Sample records for scalable udp-based network

  1. Distributed Cognition and Process Management Enabling Individualized Translational Research: The NIH Undiagnosed Diseases Program Experience

    PubMed Central

    Links, Amanda E.; Draper, David; Lee, Elizabeth; Guzman, Jessica; Valivullah, Zaheer; Maduro, Valerie; Lebedev, Vlad; Didenko, Maxim; Tomlin, Garrick; Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Haendel, Melissa A.; Mungall, Christopher J.; Smedley, Damian; Hochheiser, Harry; Arnold, Andrew M.; Coessens, Bert; Verhoeven, Steven; Bone, William; Adams, David; Boerkoel, Cornelius F.; Gahl, William A.; Sincan, Murat

    2016-01-01

    The National Institutes of Health Undiagnosed Diseases Program (NIH UDP) applies translational research systematically to diagnose patients with undiagnosed diseases. The challenge is to implement an information system enabling scalable translational research. The authors hypothesized that similar complex problems are resolvable through process management and the distributed cognition of communities. The team, therefore, built the NIH UDP integrated collaboration system (UDPICS) to form virtual collaborative multidisciplinary research networks or communities. UDPICS supports these communities through integrated process management, ontology-based phenotyping, biospecimen management, cloud-based genomic analysis, and an electronic laboratory notebook. UDPICS provided a mechanism for efficient, transparent, and scalable translational research and thereby addressed many of the complex and diverse research and logistical problems of the NIH UDP. Full definition of the strengths and deficiencies of UDPICS will require formal qualitative and quantitative usability and process improvement measurement. PMID:27785453

  2. A TCP/IP framework for ethernet-based measurement, control and experiment data distribution

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Minny, J.

    2010-11-01

    A complete modular but scalable TCP/IP based scientific instrument control and data distribution system has been designed and realized. The system features an IEEE 802.3 compliant 10 Mbps Medium Access Controller (MAC) and Physical Layer Device that is suitable for the full-duplex monitoring and control of various physically widespread measurement transducers in the presence of a local network infrastructure. The cumbersomeness of exchanging and synchronizing data between the various transducer units using physical storage media led to the choice of TCP/IP as a logical alternative. The system and methods developed are scalable for broader usage over the Internet. The system comprises a PIC18f2620 and ENC28j60 based hardware and a software component written in C, Java/Javascript and Visual Basic.NET programming languages for event-level monitoring and browser user-interfaces respectively. The system exchanges data with the host network through IPv4 packets requested and received on a HTTP page. It also responds to ICMP echo, UDP and ARP requests through a user selectable integrated DHCP and static IPv4 address allocation scheme. The round-trip time, throughput and polling frequency are estimated and reported. A typical application to temperature monitoring and logging is also presented.

  3. Effects of inter-packet spacing on the delivery of multimedia content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapadia, A. C.; Feng, A. C.; Feng, W. C.

    2001-01-01

    Streaming multimedia content with UDP has become increasingly popular over distributed systems such as the Internet. However, because UDP does not possess any congestion-control mechanism and most best-effort trafic is served by the congestion-controlled TCP, UDP flows steal bandwidth from TCP to the point that TCP flows can starve for network resources. Furthermore, such applications may cause the Internet infrastructure to eventually suffer from congestion collapse because UDP trafic does not self-regulate itself. To address this problem, next-generation Internet routers will implement active queue-management schemes to punish malicious traffic, e.g., non-adaptive UDP flows, and to the improve the performance ofmore » congestion-controlled traffic, e.g., TCP flows. The arrival of such routers will cripple the performance of today's UDP-based multimedia applications. So, in this paper, we introduce the notion of inter-packet spacing with control feedback to enable these UDP-based applications to perform well in the next-generation Internet while being adaptive and self-regulating. When compared with traditional UDP-based multimedia streaming, we illustrate that our counterintuitive, interpacket-spacing scheme with control feedback can reduce packet loss by 90% without adversely affecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, rate-adjusting congestion control.« less

  4. Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, A. C.; Feng, W. C.; Belford, Geneva G.

    2001-01-01

    Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less

  5. Coding and transmission of subband coded images on the Internet

    NASA Astrophysics Data System (ADS)

    Wah, Benjamin W.; Su, Xiao

    2001-09-01

    Subband-coded images can be transmitted in the Internet using either the TCP or the UDP protocol. Delivery by TCP gives superior decoding quality but with very long delays when the network is unreliable, whereas delivery by UDP has negligible delays but with degraded quality when packets are lost. Although images are delivered currently over the Internet by TCP, we study in this paper the use of UDP to deliver multi-description reconstruction-based subband-coded images. First, in order to facilitate recovery from UDP packet losses, we propose a joint sender-receiver approach for designing optimized reconstruction-based subband transform (ORB-ST) in multi-description coding (MDC). Second, we carefully evaluate the delay-quality trade-offs between the TCP delivery of SDC images and the UDP and combined TCP/UDP delivery of MDC images. Experimental results show that our proposed ORB-ST performs well in real Internet tests, and UDP and combined TCP/UDP delivery of MDC images provide a range of attractive alternatives to TCP delivery.

  6. Constraints of nonresponding flows based on cross layers in the networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Chao; Xiao, Yang; Wang, Dong

    2016-02-01

    In the active queue management (AQM) scheme, core routers cannot manage and constrain user datagram protocol (UDP) data flows by the sliding window control mechanism in the transport layer due to the nonresponsive nature of such traffic flows. However, the UDP traffics occupy a large part of the network service nowadays which brings a great challenge to the stability of the more and more complex networks. To solve the uncontrollable problem, this paper proposes a cross layers random early detection (CLRED) scheme, which can control the nonresponding UDP-like flows rate effectively when congestion occurs in the access point (AP). The CLRED makes use of the MAC frame acknowledgement (ACK) transmitting congestion information to the sources nodes and utilizes the back-off windows of the MAC layer throttling data rate. Consequently, the UDP-like flows data rate can be restrained timely by the sources nodes in order to alleviate congestion in the complex networks. The proposed CLRED can constrain the nonresponsive flows availably and make the communication expedite, so that the network can sustain stable. The simulation results of network simulator-2 (NS2) verify the proposed CLRED scheme.

  7. MoNET: media over net gateway processor for next-generation network

    NASA Astrophysics Data System (ADS)

    Elabd, Hammam; Sundar, Rangarajan; Dedes, John

    2001-12-01

    MoNETTM (Media over Net) SX000 product family is designed using a scalable voice, video and packet-processing platform to address applications with channel densities from few voice channels to four OC3 per card. This platform is developed for bridging public circuit-switched network to the next generation packet telephony and data network. The platform consists of a DSP farm, RISC processors and interface modules. DSP farm is required to execute voice compression, image compression and line echo cancellation algorithms for large number of voice, video, fax, and modem or data channels. RISC CPUs are used for performing various packetizations based on RTP, UDP/IP and ATM encapsulations. In addition, RISC CPUs also participate in the DSP farm load management and communication with the host and other MoP devices. The MoNETTM S1000 communications device is designed for voice processing and for bridging TDM to ATM and IP packet networks. The S1000 consists of the DSP farm based on Carmel DSP core and 32-bit RISC CPU, along with Ethernet, Utopia, PCI, and TDM interfaces. In this paper, we will describe the VoIP infrastructure, building blocks of the S500, S1000 and S3000 devices, algorithms executed on these device and associated channel densities, detailed DSP architecture, memory architecture, data flow and scheduling.

  8. Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview

    NASA Astrophysics Data System (ADS)

    Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa

    2017-04-01

    TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.

  9. A new communication protocol family for a distributed spacecraft control system

    NASA Technical Reports Server (NTRS)

    Baldi, Andrea; Pace, Marco

    1994-01-01

    In this paper we describe the concepts behind and architecture of a communication protocol family, which was designed to fulfill the communication requirements of ESOC's new distributed spacecraft control system SCOS 2. A distributed spacecraft control system needs a data delivery subsystem to be used for telemetry (TLM) distribution, telecommand (TLC) dispatch and inter-application communication, characterized by the following properties: reliability, so that any operational workstation is guaranteed to receive the data it needs to accomplish its role; efficiency, so that the telemetry distribution, even for missions with high telemetry rates, does not cause a degradation of the overall control system performance; scalability, so that the network is not the bottleneck both in terms of bandwidth and reconfiguration; flexibility, so that it can be efficiently used in many different situations. The new protocol family which satisfies the above requirements is built on top of widely used communication protocols (UDP and TCP), provides reliable point-to-point and broadcast communication (UDP+) and is implemented in C++. Reliability is achieved using a retransmission mechanism based on a sequence numbering scheme. Such a scheme allows to have cost-effective performances compared to the traditional protocols, because retransmission is only triggered by applications which explicitly need reliability. This flexibility enables applications with different profiles to take advantage of the available protocols, so that the best rate between sped and reliability can be achieved case by case.

  10. Flexible session management in a distributed environment

    NASA Astrophysics Data System (ADS)

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor

    2010-04-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  11. Scalable SCPPM Decoder

    NASA Technical Reports Server (NTRS)

    Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.

    2012-01-01

    A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.

  12. Joint Mobile Network Operations: Routing Design and Quality of Service Configuration

    DTIC Science & Technology

    2007-09-01

    EF service for the desktop VTC application, CU- SeeMe , which uses UDP packets on ports 7648 and 7649. We also might want to provide AF service to...between commanders. In this case, the example application used is CU- SeeMe , which operates through UDP on ports 7648, 7649, or 24032. The required...range 7648 7649 access-list 101 permit udp any any eq 24032 Matches all CU- SeeMe traffic from any host access-list 102 permit udp 192.168.32.0

  13. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa).

    PubMed

    Sumiyoshi, Minako; Inamura, Takuya; Nakamura, Atsuko; Aohara, Tsutomu; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2015-02-01

    l-Arabinose is one of the main constituents of cell wall polysaccharides such as pectic rhamnogalacturonan I (RG-I), glucuronoarabinoxylans and other glycoproteins. It is found predominantly in the furanose form rather than in the thermodynamically more stable pyranose form. UDP-L-arabinofuranose (UDP-Araf), rather than UDP-L-arabinopyranose (UDP-Arap), is a sugar donor for the biosynthesis of arabinofuranosyl (Araf) residues. UDP-arabinopyranose mutases (UAMs) have been shown to interconvert UDP-Araf and UDP-Arap and are involved in the biosynthesis of polysaccharides including Araf. The UAM gene family has three members in Oryza sativa. Co-expression network in silico analysis showed that OsUAM3 expression was independent from OsUAM1 and OsUAM2 co-expression networks. OsUAM1 and OsUAM2 were expressed ubiquitously throughout plant development, but OsUAM3 was expressed primarily in reproductive tissue, particularly at the pollen cell wall formation developmental stage. OsUAM3 co-expression networks include pectin catabolic enzymes. To determine the function of OsUAMs in reproductive tissues, we analyzed RNA interference (RNAi)-knockdown transformants (OsUAM3-KD) specific for OsUAM3. OsUAM3-KD plants grew normally and showed abnormal phenotypes in reproductive tissues, especially in terms of the pollen cell wall and exine. In addition, we examined modifications of cell wall polysaccharides at the cellular level using antibodies against polysaccharides including Araf. Immunolocalization of arabinan using the LM6 antibody showed low levels of arabinan in OsUAM3-KD pollen grains. Our results suggest that the function of OsUAM3 is important for synthesis of arabinan side chains of RG-I and is required for reproductive developmental processes, especially the formation of the cell wall in pollen. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  15. Novel mechanism of network protection against the new generation of cyber attacks

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander; Bukshpun, Leonid; Pradhan, Ranjit

    2012-06-01

    A new intelligent mechanism is presented to protect networks against the new generation of cyber attacks. This mechanism integrates TCP/UDP/IP protocol stack protection and attacker/intruder deception to eliminate existing TCP/UDP/IP protocol stack vulnerabilities. It allows to detect currently undetectable, highly distributed, low-frequency attacks such as distributed denial-of-service (DDoS) attacks, coordinated attacks, botnet, and stealth network reconnaissance. The mechanism also allows insulating attacker/intruder from the network and redirecting the attack to a simulated network acting as a decoy. As a result, network security personnel gain sufficient time to defend the network and collect the attack information. The presented approach can be incorporated into wireless or wired networks that require protection against known and the new generation of cyber attacks.

  16. Strategies for Transporting Data Between Classified and Unclassified Networks

    DTIC Science & Technology

    2016-03-01

    datagram protocol (UDP) must be used. The UDP is typically used when speed is a higher priority than data integrity, such as in music or video streaming ...and the exit point of data are separate and can be tightly controlled. This does effectively prevent the comingling of data and is used in industry to...perform functions such as streaming video and audio from secure to insecure networks (ref. 1). A second disadvantage lies in the fact that the

  17. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    DTIC Science & Technology

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  18. Examining the Effect of Organizational Roles in Shaping Network Traffic Activity

    DTIC Science & Technology

    2012-08-01

    absolute value, and are presented in Table 3. Role Correlation Feature Admin 0.3004 bpp 0.2845 portsPerFlow 0.2063 addrDist -0.1869...OS Correlation Feature XP 0.4783 notTcpUdp 0.2867 addrDist -0.2389 bpp 0.1933 protocol -0.1852 flowInt Windows 7 0.3884 portDist 0.2367...addrDist 0.2001 direction 0.1751 bpp 0.1653 portsPerFlow Mac -0.2376 notTcpUdp 0.1978 UDP 0.1885 duration -0.1783 addrDist -0.1736 countEmpties

  19. A review on transport layer protocol performance for delivering video on an adhoc network

    NASA Astrophysics Data System (ADS)

    Suherman; Suwendri; Al-Akaidi, Marwan

    2017-09-01

    The transport layer protocol is responsible for the end to end data transmission. Transmission control protocol (TCP) provides a reliable connection and user datagram protocol (UDP) offers fast but unguaranteed data transfer. Meanwhile, the 802.11 (wireless fidelity/WiFi) networks have been widely used as internet hotspots. This paper evaluates TCP, TCP variants and UDP performances for video transmission on an adhoc network. The transport protocol - medium access cross-layer is proposed by prioritizing TCP acknowledgement to reduce delay. The NS-2 evaluations show that the average delays increase linearly for all the evaluated protocols and the average packet losses grow logarithmically. UDP produces the lowest transmission delay; 5.4% and 5.8% lower than TCP and TCP variant, but experiences the highest packet loss. Both TCP and TCP Vegas maintain packet loss as low as possible. The proposed cross-layer successfully decreases TCP and TCP Vegas delay about 0.12 % and 0.15%, although losses remain similar.

  20. Improving UDP/IP Transmission Without Increasing Congestion

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2006-01-01

    Datagram Retransmission (DGR) is a computer program that, within certain limits, ensures the reception of each datagram transmitted under the User Datagram Protocol/Internet Protocol. [User Datagram Protocol (UDP) is considered unreliable because it does not involve a reliability-ensuring connection-initiation dialogue between sender and receiver. UDP is well suited to issuing of many small messages to many different receivers.] Unlike prior software for ensuring reception of UDP datagrams, DGR does not contribute to network congestion by retransmitting data more frequently as an ever-increasing number of messages and acknowledgements is lost. Instead, DGR does just the opposite: DGR includes an adaptive timeout-interval- computing component that provides maximum opportunity for reception of acknowledgements, minimizing retransmission. By monitoring changes in the rate at which message-transmission transactions are completed, DGR detects changes in the level of congestion and responds by imposing varying degrees of delay on the transmission of new messages. In addition, DGR maximizes throughput by not waiting for acknowledgement of a message before sending the next message. All DGR communication is asynchronous, to maximize efficient utilization of network connections. DGR manages multiple concurrent datagram transmission and acknowledgement conversations.

  1. Scalable Quantum Networks for Distributed Computing and Sensing

    DTIC Science & Technology

    2016-04-01

    probabilistic measurement , so we developed quantum memories and guided-wave implementations of same, demonstrating controlled delay of a heralded single...Second, fundamental scalability requires a method to synchronize protocols based on quantum measurements , which are inherently probabilistic. To meet...AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01

  2. From fuzzy recurrence plots to scalable recurrence networks of time series

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.

    2017-04-01

    Recurrence networks, which are derived from recurrence plots of nonlinear time series, enable the extraction of hidden features of complex dynamical systems. Because fuzzy recurrence plots are represented as grayscale images, this paper presents a variety of texture features that can be extracted from fuzzy recurrence plots. Based on the notion of fuzzy recurrence plots, defuzzified, undirected, and unweighted recurrence networks are introduced. Network measures can be computed for defuzzified recurrence networks that are scalable to meet the demand for the network-based analysis of big data.

  3. Algorithmic Coordination in Robotic Networks

    DTIC Science & Technology

    2010-11-29

    appropriate performance, robustness and scalability properties for various task allocation , surveillance, and information gathering applications is...networking, we envision designing and analyzing algorithms with appropriate performance, robustness and scalability properties for various task ...distributed algorithms for target assignments; based on the classic auction algorithms in static networks, we intend to design efficient algorithms in worst

  4. The NIH Undiagnosed Diseases Program and Network: Applications to modern medicine

    PubMed Central

    Gahl, William A.; Mulvihill, John J.; Toro, Camilo; Markello, Thomas C.; Wise, Anastasia L.; Ramoni, Rachel B.; Adams, David R.; Tifft, Cynthia J.

    2017-01-01

    Introduction The inability of some seriously and chronically ill individuals to receive a definitive diagnosis represents an unmet medical need. In 2008, the NIH Undiagnosed Diseases Program (UDP) was established to provide answers to patients with mysterious conditions that long eluded diagnosis and to advance medical knowledge. Patients admitted to the NIH UDP undergo a five-day hospitalization, facilitating highly collaborative clinical evaluations and a detailed, standardized documentation of the individual’s phenotype. Bedside and bench investigations are tightly coupled. Genetic studies include commercially available testing, single nucleotide polymorphism microarray analysis, and family exomic sequencing studies. Selected gene variants are evaluated by collaborators using informatics, in vitro cell studies, and functional assays in model systems (fly, zebrafish, worm, or mouse). Insights from the UDP In seven years, the UDP received 2954 complete applications and evaluated 863 individuals. Nine vignettes (two unpublished) illustrate the relevance of an undiagnosed diseases program to complex and common disorders, the coincidence of multiple rare single gene disorders in individual patients, newly recognized mechanisms of disease, and the application of precision medicine to patient care. Conclusions The UDP provides examples of the benefits expected to accrue with the recent launch of a national Undiagnosed Diseases Network (UDN). The UDN should accelerate rare disease diagnosis and new disease discovery, enhance the likelihood of diagnosing known diseases in patients with uncommon phenotypes, improve management strategies, and advance medical research. PMID:26846157

  5. A Systems Approach to Scalable Transportation Network Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S

    2006-01-01

    Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory andmore » speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.« less

  6. Scalability enhancement of AODV using local link repairing

    NASA Astrophysics Data System (ADS)

    Jain, Jyoti; Gupta, Roopam; Bandhopadhyay, T. K.

    2014-09-01

    Dynamic change in the topology of an ad hoc network makes it difficult to design an efficient routing protocol. Scalability of an ad hoc network is also one of the important criteria of research in this field. Most of the research works in ad hoc network focus on routing and medium access protocols and produce simulation results for limited-size networks. Ad hoc on-demand distance vector (AODV) is one of the best reactive routing protocols. In this article, modified routing protocols based on local link repairing of AODV are proposed. Method of finding alternate routes for next-to-next node is proposed in case of link failure. These protocols are beacon-less, means periodic hello message is removed from the basic AODV to improve scalability. Few control packet formats have been changed to accommodate suggested modification. Proposed protocols are simulated to investigate scalability performance and compared with basic AODV protocol. This also proves that local link repairing of proposed protocol improves scalability of the network. From simulation results, it is clear that scalability performance of routing protocol is improved because of link repairing method. We have tested protocols for different terrain area with approximate constant node densities and different traffic load.

  7. Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Chayoung; Ahn, Jinho

    In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.

  8. Improving the scalability of hyperspectral imaging applications on heterogeneous platforms using adaptive run-time data compression

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Plaza, Javier; Paz, Abel

    2010-10-01

    Latest generation remote sensing instruments (called hyperspectral imagers) are now able to generate hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. In previous work, we have reported that the scalability of parallel processing algorithms dealing with these high-dimensional data volumes is affected by the amount of data to be exchanged through the communication network of the system. However, large messages are common in hyperspectral imaging applications since processing algorithms are pixel-based, and each pixel vector to be exchanged through the communication network is made up of hundreds of spectral values. Thus, decreasing the amount of data to be exchanged could improve the scalability and parallel performance. In this paper, we propose a new framework based on intelligent utilization of wavelet-based data compression techniques for improving the scalability of a standard hyperspectral image processing chain on heterogeneous networks of workstations. This type of parallel platform is quickly becoming a standard in hyperspectral image processing due to the distributed nature of collected hyperspectral data as well as its flexibility and low cost. Our experimental results indicate that adaptive lossy compression can lead to improvements in the scalability of the hyperspectral processing chain without sacrificing analysis accuracy, even at sub-pixel precision levels.

  9. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    DTIC Science & Technology

    2005-05-01

    which concern any component of the network. 2.1.1 Existing Intrusion Detection Systems EMERALD [8] is a distributed, scalable, hierarchal, customizable...writing this paper, the updaters of this system had not released their correlation unit to the public. EMERALD ex- plicitly divides statistical analysis... EMERALD , NetSTAT is scalable and composi- ble. QuidSCOR [12] is an open-source IDS, though it requires a subscription from its publisher, Qualys Inc

  10. OXC management and control system architecture with scalability, maintenance, and distributed managing environment

    NASA Astrophysics Data System (ADS)

    Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun

    2002-07-01

    In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.

  11. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    PubMed

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  12. Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guowei; Itoh, Kenichi; Sato, Takuro

    Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.

  13. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less

  14. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier of video delivery transmits a high-quality video stream including all available scalable layers using the most reliable routes through the mesh network ensuring the highest possible video quality. The proposed scheme is implemented in a proven simulator, and the performance of the proposed system is numerically evaluated through extensive simulations. We further present an in-depth analysis of the proposed solutions and potential approaches towards supporting high-quality visual communications in such a demanding context.

  15. Nonblocking Clos networks of multiple ROADM rings for mega data centers.

    PubMed

    Zhao, Li; Ye, Tong; Hu, Weisheng

    2015-11-02

    Optical networks have been introduced to meet the bandwidth requirement of mega data centers (DC). Most existing approaches are neither scalable to face the massive growth of DCs, nor contention-free enough to provide full bisection bandwidth. To solve this problem, we propose two symmetric network structures: ring-MEMS-ring (RMR) network and MEMS-ring-MEMS (MRM) network based on classical Clos theory. New strategies are introduced to overcome the additional wavelength constraints that did not exist in the traditional Clos network. Two structures that followed the strategies can enable high scalability and nonblocking property simultaneously. The one-to-one correspondence of the RMR and MRM structures to a Clos is verified and the nonblocking conditions are given along with the routing algorithms. Compared to a typical folded-Clos network, both structures are more readily scalable to future mega data centers with 51200 racks while reducing number of long cables significantly. We show that the MRM network is more cost-effective than the RMR network, since the MRM network does not need tunable lasers to achieve nonblocking routing.

  16. THE URBAN DISPERSION PROGRAM ( UDP ) NYC MSG05 EXPERIMENT

    EPA Science Inventory

    The multi-organizational Urban Dispersion Program (UDP) has been conducting tracer release experiments at various locations within the United States. In March 2005 the UDP conducted the first NYC based experiment called Madison Square Garden -05 (MSG05). The field study involved ...

  17. LoRa Scalability: A Simulation Model Based on Interference Measurements

    PubMed Central

    Haxhibeqiri, Jetmir; Van den Abeele, Floris; Moerman, Ingrid; Hoebeke, Jeroen

    2017-01-01

    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data. PMID:28545239

  18. LoRa Scalability: A Simulation Model Based on Interference Measurements.

    PubMed

    Haxhibeqiri, Jetmir; Van den Abeele, Floris; Moerman, Ingrid; Hoebeke, Jeroen

    2017-05-23

    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data.

  19. The elaborate route for UDP-arabinose delivery into the Golgi of plants

    DOE PAGES

    Rautengarten, Carsten; Birdseye, Devon; Pattathil, Sivakumar; ...

    2017-04-03

    In plants, L-Arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDPAraf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transportedmore » back into the lumen. During this step it is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Therefore, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgilocalized UDP-Araf transporters in Arabidopsis. The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.« less

  20. The elaborate route for UDP-arabinose delivery into the Golgi of plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautengarten, Carsten; Birdseye, Devon; Pattathil, Sivakumar

    In plants, L-Arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDPAraf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transportedmore » back into the lumen. During this step it is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Therefore, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgilocalized UDP-Araf transporters in Arabidopsis. The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.« less

  1. Radio astronomy interferometer network testing for a Malaysia-China real-time e-VLBI

    NASA Astrophysics Data System (ADS)

    Abidin, Zamri Zainal; Hashim, Shaiful Jahari; Wei, Lim Yang; Zhong, Chen; Rosli, Zulfazli

    2018-01-01

    The uv-coverage of the current VLBI network between Australia northern Asia will be significantly enhanced with an existence of a middle baseline VLBI station located in Malaysia. This paper investigated the connecting route of the first half of the Asia-Oceania VLBI network i.e. from Malaysia to China. The investigation of transmission network characteristics between Malaysia and China was carried out in order to perform a real-time and reliable data transfer within the e-VLBI network for future eVLBI observations. MyREN (Malaysia) and CSTNET (China) high-speed research networks were utilized for this proposed e-VLBI connection. Preliminary network test was performed by ping, traceroute, and iperf prior to data transfer tests, which were evaluated with three types of protocols namely FTP, Tsunami-UDT and UDT. The results showed that, on average, there were eighteen hops between Malaysia and China networks with 98 ms round trip time (RTT) delay. Overall UDP protocol has a better throughput compared to TCP protocol. UDP can reach a maximum rate of 90 Mbps with 0% packet loss. In this feasibility test, the VLBI test data was successfully transferred between Malaysia and China by utilizing the three types of data transfer protocols.

  2. Gossip-Based Broadcast

    NASA Astrophysics Data System (ADS)

    Leitão, João; Pereira, José; Rodrigues, Luís

    Gossip, or epidemic, protocols have emerged as a powerful strategy to implement highly scalable and resilient reliable broadcast primitives on large scale peer-to-peer networks. Epidemic protocols are scalable because they distribute the load among all nodes in the system and resilient because they have an intrinsic level of redundancy that masks node and network failures. This chapter provides an introduction to gossip-based broadcast on large-scale unstructured peer-to-peer overlay networks: it surveys the main results in the field, discusses techniques to build and maintain the overlays that support efficient dissemination strategies, and provides an in-depth discussion and experimental evaluation of two concrete protocols, named HyParView and Plumtree.

  3. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  4. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  5. Recent advancements towards green optical networks

    NASA Astrophysics Data System (ADS)

    Davidson, Alan; Glesk, Ivan; Buis, Adrianus; Wang, Junjia; Chen, Lawrence

    2014-12-01

    Recent years have seen a rapid growth in demand for ultra high speed data transmission with end users expecting fast, high bandwidth network access. With this rapid growth in demand, data centres are under pressure to provide ever increasing data rates through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present technology based on well-established CMOS technology is becoming increasingly difficult to scale and consequently data networks are struggling to satisfy current network demand. In this paper the interrelated issues of electronic scalability, power consumption, limited copper interconnect bandwidth and the limited speed of CMOS electronics will be explored alongside the tremendous bandwidth potential of optical fibre based photonic networks. Some applications of photonics to help alleviate the speed and latency in data networks will be discussed.

  6. Scalable and reusable emulator for evaluating the performance of SS7 networks

    NASA Astrophysics Data System (ADS)

    Lazar, Aurel A.; Tseng, Kent H.; Lim, Koon Seng; Choe, Winston

    1994-04-01

    A scalable and reusable emulator was designed and implemented for studying the behavior of SS7 networks. The emulator design was largely based on public domain software. It was developed on top of an environment supported by PVM, the Parallel Virtual Machine, and managed by OSIMIS-the OSI Management Information Service platform. The emulator runs on top of a commercially available ATM LAN interconnecting engineering workstations. As a case study for evaluating the emulator, the behavior of the Singapore National SS7 Network under fault and unbalanced loading conditions was investigated.

  7. A multi-port 10GbE PCIe NIC featuring UDP offload and GPUDirect capabilities.

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero

    2015-12-01

    NaNet-10 is a four-ports 10GbE PCIe Network Interface Card designed for low-latency real-time operations with GPU systems. To this purpose the design includes an UDP offload module, for fast and clock-cycle deterministic handling of the transport layer protocol, plus a GPUDirect P2P/RDMA engine for low-latency communication with NVIDIA Tesla GPU devices. A dedicated module (Multi-Stream) can optionally process input UDP streams before data is delivered through PCIe DMA to their destination devices, re-organizing data from different streams guaranteeing computational optimization. NaNet-10 is going to be integrated in the NA62 CERN experiment in order to assess the suitability of GPGPU systems as real-time triggers; results and lessons learned while performing this activity will be reported herein.

  8. Lightweight active router-queue management for multimedia networking

    NASA Astrophysics Data System (ADS)

    Parris, Mark; Jeffay, Kevin; Smith, F. D.

    1998-12-01

    The Internet research community is promoting active queue management in routers as a proactive means of addressing congestion in the Internet. Active queue management mechanisms such as Random Early Detection (RED) work well for TCP flows but can fail in the presence of unresponsive UDP flows. Recent proposals extend RED to strongly favor TCP and TCP-like flows and to actively penalize `misbehaving' flows. This is problematic for multimedia flows that, although potentially well-behaved, do not, or can not, satisfy the definition of a TCP-like flow. In this paper we investigate an extension to RED active queue management called Class-Based Thresholds (CBT). The goal of CBT is to reduce congestion in routers and to protect TCP from all UDP flows while also ensuring acceptable throughput and latency for well-behaved UDP flows. CBT attempts to realize a `better than best effort' service for well-behaved multimedia flows that is comparable to that achieved by a packet or link scheduling discipline, however, CBT does this by queue management rather than by scheduling. We present results of experiments comparing our mechanisms to plain RED and to FRED, a variant of RED designed to ensure fair allocation of bandwidth amongst flows. We also compare CBT to a packet scheduling scheme. The experiments show that CBT (1) realizes protection for TCP, and (2) provides throughput and end-to-end latency for tagged UDP flows, that is better than that under FRED and RED and comparable to that achieved by packet scheduling. Moreover CBT is a lighter-weight mechanism than FRED in terms of its state requirements and implementation complexity.

  9. Distributed Ship Navigation Control System Based on Dual Network

    NASA Astrophysics Data System (ADS)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  10. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE PAGES

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...

    2018-04-13

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  11. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  12. Dynamic full-scalability conversion in scalable video coding

    NASA Astrophysics Data System (ADS)

    Lee, Dong Su; Bae, Tae Meon; Thang, Truong Cong; Ro, Yong Man

    2007-02-01

    For outstanding coding efficiency with scalability functions, SVC (Scalable Video Coding) is being standardized. SVC can support spatial, temporal and SNR scalability and these scalabilities are useful to provide a smooth video streaming service even in a time varying network such as a mobile environment. But current SVC is insufficient to support dynamic video conversion with scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion methods for QoS adaptive video streaming in SVC. To accomplish full scalability dynamic conversion, we develop corresponding bitstream extraction, encoding and decoding schemes. At the encoder, we insert the IDR NAL periodically to solve the problems of spatial scalability conversion. At the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. Real time extraction is achieved by using this information. Finally, we develop the decoder so that it can manage the changing scalability. Experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.

  13. Research of future network with multi-layer IP address

    NASA Astrophysics Data System (ADS)

    Li, Guoling; Long, Zhaohua; Wei, Ziqiang

    2018-04-01

    The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.

  14. Molecular cloning and tissue-specific transcriptional regulation of the first peroxidase family member, Udp1, in stinging nettle (Urtica dioica).

    PubMed

    Douroupi, Triantafyllia G; Papassideri, Issidora S; Stravopodis, Dimitrios J; Margaritis, Lukas H

    2005-12-05

    A full-length cDNA clone, designated Udp1, was isolated from Urtica dioica (stinging nettle), using a polymerase chain reaction based strategy. The putative Udp1 protein is characterized by a cleavable N-terminal signal sequence, likely responsible for the rough endoplasmic reticulum entry and a 310 amino acids mature protein, containing all the important residues, which are evolutionary conserved among different members of the plant peroxidase family. A unique structural feature of the Udp1 peroxidase is defined into the short carboxyl-terminal extension, which could be associated with the vacuolar targeting process. Udp1 peroxidase is differentially regulated at the transcriptional level and is specifically expressed in the roots. Interestingly, wounding and ultraviolet radiation stress cause an ectopic induction of the Udp1 gene expression in the aerial parts of the plant. A genomic DNA fragment encoding the Udp1 peroxidase was also cloned and fully sequenced, revealing a structural organization of three exons and two introns. The phylogenetic relationships of the Udp1 protein to the Arabidopsis thaliana peroxidase family members were also examined and, in combination with the homology modelling approach, dictated the presence of distinct structural elements, which could be specifically involved in the determination of substrate recognition and subcellular localization of the Udp1 peroxidase.

  15. Fully programmable and scalable optical switching fabric for petabyte data center.

    PubMed

    Zhu, Zhonghua; Zhong, Shan; Chen, Li; Chen, Kai

    2015-02-09

    We present a converged EPS and OCS switching fabric for data center networks (DCNs) based on a distributed optical switching architecture leveraging both WDM & SDM technologies. The architecture is topology adaptive, well suited to dynamic and diverse *-cast traffic patterns. Compared to a typical folded-Clos network, the new architecture is more readily scalable to future multi-Petabyte data centers with 1000 + racks while providing a higher link bandwidth, reducing transceiver count by 50%, and improving cabling efficiency by more than 90%.

  16. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Scott, John M.

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21PstP thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which strategies for scalability of the topology may be enabled by technologies and policies. In particular, the effects of scalable ICNS concepts are evaluated within this proposed topology. Alternative business models are appearing on the scene as the old centralized hub-and-spoke model reaches the limits of its scalability. These models include growth of point-to-point scheduled air transportation service (e.g., the RJ phenomenon and the 'Southwest Effect'). Another is a new business model for on-demand, widely distributed, air mobility in jet taxi services. The new businesses forming around this vision are targeting personal air mobility to virtually any of the thousands of origins and destinations throughout suburban, rural, and remote communities and regions. Such advancement in air mobility has many implications for requirements for airports, airspace, and consumers. These new paradigms could support scalable alternatives for the expansion of future air mobility to more consumers in more places.

  17. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which strategies for scalability of the topology may be enabled by technologies and policies. In particular, the effects of scalable ICNS concepts are evaluated within this proposed topology. Alternative business models are appearing on the scene as the old centralized hub-and-spoke model reaches the limits of its scalability. These models include growth of point-to-point scheduled air transportation service (e.g., the RJ phenomenon and the Southwest Effect). Another is a new business model for on-demand, widely distributed, air mobility in jet taxi services. The new businesses forming around this vision are targeting personal air mobility to virtually any of the thousands of origins and destinations throughout suburban, rural, and remote communities and regions. Such advancement in air mobility has many implications for requirements for airports, airspace, and consumers. These new paradigms could support scalable alternatives for the expansion of future air mobility to more consumers in more places.

  18. Scalable Video Streaming in Wireless Mesh Networks for Education

    ERIC Educational Resources Information Center

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  19. Exploiting Spatial Channel Occupancy Information in WLANs

    DTIC Science & Technology

    2014-05-15

    transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a

  20. Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid.

    PubMed

    Eixelsberger, Thomas; Sykora, Sabine; Egger, Sigrid; Brunsteiner, Michael; Kavanagh, Kathryn L; Oppermann, Udo; Brecker, Lothar; Nidetzky, Bernd

    2012-09-07

    UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-D-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD(+) and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-D-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the D-glucuronyl ring accommodated by UXS features a marked (4)C(1) chair to B(O,3) boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C(4) (step 1) by aligning the enzymatic base Tyr(147) with the reactive substrate hydroxyl and it brings the carboxylate group at C(5) into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-D-glucuronic acid in the second chemical step. The protonated side chain of Tyr(147) stabilizes the enolate of decarboxylated C(4) keto species ((2)H(1) half-chair) that is then protonated from the Si face at C(5), involving water coordinated by Glu(120). Arg(277), which is positioned by a salt-link interaction with Glu(120), closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C(4) keto group by NADH, assisted by Tyr(147) as catalytic proton donor, yields UDP-xylose adopting the relaxed (4)C(1) chair conformation (step 3).

  1. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks.

    PubMed

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-05-12

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity.

  2. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks

    PubMed Central

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-01-01

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity. PMID:29757244

  3. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics.

    PubMed

    Yang, Jian; Zhang, David; Yang, Jing-Yu; Niu, Ben

    2007-04-01

    This paper develops an unsupervised discriminant projection (UDP) technique for dimensionality reduction of high-dimensional data in small sample size cases. UDP can be seen as a linear approximation of a multimanifolds-based learning framework which takes into account both the local and nonlocal quantities. UDP characterizes the local scatter as well as the nonlocal scatter, seeking to find a projection that simultaneously maximizes the nonlocal scatter and minimizes the local scatter. This characteristic makes UDP more intuitive and more powerful than the most up-to-date method, Locality Preserving Projection (LPP), which considers only the local scatter for clustering or classification tasks. The proposed method is applied to face and palm biometrics and is examined using the Yale, FERET, and AR face image databases and the PolyU palmprint database. The experimental results show that UDP consistently outperforms LPP and PCA and outperforms LDA when the training sample size per class is small. This demonstrates that UDP is a good choice for real-world biometrics applications.

  4. Synthesis of aryl azide derivatives of UDP-GlcNAc and UDP-GalNAc and their use for the affinity labeling of glycosyltransferases and the UDP-HexNAc pyrophosphorylase.

    PubMed

    Zeng, Y; Shabalin, Y; Szumilo, T; Pastuszak, I; Drake, R R; Elbein, A D

    1996-07-15

    The chemical synthesis and utilization of two photoaffinity analogs, 125I-labeled 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc and -UDP-GalNAc, is described. Starting with either UDP-GlcNAc or UDP-GalNAc, the synthesis involved the preparation of the 5-mercuri-UDP-HexNAc and then attachment of an allylamine to the 5 position to give 5-(3-amino)allyl-UDP-HexNAc. This was followed by acylation with N-hydroxysuccinimide p-aminosalicylic acid to form the final product, i.e., 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc or UDP-GalNAc. These products could then be iodinated with chloramine T to give the 125I-derivatives. Both the UDP-GlcNAc and the UDP-GalNAc derivatives reacted in a concentration-dependent manner with a highly purified UDP-HexNAc pyrophosphorylase, and both specifically labeled the subunit(s) of this protein. The labeling of the protein by the UDP-GlcNAc derivative was inhibited in dose-dependent fashion by either unlabeled UDP-GlcNAc or unlabeled UDP-GalNAc. Likewise, labeling with the UDP-GalNAc probe was blocked by either UDP-GlcNAc or UDP-GalNAc. The UDP-GlcNAc probe also specifically labeled a partially purified preparation of GlcNAc transferase I.

  5. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    PubMed

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  6. Tools and Techniques for Simplifying the Analysis of Captured Packet Data

    ERIC Educational Resources Information Center

    Cavaiani, Thomas P.

    2008-01-01

    Students acquire an understanding of the differences between TCP and UDP (connection-oriented vs. connection-less) data transfers as they analyze network packet data collected during one of a series of labs designed for an introductory network essentials course taught at Boise State University. The learning emphasis of the lab is not on the…

  7. Cloud-Based Virtual Laboratory for Network Security Education

    ERIC Educational Resources Information Center

    Xu, Le; Huang, Dijiang; Tsai, Wei-Tek

    2014-01-01

    Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…

  8. Wireless Computing Architecture III

    DTIC Science & Technology

    2013-09-01

    MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16

  9. High-Fidelity Modeling of Computer Network Worms

    DTIC Science & Technology

    2004-06-22

    plots the propagation of the TCP-based worm. This execution is among the largest TCP worm models simulated to date at packet-level. TCP vs . UDP Worm...the mapping of the virtual IP addresses to honeyd’s MAC address in the proxy’s ARP table. The proxy server listens for packets from both sides of...experimental setup, we used two ntium-4 ThinkPad , and an IBM Pentium-III ThinkPad ), running the proxy server and honeyd respectively. The Code Red II worm

  10. Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response

    PubMed Central

    Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie

    2006-01-01

    Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308

  11. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  12. The Effects of Cognitive Jamming on Wireless Sensor Networks Used for Geolocation

    DTIC Science & Technology

    2012-03-01

    continuously sends out random bits to the channel without following any MAC-layer etiquette [31]. Normally, the underlying MAC protocol allows...23 UDP User Datagram Protocol . . . . . . . . . . . . . . . . . . . 30 MIMO Multiple Input Multiple Output . . . . . . . . . . . . . . . 70...information is packaged and distributed on the network layer, only the physical measurements are considered. This protocol is used to detect faulty nodes

  13. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.

    PubMed

    Deng, Yue; Zenil, Hector; Tegnér, Jesper; Kiani, Narsis A

    2017-12-15

    The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks. We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes. The Matlab code of the HiDi implementation is available at: www.complexitycalculator.com/HiDiScript.zip. hzenilc@gmail.com or narsis.kiani@ki.se. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Differentiated optical services: a quality of optical service model for WDM networks

    NASA Astrophysics Data System (ADS)

    Ndousse, Thomas D.; Golmie, Nada

    1999-08-01

    This paper addresses the issues of guaranteed and scalable end-to-end QoS in Metropolitan DWDM networks serving as transit networks for IP access networks. DWDM offering few wavelengths have in the past been deployed in backbone networks to upgrade point-to-point transmission where sharing is based on coarse granularity. This type of DWDM backbone networks, offering few lightpaths, provides no support for QoS services traversing the network. As DWDM networks with larger numbers of wavelengths penetrate the data-centric Metro environment, specific IP service requirements such as priority restoration, scalability, dynamic provisioning of capacity and routes, and support for coarse-grain QoS capabilities will have to be addressed in the optical domain in order to support end-to-end Service- Level Agreements. In this paper, we focus on the support of QoS in the optical domain in order to achieve end-to-end QoS over a DWDM network. We propose a QoS service model in the optical domain called Differentiated Optical Services (DOS). Service classification in DOS is based on a set of optical parameters that captures the quality and reliability of the optical lightpath.

  15. UDP-4-Keto-6-Deoxyglucose, a Transient Antifungal Metabolite, Weakens the Fungal Cell Wall Partly by Inhibition of UDP-Galactopyranose Mutase

    PubMed Central

    Ma, Liang; Salas, Omar; Bowler, Kyle

    2017-01-01

    ABSTRACT Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs. PMID:29162710

  16. An Impact Assessment Model for Distributed Adaptive Security Situation Assessment

    DTIC Science & Technology

    2005-01-01

    the cargo manifest can be either a 56K modem-based TCP/IP connection (the oval labeled internet) or a 40K wireless modem connection ( cell phone ) that...via a UDP connection on the 40K wireless modem ( cell phone ). For each resource, either alternative may be used to achieve the same goal, but some...Manifests Comm-in Comp- power Comm- out JTF Internet (TCP-IP) Cell phone (TCP-IP) Internet (UDP) Cell phone (UDP) Manual Computer 4

  17. Rocinante, a virtual collaborative visualizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, M.J.; Ice, L.G.

    1996-12-31

    With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less

  18. Using Swarming Agents for Scalable Security in Large Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, Michael; White, Jacob L.; Fulp, Errin W.

    2011-09-23

    The difficulty of securing computer infrastructures increases as they grow in size and complexity. Network-based security solutions such as IDS and firewalls cannot scale because of exponentially increasing computational costs inherent in detecting the rapidly growing number of threat signatures. Hostbased solutions like virus scanners and IDS suffer similar issues, and these are compounded when enterprises try to monitor these in a centralized manner. Swarm-based autonomous agent systems like digital ants and artificial immune systems can provide a scalable security solution for large network environments. The digital ants approach offers a biologically inspired design where each ant in the virtualmore » colony can detect atoms of evidence that may help identify a possible threat. By assembling the atomic evidences from different ant types the colony may detect the threat. This decentralized approach can require, on average, fewer computational resources than traditional centralized solutions; however there are limits to its scalability. This paper describes how dividing a large infrastructure into smaller managed enclaves allows the digital ant framework to effectively operate in larger environments. Experimental results will show that using smaller enclaves allows for more consistent distribution of agents and results in faster response times.« less

  19. End-to-end QoS bounds for RTP-based service subnetworks

    NASA Astrophysics Data System (ADS)

    Pitts, Jonathan M.; Schormans, John A.

    1999-11-01

    With the increasing focus on traffic prioritization to support voice-data integration in corporate intranets, practical methods are needed to dimension and manage cost efficient service partitions. This is particularly important for the provisioning of real time, delay sensitive services such as telephony and voice/video conferencing applications. Typically these can be provided over RTP/UDP/IP or ATM DBR/SBR bearers but, irrespective of the specific networking technology, the switches or routers need to implement some form of virtual buffer management with queue scheduling mechanisms to provide partitioning. The key requirement is for operators of such networks to be able to dimension the partitions and virtual buffer sizes for efficient resource utilization, instead of simply over-dimensioning. This paper draws on recent work at Queen Mary, University of London, supported by the UK Engineering and Physical Sciences Research Council, to investigate approximate analytical methods for assessing end to end delay variation bounds in cell based and packet based networks.

  20. Self-Organizing Distributed Architecture Supporting Dynamic Space Expanding and Reducing in Indoor LBS Environment

    PubMed Central

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2015-01-01

    Indoor location-based services (iLBS) are extremely dynamic and changeable, and include numerous resources and mobile devices. In particular, the network infrastructure requires support for high scalability in the indoor environment, and various resource lookups are requested concurrently and frequently from several locations based on the dynamic network environment. A traditional map-based centralized approach for iLBSs has several disadvantages: it requires global knowledge to maintain a complete geographic indoor map; the central server is a single point of failure; it can also cause low scalability and traffic congestion; and it is hard to adapt to a change of service area in real time. This paper proposes a self-organizing and fully distributed platform for iLBSs. The proposed self-organizing distributed platform provides a dynamic reconfiguration of locality accuracy and service coverage by expanding and contracting dynamically. In order to verify the suggested platform, scalability performance according to the number of inserted or deleted nodes composing the dynamic infrastructure was evaluated through a simulation similar to the real environment. PMID:26016908

  1. Motor Learning Enhances Use-Dependent Plasticity

    PubMed Central

    2017-01-01

    Motor behaviors are shaped not only by current sensory signals but also by the history of recent experiences. For instance, repeated movements toward a particular target bias the subsequent movements toward that target direction. This process, called use-dependent plasticity (UDP), is considered a basic and goal-independent way of forming motor memories. Most studies consider movement history as the critical component that leads to UDP (Classen et al., 1998; Verstynen and Sabes, 2011). However, the effects of learning (i.e., improved performance) on UDP during movement repetition have not been investigated. Here, we used transcranial magnetic stimulation in two experiments to assess plasticity changes occurring in the primary motor cortex after individuals repeated reinforced and nonreinforced actions. The first experiment assessed whether learning a skill task modulates UDP. We found that a group that successfully learned the skill task showed greater UDP than a group that did not accumulate learning, but made comparable repeated actions. The second experiment aimed to understand the role of reinforcement learning in UDP while controlling for reward magnitude and action kinematics. We found that providing subjects with a binary reward without visual feedback of the cursor led to increased UDP effects. Subjects in the group that received comparable reward not associated with their actions maintained the previously induced UDP. Our findings illustrate how reinforcing consistent actions strengthens use-dependent memories and provide insight into operant mechanisms that modulate plastic changes in the motor cortex. SIGNIFICANCE STATEMENT Performing consistent motor actions induces use-dependent plastic changes in the motor cortex. This plasticity reflects one of the basic forms of human motor learning. Past studies assumed that this form of learning is exclusively affected by repetition of actions. However, here we showed that success-based reinforcement signals could affect the human use-dependent plasticity (UDP) process. Our results indicate that learning augments and interacts with UDP. This effect is important to the understanding of the interplay between the different forms of motor learning and suggests that reinforcement is not only important to learning new behaviors, but can shape our subsequent behavior via its interaction with UDP. PMID:28143961

  2. Interconnection network architectures based on integrated orbital angular momentum emitters

    NASA Astrophysics Data System (ADS)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  3. The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters

    NASA Technical Reports Server (NTRS)

    Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)

    1998-01-01

    We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.

  4. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Discovery and Biochemical Characterization of the UDP-Xylose Biosynthesis Pathway in Sphaerobacter thermophilus.

    PubMed

    Gu, Bin; Laborda, Pedro; Wei, Shuang; Duan, Xu-Chu; Song, Hui-Bo; Liu, Li; Voglmeir, Josef

    2016-01-01

    The biosynthesis of UDP-xylose requires the stepwise oxidation/ decarboxylation of UDP-glucose, which is catalyzed by the enzymes UDPglucuronic acid dehydrogenase (UGD) and UDP-xylose synthase (UXS). UDPxylose biosynthesis is ubiquitous in animals and plants. However, only a few UGD and UXS isoforms of bacterial origin have thus far been biochemically characterized. Sphaerobacter thermophilus DSM 20745 is a bacterium isolated from heated sewage sludge, and therefore can be a valuable source of thermostable enzymes of biotechnological interest. However, no biochemical characterizations of any S. thermophilus enzymes have yet been reported. Herein, we describe the cloning and characterization of putative UGD (StUGD) and UXS (StUXS) isoforms from this organism. HPLC- and plate reader-based activity tests of the recombinantly expressed StUGD and StUXS showed that they are indeed active enzymes. Both StUGD and StUXS showed a temperature optimum of 70°C, and a reasonable thermal stability up to 60°C. No metal ions were required for enzymatic activities. StUGD had a higher pH optimum than StUXS. The simple purification procedures and the thermotolerance of StUGD and StUXS make them valuable biocatalysts for the synthesis of UDP-glucuronic acid and UDP-xylose at elevated temperatures. The biosynthetic potential of StUGD was further exemplified in a coupled enzymatic reaction with an UDP-glucuronosyltransferase, allowing the glucuronylation of the natural model substrate bilirubin.

  6. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    DTIC Science & Technology

    2015-12-15

    quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of

  7. A Mobile IPv6 based Distributed Mobility Management Mechanism of Mobile Internet

    NASA Astrophysics Data System (ADS)

    Yan, Shi; Jiayin, Cheng; Shanzhi, Chen

    A flatter architecture is one of the trends of mobile Internet. Traditional centralized mobility management mechanism faces the challenges such as scalability and UE reachability. A MIPv6 based distributed mobility management mechanism is proposed in this paper. Some important network entities and signaling procedures are defined. UE reachability is also considered in this paper through extension to DNS servers. Simulation results show that the proposed approach can overcome the scalability problem of the centralized scheme.

  8. Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA Involves Three Easily Distinguished 4-Epimerase Enzymes, Gne, Gnu and GnaB

    PubMed Central

    Cunneen, Monica M.; Liu, Bin; Wang, Lei; Reeves, Peter R.

    2013-01-01

    We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation. PMID:23799153

  9. A scalable architecture for online anomaly detection of WLCG batch jobs

    NASA Astrophysics Data System (ADS)

    Kuehn, E.; Fischer, M.; Giffels, M.; Jung, C.; Petzold, A.

    2016-10-01

    For data centres it is increasingly important to monitor the network usage, and learn from network usage patterns. Especially configuration issues or misbehaving batch jobs preventing a smooth operation need to be detected as early as possible. At the GridKa data and computing centre we therefore operate a tool BPNetMon for monitoring traffic data and characteristics of WLCG batch jobs and pilots locally on different worker nodes. On the one hand local information itself are not sufficient to detect anomalies for several reasons, e.g. the underlying job distribution on a single worker node might change or there might be a local misconfiguration. On the other hand a centralised anomaly detection approach does not scale regarding network communication as well as computational costs. We therefore propose a scalable architecture based on concepts of a super-peer network.

  10. Data transmission protocol for Pi-of-the-Sky cameras

    NASA Astrophysics Data System (ADS)

    Uzycki, J.; Kasprowicz, G.; Mankiewicz, M.; Nawrocki, K.; Sitek, P.; Sokolowski, M.; Sulej, R.; Tlaczala, W.

    2006-10-01

    The large amount of data collected by the automatic astronomical cameras has to be transferred to the fast computers in a reliable way. The method chosen should ensure data streaming in both directions but in nonsymmetrical way. The Ethernet interface is very good choice because of its popularity and proven performance. However it requires TCP/IP stack implementation in devices like cameras for full compliance with existing network and operating systems. This paper describes NUDP protocol, which was made as supplement to standard UDP protocol and can be used as a simple-network protocol. The NUDP does not need TCP protocol implementation and makes it possible to run the Ethernet network with simple devices based on microcontroller and/or FPGA chips. The data transmission idea was created especially for the "Pi of the Sky" project.

  11. Conceptual Architecture for Obtaining Cyber Situational Awareness

    DTIC Science & Technology

    2014-06-01

    1-893723-17-8. [10] SKYBOX SECURITY. Developer´s Guide. Skybox View. Manual.Version 11. 2010. [11] SCALABLE Network. EXata communications...E. Understanding command and control. Washington, D.C.: CCRP Publication Series, 2006. 255 p. ISBN 1-893723-17-8. • [10] SKYBOX SECURITY. Developer...s Guide. Skybox View. Manual.Version 11. 2010. • [11] SCALABLE Network. EXata communications simulation platform. Available: <http://www.scalable

  12. DDS as middleware of the Southern African Large Telescope control system

    NASA Astrophysics Data System (ADS)

    Maartens, Deneys S.; Brink, Janus D.

    2016-07-01

    The Southern African Large Telescope (SALT) software control system1 is realised as a distributed control system, implemented predominantly in National Instruments' LabVIEW. The telescope control subsystems communicate using cyclic, state-based messages. Currently, transmitting a message is accomplished by performing an HTTP PUT request to a WebDAV directory on a centralised Apache web server, while receiving is based on polling the web server for new messages. While the method works, it presents a number of drawbacks; a scalable distributed communication solution with minimal overhead is a better fit for control systems. This paper describes our exploration of the Data Distribution Service (DDS). DDS is a formal standard specification, defined by the Object Management Group (OMG), that presents a data-centric publish-subscribe model for distributed application communication and integration. It provides an infrastructure for platform- independent many-to-many communication. A number of vendors provide implementations of the DDS standard; RTI, in particular, provides a DDS toolkit for LabVIEW. This toolkit has been evaluated against the needs of SALT, and a few deficiencies have been identified. We have developed our own implementation that interfaces LabVIEW to DDS in order to address our specific needs. Our LabVIEW DDS interface implementation is built against the RTI DDS Core component, provided by RTI under their Open Community Source licence. Our needs dictate that the interface implementation be platform independent. Since we have access to the RTI DDS Core source code, we are able to build the RTI DDS libraries for any of the platforms on which we require support. The communications functionality is based on UDP multicasting. Multicasting is an efficient communications mechanism with low overheads which avoids duplicated point-to-point transmission of data on a network where there are multiple recipients of the data. In the paper we present a performance evaluation of DDS against the current HTTP-based implementation as well as the historical DataSocket implementation. We conclude with a summary and describe future work.

  13. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Heemskerk, Marc J; Lagendijk, Ellen L; van den Hondel, Cees A M J J; van Die, Irma; Ram, Arthur F J

    2015-11-02

    Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter. Based on homology with recently identified UDP-Galf-transporters in A. fumigatus and A. nidulans, two putative UDP-Galf-transporters in A. niger were found. Their function and localization was determined by gene deletions and GFP-tagging studies, respectively. The two putative UDP-Galf-transporters in A. niger are homologous to each other and are predicted to contain eleven transmembrane domains (UgtA) or ten transmembrane domains (UgtB) due to a reduced length of the C-terminal part of the UgtB protein. The presence of two putative UDP-Galf-transporters in the genome was not unique for A. niger. From the twenty Aspergillus species analysed, nine species contained two additional putative UDP-Galf-transporters. Three of the nine species were outside the Aspergillus section nigri, indication an early duplication of UDP-Galf-transporters and subsequent loss of the UgtB copy in several aspergilli. Deletion analysis of the single and double mutants in A. niger indicated that the two putative UDP-Galf-transporters (named UgtA and UgtB) have a redundant function in UDP-Galf-transport as only the double mutant displayed a Galf-negative phenotype. The Galf-negative phenotype of the double mutant could be complemented by expressing either CFP-UgtA or CFP-UgtB fusion proteins from their endogenous promoters, indicating that both CFP-tagged proteins are functional. Both Ugt proteins co-localize with each other as well as with the GDP-mannose nucleotide transporter, as was demonstrated by fluorescence microscopy, thereby confirming their predicted localization in the Golgi. A. niger contains two genes encoding UDP-Galf-transporters. Deletion and localization studies indicate that UgtA and UgtB have redundant functions in the biosynthesis of Galf-containing glycoconjugates.

  14. fastBMA: scalable network inference and transitive reduction.

    PubMed

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  15. High-speed and high-fidelity system and method for collecting network traffic

    DOEpatents

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  16. Evaluation of in-network adaptation of scalable high efficiency video coding (SHVC) in mobile environments

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio

    2014-02-01

    High Efficiency Video Coding (HEVC), the latest video compression standard (also known as H.265), can deliver video streams of comparable quality to the current H.264 Advanced Video Coding (H.264/AVC) standard with a 50% reduction in bandwidth. Research into SHVC, the scalable extension to the HEVC standard, is still in its infancy. One important area for investigation is whether, given the greater compression ratio of HEVC (and SHVC), the loss of packets containing video content will have a greater impact on the quality of delivered video than is the case with H.264/AVC or its scalable extension H.264/SVC. In this work we empirically evaluate the layer-based, in-network adaptation of video streams encoded using SHVC in situations where dynamically changing bandwidths and datagram loss ratios require the real-time adaptation of video streams. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for SHVC-based highdefinition video streaming in loss prone network environments such as those commonly found in mobile networks. Among other results, we highlight that packet losses of only 1% can lead to a substantial reduction in PSNR of over 3dB and error propagation in over 130 pictures following the one in which the loss occurred. This work would be one of the earliest studies in this cutting-edge area that reports benchmark evaluation results for the effects of datagram loss on SHVC picture quality and offers empirical and analytical insights into SHVC adaptation to lossy, mobile networking conditions.

  17. The Building of Multimedia Communications Network based on Session Initiation Protocol

    NASA Astrophysics Data System (ADS)

    Yuexiao, Han; Yanfu, Zhang

    In this paper, we presented a novel design for a distributed multimedia communications network. We introduced the distributed tactic, flow procedure and particular structure. We also analyzed its scalability, stability, robustness, extension, and transmission delay of this architecture. Finally, the result shows our framework is suitable for very large scale communications.

  18. A Stateful Multicast Access Control Mechanism for Future Metro-Area-Networks.

    ERIC Educational Resources Information Center

    Sun, Wei-qiang; Li, Jin-sheng; Hong, Pei-lin

    2003-01-01

    Multicasting is a necessity for a broadband metro-area-network; however security problems exist with current multicast protocols. A stateful multicast access control mechanism, based on MAPE, is proposed. The architecture of MAPE is discussed, as well as the states maintained and messages exchanged. The scheme is flexible and scalable. (Author/AEF)

  19. Formal Methods for Information Protection Technology. Task 1: Formal Grammar-Based Approach and Tool for Simulation Attacks against Computer Network. Part 1

    DTIC Science & Technology

    2004-02-01

    Protocol for Unix enumerating by stealing /etc/ passwd and (or) /etc/hosts.equiv and (or) ~/.rhosts; ISU – Identifying SID with user2sid ; IAS...null sessions””, FUE – “Finger Users Enumeration”, UTFTP – “Use of Trivial File Transfer Protocol for Unix enumerating by stealing /etc/ passwd and...Ping of Death”, UF – “UDP flooding”, IFS – “Storm of inquiries to FTP-server”, APF – “Access to Password File . passwd ”, WDPF – “Writing of Data with

  20. From Signature-Based Towards Behaviour-Based Anomaly Detection (Extended Abstract)

    DTIC Science & Technology

    2010-11-01

    data acquisition can serve as sensors. De- facto standard for IP flow monitoring is NetFlow format. Although NetFlow was originally developed by Cisco...packets with some common properties that pass through a network device. These collected flows are exported to an external device, the NetFlow ...Thanks to the network-based approach using NetFlow data, the detection algorithm is host independent and highly scalable. Deep Packet Inspection

  1. Scalable Management of Enterprise and Data-Center Networks

    DTIC Science & Technology

    2011-09-01

    To the best of our knowledge , there is no systematic and efficient solution for handling overlapping wildcard rules in network-wide flow- management ...and D. Maltz, “Unraveling the complexity of network management ,” in NSDI, 2009. [4] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan , “A...Scalable Management of Enterprise and Data-Center Networks Minlan Yu A Dissertation Presented to the Faculty of Princeton University in Candidacy for

  2. Energy Logic (EL): a novel fusion engine of multi-modality multi-agent data/information fusion for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2009-04-01

    The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.

  3. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    PubMed Central

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343

  4. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    PubMed

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  5. Leveraging an SNMP Agent in Terminal Equipment for Network Monitoring of U.S. Navy SATCOM

    DTIC Science & Technology

    2011-09-01

    Network Topology TWT Traveling-wave Tube TX Transmitter UCD Uplink Channel Descriptor UDP User Datagram Protocol UFO UHF Follow-On UHF Ultra High...through DSCS III, UFO , and Milstar” (Martin, n.d.a).  “Capabilities have grown dramatically with the development of satellite and electronics...Communication Systems (DSCS) II and III and the Global Broadcast Service (GBS) payload on the UHF Follow-On ( UFO ) satellite  In 1971, the DSCS II

  6. Development of an e-VLBI Data Transport Software Suite with VDIF

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Takefuji, Kazuhiro; Kimura, Moritaka; Hobiger, Thomas; Kokado, Kensuke; Nozawa, Kentarou; Kurihara, Shinobu; Shinno, Takuya; Takahashi, Fujinobu

    2010-01-01

    We have developed a software library (KVTP-lib) for VLBI data transmission over the network with the VDIF (VLBI Data Interchange Format), which is the newly proposed standard VLBI data format designed for electronic data transfer over the network. The software package keeps the application layer (VDIF frame) and the transmission layer separate, so that each layer can be developed efficiently. The real-time VLBI data transmission tool sudp-send is an application tool based on the KVTP-lib library. sudp-send captures the VLBI data stream from the VSI-H interface with the K5/VSI PC-board and writes the data to file in standard Linux file format or transmits it to the network using the simple- UDP (SUDP) protocol. Another tool, sudp-recv , receives the data stream from the network and writes the data to file in a specific VLBI format (K5/VSSP, VDIF, or Mark 5B). This software system has been implemented on the Wettzell Tsukuba baseline; evaluation before operational employment is under way.

  7. A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network

    DTIC Science & Technology

    2016-04-10

    to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum

  8. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    PubMed

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  9. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  10. Heterogeneous Gossip

    NASA Astrophysics Data System (ADS)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  11. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate.

    PubMed

    Moss, Angela K; Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S; Narisawa, Sonoko; Millán, José Luis; Warren, H Shaw; Hohmann, Elizabeth; Malo, Madhu S; Hodin, Richard A

    2013-03-15

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.

  12. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities.

  13. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-d-glucoside

    PubMed Central

    Michlmayr, Herbert; Malachová, Alexandra; Varga, Elisabeth; Kleinová, Jana; Lemmens, Marc; Newmister, Sean; Rayment, Ivan; Berthiller, Franz; Adam, Gerhard

    2015-01-01

    Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-d-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins. PMID:26197338

  14. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase.

    PubMed

    Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd

    2017-04-01

    Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/g cell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 g product /L, 86% yield (based on UDP), and a total turnover number of 103 g UDP-glc /g cell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage

    DOE PAGES

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; ...

    2017-01-01

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less

  16. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less

  17. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage[OPEN

    PubMed Central

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; Sanhueza, Dayan; Ejsmentewicz, Troy; Sandoval-Ibañez, Omar; Parra-Rojas, Juan Pablo; Ebert, Berit; Reyes, Francisca C.

    2017-01-01

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix. PMID:28062750

  18. Large-Scale Networked Virtual Environments: Architecture and Applications

    ERIC Educational Resources Information Center

    Lamotte, Wim; Quax, Peter; Flerackers, Eddy

    2008-01-01

    Purpose: Scalability is an important research topic in the context of networked virtual environments (NVEs). This paper aims to describe the ALVIC (Architecture for Large-scale Virtual Interactive Communities) approach to NVE scalability. Design/methodology/approach: The setup and results from two case studies are shown: a 3-D learning environment…

  19. A lightweight network anomaly detection technique

    DOE PAGES

    Kim, Jinoh; Yoo, Wucherl; Sim, Alex; ...

    2017-03-13

    While the network anomaly detection is essential in network operations and management, it becomes further challenging to perform the first line of detection against the exponentially increasing volume of network traffic. In this paper, we develop a technique for the first line of online anomaly detection with two important considerations: (i) availability of traffic attributes during the monitoring time, and (ii) computational scalability for streaming data. The presented learning technique is lightweight and highly scalable with the beauty of approximation based on the grid partitioning of the given dimensional space. With the public traffic traces of KDD Cup 1999 andmore » NSL-KDD, we show that our technique yields 98.5% and 83% of detection accuracy, respectively, only with a couple of readily available traffic attributes that can be obtained without the help of post-processing. Finally, the results are at least comparable with the classical learning methods including decision tree and random forest, with approximately two orders of magnitude faster learning performance.« less

  20. A lightweight network anomaly detection technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Yoo, Wucherl; Sim, Alex

    While the network anomaly detection is essential in network operations and management, it becomes further challenging to perform the first line of detection against the exponentially increasing volume of network traffic. In this paper, we develop a technique for the first line of online anomaly detection with two important considerations: (i) availability of traffic attributes during the monitoring time, and (ii) computational scalability for streaming data. The presented learning technique is lightweight and highly scalable with the beauty of approximation based on the grid partitioning of the given dimensional space. With the public traffic traces of KDD Cup 1999 andmore » NSL-KDD, we show that our technique yields 98.5% and 83% of detection accuracy, respectively, only with a couple of readily available traffic attributes that can be obtained without the help of post-processing. Finally, the results are at least comparable with the classical learning methods including decision tree and random forest, with approximately two orders of magnitude faster learning performance.« less

  1. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate

    PubMed Central

    Hamarneh, Sulaiman R.; Mohamed, Mussa M. Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N.; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S.; Narisawa, Sonoko; Millán, José Luis; Warren, H. Shaw; Hohmann, Elizabeth; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP. PMID:23306083

  2. Resource Management In Peer-To-Peer Networks: A Nadse Approach

    NASA Astrophysics Data System (ADS)

    Patel, R. B.; Garg, Vishal

    2011-12-01

    This article presents a common solution to Peer-to-Peer (P2P) network problems and distributed computing with the help of "Neighbor Assisted Distributed and Scalable Environment" (NADSE). NADSE supports both device and code mobility. In this article mainly we focus on the NADSE based resource management technique. How information dissemination and searching is speedup when using the NADSE service provider node in large network. Results show that performance of the NADSE network is better in comparison to Gnutella, and Freenet.

  3. Mapping the UDP-Glucuronic Acid Binding Site in UDP-Glucuronosyltransferase-1 A10 by Homology-based Modeling: Confirmation with Biochemical Evidence†

    PubMed Central

    Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.

    2008-01-01

    The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321--equivalent to K314-- in UGT2B15 and 2B17 and I321 in the inactive UGT8, which suggests UGT2B15 and 2B17 contain suboptimal activity. Hence our data strongly support UDPglcA binding to K314 and K404 in UGT1A10. PMID:18570380

  4. A Scalable Approach for Discovering Conserved Active Subnetworks across Species

    PubMed Central

    Verfaillie, Catherine M.; Hu, Wei-Shou; Myers, Chad L.

    2010-01-01

    Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to interpreting the cell's dynamic response to a changing environment. Despite successes in finding active subnetworks in the context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been extended to support the analysis of multiple species' interaction networks. To address this problem, we designed a scalable, cross-species network search algorithm, neXus (Network - cross(X)-species - Search), that discovers conserved, active subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them with subnetworks discovered on random permutations of the differential expression data. We also describe several case examples that illustrate the utility of comparative analysis of active subnetworks. PMID:21170309

  5. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  6. A Bloom Filter-Powered Technique Supporting Scalable Semantic Discovery in Data Service Networks

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Shi, R.; Bao, Q.; Lee, T. J.; Ramachandran, R.

    2016-12-01

    More and more Earth data analytics software products are published onto the Internet as a service, in the format of either heavyweight WSDL service or lightweight RESTful API. Such reusable data analytics services form a data service network, which allows Earth scientists to compose (mashup) services into value-added ones. Therefore, it is important to have a technique that is capable of helping Earth scientists quickly identify appropriate candidate datasets and services in the global data service network. Most existing services discovery techniques, however, mainly rely on syntax or semantics-based service matchmaking between service requests and available services. Since the scale of the data service network is increasing rapidly, the run-time computational cost will soon become a bottleneck. To address this issue, this project presents a way of applying network routing mechanism to facilitate data service discovery in a service network, featuring scalability and performance. Earth data services are automatically annotated in Web Ontology Language for Services (OWL-S) based on their metadata, semantic information, and usage history. Deterministic Annealing (DA) technique is applied to dynamically organize annotated data services into a hierarchical network, where virtual routers are created to represent semantic local network featuring leading terms. Afterwards Bloom Filters are generated over virtual routers. A data service search request is transformed into a network routing problem in order to quickly locate candidate services through network hierarchy. A neural network-powered technique is applied to assure network address encoding and routing performance. A series of empirical study has been conducted to evaluate the applicability and effectiveness of the proposed approach.

  7. Simultaneous determination of intracellular UDP-sugars in hyaluronic acid-producing Streptococcus zooepidemicus.

    PubMed

    Franke, Lukáš; Čožíková, Dagmar; Smirnou, Dzianis; Hermannová, Martina; Hanová, Tereza; Růžičková, Andrea; Velebný, Vladimír

    2015-08-01

    Two chromatographic methods for the quantitative analysis of uridine diphosphate (UDP) sugars involved in hyaluronan pathway of Streptococcus zooepidemicus (SEZ) were developed and compared. The sample preparation protocol using centrifugation and extraction in hot ethanol was employed prior to the analyses. Separation was achieved using an anion exchange Spherisorb SAX column or a Shodex QA-825 column connected with a photodiode array (PDA) detector. To increase the throughput of the chromatography method employing the Spherisorb SAX column, the solid phase extraction (SPE) procedure was introduced. Method validation results displayed that limits of detection (LODs) of UDP-glucose (UDP-Glc), UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA) calculated according to QC Expert software were in the low micromolar range and the coefficient of correlation (R(2)) was above 0.997. However, the analytical technique using the Spherisorb SAX column resulted in 80-90% recoveries and low LODs (≤6.19μM), the Shodex QA-825 column showed better long-term stability and reproducible chromatographic properties (RSD≤5.60%). The Shodex QA-825 column was successfully used to monitor UDP-sugar levels during the growth rate of SEZ cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Scalable Optical-Fiber Communication Networks

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  9. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  10. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  11. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage?

    PubMed

    Damerow, Sebastian; Lamerz, Anne-Christin; Haselhorst, Thomas; Führing, Jana; Zarnovican, Patricia; von Itzstein, Mark; Routier, Françoise H

    2010-01-08

    The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.

  12. Identification of a Direct Biosynthetic Pathway for UDP-N-Acetylgalactosamine from Glucosamine-6-Phosphate in Thermophilic Crenarchaeon Sulfolobus tokodaii.

    PubMed

    Dadashipour, Mohammad; Iwamoto, Mariko; Hossain, Mohammad Murad; Akutsu, Jun-Ichi; Zhang, Zilian; Kawarabayasi, Yutaka

    2018-05-15

    Most organisms, from Bacteria to Eukarya , synthesize UDP- N -acetylglucosamine (UDP-GlcNAc) from fructose-6-phosphate via a four-step reaction, and UDP- N -acetylgalactosamine (UDP-GalNAc) can only be synthesized from UDP-GlcNAc by UDP-GlcNAc 4-epimerase. In Archaea , the bacterial-type UDP-GlcNAc biosynthetic pathway was reported for Methanococcales. However, the complete biosynthetic pathways for UDP-GlcNAc and UDP-GalNAc present in one archaeal species are unidentified. Previous experimental analyses on enzymatic activities of the ST0452 protein, identified from the thermophilic crenarchaeon Sulfolobus tokodaii , predicted the presence of both a bacterial-type UDP-GlcNAc and an independent UDP-GalNAc biosynthetic pathway in this archaeon. In the present work, functional analyses revealed that the recombinant ST2186 protein possessed an glutamine:fructose-6-phosphate amidotransferase activity and that the recombinant ST0242 protein possessed a phosphoglucosamine-mutase activity. Along with the acetyltransferase and uridyltransferase activities of the ST0452 protein, the activities of the ST2186 and ST0242 proteins confirmed the presence of a bacterial-type UDP-GlcNAc biosynthetic pathway in S. tokodaii In contrast, the UDP-GlcNAc 4-epimerase homologue gene was not detected within the genomic data. Thus, it was expected that galactosamine-1-phosphate or galactosamine-6-phosphate (GalN-6-P) was provided by conversion of glucosamine-1-phosphate or glucosamine-6-phosphate (GlcN-6-P). A novel epimerase converting GlcN-6-P to GalN-6-P was detected in a cell extract of S. tokodaii , and the N-terminal sequence of the purified protein indicated that the novel epimerase was encoded by the ST2245 gene. Along with the ST0242 phosphogalactosamine-mutase activity, this observation confirmed the presence of a novel UDP-GalNAc biosynthetic pathway from GlcN-6-P in S. tokodaii Discovery of the novel pathway provides a new insight into the evolution of nucleotide sugar metabolic pathways. IMPORTANCE In this work, a novel protein capable of directly converting glucosamine-6-phosphate to galactosamine-6-phosphate was successfully purified from a cell extract of the thermophilic crenarchaeon Sulfolobus tokodaii Confirmation of this novel activity using the recombinant protein indicates that S. tokodaii possesses a novel UDP-GalNAc biosynthetic pathway derived from glucosamine-6-phosphate. The distributions of this and related genes indicate the presence of three different types of UDP-GalNAc biosynthetic pathways: a direct pathway using a novel enzyme and two conversion pathways from UDP-GlcNAc using known enzymes. Additionally, Crenarchaeota species lacking all three pathways were found, predicting the presence of one more unknown pathway. Identification of these novel proteins and pathways provides important insights into the evolution of nucleotide sugar biosynthesis, as well as being potentially important industrially. Copyright © 2018 American Society for Microbiology.

  13. Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides.

    PubMed

    Puchner, Claudia; Eixelsberger, Thomas; Nidetzky, Bernd; Brecker, Lothar

    2017-01-02

    Human UDP-xylose synthase (hUXS1) exclusively converts UDP-glucuronic acid to UDP-xylose via intermediate UDP-4-keto-xylose (UDP-Xyl-4O). Synthesis of model compounds like methyl-4-keto-xylose (Me-Xyl-4O) is reported to investigate the binding pattern thereof to hUXS1. Hence, selective oxidation of the desired hydroxyl function required employment of protecting group chemistry. Solution behavior of synthesized keto-saccharides was studied without enzyme via 1 H and 13 C NMR spectroscopy with respect to existent forms in deuterated potassium phosphate buffer. Keto-enol tautomerism was observed for all investigated keto-saccharides, while gem-diol hydrate forms were only observed for 4-keto-xylose derivatives. Saturation transfer difference (STD) NMR was used to study binding of synthesized keto-gylcosides to wild type hUXS1. Resulting epitope maps were correlated to earlier published molecular modeling studies of UDP-Xyl-4O. STD NMR results of Me-Xyl-4O are in good agreement with simulations of the intermediate UDP-Xyl-4O indicating a strong interaction of proton H3 with the enzyme, potentially caused by active site residue Ala 79 . In contrast, pyranoside binding pattern studies of methyl uronic acids showed some differences compared to previously published STD NMR results of UDP-glycosides. In general, obtained results can contribute to a better understanding in binding of UDP-glycosides to other UXS enzyme family members, which have high structural similarities in the active site. Copyright © 2016. Published by Elsevier Ltd.

  14. Think globally and solve locally: secondary memory-based network learning for automated multi-species function prediction

    PubMed Central

    2014-01-01

    Background Network-based learning algorithms for automated function prediction (AFP) are negatively affected by the limited coverage of experimental data and limited a priori known functional annotations. As a consequence their application to model organisms is often restricted to well characterized biological processes and pathways, and their effectiveness with poorly annotated species is relatively limited. A possible solution to this problem might consist in the construction of big networks including multiple species, but this in turn poses challenging computational problems, due to the scalability limitations of existing algorithms and the main memory requirements induced by the construction of big networks. Distributed computation or the usage of big computers could in principle respond to these issues, but raises further algorithmic problems and require resources not satisfiable with simple off-the-shelf computers. Results We propose a novel framework for scalable network-based learning of multi-species protein functions based on both a local implementation of existing algorithms and the adoption of innovative technologies: we solve “locally” the AFP problem, by designing “vertex-centric” implementations of network-based algorithms, but we do not give up thinking “globally” by exploiting the overall topology of the network. This is made possible by the adoption of secondary memory-based technologies that allow the efficient use of the large memory available on disks, thus overcoming the main memory limitations of modern off-the-shelf computers. This approach has been applied to the analysis of a large multi-species network including more than 300 species of bacteria and to a network with more than 200,000 proteins belonging to 13 Eukaryotic species. To our knowledge this is the first work where secondary-memory based network analysis has been applied to multi-species function prediction using biological networks with hundreds of thousands of proteins. Conclusions The combination of these algorithmic and technological approaches makes feasible the analysis of large multi-species networks using ordinary computers with limited speed and primary memory, and in perspective could enable the analysis of huge networks (e.g. the whole proteomes available in SwissProt), using well-equipped stand-alone machines. PMID:24843788

  15. Energy-Efficient BOP-Based Beacon Transmission Scheduling in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Jik; Youm, Sungkwan; Choi, Hyo-Hyun

    Many applications in wireless sensor networks (WSNs) require the energy efficiency and scalability. Although IEEE 802.15.4/Zigbee which is being considered as general technology for WSNs enables the low duty-cycling with time synchronization of all the nodes in network, it still suffer from its low scalability due to the beacon frame collision. Recently, various algorithms to resolve this problem are proposed. However, their manners to implement are somewhat ambiguous and the degradation of energy/communication efficiency is serious by the additional overhead. This paper describes an Energy-efficient BOP-based Beacon transmission Scheduling (EBBS) algorithm. EBBS is the centralized approach, in which a resource-sufficient node called as Topology Management Center (TMC) allocates the time slots to transmit a beacon frame to the nodes and manages the active/sleep schedules of them. We also propose EBBS with Adaptive BOPL (EBBS-AB), to adjust the duration to transmit beacon frames in every beacon interval, adaptively. Simulation results show that by using the proposed algorithm, the energy efficiency and the throughput of whole network can be significantly improved. EBBS-AB is also more effective for the network performance when the nodes are uniformly deployed on the sensor field rather than the case of random topologies.

  16. Low-complexity transcoding algorithm from H.264/AVC to SVC using data mining

    NASA Astrophysics Data System (ADS)

    Garrido-Cantos, Rosario; De Cock, Jan; Martínez, Jose Luis; Van Leuven, Sebastian; Cuenca, Pedro; Garrido, Antonio

    2013-12-01

    Nowadays, networks and terminals with diverse characteristics of bandwidth and capabilities coexist. To ensure a good quality of experience, this diverse environment demands adaptability of the video stream. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a low-complexity algorithm to convert an H.264/AVC bitstream without scalability to scalable bitstreams with temporal scalability in baseline and main profiles by accelerating the mode decision task of the scalable video coding encoding stage using machine learning tools. The results show that when our technique is applied, the complexity is reduced by 87% while maintaining coding efficiency.

  17. An analysis of image storage systems for scalable training of deep neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Young, Steven R; Patton, Robert M

    This study presents a principled empirical evaluation of image storage systems for training deep neural networks. We employ the Caffe deep learning framework to train neural network models for three different data sets, MNIST, CIFAR-10, and ImageNet. While training the models, we evaluate five different options to retrieve training image data: (1) PNG-formatted image files on local file system; (2) pushing pixel arrays from image files into a single HDF5 file on local file system; (3) in-memory arrays to hold the pixel arrays in Python and C++; (4) loading the training data into LevelDB, a log-structured merge tree based key-valuemore » storage; and (5) loading the training data into LMDB, a B+tree based key-value storage. The experimental results quantitatively highlight the disadvantage of using normal image files on local file systems to train deep neural networks and demonstrate reliable performance with key-value storage based storage systems. When training a model on the ImageNet dataset, the image file option was more than 17 times slower than the key-value storage option. Along with measurements on training time, this study provides in-depth analysis on the cause of performance advantages/disadvantages of each back-end to train deep neural networks. We envision the provided measurements and analysis will shed light on the optimal way to architect systems for training neural networks in a scalable manner.« less

  18. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  19. pSCANNER: patient-centered Scalable National Network for Effectiveness Research

    PubMed Central

    Ohno-Machado, Lucila; Agha, Zia; Bell, Douglas S; Dahm, Lisa; Day, Michele E; Doctor, Jason N; Gabriel, Davera; Kahlon, Maninder K; Kim, Katherine K; Hogarth, Michael; Matheny, Michael E; Meeker, Daniella; Nebeker, Jonathan R

    2014-01-01

    This article describes the patient-centered Scalable National Network for Effectiveness Research (pSCANNER), which is part of the recently formed PCORnet, a national network composed of learning healthcare systems and patient-powered research networks funded by the Patient Centered Outcomes Research Institute (PCORI). It is designed to be a stakeholder-governed federated network that uses a distributed architecture to integrate data from three existing networks covering over 21 million patients in all 50 states: (1) VA Informatics and Computing Infrastructure (VINCI), with data from Veteran Health Administration's 151 inpatient and 909 ambulatory care and community-based outpatient clinics; (2) the University of California Research exchange (UC-ReX) network, with data from UC Davis, Irvine, Los Angeles, San Francisco, and San Diego; and (3) SCANNER, a consortium of UCSD, Tennessee VA, and three federally qualified health systems in the Los Angeles area supplemented with claims and health information exchange data, led by the University of Southern California. Initial use cases will focus on three conditions: (1) congestive heart failure; (2) Kawasaki disease; (3) obesity. Stakeholders, such as patients, clinicians, and health service researchers, will be engaged to prioritize research questions to be answered through the network. We will use a privacy-preserving distributed computation model with synchronous and asynchronous modes. The distributed system will be based on a common data model that allows the construction and evaluation of distributed multivariate models for a variety of statistical analyses. PMID:24780722

  20. Packet-aware transport for video distribution [Invited

    NASA Astrophysics Data System (ADS)

    Aguirre-Torres, Luis; Rosenfeld, Gady; Bruckman, Leon; O'Connor, Mannix

    2006-05-01

    We describe a solution based on resilient packet rings (RPR) for the distribution of broadcast video and video-on-demand (VoD) content over a packet-aware transport network. The proposed solution is based on our experience in the design and deployment of nationwide Triple Play networks and relies on technologies such as RPR, multiprotocol label switching (MPLS), and virtual private LAN service (VPLS) to provide the most efficient solution in terms of utilization, scalability, and availability.

  1. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC.

    PubMed

    Nakajima, Kazuki; Kitazume, Shinobu; Angata, Takashi; Fujinawa, Reiko; Ohtsubo, Kazuaki; Miyoshi, Eiji; Taniguchi, Naoyuki

    2010-07-01

    Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.

  2. UPM: unified policy-based network management

    NASA Astrophysics Data System (ADS)

    Law, Eddie; Saxena, Achint

    2001-07-01

    Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.

  3. Novel characteristics of UDP-glucose dehydrogenase activities in maize: non-involvement of alcohol dehydrogenases in cell wall polysaccharide biosynthesis.

    PubMed

    Kärkönen, Anna; Fry, Stephen C

    2006-03-01

    UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K (m) (for UDP-glucose) 0.5-1.0 mM; there was also a minor activity with an unusually high K (m) of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K (m) values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes E(L), E(M) and E(H) respectively). E(M) was the single major contributor to extractable UDPGDH activity when assayed at 0.6-9.0 mM UDP-Glc. Most studies, in other plant species, had reported only E(L)-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least E(H) activity is not due to ADH. At 30 microM UDP-glucose, 20-150 microM UDP-xylose inhibited UDPGDH activity, whereas 5-15 microM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.

  4. Genetic alteration of UDP-rhamnose metabolism in Botrytis cinerea leads to the accumulation of UDP-KDG that adversely affects development and pathogenicity.

    PubMed

    Ma, Liang; Salas, Omar; Bowler, Kyle; Oren-Young, Liat; Bar-Peled, Maor; Sharon, Amir

    2017-02-01

    Botrytis cinerea is a model plant-pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDG could not be detected in hyphae of the wild-type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG may lead to the development of new antifungal drugs. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. OWL reasoning framework over big biological knowledge network.

    PubMed

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  6. OWL Reasoning Framework over Big Biological Knowledge Network

    PubMed Central

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076

  7. Web-Enabled Optoelectronic Particle-Fallout Monitor

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis P.

    2008-01-01

    A Web-enabled optoelectronic particle- fallout monitor has been developed as a prototype of future such instruments that (l) would be installed in multiple locations for which assurance of cleanliness is required and (2) could be interrogated and controlled in nearly real time by multiple remote users. Like prior particle-fallout monitors, this instrument provides a measure of particles that accumulate on a surface as an indication of the quantity of airborne particulate contaminants. The design of this instrument reflects requirements to: Reduce the cost and complexity of its optoelectronic sensory subsystem relative to those of prior optoelectronic particle fallout monitors while maintaining or improving capabilities; Use existing network and office computers for distributed display and control; Derive electric power for the instrument from a computer network, a wall outlet, or a battery; Provide for Web-based retrieval and analysis of measurement data and of a file containing such ancillary data as a log of command attempts at remote units; and Use the User Datagram Protocol (UDP) for maximum performance and minimal network overhead.

  8. Attachment of UDP-hexosamines to the ribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Paszkiewicz-Gadek, A.; Galasinski, W.

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  9. The attachment of UDP-hexosamines to the ribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Paszkiewicz-Gadek, A; Gałasiński, W

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  10. Wiretapping the Internet

    NASA Astrophysics Data System (ADS)

    Antonelli, Charles J.; Honeyman, Peter

    2001-02-01

    This paper describes the Advanced Packet Vault, a technology for creating such a record by collecting and securely storing all packets observed on a network, with a scalable architecture intended to support network speeds in excess of 100 Mbps. Encryption is used to preserve users' security and privacy, permitting selected traffic to be made available without revealing other traffic. The Vault implementation, based on Linux and OpenBSD, is open-source.

  11. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimericmore » quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.« less

  12. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks

    PubMed Central

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113

  13. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    PubMed

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  14. Secure transport and adaptation of MC-EZBC video utilizing H.264-based transport protocols☆

    PubMed Central

    Hellwagner, Hermann; Hofbauer, Heinz; Kuschnig, Robert; Stütz, Thomas; Uhl, Andreas

    2012-01-01

    Universal Multimedia Access (UMA) calls for solutions where content is created once and subsequently adapted to given requirements. With regard to UMA and scalability, which is required often due to a wide variety of end clients, the best suited codecs are wavelet based (like the MC-EZBC) due to their inherent high number of scaling options. However, most transport technologies for delivering videos to end clients are targeted toward the H.264/AVC standard or, if scalability is required, the H.264/SVC. In this paper we will introduce a mapping of the MC-EZBC bitstream to existing H.264/SVC based streaming and scaling protocols. This enables the use of highly scalable wavelet based codecs on the one hand and the utilization of already existing network technologies without accruing high implementation costs on the other hand. Furthermore, we will evaluate different scaling options in order to choose the best option for given requirements. Additionally, we will evaluate different encryption options based on transport and bitstream encryption for use cases where digital rights management is required. PMID:26869746

  15. Supporting scalability and flexibility in a distributed management platform

    NASA Astrophysics Data System (ADS)

    Jardin, P.

    1996-06-01

    The TeMIP management platform was developed to manage very large distributed systems such as telecommunications networks. The management of these networks imposes a number of fairly stringent requirements including the partitioning of the network, division of work based on skills and target system types and the ability to adjust the functions to specific operational requirements. This requires the ability to cluster managed resources into domains that are totally defined at runtime based on operator policies. This paper addresses some of the issues that must be addressed in order to add a dynamic dimension to a management solution.

  16. Some pharmacological properties of uridine nucleotides

    PubMed Central

    Smith, M. W.

    1964-01-01

    Uridine di-, tri- and monophosphates (UDP, UTP and UMP) contracted the goldfish intestine preparation in that order of decreasing potency. Adenosine triphosphate (ATP) sensitized the gut to UTP and UDP but not to UMP. The fluoro-derivatives of UMP and UTP behaved like the unsubstituted nucleotides on the goldfish intestine but the main effect of 6-azaUDP and large amounts of uracil and uridine was to cause a relaxation. Structure-action relationships are discussed on the basis of these findings. UDPglucose and UDPacetylglucosamine each contracted the goldfish intestine but they were 500-times less active than UDP. Other smooth muscle preparations (tortoise jejunum, rat uterus, guinea-pig ileum and the fowl rectal caecum) contracted to UTP and UDP, but large amounts were needed. The cardiovascular effects in rats of UMP, UDP and UTP were complex and mediated mainly through an action on the peripheral blood vessels. In rats treated with phenoxybenzamine, UMP raised the blood pressure while UDP and UTP first lowered then raised the blood pressure. The fall in blood pressure was not abolished by pronethalol or atropine. The uridine phosphates affected the rat isolated heart only under hypoxic conditions. UTP and UDP dilated the blood vessels of the rabbit ear and UTP was six-times more effective than ATP. UTP and UDP were equiactive in increasing the force of beat of the frog isolated heart. UMP also had an effect if large amounts were given. PMID:14190461

  17. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    NASA Astrophysics Data System (ADS)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  18. Cloning and expression studies of the Dunaliella salina UDP-glucose dehydrogenase cDNA.

    PubMed

    Qinghua, He; Dairong, Qiao; Qinglian, Zhang; Shunji, He; Yin, Li; Linhan, Bai; Zhirong, Yang; Yi, Cao

    2005-06-01

    The enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate. Plant UDP-glucose dehydrogenase (UGDH) is an important enzyme in the formation of hemicellulose and pectin, the components of primary cell walls. A cDNA, named DsUGDH, (GeneBank accession number: AY795899) corresponding to UGDH was cloned by RT-PCR approach from Dunaliella salina. The cDNA is 1941-bp long and has an open reading frame encoded a protein of 483 amino acids with a calculated molecular weight of 53 kDa. The derived amino acids sequence shows high homology with reported plants UGDHs, and has highly conserved amino acids motifs believed to be NAD binding site and catalytic site. Although UDP-glucose dehydrogenase is a comparatively well characterized enzyme, the cloning and characterization of the green alga Dunaliella salina UDP-glucose dehydrogenase gene is very important to understand the salt tolerance mechanism of Dunaliella salina. Northern analyses indicate that NaCl can induce the expression the DsUGDH.

  19. Biosynthetic elongation of isolated teichuronic acid polymers via glucosyl- and N-acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane fragments of Micrococcus luteus.

    PubMed Central

    Hildebrandt, K M; Anderson, J S

    1990-01-01

    Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507

  20. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.

    1990-03-25

    Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.

  1. Structure and function of nucleotide sugar transporters: Current progress.

    PubMed

    Hadley, Barbara; Maggioni, Andrea; Ashikov, Angel; Day, Christopher J; Haselhorst, Thomas; Tiralongo, Joe

    2014-06-01

    The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure-function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.

  2. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  3. Network Inference via the Time-Varying Graphical Lasso

    PubMed Central

    Hallac, David; Park, Youngsuk; Boyd, Stephen; Leskovec, Jure

    2018-01-01

    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability. PMID:29770256

  4. NOA: A Scalable Multi-Parent Clustering Hierarchy for WSNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan V.; Delgado-Frias, Jose; Hughes, Michael A.

    2012-08-10

    NOA is a multi-parent, N-tiered, hierarchical clustering algorithm that provides a scalable, robust and reliable solution to autonomous configuration of large-scale wireless sensor networks. The novel clustering hierarchy's inherent benefits can be utilized by in-network data processing techniques to provide equally robust, reliable and scalable in-network data processing solutions capable of reducing the amount of data sent to sinks. Utilizing a multi-parent framework, NOA reduces the cost of network setup when compared to hierarchical beaconing solutions by removing the expense of r-hop broadcasting (r is the radius of the cluster) needed to build the network and instead passes network topologymore » information among shared children. NOA2, a two-parent clustering hierarchy solution, and NOA3, the three-parent variant, saw up to an 83% and 72% reduction in overhead, respectively, when compared to performing one round of a one-parent hierarchical beaconing, as well as 92% and 88% less overhead when compared to one round of two- and three-parent hierarchical beaconing hierarchy.« less

  5. Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases.

    PubMed

    Soya, Naoto; Shoemaker, Glen K; Palcic, Monica M; Klassen, John S

    2009-11-01

    The first comparative thermodynamic study of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB), interacting with donor substrates, donor and acceptor analogs, and trisaccharide products in vitro is reported. The binding constants, measured at 24 degrees C with the direct electrospray ionization mass spectrometry (ES-MS) assay, provide new insights into these model GTs and their interactions with substrate and product. Notably, the recombinant forms of GTA and GTB used in this study are shown to exist as homodimers, stabilized by noncovalent interactions at neutral pH. In the absence of divalent metal ion, neither GTA nor GTB exhibits any appreciable affinity for its native donors (UDP-GalNAc, UDP-Gal). Upon introduction of Mn(2+), both donors undergo enzyme-catalyzed hydrolysis in the presence of either GTA or GTB. Hydrolysis of UDP-GalNAc in the presence of GTA proceeds very rapidly under the solution conditions investigated and a binding constant could not be directly measured. In contrast, the rate of hydrolysis of UDP-Gal in the presence of GTB is significantly slower and, utilizing a modified approach to analyze the ES-MS data, a binding constant of 2 x 10(4) M(-1) was established. GTA and GTB bind the donor analogs UDP-GlcNAc, UDP-Glc with affinities similar to those measured for UDP-Gal and UDP-GalNAc (GTB only), suggesting that the native donors and donor analogs bind to the GTA and GTB through similar interactions. The binding constant determined for GTA and UDP-GlcNAc (approximately 1 x 10(4) M(-1)), therefore, provides an estimate for the binding constant for GTA and UDP-GalNAc. Binding of GTA and GTB with the A and B trisaccharide products was also investigated for the first time. In the absence of UDP and Mn(2+), both GTA and GTB recognize their respective trisaccharide products but with a low affinity approximately 10(3) M(-1); the presence of UDP and Mn(2+) has no effect on A trisaccharide binding but precludes B-trisaccharide binding.

  6. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species.

    PubMed

    Yang, J; Yoshida, Y; Cisar, J O

    2014-02-01

    Interbacterial adhesion between streptococci and actinomyces promotes early dental plaque biofilm development. Recognition of coaggregation receptor polysaccharides (RPS) on strains of Streptococcus sanguinis, Streptococcus gordonii and Streptococcus oralis by Actinomyces spp. type 2 fimbriae is the principal mechanism of these interactions. Previous studies of genetic loci for synthesis of RPS (rps) and RPS precursors (rml, galE1 and galE2) in S. gordonii 38 and S. oralis 34 revealed differences between these strains. To determine whether these differences are strain-specific or species-specific, we identified and compared loci for polysaccharide biosynthesis in additional strains of these species and in several strains of the previously unstudied species, S. sanguinis. Genes for synthesis of RPS precursors distinguished the rps loci of different streptococci. Hence, rml genes for synthesis of TDP-L-Rha were in rps loci of S. oralis strains but at other loci in S. gordonii and S. sanguinis. Genes for two distinct galactose epimerases were also distributed differently. Hence, galE1 for epimerization of UDP-Glc and UDP-Gal was in galactose operons of S. gordonii and S. sanguinis strains but surprisingly, this gene was not present in S. oralis. Moreover, galE2 for epimerization of both UDP-Glc and UDP-Gal and UDP-GlcNAc and UDP-GalNAc was at a different locus in each species, including rps operons of S. sanguinis. The findings provide insight into cell surface properties that distinguish different RPS-producing streptococci and open an approach for identifying these bacteria based on the arrangement of genes for synthesis of polysaccharide precursors. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Process-based network decomposition reveals backbone motif structure

    PubMed Central

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-01-01

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084

  8. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution.

    PubMed

    Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G; O'Neill, Malcolm A; Bar-Peled, Maor

    2016-10-07

    Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution*

    PubMed Central

    Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G.; O'Neill, Malcolm A.; Bar-Peled, Maor

    2016-01-01

    Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. PMID:27551039

  10. Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (Hordeum vulgare L.).

    PubMed

    Zhang, Qisen; Hrmova, Maria; Shirley, Neil J; Lahnstein, Jelle; Fincher, Geoffrey B

    2006-02-15

    UGE (UDP-Glc 4-epimerase or UDP-Gal 4-epimerase; EC 5.1.3.2) catalyses the interconversion of UDP-Gal and UDP-Glc. Both nucleotide sugars act as activated sugar donors for the biosynthesis of cell wall polysaccharides such as cellulose, xyloglucans, (1,3;1,4)-beta-D-glucan and pectins, together with other biologically significant compounds including glycoproteins and glycolipids. Three members of the HvUGE (barley UGE) gene family, designated HvUGE1, HvUGE2 and HvUGE3, have been characterized. Q-PCR (quantitative real-time PCR) showed that HvUGE1 mRNA was most abundant in leaf tips and mature roots, but its expression levels were relatively low in basal leaves and root tips. The HvUGE2 gene was transcribed at significant levels in all organs examined, while HvUGE3 mRNA levels were very low in all the organs. Heterologous expression of a near full-length cDNA confirmed that HvUGE1 encodes a functional UGE. A non-covalently bound NAD+ was released from the enzyme after denaturing with aqueous ethanol and was identified by its spectrophotometric properties and by electrospray ionization MS. The K(m) values were 40 microM for UDP-Gal and 55 muM for UDP-Glc. HvUGE also catalyses the interconversion of UDP-GalNAc and UDP-GlcNAc, although it is not known if this has any biological significance. A three-dimensional model of the HvUGE revealed that its overall structural fold is highly conserved compared with the human UGE and provides a structural rationale for its ability to bind UDP-GlcNAc.

  11. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    NASA Astrophysics Data System (ADS)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  12. Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications.

    PubMed

    Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J

    2018-05-22

    Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.

  13. A universal quantum information processor for scalable quantum communication and networks

    PubMed Central

    Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao

    2014-01-01

    Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514

  14. A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data

    NASA Astrophysics Data System (ADS)

    Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.

    2015-12-01

    Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.

  15. Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resseguie, David R

    There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less

  16. High-performance, scalable optical network-on-chip architectures

    NASA Astrophysics Data System (ADS)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of GWOR in optical communication and BFT in non-uniform traffic communication and three-dimension (3D) implementation. 5. A cycle-accurate NoC simulator is developed to evaluate the performance of proposed HONoC architectures. It is a comprehensive platform that can simulate both electronic and optical NoCs. Different size HONoC architectures are evaluated in terms of throughput, latency and energy dissipation. Simulation results confirm that HONoC achieves good network performance with lower power consumption.

  17. Embedded parallel processing based ground control systems for small satellite telemetry

    NASA Technical Reports Server (NTRS)

    Forman, Michael L.; Hazra, Tushar K.; Troendly, Gregory M.; Nickum, William G.

    1994-01-01

    The use of networked terminals which utilize embedded processing techniques results in totally integrated, flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications such as mission operations centers (MOC). Synergies of these terminals, coupled with the capability of terminal to receive incoming data, allow the viewing of any defined display by any terminal from the start of data acquisition. There is no single point of failure (other than with network input) such as exists with configurations where all input data goes through a single front end processor and then to a serial string of workstations. Missions dedicated to NASA's ozone measurements program utilize the methodologies which are discussed, and result in a multimission configuration of low cost, scalable hardware and software which can be run by one flight operations team with low risk.

  18. JuxtaView - A tool for interactive visualization of large imagery on scalable tiled displays

    USGS Publications Warehouse

    Krishnaprasad, N.K.; Vishwanath, V.; Venkataraman, S.; Rao, A.G.; Renambot, L.; Leigh, J.; Johnson, A.E.; Davis, B.

    2004-01-01

    JuxtaView is a cluster-based application for viewing ultra-high-resolution images on scalable tiled displays. We present in JuxtaView, a new parallel computing and distributed memory approach for out-of-core montage visualization, using LambdaRAM, a software-based network-level cache system. The ultimate goal of JuxtaView is to enable a user to interactively roam through potentially terabytes of distributed, spatially referenced image data such as those from electron microscopes, satellites and aerial photographs. In working towards this goal, we describe our first prototype implemented over a local area network, where the image is distributed using LambdaRAM, on the memory of all nodes of a PC cluster driving a tiled display wall. Aggressive pre-fetching schemes employed by LambdaRAM help to reduce latency involved in remote memory access. We compare LambdaRAM with a more traditional memory-mapped file approach for out-of-core visualization. ?? 2004 IEEE.

  19. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple.

    PubMed

    Jugdé, Hélène; Nguy, Danny; Moller, Isabel; Cooney, Janine M; Atkinson, Ross G

    2008-08-01

    The dihydrochalcone phlorizin (phloretin 2'-glucoside) contributes to the flavor, color and health benefits of apple fruit and processed products. A genomics approach was used to identify the gene MdPGT1 in apple (Malus x domestica) with homology to the UDP-glycosyltransferase 88 family of uridine diphosphate glycosyltransferases that show specificity towards flavonoid substrates. Expressed sequence tags for MdPGT1 were found in all tissues known to produce phlorizin including leaf, flower and fruit. However, the highest expression was measured by quantitative PCR in apple root tissue. The recombinant MdPGT1 enzyme expressed in Escherichia coli glycosylated phloretin in the presence of [(3)H]-UDP-glucose, but not other apple antioxidants, including quercetin, naringenin and cyanidin. The product of phloretin and UDP-glucose co-migrated with an authentic phlorizin standard. LC/MS indicated that MdPGT1 could glycosylate phloretin in the presence of three sugar donors: UDP-glucose, UDP-xylose and UDP-galactose. This is the first report of functional characterization of a UDP-glycosyltransferase that utilizes a dihydrochalcone as its primary substrate.

  20. Generative model selection using a scalable and size-independent complex network classifier

    NASA Astrophysics Data System (ADS)

    Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar

    2013-12-01

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.

  1. Synthesis, characterization and properties of uridine 5'-( -D-apio-D-furanosyl pyrophosphate).

    PubMed

    Kindel, P K; Watson, R R

    1973-06-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.

  2. Synthesis, characterization and properties of uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)

    PubMed Central

    Kindel, Paul K.; Watson, Ronald R.

    1973-01-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5′-(α-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5′-(α-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [3H]UDP-[U-14C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the 3H/14C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100°C for 15min; (b) degraded at pH8.0 and 100°C for 3min; (c) used as a substrate in the enzymic synthesis of [14C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [3H]UDP-[U-14C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-14C]apiose and phosphate formed on alkaline degradation of UDP-[U-14C]apiose was α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-14C]apiose and phosphate formed on acid hydrolysis of α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-14C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-14C]apiose to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80°C, at pH8.0 and 25°C and at pH8.0 and 4°C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-14C]-apiose to d-[U-14C]apiose and UDP at pH3.0 and 40°C was 4.67min. After 20 days at pH6.2–6.6 and 4°C, 17% of the starting UDP-[U-14C]apiose was degraded to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-14C]apiose and UDP. After 120 days at pH6.4 and −20°C 2% of the starting UDP-[U-14C]apiose was degraded and 4% was hydrolysed. PMID:4723773

  3. Multi-Layer Approach for the Detection of Selective Forwarding Attacks

    PubMed Central

    Alajmi, Naser; Elleithy, Khaled

    2015-01-01

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable. PMID:26610499

  4. Multi-Layer Approach for the Detection of Selective Forwarding Attacks.

    PubMed

    Alajmi, Naser; Elleithy, Khaled

    2015-11-19

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable.

  5. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, R; Gallagher, B; Neville, J

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less

  6. Dynamic and scalable audio classification by collective network of binary classifiers framework: an evolutionary approach.

    PubMed

    Kiranyaz, Serkan; Mäkinen, Toni; Gabbouj, Moncef

    2012-10-01

    In this paper, we propose a novel framework based on a collective network of evolutionary binary classifiers (CNBC) to address the problems of feature and class scalability. The main goal of the proposed framework is to achieve a high classification performance over dynamic audio and video repositories. The proposed framework adopts a "Divide and Conquer" approach in which an individual network of binary classifiers (NBC) is allocated to discriminate each audio class. An evolutionary search is applied to find the best binary classifier in each NBC with respect to a given criterion. Through the incremental evolution sessions, the CNBC framework can dynamically adapt to each new incoming class or feature set without resorting to a full-scale re-training or re-configuration. Therefore, the CNBC framework is particularly designed for dynamically varying databases where no conventional static classifiers can adapt to such changes. In short, it is entirely a novel topology, an unprecedented approach for dynamic, content/data adaptive and scalable audio classification. A large set of audio features can be effectively used in the framework, where the CNBCs make appropriate selections and combinations so as to achieve the highest discrimination among individual audio classes. Experiments demonstrate a high classification accuracy (above 90%) and efficiency of the proposed framework over large and dynamic audio databases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Public Access Workstations in the Library: New Trends.

    ERIC Educational Resources Information Center

    Beecher, Henry

    1991-01-01

    Discusses the use of microcomputer-based workstations that are provided for public access in libraries. Criteria for workstations are discussed, including standard hardware, open-design software, scalable interface, and connectivity options for networking; systems that provide full-text access are described; and the need for standards is…

  8. Protein NMR Studies of Substrate Binding to Human Blood Group A and B Glycosyltransferases.

    PubMed

    Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica M; Peters, Thomas

    2017-07-04

    Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies had shown these enzymes to adopt an open conformation in the absence of substrates. Binding either of the donor substrate UDP-Gal or of UDP induces a semiclosed conformation. In the presence of both donor and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical-shift titrations of uniformly 2 H, 15 N-labeled GTA or GTB with UDP affected about 20 % of all crosspeaks in 1 H, 15 N TROSY-HSQC spectra, reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical-shift-perturbation experiments with δ1-[ 13 C]methyl-Ile-labeled samples revealed two Ile residues-Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop-that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY-based relaxation dispersion experiments do not reveal micro- to millisecond timescale motions. Although this study reveals substantial conformational plasticity of GTA and GTB, the matter of how binding of substrates shifts the enzymes into catalytically competent states remains enigmatic. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Remote Energy Monitoring System via Cellular Network

    NASA Astrophysics Data System (ADS)

    Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi

    Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.

  10. 2005 Net Centric Operations, Interoperability and Systems Integration Conference - Facilitating Net Centric Operations and Warfare

    DTIC Science & Technology

    2005-03-24

    1 :45PM- 3 :30PM Panel: Establishing a Business Mission Area in the Department of...Minimum MaximumLEVEL OF INTEROPERABILITY Level 1 Level 2 Level 3 Level 4 10 COTS Native IP Network IP TCP UDP Network QoS Layer IIOP NTP SNMP Legacy...2005 Page 1 3 /27/2005 Page 2 3 /27/2005 Page 3 3 /27/2005 Page 4 3 /27/2005 Page 5 3 /27/2005 Page 6 3 /27/2005 Page 7 3 /27/2005 Page 8 3 /27/2005 Page 9 3

  11. Comparative Analysis of Particle Swarm and Differential Evolution via Tuning on Ultrasmall Titanium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Inclan, Eric; Lassester, Jack; Geohegan, David; Yoon, Mina

    Optimization algorithms (OA) coupled with numerical methods enable researchers to identify and study (meta) stable nanoclusters without the control restrictions of empirical methods. An algorithm's performance is governed by two factors: (1) its compatibility with an objective function, (2) the dimension of a design space, which increases with cluster size. Although researchers often tune an algorithm's user-defined parameters (UDP), tuning is not guaranteed to improve performance. In this research, Particle Swarm (PSO) and Differential Evolution (DE), are compared by tuning their UDP in a multi-objective optimization environment (MOE). Combined with a Kolmogorov Smirnov test for statistical significance, the MOE enables the study of the Pareto Front (PF), made of the UDP settings that trade-off between best performance in energy minimization (``effectiveness'') based on force-field potential energy, and best convergence rate (``efficiency''). By studying the PF, this research finds that UDP values frequently suggested in the literature do not provide best effectiveness for these methods. Additionally, monotonic convergence is found to significantly improve efficiency without sacrificing effectiveness for very small systems, suggesting better compatibility. Work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  12. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks

    PubMed Central

    Yin, Junming; Ho, Qirong; Xing, Eric P.

    2014-01-01

    We propose a scalable approach for making inference about latent spaces of large networks. With a succinct representation of networks as a bag of triangular motifs, a parsimonious statistical model, and an efficient stochastic variational inference algorithm, we are able to analyze real networks with over a million vertices and hundreds of latent roles on a single machine in a matter of hours, a setting that is out of reach for many existing methods. When compared to the state-of-the-art probabilistic approaches, our method is several orders of magnitude faster, with competitive or improved accuracy for latent space recovery and link prediction. PMID:25400487

  13. Generative model selection using a scalable and size-independent complex network classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motallebi, Sadegh, E-mail: motallebi@ce.sharif.edu; Aliakbary, Sadegh, E-mail: aliakbary@ce.sharif.edu; Habibi, Jafar, E-mail: jhabibi@sharif.edu

    2013-12-15

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree formore » model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.« less

  14. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  15. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  16. Social Media Tools for Teaching and Learning

    ERIC Educational Resources Information Center

    Wagner, Ronald

    2011-01-01

    According to Wikipedia, "social media is the media designed to be disseminated through social interaction, created using highly accessible scalable techniques. Social media is the use of web-based and mobile technologies to turn communication into interactive dialogue." Social networks, such as Facebook and Twitter, contain millions of members who…

  17. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Synthesis of UDP-apiose in Bacteria: The marine phototroph Geminicoccus roseus and the plant pathogen Xanthomonas pisi.

    PubMed

    Smith, James Amor; Bar-Peled, Maor

    2017-01-01

    The branched-chain sugar apiose was widely assumed to be synthesized only by plant species. In plants, apiose-containing polysaccharides are found in vascularized plant cell walls as the pectic polymers rhamnogalacturonan II and apiogalacturonan. Apiosylated secondary metabolites are also common in many plant species including ancestral avascular bryophytes and green algae. Apiosyl-residues have not been documented in bacteria. In a screen for new bacterial glycan structures, we detected small amounts of apiose in methanolic extracts of the aerobic phototroph Geminicoccus roseus and the pathogenic soil-dwelling bacteria Xanthomonas pisi. Apiose was also present in the cell pellet of X. pisi. Examination of these bacterial genomes uncovered genes with relatively low protein homology to plant UDP-apiose/UDP-xylose synthase (UAS). Phylogenetic analysis revealed that these bacterial UAS-like homologs belong in a clade distinct to UAS and separated from other nucleotide sugar biosynthetic enzymes. Recombinant expression of three bacterial UAS-like proteins demonstrates that they actively convert UDP-glucuronic acid to UDP-apiose and UDP-xylose. Both UDP-apiose and UDP-xylose were detectable in cell cultures of G. roseus and X. pisi. We could not, however, definitively identify the apiosides made by these bacteria, but the detection of apiosides coupled with the in vivo transcription of bUAS and production of UDP-apiose clearly demonstrate that these microbes have evolved the ability to incorporate apiose into glycans during their lifecycles. While this is the first report to describe enzymes for the formation of activated apiose in bacteria, the advantage of synthesizing apiose-containing glycans in bacteria remains unknown. The characteristics of bUAS and its products are discussed.

  19. PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data.

    PubMed

    Du, Haixiao; Xia, Mingrui; Zhao, Kang; Liao, Xuhong; Yang, Huazhong; Wang, Yu; He, Yong

    2018-05-01

    The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution has led to brain network big data. However, a toolkit for fast and scalable computational solutions is still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on a hybrid central processing unit-graphics processing unit (CPU-GPU) framework with a graphical user interface to facilitate the mapping and characterization of high-resolution brain networks. Specifically, the toolkit provides flexible parameters for users to customize computations of graph metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to individual voxel-based brain networks with ∼200,000 nodes that were derived from a resting-state fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal computer, this toolbox completed all computations in ∼27 h for one subject, which is markedly less than the 118 h required with a single-thread implementation. The voxel-based functional brain networks exhibited prominent small-world characteristics and densely connected hubs, which were mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had significantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-parietal and occipital cortices than the male group. Significant correlations between the intelligence quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI Toolkit shows high computational performance and good scalability for analyzing connectome big data and provides a friendly interface without the complicated configuration of computing environments, thereby facilitating high-resolution connectomics research in health and disease. © 2018 Wiley Periodicals, Inc.

  20. Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.

    2010-01-01

    In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant

  1. A Proposed Scalable Design and Simulation of Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System

    PubMed Central

    Almazyad, Abdulaziz S.; Seddiq, Yasser M.; Alotaibi, Ahmed M.; Al-Nasheri, Ahmed Y.; BenSaleh, Mohammed S.; Obeid, Abdulfattah M.; Qasim, Syed Manzoor

    2014-01-01

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation. PMID:24561404

  2. A proposed scalable design and simulation of wireless sensor network-based long-distance water pipeline leakage monitoring system.

    PubMed

    Almazyad, Abdulaziz S; Seddiq, Yasser M; Alotaibi, Ahmed M; Al-Nasheri, Ahmed Y; BenSaleh, Mohammed S; Obeid, Abdulfattah M; Qasim, Syed Manzoor

    2014-02-20

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.

  3. Next Generation Integrated Environment for Collaborative Work Across Internets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey B. Newman

    2009-02-24

    We are now well-advanced in our development, prototyping and deployment of a high performance next generation Integrated Environment for Collaborative Work. The system, aimed at using the capability of ESnet and Internet2 for rapid data exchange, is based on the Virtual Room Videoconferencing System (VRVS) developed by Caltech. The VRVS system has been chosen by the Internet2 Digital Video (I2-DV) Initiative as a preferred foundation for the development of advanced video, audio and multimedia collaborative applications by the Internet2 community. Today, the system supports high-end, broadcast-quality interactivity, while enabling a wide variety of clients (Mbone, H.323) to participate in themore » same conference by running different standard protocols in different contexts with different bandwidth connection limitations, has a fully Web-integrated user interface, developers and administrative APIs, a widely scalable video network topology based on both multicast domains and unicast tunnels, and demonstrated multiplatform support. This has led to its rapidly expanding production use for national and international scientific collaborations in more than 60 countries. We are also in the process of creating a 'testbed video network' and developing the necessary middleware to support a set of new and essential requirements for rapid data exchange, and a high level of interactivity in large-scale scientific collaborations. These include a set of tunable, scalable differentiated network services adapted to each of the data streams associated with a large number of collaborative sessions, policy-based and network state-based resource scheduling, authentication, and optional encryption to maintain confidentiality of inter-personal communications. High performance testbed video networks will be established in ESnet and Internet2 to test and tune the implementation, using a few target application-sets.« less

  4. Identification of eukaryotic UDP-galactopyranose mutase inhibitors using the ThermoFAD assay.

    PubMed

    Martín Del Campo, Julia S; Eckshtain-Levi, Meital; Sobrado, Pablo

    2017-11-04

    Aspergillus fumigatus is a human pathogen responsible for deadly infections in immune-compromised patients. A potential strategy for treating A. fumigatus infections is by targeting the biosynthesis of cell wall components, such as galactofuranase, which is absent in humans. Galactofuranose biosynthesis is initiated by the flavoenzyme UDP-galactopyranose mutase (UGM), which converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UGM requires the reduced form of the flavin for activity, which is obtained by reacting with NADPH. We aimed to identify inhibitors of UGM by screening a kinase inhibitor library using ThermoFAD, a flavin fluorescence thermal shift assay. The screening assay identified flavopiridol as a compound that increased the melting temperature of A. fumigatus UGM. Further characterization showed that flavopiridol is a non-competitive inhibitor of UGM and docking studies suggest that it binds in the active site. This compound does not inhibit the prokaryotic UGM from Mycobacteria tuberculosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Community detection using preference networks

    NASA Astrophysics Data System (ADS)

    Tasgin, Mursel; Bingol, Haluk O.

    2018-04-01

    Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.

  6. Regioselectivity of Human UDP-Glucuronosyltransferase Isozymes in Flavonoid Biotransformation by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Robotham, Scott A.; Brodbelt, Jennifer S.

    2011-01-01

    Based on reactions with five flavonoids, the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC-MS/MS fragmentation patterns of [Co(II)(flavonoid – H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones versus flavonols. PMID:21889496

  7. netPICOmag: from Design to Network Implementation

    NASA Astrophysics Data System (ADS)

    Schofield, I.; Connors, M.; Russell, C.

    2009-05-01

    netPICOmag is the successful conclusion of a design effort involving networking based on Rabbit microcontrollers, PIC microcontrollers, and pulsed magnetometer sensors. GPS timing allows both timestamping of data and the precision counting of the number of pulses produced by the sensor heads in one second. Power over Ethernet, use of DHCP, and broadcast of UDP packets mean a very simple local installation, with one wire leading to a relatively small integrated sensor package which is vertically placed in the ground. Although we continue to make improvements, including through investigating new sensor types, we regard the design as mature and well tested. Here we focus on the need for yet denser magnetometer networks, technological applications which become practical using sensitive yet inexpensive magnetometers, and deployment methods for large numbers of sensors. With careful calibration, netPICOmags overlap with research grade magnetometers. Without it, they still sensitively detect magnetic variations and can be used for an education or outreach program. Due to their low cost, such an application allows many students to be directly involved in gathering data that can be very relevant to them personally when they witness auroras.

  8. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  9. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  10. Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii

    PubMed Central

    Dauvillée, David; Deschamps, Philippe; Ral, Jean-Philippe; Plancke, Charlotte; Putaux, Jean-Luc; Devassine, Jimi; Durand-Terrasson, Amandine; Devin, Aline; Ball, Steven G.

    2009-01-01

    Starch defines an insoluble semicrystalline form of storage polysaccharides restricted to Archaeplastida (red and green algae, land plants, and glaucophytes) and some secondary endosymbiosis derivatives of the latter. While green algae and land-plants store starch in plastids by using an ADP-glucose-based pathway related to that of cyanobacteria, red algae, glaucophytes, cryptophytes, dinoflagellates, and apicomplexa parasites store a similar type of polysaccharide named floridean starch in their cytosol or periplast. These organisms are suspected to store their floridean starch from UDP-glucose in a fashion similar to heterotrophic eukaryotes. However, experimental proof of this suspicion has never been produced. Dinoflagellates define an important group of both photoautotrophic and heterotrophic protists. We now report the selection and characterization of a low starch mutant of the heterotrophic dinoflagellate Crypthecodinium cohnii. We show that the sta1-1 mutation of C. cohnii leads to a modification of the UDP-glucose-specific soluble starch synthase activity that correlates with a decrease in starch content and an alteration of amylopectin structure. These experimental results validate the UDP-glucose-based pathway proposed for floridean starch synthesis. PMID:19940244

  11. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival, and fecundity

    USDA-ARS?s Scientific Manuscript database

    A bioinformatics search of the genome of the red flour beetle, Tribolium castaneum, resulted in the identification of two genes encoding proteins closely related to UDP-N-acetylglucosamine pyrophosphorylases (UAP), which provide the activated precursor, UDP-N-acetylglucosamine, for the synthesis of ...

  12. Cell wall composition and digestibility alterations in Brachypodium distachyon acheived through reduced expression of the UDP-arabinopyranose mutase

    USDA-ARS?s Scientific Manuscript database

    Plant cell-wall polysaccharide biosynthesis requires nucleotide-activated sugars. The prominent grass cell wall sugars, glucose (Glc), xylose (Xyl), and arabinose (Ara), are biosynthetically related via the UDP-sugar interconversion pathway. RNA-seq analysis of Brachypodium distachyon UDP-sugar inte...

  13. The effect of steroids and nucleotides on solubilized bilirubin uridine diphosphate glucuronyltransferase

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    1. It was confirmed that bilirubin glucuronyltransferase can be obtained in solubilized form from rat liver microsomes. 2. Michaelis–Menten kinetics were not followed by the enzyme with bilirubin as substrate when the bilirubin/albumin ratio was varied. High concentrations of bilirubin were inhibitory. 3. The Km for UDP-glucuronic acid at the optimum bilirubin concentration was 0.46mm. 4. Low concentrations of Ca2+ were inhibitory in the absence of Mg2+ but stimulatory in its presence; the converse applied for EDTA. 5. UDP-N-acetylglucosamine and UDP-glucose enhanced conjugation by untreated, but not by solubilized microsomes. 6. The apparent 9.5-fold increase in activity after solubilization was probably due to the absence of UDP-glucuronic acid pyrophosphatase activity in the solubilized preparation. 7. The activation of solubilized enzyme activity by ATP was considered to be a result of chelation of inhibitory metal ions. 8. The solubilized enzyme activity was inhibited by UMP and UDP. The effect of UMP was not competitive with respect to UDP-glucuronic acid. 9. A number of steroids inhibited the solubilized enzyme activity. The competitive effects of stilboestrol, oestrone sulphate and 3β-hydroxyandrost-5-en-17-one, with respect to UDP-glucuronic acid, may be explained on an allosteric basis. PMID:4251180

  14. Scalable Lunar Surface Networks and Adaptive Orbit Access

    NASA Technical Reports Server (NTRS)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  15. SPADnet: a fully digital, scalable, and networked photonic component for time-of-flight PET applications

    NASA Astrophysics Data System (ADS)

    Bruschini, Claudio; Charbon, Edoardo; Veerappan, Chockalingam; Braga, Leo H. C.; Massari, Nicola; Perenzoni, Matteo; Gasparini, Leonardo; Stoppa, David; Walker, Richard; Erdogan, Ahmet; Henderson, Robert K.; East, Steve; Grant, Lindsay; Játékos, Balázs; Ujhelyi, Ferenc; Erdei, Gábor; Lörincz, Emöke; André, Luc; Maingault, Laurent; Jacolin, David; Verger, L.; Gros d'Aillon, Eric; Major, Peter; Papp, Zoltan; Nemeth, Gabor

    2014-05-01

    The SPADnet FP7 European project is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of- Flight) Positron Emission Tomography (PET). SPADnet relies on standard CMOS technology, therefore allowing for MRI compatibility. SPADnet innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. It is built around a natively digital, intelligent SPAD (Single-Photon Avalanche Diode)-based sensor device which comprises an array of 8×16 pixels, each composed of 4 mini-SiPMs with in situ time-to-digital conversion, a multi-ring network to filter, carry, and process data produced by the sensors at 2Gbps, and a 130nm CMOS process enabling mass-production of photonic modules that are optically interfaced to scintillator crystals. A few tens of sensor devices are tightly abutted on a single PCB to form a so-called sensor tile, thanks to TSV (Through Silicon Via) connections to their backside (replacing conventional wire bonding). The sensor tile is in turn interfaced to an FPGA-based PCB on its back. The resulting photonic module acts as an autonomous sensing and computing unit, individually detecting gamma photons as well as thermal and Compton events. It determines in real time basic information for each scintillation event, such as exact time of arrival, position and energy, and communicates it to its peers in the field of view. Coincidence detection does therefore occur directly in the ring itself, in a differed and distributed manner to ensure scalability. The selected true coincidence events are then collected by a snooper module, from which they are transferred to an external reconstruction computer using Gigabit Ethernet.

  16. Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc.

    PubMed

    Miszkiel, Aleksandra; Wojciechowski, Marek

    2017-11-01

    Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Robust scalable stabilisability conditions for large-scale heterogeneous multi-agent systems with uncertain nonlinear interactions: towards a distributed computing architecture

    NASA Astrophysics Data System (ADS)

    Manfredi, Sabato

    2016-06-01

    Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.

  18. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan

    2018-04-01

    We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

  19. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  20. Performance of a veterinary urine dipstick paddle system for diagnosis and identification of urinary tract infections in dogs and cats.

    PubMed

    Ybarra, Winnie L; Sykes, Jane E; Wang, Yenlie; Byrne, Barbara A; Westropp, Jodi L

    2014-04-01

    To evaluate the performance of a veterinary urine dipstick paddle (UDP) for diagnosis and identification of urinary tract infection (UTI) in dogs and cats. Prospective, randomized, blinded study. 207 urine specimens. UDPs were inoculated by 2 investigators and incubated according to manufacturer's instructions. Results, including presence or absence of bacterial growth, organism counts, and identification of uropathogens, were compared between investigators and with microbiology laboratory results. A subset of UDPs with bacterial growth was submitted to the laboratory for confirmation. The laboratory reported 64 (30.9%) specimens had growth of bacteria. Bacterial growth was reported for 63 (30.4%) and 58 (28.0%) of the UDPs by investigators 1 and 2, respectively. Sensitivity and specificity of the UDP for detection of bacterial growth were 97.3% and 98.6%, respectively, for investigator 1 and 89.1% and 99.3%, respectively, for investigator 2. For UPDs with ≥ 10(5) colony-forming units/mL, organism counts correlated well between the laboratory and investigators 1 (r = 0.95) and 2 (r = 0.89). Pathogen identification was not always accurate. Only 25 of 33 (75.8%) UDPs submitted for confirmation yielded bacteria consistent with those isolated from the original bacterial culture of urine. The veterinary UDP system was a sensitive test for screening patients for bacterial UTI, but uropathogen identification was not always accurate. When UDPs have bacterial growth, a fresh urine specimen should be submitted to the laboratory to confirm the identity of the organisms and to permit antimicrobial susceptibility testing.

  1. Three-Dimensional Space to Assess Cloud Interoperability

    DTIC Science & Technology

    2013-03-01

    12 1. Portability and Mobility ...collection of network-enabled services that guarantees to provide a scalable, easy accessible, reliable, and personalized computing infrastructure , based on...are used in research to describe cloud models, such as SaaS (Software as a Service), PaaS (Platform as a service), IaaS ( Infrastructure as a Service

  2. Phrenic nerve decompression for the management of unilateral diaphragmatic paralysis – preoperative evaluation and operative technique

    PubMed Central

    Hoshide, Reid; Brown, Justin

    2017-01-01

    Background: Unilateral diaphragmatic paralysis (UDP) can be a very disabling, typically causing shortness of breath and reduced exercise tolerance. We present a case of a surgical decompression of the phrenic nerve of a patient who presented with UDP, which occurred following cervical spine surgery. Methods: The workup for the etiology of UDP demonstrated paradoxical movement on “sniff test” and notably impaired pulmonary function tests. Seven months following the onset of the UDP, he underwent a surgical decompression of the phrenic nerve at the level of the anterior scalene. Results: He noted rapid symptomatic improvement following surgery and reversal of the above noted objective findings was documented. At his 4-year follow-up, he had complete resolution of his clinical symptoms. Repeated physiologic testing of his respiratory function had shown a complete reversal of his UDP. Conclusions: Anatomical compression of the phrenic nerve by redundant neck vasculature should be considered in the differential diagnosis of UDP. Here we demonstrated the techniques in workup and surgical management, with both subjective and objective evidence of success. PMID:29184705

  3. Phrenic nerve decompression for the management of unilateral diaphragmatic paralysis - preoperative evaluation and operative technique.

    PubMed

    Hoshide, Reid; Brown, Justin

    2017-01-01

    Unilateral diaphragmatic paralysis (UDP) can be a very disabling, typically causing shortness of breath and reduced exercise tolerance. We present a case of a surgical decompression of the phrenic nerve of a patient who presented with UDP, which occurred following cervical spine surgery. The workup for the etiology of UDP demonstrated paradoxical movement on "sniff test" and notably impaired pulmonary function tests. Seven months following the onset of the UDP, he underwent a surgical decompression of the phrenic nerve at the level of the anterior scalene. He noted rapid symptomatic improvement following surgery and reversal of the above noted objective findings was documented. At his 4-year follow-up, he had complete resolution of his clinical symptoms. Repeated physiologic testing of his respiratory function had shown a complete reversal of his UDP. Anatomical compression of the phrenic nerve by redundant neck vasculature should be considered in the differential diagnosis of UDP. Here we demonstrated the techniques in workup and surgical management, with both subjective and objective evidence of success.

  4. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J.

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  5. Efficient data replication for the delivery of high-quality video content over P2P VoD advertising networks

    NASA Astrophysics Data System (ADS)

    Ho, Chien-Peng; Yu, Jen-Yu; Lee, Suh-Yin

    2011-12-01

    Recent advances in modern television systems have had profound consequences for the scalability, stability, and quality of transmitted digital data signals. This is of particular significance for peer-to-peer (P2P) video-on-demand (VoD) related platforms, faced with an immediate and growing demand for reliable service delivery. In response to demands for high-quality video, the key objectives in the construction of the proposed framework were user satisfaction with perceived video quality and the effective utilization of available resources on P2P VoD networks. This study developed a peer-based promoter to support online advertising in P2P VoD networks based on an estimation of video distortion prior to the replication of data stream chunks. The proposed technology enables the recovery of lost video using replicated stream chunks in real time. Load balance is achieved by adjusting the replication level of each candidate group according to the degree-of-distortion, thereby enabling a significant reduction in server load and increased scalability in the P2P VoD system. This approach also promotes the use of advertising as an efficient tool for commercial promotion. Results indicate that the proposed system efficiently satisfies the given fault tolerances.

  6. A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection.

    PubMed

    Shapiro, Adam B; Livchak, Stephania; Gao, Ning; Whiteaker, James; Thresher, Jason; Jahić, Haris; Huang, Jian; Gu, Rong-Fang

    2012-03-01

    A novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery. In the new assay, the UNAM product of the MurB reaction is ligated to L-alanine by the next enzyme in the peptidoglycan biosynthesis pathway, MurC, resulting in hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). The ADP is detected with nanomolar sensitivity by converting it to oligomeric RNA with polynucleotide phosphorylase and detecting the oligomeric RNA with a fluorescent dye. The product sensitivity of the new assay is 1000-fold greater than that of the standard assay that follows the absorbance decrease resulting from the conversion of NADPH to NADP(+). This sensitivity allows inhibitor screening to be performed at the low substrate concentrations needed to make the assay sensitive to competitive inhibition of MurB.

  7. Alkaloids and leishmania donovani UDP-galactopyarnose mutase: Anovel approach in drug designing against Visceral leishmaniasis.

    PubMed

    Srivastava, Ankita; Chandra, Deepak

    2017-06-05

    The unsatisfactory treatment options for Visceral Leishmaniasis (VL), needs identification of new drug targets. Among natural products, Alkaloids have been proved to be highly effective against number of diseases. In Leishmania UDP-galactopyranose mutase (UGM) is a critical enzyme required for cell wall synthesis and thus a drug target for structure based drug designing against L. donovani. To build the homology model of UDP galactopyranse mutase and investigate the interaction of selected alkaloids with this modeled UDP galactopyranose mutase by molecular docking. Since there is no crystal structure record has been found with this protein, a homology modeling was performed and a three dimensional structure of L. donovani UGM was created using MODELLER v9.9, structure quality was validated using PROCHECK and QMEAN programs which confirms that the structure is reliable. Further Molecular docking was performed with previously reported 15 alkaloids. It was found that Protopine shows a binding energy of -12.39Kcal/mole, binds at Flavin adenine dinucleotide (FAD) biding site. Concluding that Protopine, an alkaloid could interrupt the functional aspect of L. donovani UGM and thus may be useful for drug designing studies. These finding would contribute to the understanding of effect of drug on the parasite. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A Scalable QoS-Aware VoD Resource Sharing Scheme for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Huang, Chenn-Jung; Luo, Yun-Cheng; Chen, Chun-Hua; Hu, Kai-Wen

    In network-aware concept, applications are aware of network conditions and are adaptable to the varying environment to achieve acceptable and predictable performance. In this work, a solution for video on demand service that integrates wireless and wired networks by using the network aware concepts is proposed to reduce the blocking probability and dropping probability of mobile requests. Fuzzy logic inference system is employed to select appropriate cache relay nodes to cache published video streams and distribute them to different peers through service oriented architecture (SOA). SIP-based control protocol and IMS standard are adopted to ensure the possibility of heterogeneous communication and provide a framework for delivering real-time multimedia services over an IP-based network to ensure interoperability, roaming, and end-to-end session management. The experimental results demonstrate that effectiveness and practicability of the proposed work.

  9. Antibiotic Effects on Methicillin-Resistant Staphylococcus aureus Cytoplasmic Peptidoglycan Intermediate Levels and Evidence for Potential Metabolite Level Regulatory Loops.

    PubMed

    Vemula, Harika; Ayon, Navid J; Burton, Alloch; Gutheil, William G

    2017-06-01

    Cytoplasmic peptidoglycan (PG) precursor levels were determined in methicillin-resistant Staphylococcus aureus (MRSA) after exposure to several cell wall-targeting antibiotics. Three experiments were performed: (i) exposure to 4× MIC levels (acute); (ii) exposure to sub-MIC levels (subacute); (iii) a time course experiment of the effect of vancomycin. In acute exposure experiments, fosfomycin increased UDP-GlcNAc, as expected, and resulted in substantially lower levels of total UDP-linked metabolite accumulation relative to other pathway inhibitors, indicating reduced entry into this pathway. Upstream inhibitors (fosfomycin, d-cycloserine, or d-boroalanine) reduced UDP-MurNAc-pentapeptide levels by more than fourfold. Alanine branch inhibitors (d-cycloserine and d-boroalanine) reduced d-Ala-d-Ala levels only modestly (up to 4-fold) but increased UDP-MurNAc-tripeptide levels up to 3,000-fold. Downstream pathway inhibitors (vancomycin, bacitracin, moenomycin, and oxacillin) increased UDP-MurNAc-pentapeptide levels up to 350-fold and UDP-MurNAc-l-Ala levels up to 80-fold, suggesting reduced MurD activity by downstream inhibitor action. Sub-MIC exposures demonstrated effects even at 1/8× MIC which strongly paralleled acute exposure changes. Time course data demonstrated that UDP-linked intermediate levels respond rapidly to vancomycin exposure, with several intermediates increasing three- to sixfold within minutes. UDP-linked intermediate level changes were also multiphasic, with some increasing, some decreasing, and some increasing and then decreasing. The total (summed) UDP-linked intermediate pool increased by 1,475 μM/min during the first 10 min after vancomycin exposure, providing a revised estimate of flux in this pathway during logarithmic growth. These observations outline the complexity of PG precursor response to antibiotic exposure in MRSA and indicate likely sites of regulation (entry and MurD). Copyright © 2017 American Society for Microbiology.

  10. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks.

    PubMed

    Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-05-18

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.

  11. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  12. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  13. The deployment of routing protocols in distributed control plane of SDN.

    PubMed

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.

  14. A Performance Evaluation of NACK-Oriented Protocols as the Foundation of Reliable Delay- Tolerant Networking Convergence Layers

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis; Hylton, Alan; Ishac, Joseph

    2012-01-01

    Delay-Tolerant Networking (DTN) is an active area of research in the space communications community. DTN uses a standard layered approach with the Bundle Protocol operating on top of transport layer protocols known as convergence layers that actually transmit the data between nodes. Several different common transport layer protocols have been implemented as convergence layers in DTN implementations including User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Licklider Transmission Protocol (LTP). The purpose of this paper is to evaluate several stand-alone implementations of negative-acknowledgment based transport layer protocols to determine how they perform in a variety of different link conditions. The transport protocols chosen for this evaluation include Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP), Licklider Transmission Protocol (LTP), NACK-Oriented Reliable Multicast (NORM), and Saratoga. The test parameters that the protocols were subjected to are characteristic of common communications links ranging from terrestrial to cis-lunar and apply different levels of delay, line rate, and error.

  15. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships.

    PubMed

    Freas, Nicholas; Newton, Peter; Perozich, John

    2016-01-01

    UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).

  16. Stylized facts in social networks: Community-based static modeling

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo

    2018-06-01

    The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.

  17. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  18. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    PubMed

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  19. Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison

    NASA Astrophysics Data System (ADS)

    van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder

    2000-04-01

    Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.

  20. Autonomous distributed self-organization for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Tang, Hung-Kai

    2009-01-01

    This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  1. Evaluation of UDP-GlcN derivatives for selective labeling of 5-(hydroxymethyl)cytosine.

    PubMed

    Dai, Nan; Bitinaite, Jurate; Chin, Hang-Gyeong; Pradhan, Sriharsa; Corrêa, Ivan R

    2013-11-04

    5-(hydroxymethyl)cytosine (5-hmC) is a newly identified oxidative product of 5-methylcytosine (5-mC) in the mammalian genome, and is believed to be an important epigenetic marker influencing a variety of biological processes. In addition to its relatively low abundance, the fluctuation of 5-hmC levels over time during cell development poses a formidable challenge for its accurate mapping and quantification. Here we describe a specific chemoenzymatic approach to 5-hmC detection in DNA samples by using new uridine 5'-diphosphoglucosamine (UDP-GlcN) probes. Our approach requires modification of the glucose moiety of UDP-Glc with small amino groups and transfer of these glucose derivatives to the hydroxy moiety of 5-hmC by using T4 phage glucosyltransferases. We evaluated the transfer efficiencies of three glucosyltransferases (wild-type α- and β-GTs and a Y261L mutant β-GT) with five different UDP-Glc derivatives containing functionalized groups for subsequent bioconjugation and detection. Our results indicate that UDP-6-N3 -Glc, UDP-6-GlcN, and UDP-2-GlcN can be transferred by β-GT with efficiencies similar to that seen with the native UDP-Glc cofactor. 6-N3 -Glc- and 6-GlcN-containing oligonucleotides were selectively labeled with reactive fluorescent probes. In addition, a 2 kb DNA fragment modified with 2-GlcN groups was specifically detected by use of a commercially available antiglucosamine antibody. Alternative substrates for β-GT and correlated glycosyltransferases might prove useful for the study of the function and dynamics of 5-hmC and other modified nucleotides, as well as for multiplex analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis*

    PubMed Central

    Vigetti, Davide; Deleonibus, Sara; Moretto, Paola; Karousou, Eugenia; Viola, Manuela; Bartolini, Barbara; Hascall, Vincent C.; Tammi, Markku; De Luca, Giancarlo; Passi, Alberto

    2012-01-01

    Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. PMID:22887999

  3. Cloning and Expression Analysis of a UDP-Galactose/Glucose Pyrophosphorylase from Melon Fruit Provides Evidence for the Major Metabolic Pathway of Galactose Metabolism in Raffinose Oligosaccharide Metabolizing Plants1

    PubMed Central

    Dai, Nir; Petreikov, Marina; Portnoy, Vitaly; Katzir, Nurit; Pharr, David M.; Schaffer, Arthur A.

    2006-01-01

    The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by α-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism. PMID:16829585

  4. Binding of uridine 5'-diphosphate in the "basic patch" of the zinc deacetylase LpxC and implications for substrate binding.

    PubMed

    Gennadios, Heather A; Christianson, David W

    2006-12-26

    LpxC is a zinc metalloenzyme that catalyzes the first committed step in the biosynthesis of lipid A, a vital component of the outer membrane of Gram-negative bacteria. Accordingly, the inhibition of LpxC is an attractive strategy for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC from Aquifex aeolicus complexed with uridine 5'-diphosphate (UDP), and the 3.1 A resolution structure of LpxC complexed with pyrophosphate. The X-ray crystal structure of the LpxC-UDP complex provides the first view of interactions likely to be exploited by the substrate UDP group in the "basic patch" of the active site. The diphosphate group of UDP makes hydrogen bond interactions with strictly conserved residue K239 as well as solvent molecules. The ribose moiety of UDP interacts with partially conserved residue E197. The UDP uracil group hydrogen bonds with both the backbone NH group and the backbone carbonyl group of E160, and with the backbone NH group of K162 through an intervening water molecule. Finally, the alpha-phosphate and uracil groups of UDP interact with R143 and R262 through intervening water molecules. The structure of LpxC complexed with pyrophosphate reveals generally similar intermolecular interactions in the basic patch. Unexpectedly, diphosphate binding in both complexes is accompanied by coordination to an additional zinc ion, resulting in the identification of a new metal-binding site termed the E-site. The structures of the LpxC-UDP and LpxC-pyrophosphate complexes provide new insights with regard to substrate recognition in the basic patch and metal ion coordination in the active site of LpxC.

  5. Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application.

    PubMed

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-03-21

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.

  6. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  7. The binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Gałasiński, W

    1987-10-01

    UDP-D-[U-14C]galactose is decomposed to [U-14C]galactose-1-phosphate and [U-14C]galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-[U-14C]galactose, at neutral pH, is also chemically degraded to the [U-14C]galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-[U-14C]galactose. It is a very important finding that products of the UDP-D-[U-14C]galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended in order to avoid incorrect interpretations of the results.

  8. Binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Galasinski, W.

    1987-10-01

    UDP-D-(U-/sup 14/C)galactose is decomposed to (U-/sup 14/C)galactose-1-phosphate and (U-/sup 14/C)galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-(U-/sup 14/C)galactose, at neutral pH, is also chemically degraded to the (U-/sup 14/C)galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-(U-/sup 14/C)galactose. It is a very important finding that products of the UDP-D-(U-/sup 14/C)galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended inmore » order to avoid incorrect interpretations of the results.« less

  9. A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

    PubMed Central

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman

    2015-01-01

    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens. PMID:25860585

  10. Low-power, transparent optical network interface for high bandwidth off-chip interconnects.

    PubMed

    Liboiron-Ladouceur, Odile; Wang, Howard; Garg, Ajay S; Bergman, Keren

    2009-04-13

    The recent emergence of multicore architectures and chip multiprocessors (CMPs) has accelerated the bandwidth requirements in high-performance processors for both on-chip and off-chip interconnects. For next generation computing clusters, the delivery of scalable power efficient off-chip communications to each compute node has emerged as a key bottleneck to realizing the full computational performance of these systems. The power dissipation is dominated by the off-chip interface and the necessity to drive high-speed signals over long distances. We present a scalable photonic network interface approach that fully exploits the bandwidth capacity offered by optical interconnects while offering significant power savings over traditional E/O and O/E approaches. The power-efficient interface optically aggregates electronic serial data streams into a multiple WDM channel packet structure at time-of-flight latencies. We demonstrate a scalable optical network interface with 70% improvement in power efficiency for a complete end-to-end PCI Express data transfer.

  11. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    NASA Astrophysics Data System (ADS)

    Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad

    2013-12-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.

  12. Biosynthesis of a (1. -->. 4)-. beta. -D-glucan. [Lupinus albus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brummond, D.O.

    1983-01-01

    An enzymatic activity isolated from Lupinus albus that produced an insoluble (1..-->..4)-..beta..-D-glucan from UDP-D-glucose has been solubilized and partially purified. Some of the properties of the enzyme system have been characterized. A proposed sequence of reactions between UDP-D-glucose and the final dextran may involve a (1..-->..4)-..beta..-linked polysaccharide bonded to UDP.

  13. The participation of ribosomes in protein glycosylation. Interaction of the ribosome-UDP-N-acetyl-glucosamine complex with dolichol phosphate.

    PubMed

    Paszkiewicz-Gadek, A; Porowska, H; Gałasiński, W

    1992-01-01

    UDP-N-acetylglucosamine can be bound by pure ribosomes. The part of N-acetylglucosamine-1-P can be transferred from the complex ribosome-UDP-N-acetylglucosamine onto dolichol phosphate. Evidence is presented that N-acetylglucosamine bound to dolichol phosphate can be transferred to the nascent peptide synthesized on the ribosome.

  14. Developmental control of apiogalacturonan biosynthesis and UDP-apiose production in a duckweed. [Spirodela polyrrhiza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longland, J.M.; Fry, S.C.; Trewavas, A.J.

    1989-07-01

    Vegetative fronds of Spirodela polyrrhiza were induced to form dormant turions by the addition of 1 micromolar abscisic acid or by shading. The cell wall polymers of fronds contained a high proportion of the branched-chain pentose, D-apiose (about 20% of total noncellulosic wall sugar residues), whereas turion cell walls contained only trace amounts (about 0.2%). When the fronds were fed D-({sup 3}H)glucuronic acid for 30 minutes, the accumulated UDP-({sup 3}H)apiose pool accounted for about 27% of the total phosphorylated ({sup 3}H)pentose derivatives; in turions, the UDP({sup 3}H)apiose pool accounted for only about 4% of the total phosphorylated ({sup 3}H)pentose derivatives.more » They conclude that the developmentally regulated decrease in the biosynthesis of a wall polysaccharide during turion formation involves a reduction in the supply of the relevant sugar nucleotide. One controlling enzyme activity is suggested to be UDP-apiose/UDP-xylose synthase. However, since there was a 100-fold decrease in the rate of polysaccharide synthesis and only a 9-fold decrease in UDP-apiose accumulation, there is probably also control of the activity of the relevant polysaccharide synthase.« less

  15. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  16. Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance

    PubMed Central

    Gatzeva-Topalova, Petia Z.; May, Andrew P.; Sousa, Marcelo C.

    2010-01-01

    Summary The modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 Å conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors. PMID:15939024

  17. The molecular dynamics of Trypanosoma brucei UDP-galactose 4'-epimerase: a drug target for African sleeping sickness.

    PubMed

    Friedman, Aaron J; Durrant, Jacob D; Pierce, Levi C T; McCorvie, Thomas J; Timson, David J; McCammon, J Andrew

    2012-08-01

    During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein. © 2012 John Wiley & Sons A/S.

  18. A Strategic Approach to Network Defense: Framing the Cloud

    DTIC Science & Technology

    2011-03-10

    accepted network defensive principles, to reduce risks associated with emerging virtualization capabilities and scalability of cloud computing . This expanded...defensive framework can assist enterprise networking and cloud computing architects to better design more secure systems.

  19. Education on the Cloud: Researching Student-Centered, Cloud-Based Learning Prospects in the Context of a European Network

    ERIC Educational Resources Information Center

    Panoutsopoulos, Hercules; Donert, Karl; Papoutsis, Panos; Kotsanis, Ioannis

    2015-01-01

    During the last few years, ongoing developments in the technological field of Cloud computing have initiated discourse on the potential of the Cloud to be systematically exploited in educational contexts. Research interest has been stimulated by a range of advantages of Cloud technologies (e.g. adaptability, flexibility, scalability,…

  20. CLON: Overlay Networks and Gossip Protocols for Cloud Environments

    NASA Astrophysics Data System (ADS)

    Matos, Miguel; Sousa, António; Pereira, José; Oliveira, Rui; Deliot, Eric; Murray, Paul

    Although epidemic or gossip-based multicast is a robust and scalable approach to reliable data dissemination, its inherent redundancy results in high resource consumption on both links and nodes. This problem is aggravated in settings that have costlier or resource constrained links as happens in Cloud Computing infrastructures composed by several interconnected data centers across the globe.

  1. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator

    PubMed Central

    Wang, Runchun M.; Thakur, Chetan S.; van Schaik, André

    2018-01-01

    This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks. PMID:29692702

  2. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.

    PubMed

    Wang, Runchun M; Thakur, Chetan S; van Schaik, André

    2018-01-01

    This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.

  3. A Cluster-Based Framework for the Security of Medical Sensor Environments

    NASA Astrophysics Data System (ADS)

    Klaoudatou, Eleni; Konstantinou, Elisavet; Kambourakis, Georgios; Gritzalis, Stefanos

    The adoption of Wireless Sensor Networks (WSNs) in the healthcare sector poses many security issues, mainly because medical information is considered particularly sensitive. The security mechanisms employed are expected to be more efficient in terms of energy consumption and scalability in order to cope with the constrained capabilities of WSNs and patients’ mobility. Towards this goal, cluster-based medical WSNs can substantially improve efficiency and scalability. In this context, we have proposed a general framework for cluster-based medical environments on top of which security mechanisms can rely. This framework fully covers the varying needs of both in-hospital environments and environments formed ad hoc for medical emergencies. In this paper, we further elaborate on the security of our proposed solution. We specifically focus on key establishment mechanisms and investigate the group key agreement protocols that can best fit in our framework.

  4. Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON

    NASA Astrophysics Data System (ADS)

    Shachaf, Y.; Chang, C.-H.; Kourtessis, P.; Senior, J. M.

    2007-06-01

    An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.

  5. Identification of novel inhibitors against UDP-galactopyranose mutase to combat leishmaniasis.

    PubMed

    Kashif, Mohammad; Tabrez, Shams; Husein, Atahar; Arish, Mohd; Kalaiarasan, Ponnusamy; Manna, Partha P; Subbarao, Naidu; Akhter, Yusuf; Rub, Abdur

    2018-03-01

    Leishmania, a protozoan parasite that causes leishmaniasis, affects 1-2 million people every year worldwide. Leishmaniasis is a vector born disease and characterized by a diverse group of clinical syndromes. Current treatment is limited because of drug resistance, high cost, poor safety, and low efficacy. The urgent need for potent agents against Leishmania has led to significant advances in the development of novel antileishmanial drugs. β-galactofuranose (β-Galf) is an important component of Leishmanial cell surface matrix and plays a critical role in the pathogenesis of parasite. UDP-galactopyranose mutase (UGM) converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) which acts as the precursor for β-Galf synthesis. Due to its absence in human, this enzyme is selected as the potential target in search of new antileishmanial drugs. Three dimensional protein structure model of Leishmania major UGM (LmUGM) has been homology modeled using Trypanosoma cruzi UGM (TcUGM) as a template. The stereochemistry was validated further. We selected already reported active compounds from PubChem database to target the LmUGM. Three compounds (6064500, 44570814, and 6158954) among the top hit occupied the UDP binding site of UGM suggested to work as a possible inhibitor for it. In vitro antileishmanial activity assay was performed with the top ranked inhibitor, 6064500. The 6064500 molecule has inhibited the growth of Leishmania donovani promastigotes significantly. Further, at similar concentrations it has exhibited significantly lesser toxicity than standard drug miltefosine hydrate in mammalian cells. © 2017 Wiley Periodicals, Inc.

  6. Local and global responses in complex gene regulation networks

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  7. On Adding Structure to Unstructured Overlay Networks

    NASA Astrophysics Data System (ADS)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  8. Visualizing Article Similarities via Sparsified Article Network and Map Projection for Systematic Reviews.

    PubMed

    Ji, Xiaonan; Machiraju, Raghu; Ritter, Alan; Yen, Po-Yin

    2017-01-01

    Systematic Reviews (SRs) of biomedical literature summarize evidence from high-quality studies to inform clinical decisions, but are time and labor intensive due to the large number of article collections. Article similarities established from textual features have been shown to assist in the identification of relevant articles, thus facilitating the article screening process efficiently. In this study, we visualized article similarities to extend its utilization in practical settings for SR researchers, aiming to promote human comprehension of article distributions and hidden patterns. To prompt an effective visualization in an interpretable, intuitive, and scalable way, we implemented a graph-based network visualization with three network sparsification approaches and a distance-based map projection via dimensionality reduction. We evaluated and compared three network sparsification approaches and the visualization types (article network vs. article map). We demonstrated the effectiveness in revealing article distribution and exhibiting clustering patterns of relevant articles with practical meanings for SRs.

  9. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications

    PubMed Central

    Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K.

    2016-01-01

    Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications. PMID:27231630

  10. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onunkwo, Uzoma

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutualmore » benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.« less

  11. Scalability Assessments for the Malicious Activity Simulation Tool (MAST)

    DTIC Science & Technology

    2012-09-01

    the scalability characteristics of MAST. Specifically, we show that an exponential increase in clients using the MAST software does not impact...an exponential increase in clients using the MAST software does not impact network and system resources significantly. Additionally, we...31 1. Hardware .....................................31 2. Software .....................................32 3. Common PC

  12. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins--towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation.

    PubMed

    Daskalova, Sasha M; Radder, Josiah E; Cichacz, Zbigniew A; Olsen, Sam H; Tsaprailis, George; Mason, Hugh; Lopez, Linda C

    2010-08-24

    Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.

  13. From Field Notes to Data Portal - A Scalable Data QA/QC Framework for Tower Networks: Progress and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Sturtevant, C.; Hackley, S.; Lee, R.; Holling, G.; Bonarrigo, S.

    2017-12-01

    Quality assurance and control (QA/QC) is one of the most important yet challenging aspects of producing research-quality data. Data quality issues are multi-faceted, including sensor malfunctions, unmet theoretical assumptions, and measurement interference from humans or the natural environment. Tower networks such as Ameriflux, ICOS, and NEON continue to grow in size and sophistication, yet tools for robust, efficient, scalable QA/QC have lagged. Quality control remains a largely manual process heavily relying on visual inspection of data. In addition, notes of measurement interference are often recorded on paper without an explicit pathway to data flagging. As such, an increase in network size requires a near-proportional increase in personnel devoted to QA/QC, quickly stressing the human resources available. We present a scalable QA/QC framework in development for NEON that combines the efficiency and standardization of automated checks with the power and flexibility of human review. This framework includes fast-response monitoring of sensor health, a mobile application for electronically recording maintenance activities, traditional point-based automated quality flagging, and continuous monitoring of quality outcomes and longer-term holistic evaluations. This framework maintains the traceability of quality information along the entirety of the data generation pipeline, and explicitly links field reports of measurement interference to quality flagging. Preliminary results show that data quality can be effectively monitored and managed for a multitude of sites with a small group of QA/QC staff. Several components of this framework are open-source, including a R-Shiny application for efficiently monitoring, synthesizing, and investigating data quality issues.

  14. From Sensor Networks to Internet of Things. Bluetooth Low Energy, a Standard for This Evolution

    PubMed Central

    Hortelano, Diego; Olivares, Teresa; Ruiz, M. Carmen; Garrido-Hidalgo, Celia; López, Vicente

    2017-01-01

    Current sensor networks need to be improved and updated to satisfy new essential requirements of the Internet of Things, where cutting-edge applications will appear. These requirements are: total coverage, zero fails (high performance), scalability and sustainability (hardware and software). We are going to evaluate Bluetooth Low Energy as wireless transmission technology and as the ideal candidate for these improvements, due to its low power consumption, its low cost radio chips and its ability to communicate with users directly, using their smartphones or smartbands. However, this technology is relatively recent, and standard network topologies are not able to fulfil its new requirements. To address these shortcomings, the implementation of other more flexible topologies (as the mesh topology) will be very interesting. After studying it in depth, we have identified certain weaknesses, for example, specific devices are needed to provide network scalability, and the need to choose between high performance or sustainability. In this paper, after presenting the studies carried out on these new technologies, we propose a new packet format and a new BLE mesh topology, with two different configurations: Individual Mesh and Collaborative Mesh. Our results show how this topology improves the scalability, sustainability, coverage and performance. PMID:28216560

  15. From Sensor Networks to Internet of Things. Bluetooth Low Energy, a Standard for This Evolution.

    PubMed

    Hortelano, Diego; Olivares, Teresa; Ruiz, M Carmen; Garrido-Hidalgo, Celia; López, Vicente

    2017-02-14

    Current sensor networks need to be improved and updated to satisfy new essential requirements of the Internet of Things, where cutting-edge applications will appear. These requirements are: total coverage, zero fails (high performance), scalability and sustainability (hardware and software). We are going to evaluate Bluetooth Low Energy as wireless transmission technology and as the ideal candidate for these improvements, due to its low power consumption, its low cost radio chips and its ability to communicate with users directly, using their smartphones or smartbands. However, this technology is relatively recent, and standard network topologies are not able to fulfil its new requirements. To address these shortcomings, the implementation of other more flexible topologies (as the mesh topology) will be very interesting. After studying it in depth, we have identified certain weaknesses, for example, specific devices are needed to provide network scalability, and the need to choose between high performance or sustainability. In this paper, after presenting the studies carried out on these new technologies, we propose a new packet format and a new BLE mesh topology, with two different configurations: Individual Mesh and Collaborative Mesh . Our results show how this topology improves the scalability, sustainability, coverage and performance.

  16. Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units.

    PubMed

    Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang

    2012-10-01

    We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.

  17. The Deployment of Routing Protocols in Distributed Control Plane of SDN

    PubMed Central

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395

  18. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications

    PubMed Central

    Moraleda, Alberto Tapetado; Montero, David Sánchez; Webb, David J.; García, Carmen Vázquez

    2014-01-01

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown. PMID:25615736

  19. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  20. A self-referenced optical intensity sensor network using POFBGs for biomedical applications.

    PubMed

    Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen

    2014-12-12

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  1. Parallel computation with molecular-motor-propelled agents in nanofabricated networks.

    PubMed

    Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V

    2016-03-08

    The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.

  2. Achieving QoS for TCP Traffic in Satellite Networks with Differentiated Services

    NASA Technical Reports Server (NTRS)

    Durresi, Arjan; Kota, Sastri; Goyal, Mukul; Jain, Raj; Bharani, Venkata

    2001-01-01

    Satellite networks play an indispensable role in providing global Internet access and electronic connectivity. To achieve such a global communications, provisioning of quality of service (QoS) within the advanced satellite systems is the main requirement. One of the key mechanisms of implementing the quality of service is traffic management. Traffic management becomes a crucial factor in the case of satellite network because of the limited availability of their resources. Currently, Internet Protocol (IP) only has minimal traffic management capabilities and provides best effort services. In this paper, we presented a broadband satellite network QoS model and simulated performance results. In particular, we discussed the TCP flow aggregates performance for their good behavior in the presence of competing UDP flow aggregates in the same assured forwarding. We identified several factors that affect the performance in the mixed environments and quantified their effects using a full factorial design of experiment methodology.

  3. Towards Scalable Deep Learning via I/O Analysis and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pumma, Sarunya; Si, Min; Feng, Wu-Chun

    Deep learning systems have been growing in prominence as a way to automatically characterize objects, trends, and anomalies. Given the importance of deep learning systems, researchers have been investigating techniques to optimize such systems. An area of particular interest has been using large supercomputing systems to quickly generate effective deep learning networks: a phase often referred to as “training” of the deep learning neural network. As we scale existing deep learning frameworks—such as Caffe—on these large supercomputing systems, we notice that the parallelism can help improve the computation tremendously, leaving data I/O as the major bottleneck limiting the overall systemmore » scalability. In this paper, we first present a detailed analysis of the performance bottlenecks of Caffe on large supercomputing systems. Our analysis shows that the I/O subsystem of Caffe—LMDB—relies on memory-mapped I/O to access its database, which can be highly inefficient on large-scale systems because of its interaction with the process scheduling system and the network-based parallel filesystem. Based on this analysis, we then present LMDBIO, our optimized I/O plugin for Caffe that takes into account the data access pattern of Caffe in order to vastly improve I/O performance. Our experimental results show that LMDBIO can improve the overall execution time of Caffe by nearly 20-fold in some cases.« less

  4. Information Weighted Consensus for Distributed Estimation in Vision Networks

    ERIC Educational Resources Information Center

    Kamal, Ahmed Tashrif

    2013-01-01

    Due to their high fault-tolerance, ease of installation and scalability to large networks, distributed algorithms have recently gained immense popularity in the sensor networks community, especially in computer vision. Multi-target tracking in a camera network is one of the fundamental problems in this domain. Distributed estimation algorithms…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes ofmore » a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.« less

  6. Networking and AI systems: Requirements and benefits

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.

  7. Scalable Wavelet-Based Active Network Stepping Stone Detection

    DTIC Science & Technology

    2012-03-22

    47 4.2.2 Synchronization Frame . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Frame Size...the vector. Pilot experiments result in the final algorithm shown in Figure 3.4 and the detector in Figure 3.5. Note that the synchronization frame and... synchronization frames divided by the number of total frames. Comparing this statistic to the detection threshold γ determines whether a watermark is

  8. Study on Dissemination Patterns in Location-Aware Gossiping Networks

    NASA Astrophysics Data System (ADS)

    Kami, Nobuharu; Baba, Teruyuki; Yoshikawa, Takashi; Morikawa, Hiroyuki

    We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.

  9. Silicon quantum processor with robust long-distance qubit couplings.

    PubMed

    Tosi, Guilherme; Mohiyaddin, Fahd A; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.Quantum computers will require a large network of coherent qubits, connected in a noise-resilient way. Tosi et al. present a design for a quantum processor based on electron-nuclear spins in silicon, with electrical control and coupling schemes that simplify qubit fabrication and operation.

  10. Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    PubMed Central

    Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630

  11. Historical building monitoring using an energy-efficient scalable wireless sensor network architecture.

    PubMed

    Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  12. Distributed controller clustering in software defined networks.

    PubMed

    Abdelaziz, Ahmed; Fong, Ang Tan; Gani, Abdullah; Garba, Usman; Khan, Suleman; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.

  13. Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.

  14. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

    PubMed Central

    Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.

    2016-01-01

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified. PMID:26017575

  15. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres.

    PubMed

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2015-05-28

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  16. Cluster Based Location-Aided Routing Protocol for Large Scale Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Dong, Liang; Liang, Taotao; Yang, Xinyu; Zhang, Deyun

    Routing algorithms with low overhead, stable link and independence of the total number of nodes in the network are essential for the design and operation of the large-scale wireless mobile ad hoc networks (MANET). In this paper, we develop and analyze the Cluster Based Location-Aided Routing Protocol for MANET (C-LAR), a scalable and effective routing algorithm for MANET. C-LAR runs on top of an adaptive cluster cover of the MANET, which can be created and maintained using, for instance, the weight-based distributed algorithm. This algorithm takes into consideration the node degree, mobility, relative distance, battery power and link stability of mobile nodes. The hierarchical structure stabilizes the end-to-end communication paths and improves the networks' scalability such that the routing overhead does not become tremendous in large scale MANET. The clusterheads form a connected virtual backbone in the network, determine the network's topology and stability, and provide an efficient approach to minimizing the flooding traffic during route discovery and speeding up this process as well. Furthermore, it is fascinating and important to investigate how to control the total number of nodes participating in a routing establishment process so as to improve the network layer performance of MANET. C-LAR is to use geographical location information provided by Global Position System to assist routing. The location information of destination node is used to predict a smaller rectangle, isosceles triangle, or circle request zone, which is selected according to the relative location of the source and the destination, that covers the estimated region in which the destination may be located. Thus, instead of searching the route in the entire network blindly, C-LAR confines the route searching space into a much smaller estimated range. Simulation results have shown that C-LAR outperforms other protocols significantly in route set up time, routing overhead, mean delay and packet collision, and simultaneously maintains low average end-to-end delay, high success delivery ratio, low control overhead, as well as low route discovery frequency.

  17. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.

    PubMed

    Qi, Jieqiong; Wang, Ruihong; Zeng, Yazhen; Yu, Wengong; Gu, Yuchao

    2017-08-09

    O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3',5,5'-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.

  18. Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Gao, Jay L.; Mills, David

    2010-01-01

    Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.

  19. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    PubMed Central

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  20. A Novel Characterization of Amalgamated Networks in Natural Systems

    PubMed Central

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-01-01

    Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066

  1. A scalable and continuous-upgradable optical wireless and wired convergent access network.

    PubMed

    Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L

    2014-06-02

    In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).

  2. Fully Distributed Monitoring Architecture Supporting Multiple Trackees and Trackers in Indoor Mobile Asset Management Application

    PubMed Central

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-01-01

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated. PMID:24662407

  3. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  4. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  5. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE PAGES

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; ...

    2016-10-26

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less

  6. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less

  7. An overview of the heterogeneous telescope network system: Concept, scalability and operation

    NASA Astrophysics Data System (ADS)

    White, R. R.; Allan, A.

    2008-03-01

    In the coming decade there will be an avalanche of data streams devoted to astronomical exploration opening new windows of scientific discovery. The shear volume of data and the diversity of event types (Kantor 2006; Kaiser 2004; Vestrand & Theiler & Wozniak 2004) will necessitate; the move to a common language for the communication of event data, and enabling telescope systems with the ability to not just simply respond, but to act independently in order to take full advantage of available resources in a timely manner. Developed over the past three years, the Virtual Observatory Event (VOEvent) provides the best format for carrying these diverse event messages (White et al. 2006a; Seaman & Warner 2006). However, in order for the telescopes to be able to act independently, a system of interoperable network nodes must be in place, that will allow the astronomical assets to not only issue event notifications, but to coordinate and request specific observations. The Heterogeneous Telescope Network (HTN) is a network architecture that can achieve the goals set forth and provide a scalable design to match both fully autonomous and manual telescope system needs (Allan et al. 2006a; White et al. 2006b; Hessman 2006b). In this paper we will show the design concept of this meta-network and nodes, their scalable architecture and complexity, and how this concept can meet the needs of institutions in the near future.

  8. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks

    PubMed Central

    Srie Vidhya Janani, E.; Ganesh Kumar, P.

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417

  9. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE PAGES

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  10. Performance analysis for wireless networks: an analytical approach by multifarious Sym Teredo.

    PubMed

    Punithavathani, D Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol.

  11. Performance Analysis for Wireless Networks: An Analytical Approach by Multifarious Sym Teredo

    PubMed Central

    Punithavathani, D. Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. PMID:25506611

  12. Hybrid wireless sensor network for rescue site monitoring after earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  13. Efficient discovery of overlapping communities in massive networks

    PubMed Central

    Gopalan, Prem K.; Blei, David M.

    2013-01-01

    Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224

  14. In vitro synthesis of intermediates involved in the assembly of enterobacterial common antigen (ECA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, K.; Wolski, S.; Kroto, J.

    1986-05-01

    ECA is a cell surface antigen found in all bacteria belonging to the family Enterobacteriaceae. The serological specificity of ECA is determined by a linear heteropolysaccharide comprised of trisaccharide repeat units; the component sugars are N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-mannosaminuronic acid (ManNAcUA), and 4-acetamido-D-fucose (Fuc4NAc). In vivo studies have suggested that GlcNAc-pyrophosphorylundecaprenol (GlcNAc-PP-lipid) is an intermediate in ECA synthesis. More recently, they have demonstrated UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase activity in cell envelope preparations of E. coli. Radioactivity from UDP-(/sup 3/H)Glc-NAc was incorporated into endogenous lipid acceptor, and the labeled product was characterized as GlcNAc-PP-lipid (lipid I). Transferase activity was inhibited by tunicamycin andmore » UMP, but it was unaffected by UDP. The reaction was reversible, and the synthesis of UDP-(/sup 3/H)GlcNAc from UMP and (/sup 3/H)GlcNAc-PP-lipid was also sensitive to tunicamycin. The simultaneous addition of UDP-(/sup 14/C)ManNAcUA and UDP-(/sup 3/H)GlcNAc to cell envelope preparations resulted in the synthesis of a more polar lipid (lipid II) that contained both labeled sugars in equimolar amounts. Synthesis of lipid II was dependent on prior synthesis of lipid I. Accordingly, (/sup 3/H)GlcNAc-PP-lipid that had been synthesized in vivo served as an acceptor in vitro of ManNAcUA residues from UDP-ManNAcUA. Lipid II has been tentatively identified as ManNAcUA-GlcNAc-pyrophosphorylundecaprenol.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less

  16. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface

    PubMed Central

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon

    2015-01-01

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284

  17. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface.

    PubMed

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon

    2015-10-29

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

  18. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-27

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240more » feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.« less

  19. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellularmore » spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.« less

  20. Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon

    PubMed Central

    2010-01-01

    We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5′-phosphosulfate or 3′,5′-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2′,3′-cylic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-l-arabinofuranose, guanosine 5'-diphosphate (GDP)-l-galactofuranose, UDP-l-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches. PMID:21043458

  1. WiSPH: a wireless sensor network-based home care monitoring system.

    PubMed

    Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo

    2014-04-22

    This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.

  2. Internetting tactical security sensor systems

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control stations.

  3. The Brave New World of Wireless Technologies: A Primer for Educators.

    ERIC Educational Resources Information Center

    Boerner, Gerald L.

    2002-01-01

    Discusses the use of wireless local area networks (WLANs) on college campuses. Highlights include traditional wired networks; cost, speed, and reliability; wireless networking standards; mobility; installation speed, simplicity, and flexibility; reduced cost of ownership; scalability; security issues; and a glossary of WLAN terms. (LRW)

  4. Minimizing communication cost among distributed controllers in software defined networks

    NASA Astrophysics Data System (ADS)

    Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed

    2016-08-01

    Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.

  5. A networked voting rule for democratic representation

    NASA Astrophysics Data System (ADS)

    Hernández, Alexis R.; Gracia-Lázaro, Carlos; Brigatti, Edgardo; Moreno, Yamir

    2018-03-01

    We introduce a general framework for exploring the problem of selecting a committee of representatives with the aim of studying a networked voting rule based on a decentralized large-scale platform, which can assure a strong accountability of the elected. The results of our simulations suggest that this algorithm-based approach is able to obtain a high representativeness for relatively small committees, performing even better than a classical voting rule based on a closed list of candidates. We show that a general relation between committee size and representatives exists in the form of an inverse square root law and that the normalized committee size approximately scales with the inverse of the community size, allowing the scalability to very large populations. These findings are not strongly influenced by the different networks used to describe the individuals' interactions, except for the presence of few individuals with very high connectivity which can have a marginal negative effect in the committee selection process.

  6. Overcoming catastrophic forgetting in neural networks

    PubMed Central

    Kirkpatrick, James; Pascanu, Razvan; Rabinowitz, Neil; Veness, Joel; Desjardins, Guillaume; Rusu, Andrei A.; Milan, Kieran; Quan, John; Ramalho, Tiago; Grabska-Barwinska, Agnieszka; Hassabis, Demis; Clopath, Claudia; Kumaran, Dharshan; Hadsell, Raia

    2017-01-01

    The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially. PMID:28292907

  7. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, G; Liu, J

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vectormore » Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer hospital of Hunan province.« less

  8. Study of atmospheric scattering and absorbing aerosols at 550 nm over nearby western Indian tropical sites of Thar Desert effected region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, B. M., E-mail: bmvyas@yahoo.com; Saxenna, Abhishek; Panwar, Chhagan

    The first time experimental results based on spaced satellite observations of different kinds of aerosols properties have been described over two different contrast environmental conditions locations in western tropical Indian region specifically first at Jaisalmer (26.90°N, 69.90°E, 220 m above mean sea level (amsl)) located in central Thar dessert vicinity of western Indian site over Indian Thar Desert region and another at Udaipur (24.6° N, 73.7° E, 560 m amsl) site concerning to semi-urban and semi arid place of hilly areas. The daily values of aerosols optical depth absorption at 500nm (AOD abs 500nm), aerosols optical depth extinction at 500nmmore » (AOD ext 500nm) along with aerosols optical depth at 500nmon (AOD 500nm) of eleven year period from Jan., 2004 to Dec., 2014 are basis of primary database of the present investigation. From the synthesis if the above database and the basis of rigorous statistical approach, following some of interesting facts are noted (i) larger annual monthly AOD variation of 0.93 is noted over JSM when compared to observed annual monthly change in AOD cycle, over UDP, of only 0.50 clearly indicating the more impact of desert influence activities about more than double times over JSM than UDP (ii) The higher abundance of absorbing aerosols occurrences about two time higher are seen in JSM in comparison to UDP. It indicates the clear evidence of strong optical absorption properties of useful solar mid visible wavelength at 550nm as the results of presence of more availability of dust aerosols as mineral natural type in pre-monsoon to post-monsoon over JSM which is also more predominant over JSM than the UDP region located far away from desert activity regime (iii) The greater sharing of extinction solar radiation effect on aerosols are more effective in pre-monsoon in UDP in reference to over JSM, where as in case of UDP, the aerosols effect through the scattering mechanism gradually reduce from monsoon to winter months as compared to observed over JSM. The more detailed analysis other important results are also discussed thoroughly in this paper.« less

  9. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases.

    PubMed

    Decker, Daniel; Kleczkowski, Leszek A

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP- N -acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P ( K m values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P ( K m of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P ( K m of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P ( K m of 1 mM) and, to some extent, D-Glc-1-P ( K m of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  10. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    PubMed Central

    Decker, Daniel; Kleczkowski, Leszek A.

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products. PMID:28970843

  11. Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping.

    PubMed

    Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit

    2016-10-03

    Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.

  12. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  13. Meeting the future metro network challenges and requirements by adopting programmable S-BVT with direct-detection and PDM functionality

    NASA Astrophysics Data System (ADS)

    Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier

    2017-07-01

    In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.

  14. Using complex networks towards information retrieval and diagnostics in multidimensional imaging.

    PubMed

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-02

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  15. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    PubMed Central

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-01-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers. PMID:26626047

  16. Management of Large-Scale Wireless Sensor Networks Utilizing Multi-Parent Recursive Area Hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan V.; Delgado-Frias, Jose

    2013-04-19

    Autonomously configuring and self-healing a largescale wireless sensor network requires a light-weight maintenance protocol that is scalable. Further, in a battery powered wireless sensor network duty-cycling a node’s radio can reduce the power consumption of a device and extend the lifetime of a network. With duty-cycled nodes the power consumption of a node’s radio depends on the amount of communication is must perform and by reducing the communication the power consumption can also be reduced. Multi-parent hierarchies can be used to reduce the communication cost when constructing a recursive area clustering hierarchy when compared to singleparent solutions that utilize inefficientmore » communication methods such as flooding and information propagation via single-hop broadcasts. The multi-parent hierarchies remain scalable and provides a level of redundancy for the hierarchy.« less

  17. Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks.

    PubMed

    Azcorra, A; Chiroque, L F; Cuevas, R; Fernández Anta, A; Laniado, H; Lillo, R E; Romo, J; Sguera, C

    2018-05-03

    Billions of users interact intensively every day via Online Social Networks (OSNs) such as Facebook, Twitter, or Google+. This makes OSNs an invaluable source of information, and channel of actuation, for sectors like advertising, marketing, or politics. To get the most of OSNs, analysts need to identify influential users that can be leveraged for promoting products, distributing messages, or improving the image of companies. In this report we propose a new unsupervised method, Massive Unsupervised Outlier Detection (MUOD), based on outliers detection, for providing support in the identification of influential users. MUOD is scalable, and can hence be used in large OSNs. Moreover, it labels the outliers as of shape, magnitude, or amplitude, depending of their features. This allows classifying the outlier users in multiple different classes, which are likely to include different types of influential users. Applying MUOD to a subset of roughly 400 million Google+ users, it has allowed identifying and discriminating automatically sets of outlier users, which present features associated to different definitions of influential users, like capacity to attract engagement, capacity to attract a large number of followers, or high infection capacity.

  18. Rich-Cores in Networks

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585

  19. Rich-cores in networks.

    PubMed

    Ma, Athen; Mondragón, Raúl J

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.

  20. Distributed controller clustering in software defined networks

    PubMed Central

    Gani, Abdullah; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability. PMID:28384312

  1. A suffix arrays based approach to semantic search in P2P systems

    NASA Astrophysics Data System (ADS)

    Shi, Qingwei; Zhao, Zheng; Bao, Hu

    2007-09-01

    Building a semantic search system on top of peer-to-peer (P2P) networks is becoming an attractive and promising alternative scheme for the reason of scalability, Data freshness and search cost. In this paper, we present a Suffix Arrays based algorithm for Semantic Search (SASS) in P2P systems, which generates a distributed Semantic Overlay Network (SONs) construction for full-text search in P2P networks. For each node through the P2P network, SASS distributes document indices based on a set of suffix arrays, by which clusters are created depending on words or phrases shared between documents, therefore, the search cost for a given query is decreased by only scanning semantically related documents. In contrast to recently announced SONs scheme designed by using metadata or predefined-class, SASS is an unsupervised approach for decentralized generation of SONs. SASS is also an incremental, linear time algorithm, which efficiently handle the problem of nodes update in P2P networks. Our simulation results demonstrate that SASS yields high search efficiency in dynamic environments.

  2. Self-configuration and self-optimization process in heterogeneous wireless networks.

    PubMed

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.

  3. Sensor network based vehicle classification and license plate identification system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform.more » Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.« less

  4. [The effect of uridine and uridine nucleotides on isolated rat heart performance in regional myocardial ischemia].

    PubMed

    Eliseev, V V; Rodionova, O M; Sapronov, N S; Selizarova, N O

    2002-01-01

    We studied the effects of uridine, uridine-5'-monophosphate (UMP), uridine-5'-diphosphate (UDP) and uridine-5'-triphosphate on contractility, coronary flow and heart rate in isolated perfused rat hearts under 60-minute regional ischemia of the left ventricle. All the compounds (50 mumol/l) induced a positive inotropic effect but had no effect on the heart rate. Uridine and UMP prevented the development of the contracture. UDP and especially UTP increased coronary flow. Probably, a protective effect of uridine and UMP is due to activation of myocardial glycogen synthesis while favourable effects of UDP and UTP on contractility and coronary flow are explained by their influence on P2U-receptors of cardiomyocytes. In addition, coronary dilatation induced by UDP and UTP promoted the reduction of the damaged zone.

  5. Scalable and Axiomatic Ranking of Network Role Similarity

    PubMed Central

    Jin, Ruoming; Lee, Victor E.; Li, Longjie

    2014-01-01

    A key task in analyzing social networks and other complex networks is role analysis: describing and categorizing nodes according to how they interact with other nodes. Two nodes have the same role if they interact with equivalent sets of neighbors. The most fundamental role equivalence is automorphic equivalence. Unfortunately, the fastest algorithms known for graph automorphism are nonpolynomial. Moreover, since exact equivalence is rare, a more meaningful task is measuring the role similarity between any two nodes. This task is closely related to the structural or link-based similarity problem that SimRank addresses. However, SimRank and other existing similarity measures are not sufficient because they do not guarantee to recognize automorphically or structurally equivalent nodes. This paper makes two contributions. First, we present and justify several axiomatic properties necessary for a role similarity measure or metric. Second, we present RoleSim, a new similarity metric which satisfies these axioms and which can be computed with a simple iterative algorithm. We rigorously prove that RoleSim satisfies all these axiomatic properties. We also introduce Iceberg RoleSim, a scalable algorithm which discovers all pairs with RoleSim scores above a user-defined threshold θ. We demonstrate the interpretative power of RoleSim on both both synthetic and real datasets. PMID:25383066

  6. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs

    PubMed Central

    Ma, T.; Tu, Y.; Zhang, N. F.; Deng, K. D.; Diao, Q. Y.

    2015-01-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using 15N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs. PMID:26323398

  7. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs.

    PubMed

    Ma, T; Tu, Y; Zhang, N F; Deng, K D; Diao, Q Y

    2015-10-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using (15)N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs.

  8. ConnectX2 In niBand Management Queues: New support for Network Of oaded

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Richard L; Poole, Stephen W; Shamis, Pavel

    2010-01-01

    This paper introduces the newly developed InfiniBand (IB) Management Queue capability, used by the Host Channel Adapter (HCA) to manage network task data flow dependancies, and progress the communications associated with such flows. These tasks include sends, receives, and the newly supported wait task, and are scheduled by the HCA based on a data dependency description provided by the user. This functionality is supported by the ConnectX-2 HCA, and provides the means for delegating collective communication management and progress to the HCA, also known as collective communication offload. This provides a means for overlapping collective communications managed by the HCAmore » and computation on the Central Processing Unit (CPU), thus making it possible to reduce the impact of system noise on parallel applications using collective operations. This paper further describes how this new capability can be used to implement scalable Message Passing Interface (MPI) collective operations, describing the high level details of how this new capability is used to implement the MPI Barrier collective operation, focusing on the latency sensitive performance aspects of this new capability. This paper concludes with small scale benchmark experiments comparing implementations of the barrier collective operation, using the new network offload capabilities, with established point-to-point based implementations of these same algorithms, which manage the data flow using the central processing unit. These early results demonstrate the promise this new capability provides to improve the scalability of high-performance applications using collective communications. The latency of the HCA based implementation of the barrier is similar to that of the best performing point-to-point based implementation managed by the central processing unit, starting to outperform these as the number of processes involved in the collective operation increases.« less

  9. ConnectX-2 InfiniBand Management Queues: First Investigation of the New Support for Network Offloaded Collective Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Richard L; Poole, Stephen W; Shamis, Pavel

    2010-01-01

    This paper introduces the newly developed Infini-Band (IB) Management Queue capability, used by the Host Channel Adapter (HCA) to manage network task data flow dependancies, and progress the communications associated with such flows. These tasks include sends, receives, and the newly supported wait task, and are scheduled by the HCA based on a data dependency description provided by the user. This functionality is supported by the ConnectX-2 HCA, and provides the means for delegating collective communication management and progress to the HCA, also known as collective communication offload. This provides a means for overlapping collective communications managed by the HCAmore » and computation on the Central Processing Unit (CPU), thus making it possible to reduce the impact of system noise on parallel applications using collective operations. This paper further describes how this new capability can be used to implement scalable Message Passing Interface (MPI) collective operations, describing the high level details of how this new capability is used to implement the MPI Barrier collective operation, focusing on the latency sensitive performance aspects of this new capability. This paper concludes with small scale benchmark experiments comparing implementations of the barrier collective operation, using the new network offload capabilities, with established point-to-point based implementations of these same algorithms, which manage the data flow using the central processing unit. These early results demonstrate the promise this new capability provides to improve the scalability of high performance applications using collective communications. The latency of the HCA based implementation of the barrier is similar to that of the best performing point-to-point based implementation managed by the central processing unit, starting to outperform these as the number of processes involved in the collective operation increases.« less

  10. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  11. Parallel scalability of Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.

    2015-03-01

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  12. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.

    PubMed

    Merolla, Paul A; Arthur, John V; Alvarez-Icaza, Rodrigo; Cassidy, Andrew S; Sawada, Jun; Akopyan, Filipp; Jackson, Bryan L; Imam, Nabil; Guo, Chen; Nakamura, Yutaka; Brezzo, Bernard; Vo, Ivan; Esser, Steven K; Appuswamy, Rathinakumar; Taba, Brian; Amir, Arnon; Flickner, Myron D; Risk, William P; Manohar, Rajit; Modha, Dharmendra S

    2014-08-08

    Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts. Copyright © 2014, American Association for the Advancement of Science.

  13. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  14. PROPER: global protein interaction network alignment through percolation matching.

    PubMed

    Kazemi, Ehsan; Hassani, Hamed; Grossglauser, Matthias; Pezeshgi Modarres, Hassan

    2016-12-12

    The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PPI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch .

  15. Taming Wild Horses: The Need for Virtual Time-based Scheduling of VMs in Network Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J

    2012-01-01

    The next generation of scalable network simulators employ virtual machines (VMs) to act as high-fidelity models of traffic producer/consumer nodes in simulated networks. However, network simulations could be inaccurate if VMs are not scheduled according to virtual time, especially when many VMs are hosted per simulator core in a multi-core simulator environment. Since VMs are by default free-running, on the outset, it is not clear if, and to what extent, their untamed execution affects the results in simulated scenarios. Here, we provide the first quantitative basis for establishing the need for generalized virtual time scheduling of VMs in network simulators,more » based on an actual prototyped implementations. To exercise breadth, our system is tested with multiple disparate applications: (a) a set of message passing parallel programs, (b) a computer worm propagation phenomenon, and (c) a mobile ad-hoc wireless network simulation. We define and use error metrics and benchmarks in scaled tests to empirically report the poor match of traditional, fairness-based VM scheduling to VM-based network simulation, and also clearly show the better performance of our simulation-specific scheduler, with up to 64 VMs hosted on a 12-core simulator node.« less

  16. Structural and Enzymatic Analysis of MshA from Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetting,M.; Frantom, P.; Blanchard, J.

    2008-01-01

    The glycosyltransferase termed MshA catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-l-myo-inositol-1-phosphate in the first committed step of mycothiol biosynthesis. The structure of MshA from Corynebacterium glutamicum was determined both in the absence of substrates and in a complex with UDP and 1-l-myo-inositol-1-phosphate. MshA belongs to the GT-B structural family whose members have a two-domain structure with both domains exhibiting a Rossman-type fold. Binding of the donor sugar to the C-terminal domain produces a 97 rotational reorientation of the N-terminal domain relative to the C-terminal domain, clamping down on UDP and generating the binding site for 1-l-myo-inositol-1-phosphate. The structuremore » highlights the residues important in binding of UDP-N-acetylglucosamine and 1-l-myo-inositol-1-phosphate. Molecular models of the ternary complex suggest a mechanism in which the {beta}-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attack of the 3-hydroxyl group of 1-l-myo-inositol-1-phosphate while at the same time promoting the cleavage of the sugar nucleotide bond.« less

  17. Peeking Network States with Clustered Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learningmore » tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.« less

  18. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    NASA Astrophysics Data System (ADS)

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-03-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

  19. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network.

    PubMed

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-03-21

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices' non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

  20. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    PubMed Central

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-01-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262

  1. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  2. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper.

    PubMed

    Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan

    2016-05-26

    We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin.

  3. Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea

    PubMed Central

    Bungaruang, Linda; Gutmann, Alexander; Nidetzky, Bernd

    2013-01-01

    Nothofagin is a major antioxidant of redbush herbal tea and represents a class of bioactive flavonoid-like C-glycosidic natural products. We developed an efficient enzymatic synthesis of nothofagin based on a one-pot coupled glycosyltransferase-catalyzed transformation that involves perfectly selective 3′-C-β-d-glucosylation of naturally abundant phloretin and applies sucrose as expedient glucosyl donor. C-Glucosyltransferase from Oryza sativa (rice) was used for phloretin C-glucosylation from uridine 5′-diphosphate (UDP)-glucose, which was supplied continuously in situ through conversion of sucrose and UDP catalyzed by sucrose synthase from Glycine max (soybean). In an evaluation of thermodynamic, kinetic, and stability parameters of the coupled enzymatic reactions, poor water solubility of the phloretin acceptor substrate was revealed as a major bottleneck of conversion efficiency. Using periodic feed of phloretin controlled by reaction progress, nothofagin concentrations (45 mM; 20 g l−1) were obtained that vastly exceed the phloretin solubility limit (5–10 mM). The intermediate UDP-glucose was produced from catalytic amounts of UDP (1.0 mM) and was thus recycled 45 times in the process. Benchmarked against comparable glycosyltransferase-catalyzed transformations (e.g., on quercetin), the synthesis of nothofagin has achieved intensification in glycosidic product formation by up to three orders of magnitude (μM→mM range). It thus makes a strong case for the application of Leloir glycosyltransferases in biocatalytic syntheses of glycosylated natural products as fine chemicals. PMID:24415961

  4. Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units

    NASA Astrophysics Data System (ADS)

    Corral, Roque; Gisbert, Fernando; Pueblas, Jesus

    2017-02-01

    The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.

  5. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph

    NASA Astrophysics Data System (ADS)

    Feng, Lv; Chunlin, Gao; Kaiyang, Ma

    2017-05-01

    With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.

  6. Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi

    2006-12-01

    UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less

  7. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  8. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.

    PubMed

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-09-25

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  9. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    PubMed Central

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-01-01

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731

  10. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  11. A Laboratory for Characterizing the Efficacy of Moving Target Defense

    DTIC Science & Technology

    2016-10-25

    of William and Mary are developing a scalable, dynamic, adaptive security system that combines virtualization , emulation, and mutable network...goal with the resource constraints of a small number of servers, and making virtual nodes “real enough” from the view of attackers. Unfortunately, with...we at College of William and Mary are developing a scalable, dynamic, adaptive security system that combines virtualization , emulation, and mutable

  12. Tradespace and Affordability - Phase 2

    DTIC Science & Technology

    2013-12-31

    infrastructure capacity. Figure 15 locates the thirteen feasible configurations in survivability- mobility capability space (capability levels are scaled...battery power, or display size decreases. Other quantities may be applicable, such as the number of nodes in a scalable-up mobile network or the...limited size of a scalable-down mobile platform. Versatility involves the range of capabilities provided by a system as it is currently configured. A

  13. Leveraging the Cloud for Integrated Network Experimentation

    DTIC Science & Technology

    2014-03-01

    kernel settings, or any of the low-level subcomponents. 3. Scalable Solutions: Businesses can build scalable solutions for their clients , ranging from...values. These values 13 can assume several distributions that include normal, Pareto , uniform, exponential and Poisson, among others [21]. Additionally, D...communication, the web client establishes a connection to the server before traffic begins to flow. Web servers do not initiate connections to clients in

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in reconfigurable network enclaving through Software Defined Networking (SDN) and Network Function Virtualization (NFV) and their applicability to secure enclaves in HPC environments. SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of which is very straight forward, the system administrator can deploy networks that are more amenable to customer needs, and at the same time achieve increased scalability making it easier to increase overall capacity as needed without negatively affecting functionality. The network administration of both the server system and the virtual sub-systems is simplified allowing control of the infrastructure through well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer significant promise in meeting these goals, they also provide the ability to address a significant component of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems are built upon scalable high-performance networking technologies designed to meet specific application requirements. Dynamic isolation of resources within these environments has remained difficult to achieve. SDN and NFV methodology provide us with relevant concepts and available open standards based APIs that isolate compute and storage resources within an otherwise common networking infrastructure. Additionally, the integration of the networking APIs within larger system frameworks such as OpenStack provide the tools necessary to establish isolated enclaves dynamically allowing the benefits of HPC while providing a controlled security structure surrounding these systems.« less

  15. Leveraging social networks for understanding the evolution of epidemics

    PubMed Central

    2011-01-01

    Background To understand how infectious agents disseminate throughout a population it is essential to capture the social model in a realistic manner. This paper presents a novel approach to modeling the propagation of the influenza virus throughout a realistic interconnection network based on actual individual interactions which we extract from online social networks. The advantage is that these networks can be extracted from existing sources which faithfully record interactions between people in their natural environment. We additionally allow modeling the characteristics of each individual as well as customizing his daily interaction patterns by making them time-dependent. Our purpose is to understand how the infection spreads depending on the structure of the contact network and the individuals who introduce the infection in the population. This would help public health authorities to respond more efficiently to epidemics. Results We implement a scalable, fully distributed simulator and validate the epidemic model by comparing the simulation results against the data in the 2004-2005 New York State Department of Health Report (NYSDOH), with similar temporal distribution results for the number of infected individuals. We analyze the impact of different types of connection models on the virus propagation. Lastly, we analyze and compare the effects of adopting several different vaccination policies, some of them based on individual characteristics -such as age- while others targeting the super-connectors in the social model. Conclusions This paper presents an approach to modeling the propagation of the influenza virus via a realistic social model based on actual individual interactions extracted from online social networks. We implemented a scalable, fully distributed simulator and we analyzed both the dissemination of the infection and the effect of different vaccination policies on the progress of the epidemics. The epidemic values predicted by our simulator match real data from NYSDOH. Our results show that our simulator can be a useful tool in understanding the differences in the evolution of an epidemic within populations with different characteristics and can provide guidance with regard to which, and how many, individuals should be vaccinated to slow down the virus propagation and reduce the number of infections. PMID:22784620

  16. Real-Time Optimization in Complex Stochastic Environment

    DTIC Science & Technology

    2015-06-24

    simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems

  17. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    PubMed

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  18. Mass Isotopomer Analysis of Metabolically Labeled Nucleotide Sugars and N- and O-Glycans for Tracing Nucleotide Sugar Metabolisms*

    PubMed Central

    Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki

    2013-01-01

    Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760

  19. Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis

    PubMed Central

    Ramos, Ana; Boels, Ingeborg C.; de Vos, Willem M.; Santos, Helena

    2001-01-01

    The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps−) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps− strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation. PMID:11133425

  20. Fiber-Bragg-Grating-Based Optical Code-Division Multiple Access Passive Optical Network Using Dual-Baseband Modulation Scheme

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Piao; Wu, He-Long

    2005-08-01

    We propose a fiber-Bragg-grating (FBG)-based optical code-division multiple access passive optical network (OCDMA-PON) using a dual-baseband modulation scheme. A mathematical model is developed to study the performance of this scheme. According to the analyzed results, this scheme can allow a tolerance of the spectral power distortion (SPD) ratio of 25% with a bit error rate (BER) of 10-9 when the modified pseudorandom noise (PN) code length is 16. Moreover, we set up a simulated system to evaluate the baseband and radio frequency (RF) band transmission characteristics. The simulation results demonstrate that our proposed OCDMA-PON can provide a cost-effective and scalable fiber-to-the-home solution.

  1. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sourcesmore » and detectors through an external clock with adjustable delay.« less

  2. An Assessment of Gigabit Ethernet Technology and Its Applications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Kim, Chan M.; Ramos, Calvin T.

    2000-01-01

    This paper describes Gigabit Ethernet and its role in supporting R&D programs at NASA Glenn. These programs require an advanced high-speed network capable of transporting multimedia traffic, including real-time visualization, high- resolution graphics, and scientific data. GigE is a 1 Gbps extension to 10 and 100 Mbps Ethernet. The IEEE 802.3z and 802.3ab standards define the MAC layer and 1000BASE-X and 1000BASE-T physical layer specifications for GigE. GigE switches and buffered distributors support IEEE 802.3x flow control. The paper also compares GigE with ATM in terms of quality of service, data rate, throughput, scalability, interoperability, network management, and cost of ownership.

  3. Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem.

    PubMed

    Patin, Delphine; Bostock, Julieanne; Chopra, Ian; Mengin-Lecreulx, Dominique; Blanot, Didier

    2012-06-01

    Chlamydiaceae are obligate intracellular bacteria that do not synthesise detectable peptidoglycan although they possess an almost complete arsenal of genes encoding peptidoglycan biosynthetic activities. In this paper, the murF gene from Chlamydia trachomatis was shown to be capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase activity. Recombinant MurF from C. trachomatis was overproduced and purified from E. coli. It exhibited ATP-dependent UDP-MurNAc-X-γ-D-Glu-meso-A(2)pm:D-Ala-D-Ala ligase activity in vitro. No significant difference of kinetic parameters was seen when X was L-Ala, L-Ser or Gly. The L-Lys-containing UDP-MurNAc-tripeptide was a poorer substrate as compared to the meso-A(2)pm-containing one. Based on the respective substrate specificities of the chlamydial MurC, MurE, MurF and Ddl enzymes, a sequence L-Ala/L-Ser/Gly-γ-D-Glu-meso-A(2)pm-D-Ala-D-Ala is expected for the chlamydial pentapeptide stem, with Gly at position 1 being less likely.

  4. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.

    PubMed

    Geisler, Matt; Wilczynska, Malgorzata; Karpinski, Stanislaw; Kleczkowski, Leszek A

    2004-11-01

    UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.

  5. Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage.

    PubMed

    Zhang, Hao; Zhang, Mengru; Zhang, Meiling; Zhang, Lin; Zhang, Anping; Zhou, Yiming; Wu, Ping; Tang, Yawen

    2017-09-01

    Nanoporous networks of tin-based alloys immobilized within carbon matrices possess unique structural and compositional superiorities toward lithium-storage, and are expected to manifest improved strain-accommodation and charge-transport capabilities and thus desirable anodic performance for advanced lithium-ion batteries (LIBs). Herein, a facile and scalable hybrid aerogel-derived thermal-autoreduction route has been developed for the construction of nanoporous network of SnNi alloy immobilized within carbon/graphene dual matrices (SnNi@C/G network). When applied as an anode material for LIBs, the SnNi@C/G network manifests desirable lithium-storage performances in terms of specific capacities, cycle life, and rate capability. The facile aerogel-derived route and desirable Li-storage performance of the SnNi@C/G network facilitate its practical application as a high-capacity, long-life, and high-rate anode material for advanced LIBs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    PubMed Central

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584

  7. A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies

    PubMed Central

    2017-01-01

    The authors use four criteria to examine a novel community detection algorithm: (a) effectiveness in terms of producing high values of normalized mutual information (NMI) and modularity, using well-known social networks for testing; (b) examination, meaning the ability to examine mitigating resolution limit problems using NMI values and synthetic networks; (c) correctness, meaning the ability to identify useful community structure results in terms of NMI values and Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks; and (d) scalability, or the ability to produce comparable modularity values with fast execution times when working with large-scale real-world networks. In addition to describing a simple hierarchical arc-merging (HAM) algorithm that uses network topology information, we introduce rule-based arc-merging strategies for identifying community structures. Five well-studied social network datasets and eight sets of LFR benchmark networks were employed to validate the correctness of a ground-truth community, eight large-scale real-world complex networks were used to measure its efficiency, and two synthetic networks were used to determine its susceptibility to two resolution limit problems. Our experimental results indicate that the proposed HAM algorithm exhibited satisfactory performance efficiency, and that HAM-identified and ground-truth communities were comparable in terms of social and LFR benchmark networks, while mitigating resolution limit problems. PMID:29121100

  8. Comparative-effectiveness research in distributed health data networks.

    PubMed

    Toh, S; Platt, R; Steiner, J F; Brown, J S

    2011-12-01

    Comparative-effectiveness research (CER) can be conducted within a distributed health data network. Such networks allow secure access to separate data sets from different data partners and overcome many practical obstacles related to patient privacy, data security, and proprietary concerns. A scalable network architecture supports a wide range of CER activities and meets the data infrastructure needs envisioned by the Federal Coordinating Council for Comparative Effectiveness Research.

  9. Optimal deployment of resources for maximizing impact in spreading processes

    PubMed Central

    2017-01-01

    The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013

  10. Space information technologies: future agenda

    NASA Astrophysics Data System (ADS)

    Flournoy, Don M.

    2005-11-01

    Satellites will operate more like wide area broadband computer networks in the 21st Century. Space-based information and communication technologies will therefore be a lot more accessible and functional for the individual user. These developments are the result of earth-based telecommunication and computing innovations being extended to space. The author predicts that the broadband Internet will eventually be available on demand to users of terrestrial networks wherever they are. Earth and space communication assets will be managed as a single network. Space networks will assure that online access is ubiquitous. No matter whether users are located in cities or in remote locations, they will always be within reach of a node on the Internet. Even today, scalable bandwidth can be delivered to active users when moving around in vehicles on the ground, or aboard ships at sea or in the air. Discussion of the innovative technologies produced by NASA's Advanced Communications Technology Satellite (1993-2004) demonstrates future capabilities of satellites that make them uniquely suited to serve as nodes on the broadband Internet.

  11. A multiplexed light-matter interface for fibre-based quantum networks

    PubMed Central

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B.; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-01-01

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks. PMID:27046076

  12. A multiplexed light-matter interface for fibre-based quantum networks.

    PubMed

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-04-05

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks.

  13. Study of the overproduced uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1996-01-01

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli is responsible for the addition of the first amino acid of the peptide moiety in the assembly of the monomer unit of peptidoglycan. It catalyzes the formation of the amide bond between UDP-N-acetylmuramic acid (UDP-MurNAc) and L-alanine. The UDP-MurNAc-L-alanine ligase was overproduced 2000-fold in a strain harboring a recombinant plasmid (pAM1005) with the murC gene under the control of the inducible promoter trc. The murC gene product appears as a 50-kDa protein accounting for ca. 50% of total cell proteins. A two-step purification led to 1 g of a homogeneous protein from an 8-liter culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the gene. The stability of the enzymatic activity is strictly dependent on the presence of 2-mercaptoethanol. The K(m) values for substrates UDP-N-acetylmuramic acid, L-alanine, and ATP were estimated; 100, 20, and 450 microM, respectively. The specificity of the enzyme for its substrates was investigated with various analogues. Preliminary experiments attempting to elucidate the enzymatic mechanism were consistent with the formation of an acylphosphate intermediate.

  14. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes

    PubMed Central

    Kapuria, Vaibhav; Röhrig, Ute F.; Bhuiyan, Tanja; Borodkin, Vladimir S.; van Aalten, Daan M.F.; Zoete, Vincent; Herr, Winship

    2016-01-01

    In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT. PMID:27056667

  15. Exchanging Peers to Establish P2P Networks

    NASA Astrophysics Data System (ADS)

    Akon, Mursalin; Islam, Mohammad Towhidul; Shen, Xuemin(Sherman); Singh, Ajit

    Structure-wise, P2P networks can be divided into two major categories: (1) structured and (2) unstructured. In this chapter, we survey a group of unstructured P2P networks. This group of networks employs a gossip or epidemic protocol to maintain the members of the network and during a gossip, peers exchange a subset of their neighbors with each other. It is reported that this kind of networks are scalable, robust and resilient to severe network failure, at the same time very inexpensive to operate.

  16. Generating Billion-Edge Scale-Free Networks in Seconds: Performance Study of a Novel GPU-based Preferential Attachment Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.; Alam, Maksudul

    A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidiamore » GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.« less

  17. An i2b2-based, generalizable, open source, self-scaling chronic disease registry

    PubMed Central

    Quan, Justin; Ortiz, David M; Bousvaros, Athos; Ilowite, Norman T; Inman, Christi J; Marsolo, Keith; McMurry, Andrew J; Sandborg, Christy I; Schanberg, Laura E; Wallace, Carol A; Warren, Robert W; Weber, Griffin M; Mandl, Kenneth D

    2013-01-01

    Objective Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Materials and methods Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. Results The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. Discussion We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. Conclusions The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases. PMID:22733975

  18. An i2b2-based, generalizable, open source, self-scaling chronic disease registry.

    PubMed

    Natter, Marc D; Quan, Justin; Ortiz, David M; Bousvaros, Athos; Ilowite, Norman T; Inman, Christi J; Marsolo, Keith; McMurry, Andrew J; Sandborg, Christy I; Schanberg, Laura E; Wallace, Carol A; Warren, Robert W; Weber, Griffin M; Mandl, Kenneth D

    2013-01-01

    Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases.

  19. A Scalable Model for Channel Access Protocols in Multihop Ad Hoc Networks

    DTIC Science & Technology

    2004-01-01

    among the nodes. Gitman [28] published what is arguably the first paper that actually dealt with a multihop system. Gitman con- sidered a two-hop...Wireless Information Networks, vol. 9, no. 3, pp. 191–199, July 2002. [28] I. Gitman , “On the capacity of slotted ALOHA networks and some desigh

  20. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  1. Ontology-based topic clustering for online discussion data

    NASA Astrophysics Data System (ADS)

    Wang, Yongheng; Cao, Kening; Zhang, Xiaoming

    2013-03-01

    With the rapid development of online communities, mining and extracting quality knowledge from online discussions becomes very important for the industrial and marketing sector, as well as for e-commerce applications and government. Most of the existing techniques model a discussion as a social network of users represented by a user-based graph without considering the content of the discussion. In this paper we propose a new multilayered mode to analysis online discussions. The user-based and message-based representation is combined in this model. A novel frequent concept sets based clustering method is used to cluster the original online discussion network into topic space. Domain ontology is used to improve the clustering accuracy. Parallel methods are also used to make the algorithms scalable to very large data sets. Our experimental study shows that the model and algorithms are effective when analyzing large scale online discussion data.

  2. SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.

    PubMed

    Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan

    2015-11-24

    Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes' positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes' positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes' relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks.

  3. KOJAK: Scalable Semantic Link Discovery Via Integrated Knowledge-Based and Statistical Reasoning

    DTIC Science & Technology

    2006-11-01

    program can find interesting connections in a network without having to learn the patterns of interestingness beforehand. The key advantage of our...Interesting Instances in Semantic Graphs Below we describe how the UNICORN framework can discover interesting instances in a multi-relational dataset...We can now describe how UNICORN solves the first problem of finding the top interesting nodes in a semantic net by ranking them according to

  4. Scalable Planning and Learning for Multiagent POMDPs

    DTIC Science & Technology

    2015-01-01

    Scalable Planning and Learning for Multiagent POMDPs Christopher Amato CSAIL, MIT Cambridge, MA 02139 camato@csail.mit.edu Frans A. Oliehoek...state of a special POMDP, called a BA- POMDP. The BA-POMDP can be extended to the multiagent setting ( Amato and Oliehoek 2013), yielding the Bayes...2012; Amato et al. 2013) in the form of factored Dec-POMDPs (Oliehoek, Whiteson, and Spaan 2013; Pajarinen and Pel- tonen 2011) and networked

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trujillo, Angelina Michelle

    Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.

  6. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    PubMed Central

    Yoo, Seong-eun

    2013-01-01

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388

  7. A wireless sensor network-based portable vehicle detector evaluation system.

    PubMed

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  8. Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah

    PubMed Central

    Tian, Le; Latré, Steven

    2017-01-01

    IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks. PMID:28677617

  9. Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah.

    PubMed

    Tian, Le; Khorov, Evgeny; Latré, Steven; Famaey, Jeroen

    2017-07-04

    IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks.

  10. PACKMAN-Net: A Distributed, Open-Access, and Scalable Network of User-Friendly Space Weather Stations

    NASA Astrophysics Data System (ADS)

    Zorzano, M.-P.; Martín-Torres, J.; Mathanlal, T.; Vakkada Ramachandran, A.; Ramirez-Luque, J.-A.

    2018-04-01

    The purpose of this work is to demonstrate the operability of a network of small-sized detectors of the PACKMAN instrument, operated simultaneously to provide real time cosmic ray and solar activity monitoring over the entire planet.

  11. Efficient collective influence maximization in cascading processes with first-order transitions

    PubMed Central

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-01-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988

  12. Efficient collective influence maximization in cascading processes with first-order transitions

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-03-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.

  13. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to usemore » {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.« less

  14. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia.

    PubMed

    Timson, David J; Lindert, Steffen

    2013-09-10

    UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  16. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  17. Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium.

    PubMed

    Carneiro, Inês; Timóteo, M Alexandrina; Silva, Isabel; Vieira, Cátia; Baldaia, Catarina; Ferreirinha, Fátima; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2014-07-01

    Despite the abundant expression of the UDP-sensitive P2Y6 receptor in urothelial cells and sub-urothelial myofibroblasts its role in the control of bladder function is not well understood. We compared the effects of UDP and of the selective P2Y6 receptor agonist, PSB0474, on bladder urodynamics in anaesthetized rats; the voided fluid was tested for ATP bioluminescence. The isolated urinary bladder was used for in vitro myographic recordings and [(3) H]-ACh overflow experiments. Instillation of UDP or PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions; an effect blocked by the P2Y6 receptor antagonist, MRS2578. Effects mediated by urothelial P2Y6 receptors required extrinsic neuronal circuitry as they were not detected in the isolated bladder. UDP-induced bladder hyperactvity was also prevented by blocking P2X3 and P2Y1 receptors, respectively, with A317491 and MRS2179 applied i.v.. UDP decreased [(3) H]-ACh release from stimulated bladder strips with urothelium, but not in its absence. Inhibitory effects of UDP were converted into facilitation by the P2Y1 receptor antagonist, MRS2179. The P2Y6 receptor agonist increased threefold ATP levels in the voided fluid. Activation of P2Y6 receptors increased the voiding frequency indirectly by releasing ATP from the urothelium and activation of P2X3 receptors on sub-urothelial nerve afferents. Bladder hyperactivity may be partly reversed following ATP hydrolysis to ADP by E-NTPDases, thereby decreasing ACh release from cholinergic nerves expressing P2Y1 receptors. © 2014 The British Pharmacological Society.

  18. High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner*

    PubMed Central

    Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.

    2015-01-01

    Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898

  19. Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5'-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins.

    PubMed Central

    Rancour, D M; Menon, A K

    1998-01-01

    Much of the enzymic machinery required for the assembly of cell surface carbohydrates is located in the endoplasmic reticulum (ER) of eukaryotic cells. Structural information on these proteins is limited and the identity of the active polypeptide(s) is generally unknown. This paper describes the synthesis and characteristics of a photoaffinity reagent that can be used to identify and analyse members of the ER glycan assembly apparatus, specifically those glycosyltransferases, nucleotide phosphatases and nucleotide-sugar transporters that recognize uridine nucleotides or UDP-sugars. The photoaffinity reagent, P3-(4-azidoanilido)uridine 5'-triphosphate (AAUTP), was synthesized easily from commercially available precursors. AAUTP inhibited the activity of ER glycosyltransferases that utilize UDP-GlcNAc and UDP-Glc, indicating that it is recognized by UDP-sugar-binding proteins. In preliminary tests AAUTP[alpha-32P] labelled bovine milk galactosyltransferase, a model UDP-sugar-utilizing enzyme, in a UV-light-dependent, competitive and saturable manner. When incubated with rat liver ER vesicles, AAUTP[alpha-32P] labelled a discrete subset of ER proteins; labelling was light-dependent and metal ion-specific. Photolabelling of intact ER vesicles with AAUTP[alpha-32P] caused selective incorporation of radioactivity into proteins with cytoplasmically disposed binding sites; UDP-Glc:glycoprotein glucosyltransferase, a lumenal protein, was labelled only when the vesicle membrane was disrupted. These data indicate that AAUTP is a membrane topological probe of catalytic sites in target proteins. Strategies for using AAUTP to identify and study novel ER proteins involved in glycan assembly are discussed. PMID:9677326

  20. M-type K+ currents in rat cultured thoracolumbar sympathetic neurones and their role in uracil nucleotide-evoked noradrenaline release

    PubMed Central

    Nörenberg, W; von Kügelgen, I; Meyer, A; Illes, P; Starke, K

    2000-01-01

    Cultured sympathetic neurones are depolarized and release noradrenaline in response to extracellular ATP, UDP and UTP. We examined the possibility that, in neurones cultured from rat thoracolumbar sympathetic ganglia, inhibition of the M-type potassium current might underlie the effects of UDP and UTP. Reverse transcriptase-polymerase chain reaction indicated that the cultured cells contained mRNA for P2Y2-, P2Y4- and P2Y6-receptors as well as for the KCNQ2- and KCNQ3-subunits which have been suggested to assemble into M-channels. In cultures of neurones taken from newborn as well as from 10 day-old rats, oxotremorine, the M-channel blocker Ba2+ and UDP all released previously stored [3H]-noradrenaline. The neurones possessed M-currents, the kinetic properties of which were similar in neurones from newborn and 9–12 day-old rats. UDP, UTP and ATP had no effect on M-currents in neurones prepared from newborn rats. Oxotremorine and Ba2+ substantially inhibited the current. ATP also had no effect on the M-current in neurones prepared from 9–12 day-old rats. Oxotremorine and Ba2+ again caused marked inhibition. In contrast to cultures from newborn animals, UDP and UTP attenuated the M-current in neurones from 9–12 day-old rats; however, the maximal inhibition was less than 30%. The results indicate that inhibition of the M-current is not involved in uracil nucleotide-induced transmitter release from rat cultured sympathetic neurones during early development. M-current inhibition may contribute to release at later stages, but only to a minor extent. The mechanism leading to noradrenaline release by UDP and UTP remains unknown. PMID:10683196

  1. A networked voting rule for democratic representation

    PubMed Central

    Brigatti, Edgardo; Moreno, Yamir

    2018-01-01

    We introduce a general framework for exploring the problem of selecting a committee of representatives with the aim of studying a networked voting rule based on a decentralized large-scale platform, which can assure a strong accountability of the elected. The results of our simulations suggest that this algorithm-based approach is able to obtain a high representativeness for relatively small committees, performing even better than a classical voting rule based on a closed list of candidates. We show that a general relation between committee size and representatives exists in the form of an inverse square root law and that the normalized committee size approximately scales with the inverse of the community size, allowing the scalability to very large populations. These findings are not strongly influenced by the different networks used to describe the individuals’ interactions, except for the presence of few individuals with very high connectivity which can have a marginal negative effect in the committee selection process. PMID:29657817

  2. Real-time scalable visual analysis on mobile devices

    NASA Astrophysics Data System (ADS)

    Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William

    2008-02-01

    Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.

  3. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    PubMed Central

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  4. Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins.

    PubMed

    Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten

    2018-08-01

    In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Man o' War Mutation in UDP-α-D-Xylose Synthase Favors the Abortive Catalytic Cycle and Uncovers a Latent Potential for Hexamer Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Jr., Richard M.; Polizzi, Samuel J.; Kadirvelraj, Renuka

    The man o’ war (mow) phenotype in zebrafish is characterized by severe craniofacial defects due to a missense mutation in UDP-α-D-xylose synthase (UXS), an essential enzyme in proteoglycan biosynthesis. The mow mutation is located in the UXS dimer interface ~16 Å away from the active site, suggesting an indirect effect on the enzyme mechanism. We have examined the structural and catalytic consequences of the mow mutation (R236H) in the soluble fragment of human UXS (hUXS), which shares 93% sequence identity with the zebrafish enzyme. In solution, hUXS dimers undergo a concentration-dependent association to form a tetramer. Sedimentation velocity studies showmore » that the R236H substitution induces the formation of a new hexameric species. Using two new crystal structures of the hexamer, we show that R236H and R236A substitutions cause a local unfolding of the active site that allows for a rotation of the dimer interface necessary to form the hexamer. The disordered active sites in the R236H and R236A mutant constructs displace Y231, the essential acid/base catalyst in the UXS reaction mechanism. The loss of Y231 favors an abortive catalytic cycle in which the reaction intermediate, UDP-α-D-4-keto-xylose, is not reduced to the final product, UDP-α-D-xylose. Surprisingly, the mow-induced hexamer is almost identical to the hexamers formed by the deeply divergent UXS homologues from Staphylococcus aureus and Helicobacter pylori (21% and 16% sequence identity, respectively). The persistence of a latent hexamer-building interface in the human enzyme suggests that the ancestral UXS may have been a hexamer.« less

  6. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  7. Effect of Slow Fading and Adaptive Modulation on TCP/UDP Performance of High-Speed Packet Wireless Networks

    DTIC Science & Technology

    2006-08-25

    interleaving schemes defined in 802.11a standard, although only 6 Mbps data rate with BPSK and 1/2 Convolutional coding and puncturing is used in our...16-QAM/64-QAM Convolutional Code K = 7 (64 states) K = 7 (64 states) Coding Rates 1/2, 2/3, 3/4 1/2, 2/3, 3/4 Channel Spacing (MHz) 20 10 Signal...Since 3G systems need to be backward compatible with 2G systems, they are a combination of existing and evolved equipments with data rate up to 2 Mbps

  8. Building a Dynamic Spectrum Access Smart Radio with Application to Public Safety Disaster Communications

    DTIC Science & Technology

    2009-08-13

    User Interface Master C ontroller (MC ) C ompos ite XML C onfiguration & E vents Awareness Universal  R adio F ramework US R P 802.11 B luetooth E...Bluetooth Database US R P  Database Adapters to be evaluated in Network Testbed Memory Adaptability Policy C ontrol Interoperability Figure 4.2...10 15 20 25 30 10-3 10-2 10-1 100 101 102 103 time (sec) UDP Jitter Ji tte r ( m s) 802.3 Wired 802.11 Wireless Bluetooth GNU Radio/USRP Figure

  9. Automation Hooks Architecture Trade Study for Flexible Test Orchestration

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.

    2010-01-01

    We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.

  10. A novel PON-based mobile distributed cluster of antennas approach to provide impartial and broadband services to end users

    NASA Astrophysics Data System (ADS)

    Sana, Ajaz; Saddawi, Samir; Moghaddassi, Jalil; Hussain, Shahab; Zaidi, Syed R.

    2010-01-01

    In this research paper we propose a novel Passive Optical Network (PON) based Mobile Worldwide Interoperability for Microwave Access (WiMAX) access network architecture to provide high capacity and performance multimedia services to mobile WiMAX users. Passive Optical Networks (PON) networks do not require powered equipment; hence they cost lower and need less network management. WiMAX technology emerges as a viable candidate for the last mile solution. In the conventional WiMAX access networks, the base stations and Multiple Input Multiple Output (MIMO) antennas are connected by point to point lines. Ideally in theory, the Maximum WiMAX bandwidth is assumed to be 70 Mbit/s over 31 miles. In reality, WiMAX can only provide one or the other as when operating over maximum range, bit error rate increases and therefore it is required to use lower bit rate. Lowering the range allows a device to operate at higher bit rates. Our focus in this research paper is to increase both range and bit rate by utilizing distributed cluster of MIMO antennas connected to WiMAX base stations with PON based topologies. A novel quality of service (QoS) algorithm is also proposed to provide admission control and scheduling to serve classified traffic. The proposed architecture presents flexible and scalable system design with different performance requirements and complexity.

  11. Lightweight and scalable secure communication in VANET

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoling; Lu, Yang; Zhu, Xiaojuan; Qiu, Shuwei

    2015-05-01

    To avoid a message to be tempered and forged in vehicular ad hoc network (VANET), the digital signature method is adopted by IEEE1609.2. However, the costs of the method are excessively high for large-scale networks. The paper efficiently copes with the issue with a secure communication framework by introducing some lightweight cryptography primitives. In our framework, point-to-point and broadcast communications for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) are studied, mainly based on symmetric cryptography. A new issue incurred is symmetric key management. Thus, we develop key distribution and agreement protocols for two-party key and group key under different environments, whether a road side unit (RSU) is deployed or not. The analysis shows that our protocols provide confidentiality, authentication, perfect forward secrecy, forward secrecy and backward secrecy. The proposed group key agreement protocol especially solves the key leak problem caused by members joining or leaving in existing key agreement protocols. Due to aggregated signature and substitution of XOR for point addition, the average computation and communication costs do not significantly increase with the increase in the number of vehicles; hence, our framework provides good scalability.

  12. Pseudo-orthogonalization of memory patterns for associative memory.

    PubMed

    Oku, Makito; Makino, Takaki; Aihara, Kazuyuki

    2013-11-01

    A new method for improving the storage capacity of associative memory models on a neural network is proposed. The storage capacity of the network increases in proportion to the network size in the case of random patterns, but, in general, the capacity suffers from correlation among memory patterns. Numerous solutions to this problem have been proposed so far, but their high computational cost limits their scalability. In this paper, we propose a novel and simple solution that is locally computable without any iteration. Our method involves XNOR masking of the original memory patterns with random patterns, and the masked patterns and masks are concatenated. The resulting decorrelated patterns allow higher storage capacity at the cost of the pattern length. Furthermore, the increase in the pattern length can be reduced through blockwise masking, which results in a small amount of capacity loss. Movie replay and image recognition are presented as examples to demonstrate the scalability of the proposed method.

  13. Game theoretic wireless resource allocation for H.264 MGS video transmission over cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2015-03-01

    We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.

  14. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  15. Energy challenges in optical access and aggregation networks.

    PubMed

    Kilper, Daniel C; Rastegarfar, Houman

    2016-03-06

    Scalability is a critical issue for access and aggregation networks as they must support the growth in both the size of data capacity demands and the multiplicity of access points. The number of connected devices, the Internet of Things, is growing to the tens of billions. Prevailing communication paradigms are reaching physical limitations that make continued growth problematic. Challenges are emerging in electronic and optical systems and energy increasingly plays a central role. With the spectral efficiency of optical systems approaching the Shannon limit, increasing parallelism is required to support higher capacities. For electronic systems, as the density and speed increases, the total system energy, thermal density and energy per bit are moving into regimes that become impractical to support-for example requiring single-chip processor powers above the 100 W limit common today. We examine communication network scaling and energy use from the Internet core down to the computer processor core and consider implications for optical networks. Optical switching in data centres is identified as a potential model from which scalable access and aggregation networks for the future Internet, with the application of integrated photonic devices and intelligent hybrid networking, will emerge. © 2016 The Author(s).

  16. The Undiagnosed Diseases Program Integrated Collaboration System (UDPICS): One Program’s Experience Developing Custom Software to Support Research for Complex-Disease Families

    PubMed Central

    Guzman, Jessica; Lee, Elizabeth; Draper, David; Valivullah, Zaheer; Yu, Guoyun; Sincan, Murat; Gahl, William A.; Adams, David R.

    2015-01-01

    The Undiagnosed Diseases Program (UDP) was started in 2008 with the goals of making diagnoses and facilitating related translational research. The individuals and families seen by the UDP are often unique and medically complex. Approximately 40% of UDP cases are pediatric. The Undiagnosed Diseases Program Integrated Collaboration System (UDPICS) was designed to create a collaborative workspace for researchers, clinicians and families. We describe our progress in developing the system to date, focusing on design rationale, challenges and issues that are likely to be common in the development of similar systems in the future. PMID:27417368

  17. Xylosylation of Phenolic Hydroxyl Groups of the Monomeric Lignin Model Compounds 4-Methylguaiacol and Vanillyl Alcohol by Coriolus versicolor

    PubMed Central

    Kondo, Ryuichiro; Yamagami, Hikari; Sakai, Kokki

    1993-01-01

    When 4-methylguaiacol (MeG), a phenolic lignin model compound, was added to a culture that was inoculated with Coriolus versicolor, it was bioconverted into 2-methoxy-4-methylphenyl β-d-xyloside (MeG-Xyl). The phenolic hydroxyl group of vanillyl alcohol was much more extensively xylosylated than the alcoholic hydroxyl group. When a mixture of MeG and commercial UDP-xylose was incubated with cell extracts of mycelia, transformation of UDP-xylose into MeG-Xyl was observed. This result suggested that UDP-xylosyltransferase was involved in the xylosylation of phenolic hydroxyl groups of lignin model compounds. PMID:16348869

  18. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs.

    PubMed

    Roper, Christopher S; Schubert, Randall C; Maloney, Kevin J; Page, David; Ro, Christopher J; Yang, Sophia S; Jacobsen, Alan J

    2015-04-17

    A scalable method for fabricating architected materials well-suited for heat and mass exchange is presented. These materials exhibit unprecedented combinations of small hydraulic diameters (13.0-0.09 mm) and large hydraulic-diameter-to-thickness ratios (5.0-30,100). This process expands the range of material architectures achievable starting from photopolymer waveguide lattices or additive manufacturing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    DOEpatents

    Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  20. Inter-allotropic transformations in the heterogeneous carbon nanotube networks.

    PubMed

    Jung, Hyun Young; Jung, Sung Mi; Kim, Dong Won; Jung, Yung Joon

    2017-01-19

    The allotropic transformations of carbon provide an immense technological interest for tailoring the desired molecular structures in the scalable nanoelectronic devices. Herein, we explore the effects of morphology and geometric alignment of the nanotubes for the re-engineering of carbon bonds in the heterogeneous carbon nanotube (CNT) networks. By applying alternating voltage pulses and electrical forces, the single-walled CNTs in networks were predominantly transformed into other predetermined sp 2 carbon structures (multi-walled CNTs and multi-layered graphitic nanoribbons), showing a larger intensity in a coalescence-induced mode of Raman spectra with the increasing channel width. Moreover, the transformed networks have a newly discovered sp 2 -sp 3 hybrid nanostructures in accordance with the alignment. The sp 3 carbon structures at the small channel are controlled, such that they contain up to about 29.4% networks. This study provides a controllable method for specific types of inter-allotropic transformations/hybridizations, which opens up the further possibility for the engineering of nanocarbon allotropes in the robust large-scale network-based devices.

  1. Real-time Data Access to First Responders: A VORB application

    NASA Astrophysics Data System (ADS)

    Lu, S.; Kim, J. B.; Bryant, P.; Foley, S.; Vernon, F.; Rajasekar, A.; Meier, S.

    2006-12-01

    Getting information to first responders is not an easy task. The sensors that provide the information are diverse in formats and come from many disciplines. They are also distributed by location, transmit data at different frequencies and are managed and owned by autonomous administrative entities. Pulling such types of data in real-time, needs a very robust sensor network with reliable data transport and buffering capabilities. Moreover, the system should be extensible and scalable in numbers and sensor types. ROADNet is a real- time sensor network project at UCSD gathering diverse environmental data in real-time or near-real-time. VORB (Virtual Object Ring Buffer) is the middleware used in ROADNet offering simple, uniform and scalable real-time data management for discovering (through metadata), accessing and archiving real-time data and data streams. Recent development in VORB, a web API, has offered quick and simple real-time data integration with web applications. In this poster, we discuss one application developed as part of ROADNet. SMER (Santa Margarita Ecological Reserve) is located in interior Southern California, a region prone to catastrophic wildfires each summer and fall. To provide data during emergencies, we have applied the VORB framework to develop a web-based application for providing access to diverse sensor data including weather data, heat sensor information, and images from cameras. Wildfire fighters have access to real-time data about weather and heat conditions in the area and view pictures taken from cameras at multiple points in the Reserve to pinpoint problem areas. Moreover, they can browse archived images and sensor data from earlier times to provide a comparison framework. To show scalability of the system, we have expanded the sensor network under consideration through other areas in Southern California including sensors accessible by Los Angeles County Fire Department (LACOFD) and those available through the High Performance Wireless Research and Education Network (HPWREN). The poster will discuss the system architecture and components, the types of sensor being used and usage scenarios. The system is currently operational through the SMER web-site.

  2. Impact of packet losses in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  3. Designing and application of SAN extension interface based on CWDM

    NASA Astrophysics Data System (ADS)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  4. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis

    USDA-ARS?s Scientific Manuscript database

    UDP-glucosyltransferase (UGT) is a key enzyme during anthocyanin biosynthesis by catalyzing glucosylation of anthocyanins so as to increase their solubility and accumulation. Previously it has been shown that preharvest spray of calcium chloride enhances anthocyanin accumulation in strawberry fruit ...

  5. Development of Real Time System for Data Communication Based on SCO UNIX

    NASA Astrophysics Data System (ADS)

    Hua, Ying-Min

    2002-01-01

    The real time system based on SCO UNIX has the multiple tasks properties as on other UNIX system. The costs is lower than other UNIX system. In this paper the usage of multiple serial communication and UDP communication is mainly introduced. The data housekeeping and system monitor are described.

  6. Exploration and design of smart home circuit based on ZigBee

    NASA Astrophysics Data System (ADS)

    Luo, Huirong

    2018-05-01

    To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.

  7. Preparation and evaluation of unitary doses of propafenone used in children with supraventricular tachycardia: a pilot study.

    PubMed

    Flores Pérez, J; Ramírez Mendiola, B; Flores Pérez, C; García Álvarez, R; Juárez Olguín, H

    2013-01-01

    The aim was to prepare and evaluate unitary doses of propafenone (UDP) used in children with supraventricular tachycardia. UDP were prepared from four brands of tablets at doses of propafenone, 11, 25 and 90 mg, used in the Cardiology Service of this Institute. The stability of doses was determined at 20±5°C and 40°C for up to day 30. Besides, a weight variation test was performed. Plasma levels of propafenone were determined at steady state in 3 children diagnosed with supraventricular tachycardia under treatment with UDP. Concentrations of drug in blood were measured using a high pressure liquid chromatography method, previously validated. The stability of UDP, showed no significant statistical differences (p > 0.05) between doses or brands up to day 30, at both temperatures. The coefficient of variation from the weight variation was less than 6%. The plasma levels of propafenone at steady state were: patient 1, 31.57 ng/ml; patient 2, 226.46 ng/ml; and patient 3, 221.29 ng/ml. The actual administered dose for the patients could vary up to 6%, and doses prepared from different brands of tablets remain stables for up to day 30 at both temperatures. UDP is a temporal, safe and alternative option when pediatrics formulation of this drug is lacking.

  8. A wireless sensor network deployment for rural and forest fire detection and verification.

    PubMed

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.

  9. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533

  10. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  11. A distributed parallel storage architecture and its potential application within EOSDIS

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony

    1994-01-01

    We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  12. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    PubMed Central

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  13. Developing a new wireless sensor network platform and its application in precision agriculture.

    PubMed

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.

  14. Network Community Detection based on the Physarum-inspired Computational Framework.

    PubMed

    Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili

    2016-12-13

    Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.

  15. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  16. Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks

    PubMed Central

    Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo

    2012-01-01

    Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190

  17. A Multi-Hop Clustering Mechanism for Scalable IoT Networks.

    PubMed

    Sung, Yoonyoung; Lee, Sookyoung; Lee, Meejeong

    2018-03-23

    It is expected that up to 26 billion Internet of Things (IoT) equipped with sensors and wireless communication capabilities will be connected to the Internet by 2020 for various purposes. With a large scale IoT network, having each node connected to the Internet with an individual connection may face serious scalability issues. The scalability problem of the IoT network may be alleviated by grouping the nodes of the IoT network into clusters and having a representative node in each cluster connect to the Internet on behalf of the other nodes in the cluster instead of having a per-node Internet connection and communication. In this paper, we propose a multi-hop clustering mechanism for IoT networks to minimize the number of required Internet connections. Specifically, the objective of proposed mechanism is to select the minimum number of coordinators, which take the role of a representative node for the cluster, i.e., having the Internet connection on behalf of the rest of the nodes in the cluster and to map a partition of the IoT nodes onto the selected set of coordinators to minimize the total distance between the nodes and their respective coordinator under a certain constraint in terms of maximum hop count between the IoT nodes and their respective coordinator. Since this problem can be mapped into a set cover problem which is known as NP-hard, we pursue a heuristic approach to solve the problem and analyze the complexity of the proposed solution. Through a set of experiments with varying parameters, the proposed scheme shows 63-87.3% reduction of the Internet connections depending on the number of the IoT nodes while that of the optimal solution is 65.6-89.9% in a small scale network. Moreover, it is shown that the performance characteristics of the proposed mechanism coincide with expected performance characteristics of the optimal solution in a large-scale network.

  18. A Multi-Hop Clustering Mechanism for Scalable IoT Networks

    PubMed Central

    2018-01-01

    It is expected that up to 26 billion Internet of Things (IoT) equipped with sensors and wireless communication capabilities will be connected to the Internet by 2020 for various purposes. With a large scale IoT network, having each node connected to the Internet with an individual connection may face serious scalability issues. The scalability problem of the IoT network may be alleviated by grouping the nodes of the IoT network into clusters and having a representative node in each cluster connect to the Internet on behalf of the other nodes in the cluster instead of having a per-node Internet connection and communication. In this paper, we propose a multi-hop clustering mechanism for IoT networks to minimize the number of required Internet connections. Specifically, the objective of proposed mechanism is to select the minimum number of coordinators, which take the role of a representative node for the cluster, i.e., having the Internet connection on behalf of the rest of the nodes in the cluster and to map a partition of the IoT nodes onto the selected set of coordinators to minimize the total distance between the nodes and their respective coordinator under a certain constraint in terms of maximum hop count between the IoT nodes and their respective coordinator. Since this problem can be mapped into a set cover problem which is known as NP-hard, we pursue a heuristic approach to solve the problem and analyze the complexity of the proposed solution. Through a set of experiments with varying parameters, the proposed scheme shows 63–87.3% reduction of the Internet connections depending on the number of the IoT nodes while that of the optimal solution is 65.6–89.9% in a small scale network. Moreover, it is shown that the performance characteristics of the proposed mechanism coincide with expected performance characteristics of the optimal solution in a large-scale network. PMID:29570691

  19. Measuring Creative Potential: Using Social Network Analysis to Monitor a Learners' Creative Capacity

    ERIC Educational Resources Information Center

    Dawson, Shane; Tan, Jennifer Pei Ling; McWilliam, Erica

    2011-01-01

    Despite the burgeoning rhetoric from political, social and educational commentators regarding creativity and learning and teaching, there is a paucity of scalable and measurable examples of creativity-centric pedagogical practice. This paper makes an argument for the application of social network visualisations to inform and support…

  20. On-demand virtual optical network access using 100 Gb/s Ethernet.

    PubMed

    Ishida, Osamu; Takamichi, Toru; Arai, Sachine; Kawate, Ryusuke; Toyoda, Hidehiro; Morita, Itsuro; Araki, Soichiro; Ichikawa, Toshiyuki; Hoshida, Takeshi; Murai, Hitoshi

    2011-12-12

    Our Terabit LAN initiatives attempt to enhance the scalability and utilization of lambda resources. This paper describes bandwidth-on-demand virtualized 100GE access to WDM networks on a field fiber test-bed using multi-domain optical-path provisioning. © 2011 Optical Society of America

  1. A Scalability Model for ECS's Data Server

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.; Singhal, Mukesh

    1998-01-01

    This report presents in four chapters a model for the scalability analysis of the Data Server subsystem of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). The model analyzes if the planned architecture of the Data Server will support an increase in the workload with the possible upgrade and/or addition of processors, storage subsystems, and networks. The approaches in the report include a summary of the architecture of ECS's Data server as well as a high level description of the Ingest and Retrieval operations as they relate to ECS's Data Server. This description forms the basis for the development of the scalability model of the data server and the methodology used to solve it.

  2. Communal Cooperation in Sensor Networks for Situation Management

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin,Chunsheng

    2006-01-01

    Situation management is a rapidly evolving science where managed sources are processed as realtime streams of events and fused in a way that maximizes comprehension, thus enabling better decisions for action. Sensor networks provide a new technology that promises ubiquitous input and action throughout an environment, which can substantially improve information available to the process. Here we describe a NASA program that requires improvements in sensor networks and situation management. We present an approach for massively deployed sensor networks that does not rely on centralized control but is founded in lessons learned from the way biological ecosystems are organized. In this approach, fully distributed data aggregation and integration can be performed in a scalable fashion where individual motes operate based on local information, making local decisions that achieve globally-meaningful results. This exemplifies the robust, fault-tolerant infrastructure required for successful situation management systems.

  3. MAC layer security issues in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  4. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    NASA Astrophysics Data System (ADS)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  5. Using Hybrid Angle/Distance Information for Distributed Topology Control in Vehicular Sensor Networks

    PubMed Central

    Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu

    2014-01-01

    In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506

  6. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGES

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  7. Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa

    USDA-ARS?s Scientific Manuscript database

    Family 1 UDP-glycosyltransferases (UGTs) in plants primarily form glucose conjugates of small molecules and, besides other functions, play a role in detoxification of xenobiotics. Indeed, overexpression of a barley UGT in wheat has been shown to control Fusarium head blight, which is a plant disease...

  8. Peptidoglycan precursor from Fusobacterium nucleatum contains lanthionine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredriksen, A.; Vasstrand, E.N.; Jensen, H.B.

    1991-01-01

    Fusobacterium nucleatum was grown in the presence of ({sup 14}C)UDP. By means of sequential precipitation and chromatographic separation of the cytoplasmic content, a peptidoglycan ({sup 14}C)UDP pentapeptide containing lanthionine was isolated. This finding indicates that lanthionine is synthesized and incorporated as such during the assembly of the peptidoglycan.

  9. Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks

    NASA Technical Reports Server (NTRS)

    Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint

    2011-01-01

    Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.

  10. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing.

    PubMed

    Sillin, Henry O; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K

    2013-09-27

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  11. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing

    NASA Astrophysics Data System (ADS)

    Sillin, Henry O.; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2013-09-01

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  12. A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.

    2009-01-01

    A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185

  13. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  14. DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.

    2011-02-01

    For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing themore » autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.« less

  15. A scalable healthcare information system based on a service-oriented architecture.

    PubMed

    Yang, Tzu-Hsiang; Sun, Yeali S; Lai, Feipei

    2011-06-01

    Many existing healthcare information systems are composed of a number of heterogeneous systems and face the important issue of system scalability. This paper first describes the comprehensive healthcare information systems used in National Taiwan University Hospital (NTUH) and then presents a service-oriented architecture (SOA)-based healthcare information system (HIS) based on the service standard HL7. The proposed architecture focuses on system scalability, in terms of both hardware and software. Moreover, we describe how scalability is implemented in rightsizing, service groups, databases, and hardware scalability. Although SOA-based systems sometimes display poor performance, through a performance evaluation of our HIS based on SOA, the average response time for outpatient, inpatient, and emergency HL7Central systems are 0.035, 0.04, and 0.036 s, respectively. The outpatient, inpatient, and emergency WebUI average response times are 0.79, 1.25, and 0.82 s. The scalability of the rightsizing project and our evaluation results show that the SOA HIS we propose provides evidence that SOA can provide system scalability and sustainability in a highly demanding healthcare information system.

  16. Scalable Hierarchical Network Management System for Displaying Network Information in Three Dimensions

    NASA Technical Reports Server (NTRS)

    George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)

    1998-01-01

    A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.

  17. Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology.

    PubMed

    Karbasi, Amin; Salavati, Amir Hesam; Vetterli, Martin

    2018-04-01

    The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network's topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodes/neurons (i.e., firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real data recorded from multiple hippocampal areas in rats.

  18. Self organization of wireless sensor networks using ultra-wideband radios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  19. Semihierarchical quantum repeaters based on moderate lifetime quantum memories

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Zhou, Zong-Quan; Hua, Yi-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    The construction of large-scale quantum networks relies on the development of practical quantum repeaters. Many approaches have been proposed with the goal of outperforming the direct transmission of photons, but most of them are inefficient or difficult to implement with current technology. Here, we present a protocol that uses a semihierarchical structure to improve the entanglement distribution rate while reducing the requirement of memory time to a range of tens of milliseconds. This protocol can be implemented with a fixed distance of elementary links and fixed requirements on quantum memories, which are independent of the total distance. This configuration is especially suitable for scalable applications in large-scale quantum networks.

  20. IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6)

    PubMed Central

    Jara, Antonio J.; Moreno-Sanchez, Pedro; Skarmeta, Antonio F.; Varakliotis, Socrates; Kirstein, Peter

    2013-01-01

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145

  1. IPv6 addressing proxy: mapping native addressing from legacy technologies and devices to the Internet of Things (IPv6).

    PubMed

    Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter

    2013-05-17

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.

  2. Web 2.0 and internet social networking: a new tool for disaster management?--lessons from Taiwan.

    PubMed

    Huang, Cheng-Min; Chan, Edward; Hyder, Adnan A

    2010-10-06

    Internet social networking tools and the emerging web 2.0 technologies are providing a new way for web users and health workers in information sharing and knowledge dissemination. Based on the characters of immediate, two-way and large scale of impact, the internet social networking tools have been utilized as a solution in emergency response during disasters. This paper highlights the use of internet social networking in disaster emergency response and public health management of disasters by focusing on a case study of the typhoon Morakot disaster in Taiwan. In the case of typhoon disaster in Taiwan, internet social networking and mobile technology were found to be helpful for community residents, professional emergency rescuers, and government agencies in gathering and disseminating real-time information, regarding volunteer recruitment and relief supplies allocation. We noted that if internet tools are to be integrated in the development of emergency response system, the accessibility, accuracy, validity, feasibility, privacy and the scalability of itself should be carefully considered especially in the effort of applying it in resource poor settings. This paper seeks to promote an internet-based emergency response system by integrating internet social networking and information communication technology into central government disaster management system. Web-based networking provides two-way communication which establishes a reliable and accessible tunnel for proximal and distal users in disaster preparedness and management.

  3. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.

  4. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  5. The Universal Design for Play Tool: Establishing Validity and Reliability

    ERIC Educational Resources Information Center

    Ruffino, Amy Goetz; Mistrett, Susan G.; Tomita, Machiko; Hajare, Poonam

    2006-01-01

    The Universal Design for Play (UDP) Tool is an instrument designed to evaluate the presence of universal design (UD) features in toys. This study evaluated its psychometric properties, including content validity, construct validity, and test-retest reliability. The UDP tool was designed to assist in selecting toys most appropriate for children…

  6. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  7. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  8. Alteration of cell wall polysaccharides through transgenic expression of UDP-Glc 4-epimerase-encoding genes in potato tubers.

    PubMed

    Huang, Jie-Hong; Kortstee, Anne; Dees, Dianka C T; Trindade, Luisa M; Schols, Henk A; Gruppen, Harry

    2016-08-01

    Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Functional and Biochemical Analysis of Chlamydia trachomatis MurC, an Enzyme Displaying UDP-N-Acetylmuramate:Amino Acid Ligase Activity

    PubMed Central

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-01-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):l-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:l-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (l-alanine, l-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide. PMID:14594822

  10. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    PubMed

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  11. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  12. Scalable Online Network Modeling and Simulation

    DTIC Science & Technology

    2005-08-01

    ONLINE NETWORK MODELING AND SIMULATION 6. AUTHOR(S) Boleslaw Szymanski , Shivkumar Kalyanaraman, Biplab Sikdar and Christopher Carothers 5...performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature ...a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature interactions

  13. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  14. Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium

    PubMed Central

    Carneiro, Inês; Timóteo, M Alexandrina; Silva, Isabel; Vieira, Cátia; Baldaia, Catarina; Ferreirinha, Fátima; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2014-01-01

    BACKGROUND AND PURPOSE Despite the abundant expression of the UDP-sensitive P2Y6 receptor in urothelial cells and sub-urothelial myofibroblasts its role in the control of bladder function is not well understood. EXPERIMENTAL APPROACH We compared the effects of UDP and of the selective P2Y6 receptor agonist, PSB0474, on bladder urodynamics in anaesthetized rats; the voided fluid was tested for ATP bioluminescence. The isolated urinary bladder was used for in vitro myographic recordings and [3H]-ACh overflow experiments. KEY RESULTS Instillation of UDP or PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions; an effect blocked by the P2Y6 receptor antagonist, MRS2578. Effects mediated by urothelial P2Y6 receptors required extrinsic neuronal circuitry as they were not detected in the isolated bladder. UDP-induced bladder hyperactvity was also prevented by blocking P2X3 and P2Y1 receptors, respectively, with A317491 and MRS2179 applied i.v.. UDP decreased [3H]-ACh release from stimulated bladder strips with urothelium, but not in its absence. Inhibitory effects of UDP were converted into facilitation by the P2Y1 receptor antagonist, MRS2179. The P2Y6 receptor agonist increased threefold ATP levels in the voided fluid. CONCLUSIONS AND IMPLICATIONS Activation of P2Y6 receptors increased the voiding frequency indirectly by releasing ATP from the urothelium and activation of P2X3 receptors on sub-urothelial nerve afferents. Bladder hyperactivity may be partly reversed following ATP hydrolysis to ADP by E-NTPDases, thereby decreasing ACh release from cholinergic nerves expressing P2Y1 receptors. PMID:24697602

  15. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  16. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  17. A wireless sensor network based personnel positioning scheme in coal mines with blind areas.

    PubMed

    Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing

    2010-01-01

    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.

  18. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    PubMed Central

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  19. A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas

    PubMed Central

    Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing

    2010-01-01

    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446

  20. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

Top