
The form of a physical property tensor of a quasi-one-dimensional material such as a nanotube or a polymer is determined from the material's axial point group. Tables of the form of rank 1, 2, 3 and 4 property tensors are presented for a wide variety of magnetic and non-magnetic tensor types invariant under each point group in all 31 infinite series of axial point groups. An application of these tables is given in the prediction of the net polarization and magnetic-field-induced polarization in a one-dimensional longitudinal conical magnetic structure in multiferroic hexaferrites.
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Kim, Minseok; Eleftheriades, George V
2016-10-15
We propose a highly efficient (nearly lossless and impedance-matched) all-dielectric optical tensor impedance metasurface that mimics chiral effects at optical wavelengths. By cascading an array of rotated crossed silicon nanoblocks, we realize chiral optical tensor impedance metasurfaces that operate as circular polarization selective surfaces. Their efficiencies are maximized through a nonlinear numerical optimization process in which the tensor impedance metasurfaces are modeled via multi-conductor transmission line theory. From rigorous full-wave simulations that include all material losses, we show field transmission efficiencies of 94% for right- and left-handed circular polarization selective surfaces at 800 nm.
Scalar-Tensor Black Holes Embedded in an Expanding Universe
NASA Astrophysics Data System (ADS)
Tretyakova, Daria; Latosh, Boris
2018-02-01
In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.
The total energy-momentum tensor for electromagnetic fields in a dielectric
NASA Astrophysics Data System (ADS)
Crenshaw, Michael E.
2017-08-01
Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½
Maryasov, Alexander G.
2012-01-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
NASA Astrophysics Data System (ADS)
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid
NASA Astrophysics Data System (ADS)
Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri
2018-01-01
A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.
Eigenvector of gravity gradient tensor for estimating fault dips considering fault type
NASA Astrophysics Data System (ADS)
Kusumoto, Shigekazu
2017-12-01
The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.
NASA Astrophysics Data System (ADS)
Keylock, Christopher J.
2017-08-01
A method is presented for deriving random velocity gradient tensors given a source tensor. These synthetic tensors are constrained to lie within mathematical bounds of the non-normality of the source tensor, but we do not impose direct constraints upon scalar quantities typically derived from the velocity gradient tensor and studied in fluid mechanics. Hence, it becomes possible to ask hypotheses of data at a point regarding the statistical significance of these scalar quantities. Having presented our method and the associated mathematical concepts, we apply it to homogeneous, isotropic turbulence to test the utility of the approach for a case where the behavior of the tensor is understood well. We show that, as well as the concentration of data along the Vieillefosse tail, actual turbulence is also preferentially located in the quadrant where there is both excess enstrophy (Q>0 ) and excess enstrophy production (R<0 ). We also examine the topology implied by the strain eigenvalues and find that for the statistically significant results there is a particularly strong relative preference for the formation of disklike structures in the (Q<0 ,R<0 ) quadrant. With the method shown to be useful for a turbulence that is already understood well, it should be of even greater utility for studying complex flows seen in industry and the environment.
Direct laser writing of micro-supercapacitors on hydrated graphite oxide films.
Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M
2011-07-31
Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.
Direct laser writing of micro-supercapacitors on hydrated graphite oxide films
NASA Astrophysics Data System (ADS)
Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.
2011-08-01
Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.
Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.
2015-06-01
We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growthmore » in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.« less
Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE
Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.
2014-10-19
Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less
Implementation of the semiclassical quantum Fourier transform in a scalable system.
Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J
2005-05-13
We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.
An application of tensor ideas to nonlinear modeling of a turbofan jet engine
NASA Technical Reports Server (NTRS)
Klingler, T. A.; Yurkovich, S.; Sain, M. K.
1982-01-01
An application of tensor modelling to a digital simulation of NASA's Quiet, Clean, Shorthaul Experimental (QCSE) gas turbine engine is presented. The results show that the tensor algebra offers a universal parametrization which is helpful in conceptualization and identification for plant modelling prior to feedback or for representing scheduled controllers over an operating line.
Anisotropy tensor of the potential model of steady creep
NASA Astrophysics Data System (ADS)
Annin, B. D.; Ostrosablin, N. I.
2014-01-01
The Kelvin approach describing the structure of the generalized Hooke's law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.
ERIC Educational Resources Information Center
Vagi, Robert L.; Collins, Clarin; Clark, Terri
2017-01-01
Given the critical role that literacy plays in children's academic and personal development, policymakers have increasingly focused on policies related to early childhood literacy, particularly among poor and minority students. In this study, authors use a census of data from Arizona, a state with a large and growing population of traditionally…
Scalable Quantum Information Processing and Applications
2008-01-19
qubit logic gates, and finally emitting an entangled photon from the single- photon emitter. For the program, we proposed to demonstrate the...coherent, single photon transmitter/receiver system. These requirements included careful tailoring of the g factor for conduction band electrons in...physics required for the realization of a spin-coherent, single photon transmitter/receiver system. These requirements included careful tailoring of
ERIC Educational Resources Information Center
Hassler, Bjoern; Hennessy, Sara; Hofmann, Riikka
2018-01-01
Developing sustainable and scalable educational initiatives is a key challenge in low-income countries where donor-funded short-term projects are limited by both contextual factors and programme design. In this commentary we examine some of the issues related to in-service teacher development in the context of sub-Saharan Africa, grounded…
Equalizer: a scalable parallel rendering framework.
Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato
2009-01-01
Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
Biometric identification: a holistic perspective
NASA Astrophysics Data System (ADS)
Nadel, Lawrence D.
2007-04-01
Significant advances continue to be made in biometric technology. However, the global war on terrorism and our increasingly electronic society have created the societal need for large-scale, interoperable biometric capabilities that challenge the capabilities of current off-the-shelf technology. At the same time, there are concerns that large-scale implementation of biometrics will infringe our civil liberties and offer increased opportunities for identity theft. This paper looks beyond the basic science and engineering of biometric sensors and fundamental matching algorithms and offers approaches for achieving greater performance and acceptability of applications enabled with currently available biometric technologies. The discussion focuses on three primary biometric system aspects: performance and scalability, interoperability, and cost benefit. Significant improvements in system performance and scalability can be achieved through careful consideration of the following elements: biometric data quality, human factors, operational environment, workflow, multibiometric fusion, and integrated performance modeling. Application interoperability hinges upon some of the factors noted above as well as adherence to interface, data, and performance standards. However, there are times when the price of conforming to such standards can be decreased local system performance. The development of biometric performance-based cost benefit models can help determine realistic requirements and acceptable designs.
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
The competition of particle-vibration coupling and tensor interaction in spherical nuclei
NASA Astrophysics Data System (ADS)
Afanasjev, Anatoli; Litvinova, Elena
2014-09-01
The search for missing terms in the energy density functionals (EDF) is one of the leading directions in the development of nuclear density functional theory (DFT). Tensor force is one of possible candidates. However, despite extensive studies the questions about its effective strength and unambiguous signals still remain open. One of the main experimental benchmarks for the studies of tensor interaction is provided by the data on the single-particle states in the N = 82 and Z = 50 isotopes. The energy splittings of the proton h11 / 2 and g7 / 2 states in the Z = 50 isotopes and neutron 1i13 / 2 and 1h9 / 2 states in the N = 82 isotones are used in the definition of tensor force in the Skyrme DFT. However, in experiment these states are not ``mean-field'' states because of coupling with vibrations. Employing relativistic particle-vibration coupling (PVC) model we show that many features of these splittings can be reproduced when PVC is taken into account. This suggests the competition of PVC and tensor interaction and that tensor interaction should be weaker as compared with previous estimates. The search for missing terms in the energy density functionals (EDF) is one of the leading directions in the development of nuclear density functional theory (DFT). Tensor force is one of possible candidates. However, despite extensive studies the questions about its effective strength and unambiguous signals still remain open. One of the main experimental benchmarks for the studies of tensor interaction is provided by the data on the single-particle states in the N = 82 and Z = 50 isotopes. The energy splittings of the proton h11 / 2 and g7 / 2 states in the Z = 50 isotopes and neutron 1i13 / 2 and 1h9 / 2 states in the N = 82 isotones are used in the definition of tensor force in the Skyrme DFT. However, in experiment these states are not ``mean-field'' states because of coupling with vibrations. Employing relativistic particle-vibration coupling (PVC) model we show that many features of these splittings can be reproduced when PVC is taken into account. This suggests the competition of PVC and tensor interaction and that tensor interaction should be weaker as compared with previous estimates. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459 and National Science Foundation Award PHY-1204486.
Maxwell–Dirac stress–energy tensor in terms of Fierz bilinear currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inglis, Shaun, E-mail: sminglis@utas.edu.au; Jarvis, Peter, E-mail: Peter.Jarvis@utas.edu.au
We analyse the stress–energy tensor for the self-coupled Maxwell–Dirac system in the bilinear current formalism, using two independent approaches. The first method used is that attributed to Belinfante: starting from the spinor form of the action, the well-known canonical stress–energy tensor is augmented, by extending the Noether symmetry current to include contributions from the Lorentz group, to a manifestly symmetric form. This form admits a transcription to bilinear current form. The second method used is the variational derivation based on the covariant coupling to general relativity. The starting point here at the outset is the transcription of the action using,more » as independent field variables, both the bilinear currents, together with a gauge invariant vector field (a proxy for the electromagnetic vector potential). A central feature of the two constructions is that they both involve the mapping of the Dirac contribution to the stress–energy from the spinor fields to the equivalent set of bilinear tensor currents, through the use of appropriate Fierz identities. Although this mapping is done at quite different stages, nonetheless we find that the two forms of the bilinear stress–energy tensor agree. Finally, as an application, we consider the reduction of the obtained stress–energy tensor in bilinear form, under the assumption of spherical symmetry. -- Highlights: •Maxwell–Dirac stress–energy tensor derived in manifestly gauge invariant bilinear form. •Dirac spinor Belinfante tensor transcribed to bilinear fields via Fierz mapping. •Variational stress–energy obtained via bilinearized action, in contrast to Belinfante case. •Independent derivations via the Belinfante and variational methods agree, as required. •Spherical symmetry reduction given as a working example for wider applications.« less
NASA Astrophysics Data System (ADS)
Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio
2017-07-01
The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.
Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models
NASA Astrophysics Data System (ADS)
Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.
2014-12-01
Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.
Hou, Guangjin; Gupta, Rupal; Polenova, Tatyana; Vega, Alexander J
2014-02-01
Proton chemical shifts are a rich probe of structure and hydrogen bonding environments in organic and biological molecules. Until recently, measurements of 1 H chemical shift tensors have been restricted to either solid systems with sparse proton sites or were based on the indirect determination of anisotropic tensor components from cross-relaxation and liquid-crystal experiments. We have introduced an MAS approach that permits site-resolved determination of CSA tensors of protons forming chemical bonds with labeled spin-1/2 nuclei in fully protonated solids with multiple sites, including organic molecules and proteins. This approach, originally introduced for the measurements of chemical shift tensors of amide protons, is based on three RN -symmetry based experiments, from which the principal components of the 1 H CS tensor can be reliably extracted by simultaneous triple fit of the data. In this article, we expand our approach to a much more challenging system involving aliphatic and aromatic protons. We start with a review of the prior work on experimental-NMR and computational-quantum-chemical approaches for the measurements of 1 H chemical shift tensors and for relating these to the electronic structures. We then present our experimental results on U- 13 C, 15 N-labeled histdine demonstrating that 1 H chemical shift tensors can be reliably determined for the 1 H 15 N and 1 H 13 C spin pairs in cationic and neutral forms of histidine. Finally, we demonstrate that the experimental 1 H(C) and 1 H(N) chemical shift tensors are in agreement with Density Functional Theory calculations, therefore establishing the usefulness of our method for characterization of structure and hydrogen bonding environment in organic and biological solids.
Machine Learning Interface for Medical Image Analysis.
Zhang, Yi C; Kagen, Alexander C
2017-10-01
TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.
Tensor network state correspondence and holography
NASA Astrophysics Data System (ADS)
Singh, Sukhwinder
2018-01-01
In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.
Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J
2016-12-08
The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Caldwell, T. Grant; Bibby, Hugh M.
1998-12-01
Long-offset transient electromagnetic (LOTEM) data have traditionally been represented as early- and late-time apparent resistivities. Time-varying electric field data recorded in a LOTEM survey made with multiple sources can be represented by an `instantaneous apparent resistivity tensor'. Three independent, coordinate-invariant, time-varying apparent resistivities can be derived from this tensor. For dipolar sources, the invariants are also independent of source orientation. In a uniform-resistivity half-space, the invariant given by the square root of the tensor determinant remains almost constant with time, deviating from the half-space resistivity by a maximum of 6 per cent. For a layered half-space, a distance-time pseudo-section of the determinant apparent resistivity produces an image of the layering beneath the measurement profile. As time increases, the instantaneous apparent resistivity tensor approaches the direct current apparent resistivity tensor. An approximate time-to-depth conversion can be achieved by integrating the diffusion depth formula with time, using the determinant apparent resistivity at each instant to represent the resistivity of the conductive medium. Localized near-surface inhomogeneities produce shifts in the time-domain apparent resistivity sounding curves that preserve the gradient, analogous to static shifts seen in magnetotelluric soundings. Instantaneous apparent resistivity tensors calculated for 3-D resistivity models suggest that profiles of LOTEM measurements across a simple 3-D structure can be used to create an image that reproduces the main features of the subsurface resistivity. Where measurements are distributed over an area, maps of the tensor invariants can be made into a sequence of images, which provides a way of `time slicing' down through the target structure.
The gravitational wave stress–energy (pseudo)-tensor in modified gravity
NASA Astrophysics Data System (ADS)
Saffer, Alexander; Yunes, Nicolás; Yagi, Kent
2018-03-01
The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.
Moment tensor clustering: a tool to monitor mining induced seismicity
NASA Astrophysics Data System (ADS)
Cesca, Simone; Dahm, Torsten; Tolga Sen, Ali
2013-04-01
Automated moment tensor inversion routines have been setup in the last decades for the analysis of global and regional seismicity. Recent developments could be used to analyse smaller events and larger datasets. In particular, applications to microseismicity, e.g. in mining environments, have then led to the generation of large moment tensor catalogues. Moment tensor catalogues provide a valuable information about the earthquake source and details of rupturing processes taking place in the seismogenic region. Earthquake focal mechanisms can be used to discuss the local stress field, possible orientations of the fault system or to evaluate the presence of shear and/or tensile cracks. Focal mechanism and moment tensor solutions are typically analysed for selected events, and quick and robust tools for the automated analysis of larger catalogues are needed. We propose here a method to perform cluster analysis for large moment tensor catalogues and identify families of events which characterize the studied microseismicity. Clusters include events with similar focal mechanisms, first requiring the definition of distance between focal mechanisms. Different metrics are here proposed, both for the case of pure double couple, constrained moment tensor and full moment tensor catalogues. Different clustering approaches are implemented and discussed. The method is here applied to synthetic and real datasets from mining environments to demonstrate its potential: the proposed cluserting techniques prove to be able to automatically recognise major clusters. An important application for mining monitoring concerns the early identification of anomalous rupture processes, which is relevant for the hazard assessment. This study is funded by the project MINE, which is part of the R&D-Programme GEOTECHNOLOGIEN. The project MINE is funded by the German Ministry of Education and Research (BMBF), Grant of project BMBF03G0737.
Generalization of Einstein's gravitational field equations
NASA Astrophysics Data System (ADS)
Moulin, Frédéric
2017-12-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.
Entangled scalar and tensor fluctuations during inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Hael; Vardanyan, Tereza
2016-11-29
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with amore » simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.« less
Separability of black holes in string theory
NASA Astrophysics Data System (ADS)
Keeler, Cynthia; Larsen, Finn
2012-10-01
We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.
A tensorial description of particle perception in black-hole physics
NASA Astrophysics Data System (ADS)
Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, G.
2016-09-01
In quantum field theory in curved backgrounds, one typically distinguishes between objective, tensorial quantities such as the renormalized stress-energy tensor (RSET) and subjective, nontensorial quantities such as Bogoliubov coefficients which encode perception effects associated with the specific trajectory of a detector. In this work, we propose a way to treat both objective and subjective notions on an equal tensorial footing. For that purpose, we define a new tensor which we will call the perception renormalized stress-energy tensor (PeRSET). The PeRSET is defined as the subtraction of the RSET corresponding to two different vacuum states. Based on this tensor, we can define perceived energy densities and fluxes. The PeRSET helps us to have a more organized and systematic understanding of various results in the literature regarding quantum field theory in black hole spacetimes. We illustrate the physics encoded in this tensor by working out various examples of special relevance.
Quantum electromagnetic stress tensor in an inhomogeneous medium
NASA Astrophysics Data System (ADS)
Parashar, Prachi; Milton, Kimball A.; Li, Yang; Day, Hannah; Guo, Xin; Fulling, Stephen A.; Cavero-Peláez, Inés
2018-06-01
Continuing a program of examining the behavior of the vacuum expectation value of the stress tensor in a background which varies only in a single direction, we here study the electromagnetic stress tensor in a medium with permittivity depending on a single spatial coordinate, specifically, a planar dielectric half-space facing a vacuum region. There are divergences occurring that are regulated by temporal and spatial point splitting, which have a universal character for both transverse electric and transverse magnetic modes. The nature of the divergences depends on the model of dispersion adopted. And there are singularities occurring at the edge between the dielectric and vacuum regions, which also have a universal character, depending on the structure of the discontinuities in the material properties there. Remarks are offered concerning renormalization of such models, and the significance of the stress tensor. The ambiguity in separating "bulk" and "scattering" parts of the stress tensor is discussed.
Motion Detection in Ultrasound Image-Sequences Using Tensor Voting
NASA Astrophysics Data System (ADS)
Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka
2008-05-01
Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.
Hand-waving and interpretive dance: an introductory course on tensor networks
NASA Astrophysics Data System (ADS)
Bridgeman, Jacob C.; Chubb, Christopher T.
2017-06-01
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states. The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry I
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less
An introduction to tensor calculus, relativity and cosmology /3rd edition/
NASA Astrophysics Data System (ADS)
Lawden, D. F.
This textbook introduction to the principles of special relativity proceeds within the context of cartesian tensors. Newton's laws of motion are reviewed, as are the Lorentz transformations, Minkowski space-time, and the Fitzgerald contraction. Orthogonal transformations are described, and invariants, gradients, tensor derivatives, contraction, scalar products, divergence, pseudotensors, vector products, and curl are defined. Special relativity mechanics are explored in terms of mass, momentum, the force vector, the Lorentz transformation equations for force, calculations for photons and neutrinos, the development of the Lagrange and Hamilton equations, and the energy-momentum tensor. Electrodynamics is investigated, together with general tensor calculus and Riemmanian space. The General Theory of Relativity is presented, along with applications to astrophysical phenomena such as black holes and gravitational waves. Finally, analytical discussions of cosmological problems are reviewed, particularly Einstein, de Sitter, and Friedmann universes, redshifts, event horizons, and the redshift.
A defect in holographic interpretations of tensor networks
NASA Astrophysics Data System (ADS)
Czech, Bartlomiej; Nguyen, Phuc H.; Swaminathan, Sivaramakrishnan
2017-03-01
We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS3-Janus geometries.
Potentials for transverse trace-free tensors
NASA Astrophysics Data System (ADS)
Conboye, Rory; Murchadha, Niall Ó.
2014-04-01
In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space.
Investigation into influence factors of wave velocity anisotropy for TCDP borehole
NASA Astrophysics Data System (ADS)
Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.
2015-12-01
The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.
Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata
2016-12-01
Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Scalability problems of simple genetic algorithms.
Thierens, D
1999-01-01
Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.
Low-complexity transcoding algorithm from H.264/AVC to SVC using data mining
NASA Astrophysics Data System (ADS)
Garrido-Cantos, Rosario; De Cock, Jan; Martínez, Jose Luis; Van Leuven, Sebastian; Cuenca, Pedro; Garrido, Antonio
2013-12-01
Nowadays, networks and terminals with diverse characteristics of bandwidth and capabilities coexist. To ensure a good quality of experience, this diverse environment demands adaptability of the video stream. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a low-complexity algorithm to convert an H.264/AVC bitstream without scalability to scalable bitstreams with temporal scalability in baseline and main profiles by accelerating the mode decision task of the scalable video coding encoding stage using machine learning tools. The results show that when our technique is applied, the complexity is reduced by 87% while maintaining coding efficiency.
Neurocognitive Effects of Radiotherapy
2013-11-05
tensor imaging ( DTI ), perfusion and diffusion. The majority of patients have completed baseline and at least two additional time-points in regards...completed a 1 hour standard MRI as well as additional testing including diffuse tensor imaging ( DTI ), perfusion and diffusion. The majority of...including diffuse tensor imaging ( DTI ), perfusion and diffusion. The majority of patients have completed baseline and at least two additional time
A geometric description of Maxwell field in a Kerr spacetime
NASA Astrophysics Data System (ADS)
Jezierski, Jacek; Smołka, Tomasz
2016-06-01
We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.
Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity
NASA Astrophysics Data System (ADS)
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the Rényi entropy of such states and recover the Ryu–Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
Tensor Basis Neural Network v. 1.0 (beta)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Julia; Templeton, Jeremy
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
NASA Technical Reports Server (NTRS)
Kiehn, R. M.
1976-01-01
With respect to irreversible, non-homeomorphic maps, contravariant and covariant tensor fields have distinctly natural covariance and transformational behavior. For thermodynamic processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive determinism for covariant tensor fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasakura, Naoki
The tensor model is discussed as theory of dynamical fuzzy spaces in order to formulate gravity on fuzzy spaces. The numerical analyses of the tensor models possessing Gaussian background solutions have shown that the low-lying long-wavelength fluctuations around the backgrounds are in remarkable agreement with the geometric fluctuations on flat spaces in the general relativity. It has also been shown that part of the orthogonal symmetry of the tensor model spontaneously broken by the backgrounds agrees with the local translation symmetry of the general relativity. Thus the tensor model provides an interesting model of simultaneous emergence of space, the generalmore » relativity, and its local translation symmetry.« less
The Multi-Orientable Random Tensor Model, a Review
NASA Astrophysics Data System (ADS)
Tanasa, Adrian
2016-06-01
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
A unified tensor level set for image segmentation.
Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong
2010-06-01
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
NASA Astrophysics Data System (ADS)
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer; Gayme, Dennice
2017-11-01
We develop a new framework to quantify the fluctuating behaviour of the conformation tensor in viscoelastic turbulent flows. This framework addresses two shortcomings of the classical approach based on Reynolds decomposition: the fluctuating part of the conformation tensor is not guaranteed to be positive definite and it does not consistently represent polymer expansions and contractions about the mean. Our approach employs a geometric decomposition that yields a positive-definite fluctuating conformation tensor with a clear physical interpretation as a deformation to the mean conformation. We propose three scalar measures of this fluctuating conformation tensor, which respect the non-Euclidean Riemannian geometry of the manifold of positive-definite tensors: fluctuating polymer volume, geodesic distance from the mean, and an anisotropy measure. We use these scalar quantities to investigate drag-reduced viscoelastic turbulent channel flow. Our approach establishes a systematic method to study viscoelastic turbulence. It also uncovers interesting phenomena that are not apparent using traditional analysis tools, including a logarithmic decrease in anisotropy of the mean conformation tensor away from the wall and polymer fluctuations peaking beyond the buffer layer. This work has been partially funded by the following NSF Grants: CBET-1652244, OCE-1633124, CBET-1511937.
Decentralized Dimensionality Reduction for Distributed Tensor Data Across Sensor Networks.
Liang, Junli; Yu, Guoyang; Chen, Badong; Zhao, Minghua
2016-11-01
This paper develops a novel decentralized dimensionality reduction algorithm for the distributed tensor data across sensor networks. The main contributions of this paper are as follows. First, conventional centralized methods, which utilize entire data to simultaneously determine all the vectors of the projection matrix along each tensor mode, are not suitable for the network environment. Here, we relax the simultaneous processing manner into the one-vector-by-one-vector (OVBOV) manner, i.e., determining the projection vectors (PVs) related to each tensor mode one by one. Second, we prove that in the OVBOV manner each PV can be determined without modifying any tensor data, which simplifies corresponding computations. Third, we cast the decentralized PV determination problem as a set of subproblems with consensus constraints, so that it can be solved in the network environment only by local computations and information communications among neighboring nodes. Fourth, we introduce the null space and transform the PV determination problem with complex orthogonality constraints into an equivalent hidden convex one without any orthogonality constraint, which can be solved by the Lagrange multiplier method. Finally, experimental results are given to show that the proposed algorithm is an effective dimensionality reduction scheme for the distributed tensor data across the sensor networks.