Sample records for scale climate model

  1. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  2. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.

  3. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  4. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  5. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  6. Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations

    NASA Astrophysics Data System (ADS)

    Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2011-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.

  7. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang

    Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less

  9. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  10. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  11. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  12. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  13. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  14. Cross-scale assessment of potential habitat shifts in a rapidly changing climate

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Bella, Elizabeth S.; Carlson, Matthew L.; Graziano, Gino; Lamb, Melinda; Seefeldt, Steven S.; Morisette, Jeffrey T.

    2014-01-01

    We assessed the ability of climatic, environmental, and anthropogenic variables to predict areas of high-risk for plant invasion and consider the relative importance and contribution of these predictor variables by considering two spatial scales in a region of rapidly changing climate. We created predictive distribution models, using Maxent, for three highly invasive plant species (Canada thistle, white sweetclover, and reed canarygrass) in Alaska at both a regional scale and a local scale. Regional scale models encompassed southern coastal Alaska and were developed from topographic and climatic data at a 2 km (1.2 mi) spatial resolution. Models were applied to future climate (2030). Local scale models were spatially nested within the regional area; these models incorporated physiographic and anthropogenic variables at a 30 m (98.4 ft) resolution. Regional and local models performed well (AUC values > 0.7), with the exception of one species at each spatial scale. Regional models predict an increase in area of suitable habitat for all species by 2030 with a general shift to higher elevation areas; however, the distribution of each species was driven by different climate and topographical variables. In contrast local models indicate that distance to right-of-ways and elevation are associated with habitat suitability for all three species at this spatial level. Combining results from regional models, capturing long-term distribution, and local models, capturing near-term establishment and distribution, offers a new and effective tool for highlighting at-risk areas and provides insight on how variables acting at different scales contribute to suitability predictions. The combinations also provides easy comparison, highlighting agreement between the two scales, where long-term distribution factors predict suitability while near-term do not and vice versa.

  15. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  16. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.

  18. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, H S

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performancemore » computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.« less

  19. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  20. Evaluating the fidelity of CMIP5 models in producing large-scale meteorological patterns over the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Lintner, B. R.; Loikith, P. C.; Pike, M.; Aragon, C.

    2017-12-01

    Climate change information is increasingly required at impact-relevant scales. However, most state-of-the-art climate models are not of sufficiently high spatial resolution to resolve features explicitly at such scales. This challenge is particularly acute in regions of complex topography, such as the Pacific Northwest of the United States. To address this scale mismatch problem, we consider large-scale meteorological patterns (LSMPs), which can be resolved by climate models and associated with the occurrence of local scale climate and climate extremes. In prior work, using self-organizing maps (SOMs), we computed LSMPs over the northwestern United States (NWUS) from daily reanalysis circulation fields and further related these to the occurrence of observed extreme temperatures and precipitation: SOMs were used to group LSMPs into 12 nodes or clusters spanning the continuum of synoptic variability over the regions. Here this observational foundation is utilized as an evaluation target for a suite of global climate models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Evaluation is performed in two primary ways. First, daily model circulation fields are assigned to one of the 12 reanalysis nodes based on minimization of the mean square error. From this, a bulk model skill score is computed measuring the similarity between the model and reanalysis nodes. Next, SOMs are applied directly to the model output and compared to the nodes obtained from reanalysis. Results reveal that many of the models have LSMPs analogous to the reanalysis, suggesting that the models reasonably capture observed daily synoptic states.

  1. Generating High Resolution Climate Scenarios Through Regional Climate Modelling Over Southern Africa

    NASA Astrophysics Data System (ADS)

    Ndhlovu, G. Z.; Woyessa, Y. E.; Vijayaraghavan, S.

    2017-12-01

    limate change has impacted the global environment and the Continent of Africa, especially Southern Africa, regarded as one of the most vulnerable regions in Africa, has not been spared from these impacts. Global Climate Models (GCMs) with coarse horizontal resolutions of 150-300 km do not provide sufficient details at the local basin scale due to mismatch between the size of river basins and the grid cell of the GCM. This makes it difficult to apply the outputs of GCMs directly to impact studies such as hydrological modelling. This necessitates the use of regional climate modelling at high resolutions that provide detailed information at regional and local scales to study both climate change and its impacts. To this end, an experiment was set up and conducted with PRECIS, a regional climate model, to generate climate scenarios at a high resolution of 25km for the local region in Zambezi River basin of Southern Africa. The major input data used included lateral and surface boundary conditions based on the GCMs. The data is processed, analysed and compared with CORDEX climate change project data generated for Africa. This paper, highlights the major differences of the climate scenarios generated by PRECIS Model and CORDEX Project for Africa and further gives recommendations for further research on generation of climate scenarios. The climatic variables such as precipitation and temperatures have been analysed for flood and droughts in the region. The paper also describes the setting up and running of an experiment using a high-resolution PRECIS model. In addition, a description has been made in running the model and generating the output variables on a sub basin scale. Regional climate modelling which provides information on climate change impact may lead to enhanced understanding of adaptive water resources management. Understanding the regional climate modelling results on sub basin scale is the first step in analysing complex hydrological processes and a basis for designing of adaptation and mitigation strategies in the region. Key words: Climate change, regional climate modelling, hydrological processes, extremes, scenarios [1] Corresponding author: Email:gndhlovu@cut.ac.za Tel:+27 (0) 51 507 3072

  2. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  3. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  4. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers

    PubMed Central

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell’Aquila, Alessandro

    2014-01-01

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests. PMID:24706833

  5. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    PubMed

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  6. Ecological Assimilation of Land and Climate Observations - the EALCO model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net radiation, evapotranspiration, gross primary production, net primary production, and net ecosystem production were discussed.

  7. Data-driven Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2016-12-01

    Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.

  8. Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach

    NASA Astrophysics Data System (ADS)

    Huang, M.

    2016-12-01

    Earth System models (ESMs) are effective tools for investigating the water-energy-food system interactions under climate change. In this presentation, I will introduce research efforts at the Pacific Northwest National Laboratory towards quantifying impacts of LULCC on the water-energy-food nexus in a changing climate using an integrated regional Earth system modeling framework: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Two studies will be discussed to showcase the capability of PRIMA: (1) quantifying changes in terrestrial hydrology over the Conterminous US (CONUS) from 2005 to 2095 using the Community Land Model (CLM) driven by high-resolution downscaled climate and land cover products from PRIMA, which was designed for assessing the impacts of and potential responses to climate and anthropogenic changes at regional scales; (2) applying CLM over the CONUS to provide the first county-scale model validation in simulating crop yields and assessing associated impacts on the water and energy budgets using CLM. The studies demonstrate the benefits of incorporating and coupling human activities into complex ESMs, and critical needs to account for the biogeophysical and biogeochemical effects of LULCC in climate impacts studies, and in designing mitigation and adaptation strategies at a scale meaningful for decision-making. Future directions in quantifying LULCC impacts on the water-energy-food nexus under a changing climate, as well as feedbacks among climate, energy production and consumption, and natural/managed ecosystems using an Integrated Multi-scale, Multi-sector Modeling framework will also be discussed.

  9. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    NASA Astrophysics Data System (ADS)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  10. The interplay of climate and land use change affects the distribution of EU bumblebees.

    PubMed

    Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas

    2018-01-01

    Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  11. Understanding scale dependency of climatic processes with diarrheal disease

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.

  12. Assessment of the scale effect on statistical downscaling quality at a station scale using a weather generator-based model

    USDA-ARS?s Scientific Manuscript database

    The resolution of General Circulation Models (GCMs) is too coarse to assess the fine scale or site-specific impacts of climate change. Downscaling approaches including dynamical and statistical downscaling have been developed to meet this requirement. As the resolution of climate model increases, it...

  13. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  14. Local air temperature tolerance: a sensible basis for estimating climate variability

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi; Post, Piia

    2016-11-01

    The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.

  15. Tracing Multi-Scale Climate Change at Low Latitude from Glacier Shrinkage

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Kaser, G.

    2009-12-01

    Significant shrinkage of glaciers on top of Africa's highest mountain (Kilimanjaro, 5895 m a.s.l.) has been observed between the late 19th century and the present. Multi-year data from our automatic weather station on the largest remaining slope glacier at 5873 m allow us to force and verify a process-based distributed glacier mass balance model. This generates insights into energy and mass fluxes at the glacier-atmosphere interface, their feedbacks, and how they are linked to atmospheric conditions. By means of numerical atmospheric modeling and global climate model simulations, we explore the linkages of the local climate in Kilimanjaro's summit zone to larger-scale climate dynamics - which suggests a causal connection between Indian Ocean dynamics, mesoscale mountain circulation, and glacier mass balance. Based on this knowledge, the verified mass balance model is used for backward modeling of the steady-state glacier extent observed in the 19th century, which yields the characteristics of local climate change between that time and the present (30-45% less precipitation, 0.1-0.3 hPa less water vapor pressure, 2-4 percentage units less cloud cover at present). Our multi-scale approach provides an important contribution, from a cryospheric viewpoint, to the understanding of how large-scale climate change propagates to the tropical free troposphere. Ongoing work in this context targets the millennium-scale relation between large-scale climate and glacier behavior (by downscaling precipitation), and the possible effects of regional anthropogenic activities (land use change) on glacier mass balance.

  16. Assessment of regional climate change and development of climate adaptation decision aids in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Darmenova, K.; Higgins, G.; Kiley, H.; Apling, D.

    2010-12-01

    Current General Circulation Models (GCMs) provide a valuable estimate of both natural and anthropogenic climate changes and variability on global scales. At the same time, future climate projections calculated with GCMs are not of sufficient spatial resolution to address regional needs. Many climate impact models require information at scales of 50 km or less, so dynamical downscaling is often used to estimate the smaller-scale information based on larger scale GCM output. To address current deficiencies in local planning and decision making with respect to regional climate change, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model and developing decision aids that translate the regional climate data into actionable information for users. Our methodology involves development of climatological indices of extreme weather and heating/cooling degree days based on WRF ensemble runs initialized with the NCEP-NCAR reanalysis and the European Center/Hamburg Model (ECHAM5). Results indicate that the downscale simulations provide the necessary detailed output required by state and local governments and the private sector to develop climate adaptation plans. In addition we evaluated the WRF performance in long-term climate simulations over the Southwestern US and validated against observational datasets.

  17. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  18. A Scaling Model for the Anthropocene Climate Variability with Projections to 2100

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2017-04-01

    The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.

  19. A strategy for assessing potential future changes in climate, hydrology, and vegetation in the Western United States

    USGS Publications Warehouse

    Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.

    1998-01-01

    Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.

  20. Inflated Uncertainty in Multimodel-Based Regional Climate Projections.

    PubMed

    Madsen, Marianne Sloth; Langen, Peter L; Boberg, Fredrik; Christensen, Jens Hesselbjerg

    2017-11-28

    Multimodel ensembles are widely analyzed to estimate the range of future regional climate change projections. For an ensemble of climate models, the result is often portrayed by showing maps of the geographical distribution of the multimodel mean results and associated uncertainties represented by model spread at the grid point scale. Here we use a set of CMIP5 models to show that presenting statistics this way results in an overestimation of the projected range leading to physically implausible patterns of change on global but also on regional scales. We point out that similar inconsistencies occur in impact analyses relying on multimodel information extracted using statistics at the regional scale, for example, when a subset of CMIP models is selected to represent regional model spread. Consequently, the risk of unwanted impacts may be overestimated at larger scales as climate change impacts will never be realized as the worst (or best) case everywhere.

  1. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  2. The Nested Regional Climate Model: An Approach Toward Prediction Across Scales

    NASA Astrophysics Data System (ADS)

    Hurrell, J. W.; Holland, G. J.; Large, W. G.

    2008-12-01

    The reality of global climate change has become accepted and society is rapidly moving to questions of consequences on space and time scales that are relevant to proper planning and development of adaptation strategies. There are a number of urgent challenges for the scientific community related to improved and more detailed predictions of regional climate change on decadal time scales. Two important examples are potential impacts of climate change on North Atlantic hurricane activity and on water resources over the intermountain West. The latter is dominated by complex topography, so that accurate simulations of regional climate variability and change require much finer spatial resolution than is provided with state-of-the-art climate models. Climate models also do not explicitly resolve tropical cyclones, even though these storms have dramatic societal impacts and play an important role in regulating climate. Moreover, the debate over the impact of global warming on tropical cyclones has at times been acrimonious, and the lack of hard evidence has left open opportunities for misinterpretation and justification of pre-existing beliefs. These and similar topics are being assessed at NCAR, in partnership with university colleagues, through the development of a Nested Regional Climate Model (NRCM). This is an ambitious effort to combine a state of the science mesoscale weather model (WRF), a high resolution regional ocean modeling system (ROMS), and a climate model (CCSM) to better simulate the complex, multi-scale interactions intrinsic to atmospheric and oceanic fluid motions that are limiting our ability to predict likely future changes in regional weather statistics and climate. The NRCM effort is attracting a large base of earth system scientists together with societal groups as diverse as the Western Governor's Association and the offshore oil industry. All of these groups require climate data on scales of a few kilometers (or less), so that the NRCM program is producing unique data sets of climate change scenarios of immense interest. In addition, all simulations are archived in a form that will be readily accessible to other researchers, thus enabling a wider group to investigate these important issues.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  4. Analysis of the Effect of Interior Nudging on Temperature and Precipitation Distributions of Multi-year Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Nolte, C. G.; Otte, T. L.; Bowden, J. H.; Otte, M. J.

    2010-12-01

    There is disagreement in the regional climate modeling community as to the appropriateness of the use of internal nudging. Some investigators argue that the regional model should be minimally constrained and allowed to respond to regional-scale forcing, while others have noted that in the absence of interior nudging, significant large-scale discrepancies develop between the regional model solution and the driving coarse-scale fields. These discrepancies lead to reduced confidence in the ability of regional climate models to dynamically downscale global climate model simulations under climate change scenarios, and detract from the usability of the regional simulations for impact assessments. The advantages and limitations of interior nudging schemes for regional climate modeling are investigated in this study. Multi-year simulations using the WRF model driven by reanalysis data over the continental United States at 36km resolution are conducted using spectral nudging, grid point nudging, and for a base case without interior nudging. The means, distributions, and inter-annual variability of temperature and precipitation will be evaluated in comparison to regional analyses.

  5. What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?

    NASA Astrophysics Data System (ADS)

    Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.

    2009-12-01

    “…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility planning is conducted. In the near term we feel strongly that water utilities and climate scientists should work together to leverage the upcoming Coupled Model Intercomparison Project, Phase 5 (CMIP5; a coordinated set climate model experiments that will be used to support the upcoming IPCC Fifth Assessment) to better benefit water utilities. In the longer term, even with model and downscaling improvements, it is very likely that substantial uncertainty about future climate change at the desired spatial and temporal scales will remain. Nonetheless, there is no doubt the climate is changing, and the challenge is to work with what we have, or what we can reasonably expect to have in the coming years to make the best decisions we can.

  6. Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-06-08

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  7. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    NASA Astrophysics Data System (ADS)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  8. Landscape-and regional-scale shifts in forest composition under climate change in the Central Hardwood Region of the United States

    Treesearch

    Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; William D. Dijak

    2016-01-01

    Tree species distribution and abundance are affected by forces operating at multiple scales. Niche and biophysical process models have been commonly used to predict climate change effects at regional scales, however, these models have limited capability to include site-scale population dynamics and landscape- scale disturbance and dispersal. We applied a landscape...

  9. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    NASA Astrophysics Data System (ADS)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  10. Recent Advances in High-Resolution Regional Climate Modeling at the U.S. Environmental Protection Agency

    NASA Astrophysics Data System (ADS)

    Alapaty, Kiran; Bullock, O. Russell; Herwehe, Jerold; Spero, Tanya; Nolte, Christopher; Mallard, Megan

    2014-05-01

    The Regional Climate Modeling Team at the U.S. Environmental Protection Agency has been improving the quality of regional climate fields generated by the Weather Research and Forecasting (WRF) model. Active areas of research include improving core physics within the WRF model and adapting the physics for regional climate applications, improving the representation of inland lakes that are unresolved by the driving fields, evaluating nudging strategies, and devising techniques to demonstrate value added by dynamical downscaling. These research efforts have been conducted using reanalysis data as driving fields, and then their results have been applied to downscale data from global climate models. The goals of this work are to equip environmental managers and policy/decision makers in the U.S. with science, tools, and data to inform decisions related to adapting to and mitigating the potential impacts of climate change on air quality, ecosystems, and human health. Our presentation will focus mainly on one area of the Team's research: Development and testing of a seamless convection parameterization scheme. For the continental U.S., one of the impediments to high-resolution (~3 to 15 km) climate modeling is related to the lack of a seamless convection parameterization that works across many scales. Since many convection schemes are not developed to work at those "gray scales", they often lead to excessive precipitation during warm periods (e.g., summer). The Kain-Fritsch (KF) convection parameterization in the WRF model has been updated such that it can be used seamlessly across spatial scales down to ~1 km grid spacing. First, we introduced subgrid-scale cloud and radiation interactions that had not been previously considered in the KF scheme. Then, a scaling parameter was developed to introduce scale-dependency in the KF scheme for use with various processes. In addition, we developed new formulations for: (1) convective adjustment timescale; (2) entrainment of environmental air; (3) impacts of convective updraft on grid-scale vertical velocity; (4) convective cloud microphysics; (5) stabilizing capacity; (6) elimination of double counting of precipitation; and (7) estimation of updraft mass flux at the lifting condensation level. Some of these scale-dependent formulations make the KF scheme operable at all scales up to about sub-kilometer grid resolution. In this presentation, regional climate simulations using the WRF model will be presented to demonstrate the effects of these changes to the KF scheme. Additionally, we briefly present results obtained from the improved representation of inland lakes, various nudging strategies, and added value of dynamical downscaling of regional climate. Requesting for a plenary talk for the session: "Regional climate modeling, including CORDEX" (session number CL6.4) at the EGU 2014 General Assembly, to be held 27 April - 2 May 2014 in Vienna, Austria.

  11. A new framework for climate sensitivity and prediction: a modelling perspective

    NASA Astrophysics Data System (ADS)

    Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank

    2016-03-01

    The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.

  12. Simulations of Tornadoes, Tropical Cyclones, MJOs, and QBOs, using GFDL's multi-scale global climate modeling system

    NASA Astrophysics Data System (ADS)

    Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming

    2014-05-01

    A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.

  13. NASA Downscaling Project: Final Report

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA - 2 reanalyses were used to drive the NU - WRF regional climate model and a GEOS - 5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000 - 2010. The results of these experiments were compared to observational datasets to evaluate the output.

  14. NASA Downscaling Project

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA-2 reanalyses were used to drive the NU-WRF regional climate model and a GEOS-5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000-2010. The results of these experiments were compared to observational datasets to evaluate the output.

  15. Climate Ocean Modeling on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wang, P.; Cheng, B. N.; Chao, Y.

    1998-01-01

    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  16. The added value of dynamical downscaling in a climate change scenario simulation:A case study for European Alps and East Asia

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.

  17. New Perspectives on the Role of Internal Variability in Regional Climate Change and Climate Model Evaluation

    NASA Astrophysics Data System (ADS)

    Deser, C.

    2017-12-01

    Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.

  18. Sustainable Land Management's potential for climate change adaptation in Mediterranean environments: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris P. C.; de Vente, Joris

    2017-04-01

    Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts. The projected higher frequency of extreme weather events under climate change will lead to an increase of plant water stress, reservoir inflow and sediment yield. Sustainable Land Management (SLM) practices are increasingly promoted as climate change adaptation strategy and to increase resilience against extreme events. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on catchment-scale impacts on soil and water resources. We applied a spatially distributed hydrological model (SPHY), coupled with an erosion model (MUSLE) to the Segura River catchment (15,978 km2) in SE Spain. We run the model for three periods: one reference (1981-2000) and two future scenarios (2031-2050 and 2081-2100). Climate input data for the future scenarios were based on output from 9 Regional Climate Models and for different emission scenarios (RCP 4.5 and RCP 8.5). Realistic scenarios of SLM practices were developed based on a local stakeholder consultation process. The evaluated SLM scenarios focussed on reduced tillage and organic amendments under tree and cereal crops, covering 24% and 15% of the catchment, respectively. In the reference scenario, implementation of SLM at the field-scale led to an increase of the infiltration capacity of the soil and a reduction of surface runoff up to 29%, eventually reducing catchment-scale reservoir inflow by 6%. This led to a reduction of field-scale sediment yield of more than 50% and a reduced catchment-scale sediment flux to reservoirs of 5%. SLM was able to fully mitigate the effect of climate change at the field-scale and partly at the catchment-scale. Therefore, we conclude that large-scale adoption of SLM can effectively contribute to climate change adaptation by increasing the soil infiltration capacity, the soil water retention capacity and soil moisture content in the rootzone, leading to less crop stress. These findings of regional scale impacts of SLM are of high relevance for land-owners, -managers and policy makers to design effective climate change adaptation strategies.

  19. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    DOE R&D Accomplishments Database

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  20. Integration of climatic water deficit and fine-scale physiography in process-based modeling of forest landscape resilience to large-scale tree mortality

    NASA Astrophysics Data System (ADS)

    Yang, J.; Weisberg, P.; Dilts, T.

    2016-12-01

    Climate warming can lead to large-scale drought-induced tree mortality events and greatly affect forest landscape resilience. Climatic water deficit (CWD) and its physiographic variations provide a key mechanism in driving landscape dynamics in response to climate change. Although CWD has been successfully applied in niche-based species distribution models, its application in process-based forest landscape models is still scarce. Here we present a framework incorporating fine-scale influence of terrain on ecohydrology in modeling forest landscape dynamics. We integrated CWD with a forest landscape succession and disturbance model (LANDIS-II) to evaluate how tree species distribution might shift in response to different climate-fire scenarios across an elevation-aspect gradient in a semi-arid montane landscape of northeastern Nevada, USA. Our simulations indicated that drought-intolerant tree species such as quaking aspen could experience greatly reduced distributions in the more arid portions of their existing ranges due to water stress limitations under future climate warming scenarios. However, even at the most xeric portions of its range, aspen is likely to persist in certain environmental settings due to unique and often fine-scale combinations of resource availability, species interactions and disturbance regime. The modeling approach presented here allowed identification of these refugia. In addition, this approach helped quantify how the direction and magnitude of fire influences on species distribution would vary across topoclimatic gradients, as well as furthers our understanding on the role of environmental conditions, fire, and inter-specific competition in shaping potential responses of landscape resilience to climate change.

  1. Intercomparison of model response and internal variability across climate model ensembles

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Ganguly, Auroop R.

    2017-10-01

    Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.

  2. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat is also predicted throughout the region. Results have direct application to management issues of habitat connectivity, forest land protection and acquisition, and active management solutions such as transplanting or assisted migration. Although this analysis considers only one driver of forest habitat distribution, consideration of hydrologic derivatives at a fine scale explains current forest community distributions and provides a far more informed perspective on potential future forest distributions. Results demonstrate the utility of fine-scale modeling and provide landscape managers and conservation agencies valuable management tools in fine-scale future forest scenarios and a framework for evaluating forest resiliency in a changing climate.

  3. Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*

    DOE PAGES

    Castruccio, Stefano; McInerney, David J.; Stein, Michael L.; ...

    2014-02-24

    The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO 2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as patternmore » scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. In conclusion, it may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.« less

  4. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  5. Changing precipitation in western Europe, climate change or natural variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2017-04-01

    Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.

  6. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    PubMed

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  7. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    NASA Technical Reports Server (NTRS)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; hide

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  8. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system

    DOE PAGES

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; ...

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challengesmore » exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.« less

  9. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    PubMed Central

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  10. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  11. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the agricultural regions of the world, but it will also build the capabilities of developing countries to estimate how climate change will affect their supply and demand for food.

  12. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  13. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan

    2007-05-01

    Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.

  14. Land use and climate affect Black Tern, Northern Harrier, and Marsh Wren abundance in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.

    2014-01-01

    Bird populations are influenced by many environmental factors at both large and small scales. Our study evaluated the influences of regional climate and land-use variables on the Northern Harrier (Circus cyaneus), Black Tern (Childonias niger), and Marsh Wren (Cistothorus palustris) in the prairie potholes of the upper Midwest of the United States. These species were chosen because their diverse habitat preference represent the spectrum of habitat conditions present in the Prairie Potholes, ranging from open prairies to dense cattail marshes. We evaluated land-use covariates at three logarithmic spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and constructed models a priori using information from published habitat associations and climatic influences. The strongest influences on the abundance of each of the three species were the percentage of wetland area across all three spatial scales and precipitation in the year preceding that when bird surveys were conducted. Even among scales ranging over three orders of magnitude the influence of spatial scale was small, as models with the same variables expressed at different scales were often in the best model subset. Examination of the effects of large-scale environmental variables on wetland birds elucidated relationships overlooked in many smaller-scale studies, such as the influences of climate and habitat variables at landscape scales. Given the spatial variation in the abundance of our focal species within the prairie potholes, our model predictions are especially useful for targeting locations, such as northeastern South Dakota and central North Dakota, where management and conservation efforts would be optimally beneficial. This modeling approach can also be applied to other species and geographic areas to focus landscape conservation efforts and subsequent small-scale studies, especially in constrained economic climates.

  15. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Treesearch

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  16. Climatological temperature senstivity of soil carbon turnover: Observations, simple scaling models, and ESMs

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.

    2016-12-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.

  17. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models

    PubMed Central

    Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.

    2007-01-01

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921

  18. A Decade-long Continental-Scale Convection-Resolving Climate Simulation on GPUs

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph

    2016-04-01

    The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. Using horizontal grid spacings of O(1km), they allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer-designs that involve conventional multicore CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation using the GPU-enabled COSMO version. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss the performance of the convection-resolving modeling approach on the European scale. Specifically we focus on the annual cycle of convection in Europe, on the organization of convective clouds and on the verification of hourly rainfall with various high resolution datasets.

  19. Climate change impact on the annual water balance in the northwest Florida coastal

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.

    2012-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the their coefficients are quantified. For necessary future predictions, data obtained from climate regional models starting 2040 to 2069 will be utilized. To accommodate the inherent uncertainty of climate projections, an ensemble of regional climate models will be used to assess changes of rainfall and potential evaporation. Then, the climate change impact on seasonal and annual runoff, evaporation, and water storage changes will be projected.

  20. CPMIP: measurements of real computational performance of Earth system models in CMIP6

    NASA Astrophysics Data System (ADS)

    Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett

    2017-01-01

    A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).

  1. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2017-05-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  2. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    NASA Astrophysics Data System (ADS)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  3. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  4. Understanding climate: A strategy for climate modeling and predictability research, 1985-1995

    NASA Technical Reports Server (NTRS)

    Thiele, O. (Editor); Schiffer, R. A. (Editor)

    1985-01-01

    The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.

  5. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina

    2016-07-01

    State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.

  6. Evaluating synoptic systems in the CMIP5 climate models over the Australian region

    NASA Astrophysics Data System (ADS)

    Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.

    2016-10-01

    Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

  7. High-resolution downscaling for hydrological management

    NASA Astrophysics Data System (ADS)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  8. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  9. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.

  10. Improved pattern scaling approaches for the use in climate impact studies

    NASA Astrophysics Data System (ADS)

    Herger, Nadja; Sanderson, Benjamin M.; Knutti, Reto

    2015-05-01

    Pattern scaling is a simple way to produce climate projections beyond the scenarios run with expensive global climate models (GCMs). The simplest technique has known limitations and assumes that a spatial climate anomaly pattern obtained from a GCM can be scaled by the global mean temperature (GMT) anomaly. We propose alternatives and assess their skills and limitations. One approach which avoids scaling is to consider a period in a different scenario with the same GMT change. It is attractive as it provides patterns of any temporal resolution that are consistent across variables, and it does not distort variability. Second, we extend the traditional approach with a land-sea contrast term, which provides the largest improvements over the traditional technique. When interpolating between known bounding scenarios, the proposed methods significantly improve the accuracy of the pattern scaled scenario with little computational cost. The remaining errors are much smaller than the Coupled Model Intercomparison Project Phase 5 model spread.

  11. Short-term climate change impacts on Mara basin hydrology

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.

    2017-12-01

    The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).

  12. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  13. Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Marlow, David; Ekström, Marie; Rhodes, Bruce G.; Kularathna, Udaya; Jeffrey, Paul J.

    2014-04-01

    Despite a decade of research into climate change impacts on water resources, the scientific community has delivered relatively few practical methodological developments for integrating uncertainty into water resources system design. This paper presents an application of the "decision scaling" methodology for assessing climate change impacts on water resources system performance and asks how such an approach might inform planning decisions. The decision scaling method reverses the conventional ethos of climate impact assessment by first establishing the climate conditions that would compel planners to intervene. Climate model projections are introduced at the end of the process to characterize climate risk in such a way that avoids the process of propagating those projections through hydrological models. Here we simulated 1000 multisite synthetic monthly streamflow traces in a model of the Melbourne bulk supply system to test the sensitivity of system performance to variations in streamflow statistics. An empirical relation was derived to convert decision-critical flow statistics to climatic units, against which 138 alternative climate projections were plotted and compared. We defined the decision threshold in terms of a system yield metric constrained by multiple performance criteria. Our approach allows for fast and simple incorporation of demand forecast uncertainty and demonstrates the reach of the decision scaling method through successful execution in a large and complex water resources system. Scope for wider application in urban water resources planning is discussed.

  14. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  15. The impact of ARM on climate modeling

    DOE PAGES

    Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...

    2016-07-15

    Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less

  16. Decadal-Scale Forecasting of Climate Drivers for Marine Applications.

    PubMed

    Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A

    Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.

  17. Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.

    2017-12-01

    Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.

  18. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  19. Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph

    2016-09-01

    The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Using horizontal grid spacings of O(1km), convection-resolving weather and climate models allows one to explicitly resolve deep convection. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in supercomputing have led to new hybrid node designs, mixing conventional multi-core hardware and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to these architectures is the COSMO (Consortium for Small-scale Modeling) model.Here we present the convection-resolving COSMO model on continental scales using a version of the model capable of using GPU accelerators. The verification of a week-long simulation containing winter storm Kyrill shows that, for this case, convection-parameterizing simulations and convection-resolving simulations agree well. Furthermore, we demonstrate the applicability of the approach to longer simulations by conducting a 3-month-long simulation of the summer season 2006. Its results corroborate the findings found on smaller domains such as more credible representation of the diurnal cycle of precipitation in convection-resolving models and a tendency to produce more intensive hourly precipitation events. Both simulations also show how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. This includes the formation of sharp cold frontal structures, convection embedded in fronts and small eddies, or the formation and organization of propagating cold pools. Finally, we assess the performance gain from using heterogeneous hardware equipped with GPUs relative to multi-core hardware. With the COSMO model, we now use a weather and climate model that has all the necessary modules required for real-case convection-resolving regional climate simulations on GPUs.

  20. Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities

    NASA Technical Reports Server (NTRS)

    Bonan, Gordon; Santanello, Joseph A., Jr.

    2013-01-01

    Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.

  1. Linking Global and Regional Models to Simulate U.S. Air Quality in the Year 2050

    EPA Science Inventory

    The potential impact of global climate change on future air quality in the United States is investigated with global and regional-scale models. Regional climate model scenarios are developed by dynamically downscaling the outputs from a global chemistry and climate model and are...

  2. A Multi-Scale, Integrated Approach to Representing Watershed Systems

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy; Kim, Jongho; Fatichi, Simone; Katopodes, Nikolaos

    2014-05-01

    Understanding and predicting process dynamics across a range of scales are fundamental challenges for basic hydrologic research and practical applications. This is particularly true when larger-spatial-scale processes, such as surface-subsurface flow and precipitation, need to be translated to fine space-time scale dynamics of processes, such as channel hydraulics and sediment transport, that are often of primary interest. Inferring characteristics of fine-scale processes from uncertain coarse-scale climate projection information poses additional challenges. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion, and sediment transport, tRIBS+VEGGIE-FEaST. The model targets to take the advantage of the current generation of wealth of data representing watershed topography, vegetation, soil, and landuse, as well as to explore the hydrological effects of physical factors and their feedback mechanisms over a range of scales. We illustrate how the modeling system connects precipitation-hydrologic runoff partition process to the dynamics of flow, erosion, and sedimentation, and how the soil's substrate condition can impact the latter processes, resulting in a non-unique response. We further illustrate an approach to using downscaled climate change information with a process-based model to infer the moments of hydrologic variables in future climate conditions and explore the impact of climate information uncertainty.

  3. Climate fails to predict wood decomposition at regional scales

    NASA Astrophysics Data System (ADS)

    Bradford, Mark A.; Warren, Robert J., II; Baldrian, Petr; Crowther, Thomas W.; Maynard, Daniel S.; Oldfield, Emily E.; Wieder, William R.; Wood, Stephen A.; King, Joshua R.

    2014-07-01

    Decomposition of organic matter strongly influences ecosystem carbon storage. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on mean responses can be irrelevant and misleading. We test whether climate controls on the decomposition rate of dead wood--a carbon stock estimated to represent 73 +/- 6 Pg carbon globally--are sensitive to the spatial scale from which they are inferred. We show that the common assumption that climate is a predominant control on decomposition is supported only when local-scale variation is aggregated into mean values. Disaggregated data instead reveal that local-scale factors explain 73% of the variation in wood decomposition, and climate only 28%. Further, the temperature sensitivity of decomposition estimated from local versus mean analyses is 1.3-times greater. Fundamental issues with mean correlations were highlighted decades ago, yet mean climate-decomposition relationships are used to generate simulations that inform management and adaptation under environmental change. Our results suggest that to predict accurately how decomposition will respond to climate change, models must account for local-scale factors that control regional dynamics.

  4. Climate Controls AM Fungal Distributions from Global to Local Scales

    NASA Astrophysics Data System (ADS)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal composition and root colonization, with weaker influences of plant identity and soil nutrients. These two studies across scales suggest prevailing effects of climate on AM fungal distributions. Thus, incorporating climate when forecasting future ranges of AM fungi will enhance predictions of AM fungal abundance and associated ecosystem functions.

  5. Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.

    NASA Astrophysics Data System (ADS)

    Mock, Cary Jeffrey

    This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.

  6. Building hydrologic information systems to promote climate resilience in the Blue Nile/Abay higlands

    USDA-ARS?s Scientific Manuscript database

    Climate adaptation requires information about climate and land-surface conditions – spatially distributed, and at scales of human influence (the field scale). This article describes a project aimed at combining meteorological data, satellite remote sensing, hydrologic modeling, and downscaled clima...

  7. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  8. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  9. Coupling climate and hydrological models to evaluate the impact of climate change on run of the river hydropower schemes from UK study sites

    NASA Astrophysics Data System (ADS)

    Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen

    2015-04-01

    As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.

  10. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    PubMed

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael

    2017-01-01

    Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.

  11. Do GCM's predict the climate.... Or the low frequency weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Schertzer, D.; Varon, D.

    2012-04-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500 - 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT vary in power law manners ≈ Δt**H the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale (Δt). At longer scales Δt >τw (≈ 10 days) H changes sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime. In this regime, the spectrum is a relatively flat "plateau", it's variability is low, stable, corresponding to our usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, once again H>0, so that the variability increases with scale: the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, to define "climate states" as fluctuations at scale τc and then "climate change" as the fluctuations at longer periods (Δt>τc). We show that the intermediate low frequency weather regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched so that only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by stochastic cascade models of weather, but also by control runs (i.e. without climate forcing) of GCM based climate forecasting systems including those of the Institut Pierre Simon Laplace (Paris) and the Earth Forecasting System (Hamburg). In order for these systems to go beyond simply predicting low frequency weather i.e. in order for them to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. Using statistical scaling techniques we examine the scale dependence of fluctuations from forced and unforced GCM outputs, including from the ECHO-G and EFS simulations in the Millenium climate reconstruction project and compare this with data, multiproxies and paleo data. Our general conclusion is that the models systematically underestimate the multidecadal, multicentennial scale variability.

  12. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  13. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  14. Scale Development for Perceived School Climate for Girls' Physical Activity

    ERIC Educational Resources Information Center

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2005-01-01

    Objectives: To test an original scale assessing perceived school climate for girls' physical activity in middle school girls. Methods: Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results: CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers' and boys' behaviors,…

  15. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    EPA Science Inventory

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  16. The interactions between vegetation and climate seasonality, topography on different time scales under the Budyko framework: case study in China's Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ning, T.; Shen, H.; Li, Z.

    2017-12-01

    Vegetation, climate seasonality and topography are the main impact factors controlling the water and heat balance over a catchment, and they are usually empirically formulated into the controlling parameter in Budyko model. However, their interactions on different time scales have not been fully addressed. Taking 30 catchments in China's Loess Plateau as an example, on annual scale, vegetation coverage was found poorly correlated with climate seasonality index; therefore, they could be both parameterized into the Budyko model. On the long-term scale, vegetation coverage tended to have close relationships with topographic conditions and climate seasonality, which was confirmed by the multi-collinearity problems; in that sense, vegetation information could fit the controlling parameter exclusively. Identifying the dominant controlling factors over different time scales, this study simplified the empirical parameterization of the Budyko formula. Though the above relationships further investigation over the other regions/catchments.

  17. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Giorgi, Filippo

    1999-03-01

    The NCAR regional climate model (RegCM) is interactively coupled to a simple radiatively active sulfate aerosol model over eastern Asia. Both direct and indirect aerosol effects are represented. The coupled model system is tested for two simulation periods, November 1994 and July 1995, with aerosol sources representative of present-day anthropogenic sulfur emissions. The model sensitivity to the intensity of the aerosol source is also studied. The main conclusions from our work are as follows: (1) The aerosol distribution and cycling processes show substantial regional spatial variability, and temporal variability varying on a range of scales, from the diurnal scale of boundary layer and cumulus cloud evolution to the 3-10 day scale of synoptic scale events and the interseasonal scale of general circulation features; (2) both direct and indirect aerosol forcings have regional effects on surface climate; (3) the regional climate response to the aerosol forcing is highly nonlinear, especially during the summer, due to the interactions with cloud and precipitation processes; (4) in our simulations the role of the aerosol indirect effects is dominant over that of direct effects; (5) aerosol-induced feedback processes can affect the aerosol burdens at the subregional scale. This work constitutes the first step in a long term research project aimed at coupling a hierarchy of chemistry/aerosol models to the RegCM over the eastern Asia region.

  18. Local control on precipitation in a fully coupled climate-hydrology model.

    PubMed

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  19. Local control on precipitation in a fully coupled climate-hydrology model

    PubMed Central

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin; Butts, Michael B.; Refsgaard, Jens C.

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564

  20. Spatial variation in the climatic predictors of species compositional turnover and endemism.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-08-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.

  1. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  2. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  3. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from leaf to canopy.

  4. Forecasting climate change impacts on plant populations over large spatial extents

    DOE PAGES

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; ...

    2016-10-24

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  5. Forecasting climate change impacts on plant populations over large spatial extents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  6. Forecasting climate change impacts on plant populations over large spatial extents

    USGS Publications Warehouse

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  7. Spatial models reveal the microclimatic buffering capacity of old-growth forests

    PubMed Central

    Frey, Sarah J. K.; Hadley, Adam S.; Johnson, Sherri L.; Schulze, Mark; Jones, Julia A.; Betts, Matthew G.

    2016-01-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming. PMID:27152339

  8. Spatial models reveal the microclimatic buffering capacity of old-growth forests.

    PubMed

    Frey, Sarah J K; Hadley, Adam S; Johnson, Sherri L; Schulze, Mark; Jones, Julia A; Betts, Matthew G

    2016-04-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming.

  9. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    NASA Astrophysics Data System (ADS)

    di Luca, Alejandro; de Elía, Ramón; Laprise, René

    2012-03-01

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions.

  10. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  11. Climate change: evaluating your local and regional water resources

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Thorne, James H.

    2015-01-01

    The BCM is a fine-scale hydrologic model that uses detailed maps of soils, geology, topography, and transient monthly or daily maps of potential evapotranspiration, air temperature, and precipitation to generate maps of recharge, runoff, snow pack, actual evapotranspiration, and climatic water deficit. With these comprehensive environmental inputs and experienced scientific analysis, the BCM provides resource managers with important hydrologic and ecologic understanding of a landscape or basin at hillslope to regional scales. The model is calibrated using historical climate and streamflow data over the range of geologic materials specific to an area. Once calibrated, the model is used to translate climate-change data into hydrologic responses for a defined landscape, to provide managers an understanding of potential ecological risks and threats to water supplies and managed hydrologic systems. Although limited to estimates of unimpaired hydrologic conditions, estimates of impaired conditions, such as agricultural demand, diversions, or reservoir outflows can be incorporated into the calibration of the model to expand its utility. Additionally, the model can be linked to other models, such as groundwater-flow models (that is, MODFLOW) or the integrated hydrologic model (MF-FMP), to provide information about subsurface hydrologic processes. The model can be applied at a relatively small scale, but also can be applied to large-scale national and international river basins.

  12. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future hydropower resources in the St. Joseph River basin, 3) Effects of climate change on carbon cycling in small lakes in the Northern Highland Lakes District.

  13. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for better informed decision-making on adaptation strategies. References 1. Coumou, D. & Rahmstorf, S. A decade of extremes. Nature Clim. Change, 2, 491-496 (2012). 2. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change, 1, 175-177 (2011). 3. Asseng, S. et al., Uncertainty in simulating wheat yields under climate change. Nature Clim. Change. 10.1038/nclimate1916. (2013). 4. Porter, J.R., & Semenov, M., Crop responses to climatic variation . Trans. R. Soc. B., 360, 2021-2035 (2005). 5. Porter, J.R. & Christensen, S. Deconstructing crop processes and models via identities. Plant, Cell and Environment . doi: 10.1111/pce.12107 (2013). 6. Boogaard, H.L., van Diepen C.A., Rötter R.P., Cabrera J.M. & van Laar H.H. User's guide for the WOFOST 7.1 crop growth simulation model and Control Center 1.5, Alterra, Wageningen, The Netherlands. (1998) 7. Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol., 170, 146-165. (2013).

  14. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  15. Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.

  16. Development and Validation of a Safety Climate Scale for Manufacturing Industry

    PubMed Central

    Ghahramani, Abolfazl; Khalkhali, Hamid R.

    2015-01-01

    Background This paper describes the development of a scale for measuring safety climate. Methods This study was conducted in six manufacturing companies in Iran. The scale developed through conducting a literature review about the safety climate and constructing a question pool. The number of items was reduced to 71 after performing a screening process. Results The result of content validity analysis showed that 59 items had excellent item content validity index (≥ 0.78) and content validity ratio (> 0.38). The exploratory factor analysis resulted in eight safety climate dimensions. The reliability value for the final 45-item scale was 0.96. The result of confirmatory factor analysis showed that the safety climate model is satisfactory. Conclusion This study produced a valid and reliable scale for measuring safety climate in manufacturing companies. PMID:26106508

  17. US forest response to projected climate-related stress: a tolerance perspective.

    PubMed

    Liénard, Jean; Harrison, John; Strigul, Nikolay

    2016-08-01

    Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine-scale predictions) and potential vegetation climate envelope models (for coarse-grained, large-scale predictions). Here, we develop and apply an intermediate approach wherein we use stand-level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate-related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought-related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high-elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States. © 2016 John Wiley & Sons Ltd.

  18. Relative importance of climate changes at different time scales on net primary productivity-a case study of the Karst area of northwest Guangxi, China.

    PubMed

    Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan

    2017-10-05

    Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

  19. Effects of Ensemble Configuration on Estimates of Regional Climate Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldenson, N.; Mauger, G.; Leung, L. R.

    Internal variability in the climate system can contribute substantial uncertainty in climate projections, particularly at regional scales. Internal variability can be quantified using large ensembles of simulations that are identical but for perturbed initial conditions. Here we compare methods for quantifying internal variability. Our study region spans the west coast of North America, which is strongly influenced by El Niño and other large-scale dynamics through their contribution to large-scale internal variability. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find that internal variability can be quantified consistently using a large ensemble or an ensemble ofmore » opportunity that includes small ensembles from multiple models and climate scenarios. The latter also produce estimates of uncertainty due to model differences. We conclude that projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible, which has implications for ensemble design in large modeling efforts.« less

  20. Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.

    2012-12-01

    Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.

  1. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2015-04-01

    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest that even up to fairly extreme temperature increases from ambient levels (+6 °C), simulated photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of simulations of the response of Amazonian rainforest to climate change, the mechanistic underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to improve accuracy and consistency in the quantification of processes within and across an ecosystem.

  2. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  3. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less

  4. High-resolution RCMs as pioneers for future GCMs

    NASA Astrophysics Data System (ADS)

    Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.

    2017-12-01

    Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data sets, the assessment of regional-scale climate feedback processes, and the development of alternative output analysis methodologies.

  5. A New Framework for Cumulus Parametrization - A CPT in action

    NASA Astrophysics Data System (ADS)

    Jakob, C.; Peters, K.; Protat, A.; Kumar, V.

    2016-12-01

    The representation of convection in climate model remains a major Achilles Heel in our pursuit of better predictions of global and regional climate. The basic principle underpinning the parametrisation of tropical convection in global weather and climate models is that there exist discernible interactions between the resolved model scale and the parametrised cumulus scale. Furthermore, there must be at least some predictive power in the larger scales for the statistical behaviour on small scales for us to be able to formally close the parametrised equations. The presentation will discuss a new framework for cumulus parametrisation based on the idea of separating the prediction of cloud area from that of velocity. This idea is put into practice by combining an existing multi-scale stochastic cloud model with observations to arrive at the prediction of the area fraction for deep precipitating convection. Using mid-tropospheric humidity and vertical motion as predictors, the model is shown to reproduce the observed behaviour of both mean and variability of deep convective area fraction well. The framework allows for the inclusion of convective organisation and can - in principle - be made resolution-aware or resolution-independent. When combined with simple assumptions about cloud-base vertical motion the model can be used as a closure assumption in any existing cumulus parametrisation. Results of applying this idea in the the ECHAM model indicate significant improvements in the simulation of tropical variability, including but not limited to the MJO. This presentation will highlight how the close collaboration of the observational, theoretical and model development community in the spirit of the climate process teams can lead to significant progress in long-standing issues in climate modelling while preserving the freedom of individual groups in pursuing their specific implementation of an agreed framework.

  6. Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system

    NASA Astrophysics Data System (ADS)

    Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang

    2013-04-01

    The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.

  7. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.

  8. Evaluating historical climate and hydrologic trends in the Central Appalachian region of the United States

    NASA Astrophysics Data System (ADS)

    Gaertner, B. A.; Zegre, N.

    2015-12-01

    Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.

  9. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  10. : “Developing Regional Modeling Techniques Applicable for Simulating Future Climate Conditions in the Carolinas”

    EPA Science Inventory

    Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...

  11. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE PAGES

    Elliott, J.; Müller, C.; Deryng, D.; ...

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  12. Effect of climate change on environmental flow indicators in the narew basin, poland.

    PubMed

    Piniewski, Mikołaj; Laizé, Cédric L R; Acreman, Michael C; Okruszko, Tomasz; Schneider, Christof

    2014-01-01

    Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busuioc, A.; Storch, H. von; Schnur, R.

    Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). Themore » climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in time-slice mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 x CO{sub 2} GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.« less

  14. Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...

  15. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    DOE PAGES

    Winterhalter, Wade E.

    2011-09-01

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less

  16. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  17. Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections.

    PubMed

    Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L

    2017-08-15

    The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Decade-Long European-Scale Convection-Resolving Climate Simulation on GPUs

    NASA Astrophysics Data System (ADS)

    Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.

    2016-12-01

    Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer designs that involve conventional multi-core CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation over Europe using the GPU-enabled COSMO version on a computational domain with 1536x1536x60 gridpoints. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss some of the advantages and prospects from using GPUs, and focus on the performance of the convection-resolving modeling approach on the European scale. Specifically we investigate the organization of convective clouds and on validate hourly rainfall distributions with various high-resolution data sets.

  19. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  20. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  1. School Climate of Educational Institutions: Design and Validation of a Diagnostic Scale

    ERIC Educational Resources Information Center

    Becerra, Sandra

    2016-01-01

    School climate is recognized as a relevant factor for the improvement of educative processes, favoring the administrative processes and optimum school performance. The present article is the result of a quantitative research model which had the objective of psychometrically designing and validating a scale to diagnose the organizational climate of…

  2. The Relationship between Work Engagement Behavior and Perceived Organizational Support and Organizational Climate

    ERIC Educational Resources Information Center

    Köse, Akif

    2016-01-01

    The purpose of this study is to examine the relationship between work engagement and perceived organizational support and organizational climate. The present study, in which quantitative methods have been used, is carried out in the relational screening model. Perceived organizational support scale, organizational climate scale, and work…

  3. A conceptual model of plant responses to climate with implications for monitoring ecosystem change

    Treesearch

    C. David Bertelsen

    2013-01-01

    Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...

  4. Study of Regional Downscaled Climate and Air Quality in the United States

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Fu, J. S.; Drake, J.; Lamarque, J.; Lam, Y.; Huang, K.

    2011-12-01

    Due to the increasing anthropogenic greenhouse gas emissions, the global and regional climate patterns have significantly changed. Climate change has exerted strong impact on ecosystem, air quality and human life. The global model Community Earth System Model (CESM v1.0) was used to predict future climate and chemistry under projected emission scenarios. Two new emission scenarios, Representative Community Pathways (RCP) 4.5 and RCP 8.5, were used in this study for climate and chemistry simulations. The projected global mean temperature will increase 1.2 and 1.7 degree Celcius for the RCP 4.5 and RCP 8.5 scenarios in 2050s, respectively. In order to take advantage of local detailed topography, land use data and conduct local climate impact on air quality, we downscaled CESM outputs to 4 km by 4 km Eastern US domain using Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality modeling system (CMAQ). The evaluations between regional model outputs and global model outputs, regional model outputs and observational data were conducted to verify the downscaled methodology. Future climate change and air quality impact were also examined on a 4 km by 4 km high resolution scale.

  5. Fire modeling in the Brazilian arc of deforestation through nested coupling of atmosphere, dynamic vegetation, LUCC and fire spread models

    NASA Astrophysics Data System (ADS)

    Tourigny, E.; Nobre, C.; Cardoso, M. F.

    2012-12-01

    Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.

  6. Evaluating the utility of dynamical downscaling in agricultural impacts projections

    PubMed Central

    Glotter, Michael; Elliott, Joshua; McInerney, David; Best, Neil; Foster, Ian; Moyer, Elisabeth J.

    2014-01-01

    Interest in estimating the potential socioeconomic costs of climate change has led to the increasing use of dynamical downscaling—nested modeling in which regional climate models (RCMs) are driven with general circulation model (GCM) output—to produce fine-spatial-scale climate projections for impacts assessments. We evaluate here whether this computationally intensive approach significantly alters projections of agricultural yield, one of the greatest concerns under climate change. Our results suggest that it does not. We simulate US maize yields under current and future CO2 concentrations with the widely used Decision Support System for Agrotechnology Transfer crop model, driven by a variety of climate inputs including two GCMs, each in turn downscaled by two RCMs. We find that no climate model output can reproduce yields driven by observed climate unless a bias correction is first applied. Once a bias correction is applied, GCM- and RCM-driven US maize yields are essentially indistinguishable in all scenarios (<10% discrepancy, equivalent to error from observations). Although RCMs correct some GCM biases related to fine-scale geographic features, errors in yield are dominated by broad-scale (100s of kilometers) GCM systematic errors that RCMs cannot compensate for. These results support previous suggestions that the benefits for impacts assessments of dynamically downscaling raw GCM output may not be sufficient to justify its computational demands. Progress on fidelity of yield projections may benefit more from continuing efforts to understand and minimize systematic error in underlying climate projections. PMID:24872455

  7. A test of the hierarchical model of litter decomposition.

    PubMed

    Bradford, Mark A; Veen, G F Ciska; Bonis, Anne; Bradford, Ella M; Classen, Aimee T; Cornelissen, J Hans C; Crowther, Thomas W; De Long, Jonathan R; Freschet, Gregoire T; Kardol, Paul; Manrubia-Freixa, Marta; Maynard, Daniel S; Newman, Gregory S; Logtestijn, Richard S P; Viketoft, Maria; Wardle, David A; Wieder, William R; Wood, Stephen A; van der Putten, Wim H

    2017-12-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2 . Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

  8. Web based visualization of large climate data sets

    USGS Publications Warehouse

    Alder, Jay R.; Hostetler, Steven W.

    2015-01-01

    We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.

  9. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  10. Getting It Right Matters: Climate Spectra and Their Estimation

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor; Yushkov, Vladislav

    2018-06-01

    In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.

  11. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling.

    PubMed

    Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun'ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu

    2017-02-01

    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO 2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

  12. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling

    PubMed Central

    Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun’ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu

    2017-01-01

    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets. PMID:28246631

  13. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    NASA Astrophysics Data System (ADS)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  14. Multi-model projections of Indian summer monsoon climate changes under A1B scenario

    NASA Astrophysics Data System (ADS)

    Niu, X.; Wang, S.; Tang, J.

    2016-12-01

    As part of the Regional Climate Model Intercomparison Project for Asia, the projections of Indian summer monsoon climate changes are constructed using three global climate models (GCMs) and seven regional climate models (RCMs) during 2041-2060 based on the Intergovernmental Panel on Climate Change A1B emission scenario. For the control climate of 1981-2000, most nested RCMs show advantage over the driving GCM of European Centre/Hamburg Fifth Generation (ECHAM5) in the temporal-spatial distributions of temperature and precipitation over Indian Peninsula. Following the driving GCM of ECHAM5, most nested RCMs produce advanced monsoon onset in the control climate. For future climate widespread summer warming is projected over Indian Peninsula by all climate models, with the Multi-RCMs ensemble mean (MME) temperature increasing of 1°C to 2.5°C and the maximum warming center located in northern Indian Peninsula. While for the precipitation, a large inter-model spread is projected by RCMs, with wetter condition in MME projections and significant increase over southern India. Driven by the same GCM, most RCMs project advanced monsoon onset while delayed onset is found in two Regional Climate Model (RegCM3) projections, indicating uncertainty can be expected in the Indian Summer Monsoon onset. All climate models except Conformal-Cubic Atmospheric Model with equal resolution (referred as CCAMP) and two RegCM3 models project stronger summer monsoon during 2041-2060. The disagreement in precipitation projections by RCMs indicates that the surface climate change on regional scale is not only dominated by the large-scale forcing which is provided by driving GCM but also sensitive to RCM' internal physics.

  15. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  16. Hydrologic Impacts of Climate Change: Quantification of Uncertainties (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mujumdar, Pradeep P.

    2014-05-01

    Climate change results in regional hydrologic change. The three prominent signals of global climate change, viz., increase in global average temperatures, rise in sea levels and change in precipitation patterns convert into signals of regional hydrologic change in terms of modifications in water availability, evaporative water demand, hydrologic extremes of floods and droughts, water quality, salinity intrusion in coastal aquifers, groundwater recharge and other related phenomena. A major research focus in hydrologic sciences in recent years has been assessment of impacts of climate change at regional scales. An important research issue addressed in this context deals with responses of water fluxes on a catchment scale to the global climatic change. A commonly adopted methodology for assessing the regional hydrologic impacts of climate change is to use the climate projections provided by the General Circulation Models (GCMs) for specified emission scenarios in conjunction with the process-based hydrologic models to generate the corresponding hydrologic projections. The scaling problem arising because of the large spatial scales at which the GCMs operate compared to those required in distributed hydrologic models, and their inability to satisfactorily simulate the variables of interest to hydrology are addressed by downscaling the GCM simulations to hydrologic scales. Projections obtained with this procedure are burdened with a large uncertainty introduced by the choice of GCMs and emission scenarios, small samples of historical data against which the models are calibrated, downscaling methods used and other sources. Development of methodologies to quantify and reduce such uncertainties is a current area of research in hydrology. In this presentation, an overview of recent research carried out by the author's group on assessment of hydrologic impacts of climate change addressing scale issues and quantification of uncertainties is provided. Methodologies developed with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.

  17. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  18. Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA.

    PubMed

    Wang, Guiming; Hobbs, N Thompson; Galbraith, Hector; Giesen, Kenneth M

    2002-09-01

    Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.

  19. Combined climate and carbon-cycle effects of large-scale deforestation

    PubMed Central

    Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.

    2007-01-01

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463

  20. Combined climate and carbon-cycle effects of large-scale deforestation.

    PubMed

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2007-04-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  1. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Caldeira, K; Wickett, M

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less

  2. Can Regional Climate Models be used in the assessment of vulnerability and risk caused by extreme events?

    NASA Astrophysics Data System (ADS)

    Nunes, Ana

    2015-04-01

    Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.

  3. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the con...

  4. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  5. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  6. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  7. An empirical perspective for understanding climate change impacts in Switzerland

    USGS Publications Warehouse

    Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy

    2018-01-01

    Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.

  8. Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood.

    PubMed

    Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M

    2015-11-01

    Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.

  9. Climate Change Impact on Water Balance at the Chipola River Watershed in Florida

    NASA Astrophysics Data System (ADS)

    Griffen, J. M.; Chen, X.; Wang, D.; Hagen, S. C.

    2013-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through the Florida Panhandle and drains into the Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with an aridity index of approximately 1.0. However, climate change affects the hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this watershed. This research is mainly focused on assessing climate change impact on the partitioning of rainfall and the following runoff generation in Chipola watershed, from long-term mean annual to inter-annual and to seasonal and monthly scales. A comprehensive water balance model at inter-annual scale is built in this study based on Budyko's framework, two-stage runoff theory and proportionality hypothesis. The inter-annual scale model considers the impact of storage change, seasonality and landscape controls, which are normally assumed to be negligible on a long-term scale. The model is applied to the Chipola River Watershed in Florida to project future water balance pattern with the input from a Regional Climate Model projection. Based on the projection results: evaporation will increase in the future in all 12 months; runoff will increase only in dry months of July to October, while significantly decrease in wet months of December to April; storage change will increase in wet months of January to April, while decrease in the dry months of August to November.

  10. Multilevel model of safety climate for furniture industries.

    PubMed

    Rodrigues, Matilde A; Arezes, Pedro M; Leão, Celina P

    2015-01-01

    Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies' safety conditions were also analyzed. Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies' safety conditions; the organizational scale is the one that best reflects the actual safety conditions. The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups' safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

  11. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.

  12. The Use of Statistical Downscaling to Project Regional Climate Changes as they Relate to Future Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.

    2010-12-01

    Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.

  13. From catchment scale hydrologic processes to numerical models and robust predictions of climate change impacts at regional scales

    NASA Astrophysics Data System (ADS)

    Wagener, T.

    2017-12-01

    Current societal problems and questions demand that we increasingly build hydrologic models for regional or even continental scale assessment of global change impacts. Such models offer new opportunities for scientific advancement, for example by enabling comparative hydrology or connectivity studies, and for improved support of water management decision, since we might better understand regional impacts on water resources from large scale phenomena such as droughts. On the other hand, we are faced with epistemic uncertainties when we move up in scale. The term epistemic uncertainty describes those uncertainties that are not well determined by historical observations. This lack of determination can be because the future is not like the past (e.g. due to climate change), because the historical data is unreliable (e.g. because it is imperfectly recorded from proxies or missing), or because it is scarce (either because measurements are not available at the right scale or there is no observation network available at all). In this talk I will explore: (1) how we might build a bridge between what we have learned about catchment scale processes and hydrologic model development and evaluation at larger scales. (2) How we can understand the impact of epistemic uncertainty in large scale hydrologic models. And (3) how we might utilize large scale hydrologic predictions to understand climate change impacts, e.g. on infectious disease risk.

  14. The Use of Climate Projections in the Modelling of Bud Burst

    NASA Astrophysics Data System (ADS)

    O'Neill, Bridget F.; Caffara, Amelia; Gleeson, Emily; Semmler, Tido; McGrath, Ray; Donnelly, Alison

    2010-05-01

    Recent changes in global climate, such as increasing temperature, have had notable effects on the phenology (timing of biological events) of plants. The effects are variable across habitats and between species, but increasing temperatures have been shown to advance certain key phenophases of trees, such as bud burst (beginning of leaf unfolding). This project considered climate change impacts on phenology of plants at a local scale in Ireland. The output from the ENSEMBLES climate simulations were down-scaled to Ireland and utilised by a phenological model to project changes over the next 50-100 years. This project helps to showcase the potential use of climate simulations in phenological research.

  15. The Dynamic General Vegetation Model MC1 over the United States and Canada at a 5-arcminute resolution: model inputs and outputs

    Treesearch

    Ray Drapek; John B. Kim; Ronald P. Neilson

    2015-01-01

    Land managers need to include climate change in their decisionmaking, but the climate models that project future climates operate at spatial scales that are too coarse to be of direct use. To create a dataset more useful to managers, soil and historical climate were assembled for the United States and Canada at a 5-arcminute grid resolution. Nine CMIP3 future climate...

  16. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)

    NASA Astrophysics Data System (ADS)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2013-12-01

    This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen climate parameters provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century changes in global mean surface air temperature from previous work with the IGSM. Because the IGSM-CAM framework only considers one particular climate model, it cannot be used to assess the structural modeling uncertainty arising from differences in the parameterization suites of climate models. However, comparison of the IGSM-CAM projections with simulations of 31 CMIP5 models under the RCP4.5 and RCP8.5 scenarios show that the range of warming at the continental scale shows very good agreement between the two ensemble simulations, except over Antarctica, where the IGSM-CAM overestimates the warming. This demonstrates that by sampling the climate system response, the IGSM-CAM, even though it relies on one single climate model, can essentially reproduce the range of future continental warming simulated by more than 30 different models. Precipitation changes projected in the IGSM-CAM simulations and the CMIP5 multi-model ensemble both display a large uncertainty at the continental scale. The two ensemble simulations show good agreement over Asia and Europe. However, the ranges of precipitation changes do not overlap - but display similar size - over Africa and South America, two continents where models generally show little agreement in the sign of precipitation changes and where CCSM3 tends to be an outlier. Overall, the IGSM-CAM provides an efficient and consistent framework to explore the large uncertainty in future projections of global and regional climate change associated with uncertainty in the climate response and projected emissions.

  17. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  18. Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, A.W.; Ghil, M.; Kravtsov, K.

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less

  19. Final Technical Report for "Collaborative Research. Regional climate-change projections through next-generation empirical and dynamical models"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less

  20. Simulating the effects of climate change on the distribution of an invasive plant, using a high resolution, local scale, mechanistic approach: challenges and insights.

    PubMed

    Fennell, Mark; Murphy, James E; Gallagher, Tommy; Osborne, Bruce

    2013-04-01

    The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate-induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread-rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters. © 2012 Blackwell Publishing Ltd.

  1. The role of internal climate variability for interpreting climate change scenarios

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with a recently published study on the TOE for mean and heavy precipitation trends in Europe. In some regions trends emerge only late in the 21st century or even later, suggesting that in these regions adaptation to internal variability rather than to climate change is required. Yet in other regions the climate change signal is strong, urging for timely adaptation. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.

  2. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.

  3. Spatial variation in the climatic predictors of species compositional turnover and endemism

    PubMed Central

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-01-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species–environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile–climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r2 = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r2 = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses. PMID:25473479

  4. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  5. Characterizing sources of uncertainty from global climate models and downscaling techniques

    USGS Publications Warehouse

    Wootten, Adrienne; Terando, Adam; Reich, Brian J.; Boyles, Ryan; Semazzi, Fred

    2017-01-01

    In recent years climate model experiments have been increasingly oriented towards providing information that can support local and regional adaptation to the expected impacts of anthropogenic climate change. This shift has magnified the importance of downscaling as a means to translate coarse-scale global climate model (GCM) output to a finer scale that more closely matches the scale of interest. Applying this technique, however, introduces a new source of uncertainty into any resulting climate model ensemble. Here we present a method, based on a previously established variance decomposition method, to partition and quantify the uncertainty in climate model ensembles that is attributable to downscaling. We apply the method to the Southeast U.S. using five downscaled datasets that represent both statistical and dynamical downscaling techniques. The combined ensemble is highly fragmented, in that only a small portion of the complete set of downscaled GCMs and emission scenarios are typically available. The results indicate that the uncertainty attributable to downscaling approaches ~20% for large areas of the Southeast U.S. for precipitation and ~30% for extreme heat days (> 35°C) in the Appalachian Mountains. However, attributable quantities are significantly lower for time periods when the full ensemble is considered but only a sub-sample of all models are available, suggesting that overconfidence could be a serious problem in studies that employ a single set of downscaled GCMs. We conclude with recommendations to advance the design of climate model experiments so that the uncertainty that accrues when downscaling is employed is more fully and systematically considered.

  6. 75 FR 54627 - ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing Density Growth

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Climate and Land Use Scenarios, a project which is described in the 2009 EPA Report, ``Land-Use Scenarios: National-Scale Housing- Density Scenarios Consistent with Climate Change Storylines.'' These scenarios are... economic development, which are used by climate change modelers to develop projections of future climate...

  7. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  8. Watershed scale response to climate change--Yampa River Basin, Colorado

    USGS Publications Warehouse

    Hay, Lauren E.; Battaglin, William A.; Markstrom, Steven L.

    2012-01-01

    General Circulation Model simulations of future climate through 2099 project a wide range of possible scenarios. To determine the sensitivity and potential effect of long-term climate change on the freshwater resources of the United States, the U.S. Geological Survey Global Change study, "An integrated watershed scale response to global change in selected basins across the United States" was started in 2008. The long-term goal of this national study is to provide the foundation for hydrologically based climate change studies across the nation. Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Yampa River Basin at Steamboat Springs, Colorado.

  9. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    USGS Publications Warehouse

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  10. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically downscaled climate projection data will be integrated into future water resource projections in the state of Arizona, through a cooperative effort involving numerous water resource stakeholders.

  11. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    USGS Publications Warehouse

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect interannual changes in total recharge. These results provide insights into the possible impacts of climate change to other regional aquifer systems, and the streams they support, where discharge points represent a range of flow system scales.

  12. Scaling Forest Management Practices in Earth System Models: Case Study of Southeast and Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Pourmokhtarian, A.; Becknell, J. M.; Hall, J.; Desai, A. R.; Boring, L. R.; Duffy, P.; Staudhammer, C. L.; Starr, G.; Dietze, M.

    2014-12-01

    A wide array of human-induced disturbances can alter the structure and function of forests, including climate change, disturbance and management. While there have been numerous studies on climate change impacts on forests, interactions of management with changing climate and natural disturbance are poorly studied. Forecasts of the range of plausible responses of forests to climate change and management are need for informed decision making on new management approaches under changing climate, as well as adaptation strategies for coming decades. Terrestrial biosphere models (TBMs) provide an excellent opportunity to investigate and assess simultaneous responses of terrestrial ecosystems to climatic perturbations and management across multiple spatio-temporal scales, but currently do not represent a wide array of management activities known to impact carbon, water, surface energy fluxes, and biodiversity. The Ecosystem Demography model 2 (ED2) incorporates non-linear impacts of fine-scale (~10-1 km) heterogeneity in ecosystem structure both horizontally and vertically at a plant level. Therefore it is an ideal candidate to incorporate different forest management practices and test various hypotheses under changing climate and across various spatial scales. The management practices that we implemented were: clear-cut, conversion, planting, partial harvest, low intensity fire, restoration, salvage, and herbicide. The results were validated against observed data across 8 different sites in the U.S. Southeast (Duke Forest, Joseph Jones Ecological Research Center, North Carolina Loblolly Pine, and Ordway-Swisher Biological Station) and Pacific Northwest (Metolius Research Natural Area, H.J. Andrews Experimental Forest, Wind River Field Station, and Mount Rainier National Park). These sites differ in regards to climate, vegetation, soil, and historical land disturbance as well as management approaches. Results showed that different management practices could successfully and realistically be implemented in the ED2 model at a site level. Moreover, sensitivity analyses determined the most important processes at different spatial scales, and also those which could be ignored while minimizing overall error.

  13. Representation of Precipitation in a Decade-long Continental-Scale Convection-Resolving Climate Simulation

    NASA Astrophysics Data System (ADS)

    Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.

    2017-12-01

    The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Regional climate simulations using horizontal resolutions of O(1km) allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. A new version of the Consortium for Small-Scale Modeling weather and climate model (COSMO) is capable of exploiting new supercomputer architectures employing GPU accelerators, and allows convection-resolving climate simulations on computational domains spanning continents and time periods up to one decade. We present results from a decade-long, convection-resolving climate simulation on a European-scale computational domain. The simulation has a grid spacing of 2.2 km, 1536x1536x60 grid points, covers the period 1999-2008, and is driven by the ERA-Interim reanalysis. Specifically we present an evaluation of hourly rainfall using a wide range of data sets, including several rain-gauge networks and a remotely-sensed lightning data set. Substantial improvements are found in terms of the diurnal cycles of precipitation amount, wet-hour frequency and all-hour 99th percentile. However the results also reveal substantial differences between regions with and without strong orographic forcing. Furthermore we present an index for deep-convective activity based on the statistics of vertical motion. Comparison of the index with lightning data shows that the convection-resolving climate simulations are able to reproduce important features of the annual cycle of deep convection in Europe. Leutwyler D., D. Lüthi, N. Ban, O. Fuhrer, and C. Schär (2017): Evaluation of the Convection-Resolving Climate Modeling Approach on Continental Scales , J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026013.

  14. Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Mohr, K. I.

    2014-12-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).

  15. Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.; hide

    2016-01-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  16. Uncertainties in Past and Future Global Water Availability

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Kam, J.

    2014-12-01

    Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due to reduced gauge density in recent years. We also discuss uncertainties in future projections from these models as driven by bias-corrected and downscaled CMIP5 climate projections, in the context of the balance between climate model robustness and climate model diversity.

  17. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

  18. Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bellafiore, D.; Bucchignani, E.; Umgiesser, G.

    2010-09-01

    One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more realistic forcing for hydrodynamic simulations. After this analysis, effects on water level variations, under different wind forcing, has been analyzed to define what is the local effect on sea level changes in the coastal area of the North Adriatic. Surge statistics produced from different climate model forcings for the IPCC A1B scenario have been studied to provide local information on climate change effects on coastal hydrodynamics due to meteorological effect. This typology of application has been considered a suitable tool for coastal management and can be considered a study field that will increase its importance in the more general investigation on scale interaction processes as the effects of global scale climate phenomena on local areas.

  19. Individual-scale inference to anticipate climate-change vulnerability of biodiversity.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew; Stine, Anne; Vierra, Ben; Zhu, Kai

    2012-01-19

    Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.

  20. Earth Radiation Budget Science, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.

  1. SIMULATING REGIONAL-SCALE AIR QUALITY WITH DYNAMIC CHANGES IN REGIONAL CLIMATE AND CHEMICAL BOUNDARY CONDITIONS

    EPA Science Inventory

    This poster compares air quality modeling simulations under current climate and a future (approximately 2050) climate scenario. Differences in predicted ozone episodes and daily average PM2.5 concentrations are presented, along with vertical ozone profiles. Modeling ...

  2. Making Scientific Data Available to Adaptation Practitioners - the Wallace Initiative

    NASA Astrophysics Data System (ADS)

    Price, J. T.; Warren, R. F.; Vanderwal, J.; Shoo, L.; Ramirez, J.; Jarvis, A.; Goswami, S.

    2010-12-01

    Conservation strategies have largely been developed under an assumption of a stationary climate. These strategies may fail with changing climates, especially when acting with existing anthropogenic pressures. The Wallace Initiative is a global effort to rapidly assess the potential impacts of climate change on nearly 50,000 plant and animal species. Climate change data from the Community Integrated Assessment System (CIAS) is then used to look at different future climate change scenarios. Governments and conservation organizations have dedicated extensive resources to protect biodiversity. These investments are at risk and efforts will need to take into account a dynamic climate. We used the species models to calculate projected changes in percent species richness - looking at areas likely to be refugia and areas likely to undergo the greatest loss. This information can provide guidance to natural resource managers on how they may need to adapt to climate change to avoid biodiversity loss. Managers will also need to take into account issues with spatial scale. While these models might project a species being “lost” in a 0.5° x 0.5° grid, thermal buffering (e.g., taking into account elevation, slope, aspect, distance to stream and canopy cover) provides guidance on areas that may allow a species to persist at more local scales (1-5 km). This approach may help alleviate the issues of downscaling climate and climate change data in data-poor areas. Understanding the vulnerability of biodiversity requires an understanding of the climate and projected climate changes. Thus, developing long term adaptation options requires robust vulnerability analyses at appropriate scales. These assessments are often hindered by data quality and availability, capacity and an understanding of appropriate scales, methods and tools. The program ClimaScope has been designed to help provide better access to climate data for modelers and practitioners, data that has also been linked to impacts. ClimaScope is a data visualization engine providing easy access to data without running the models. For a selected GCM pattern and emissions scenario, ClimaScope provides maps, charts and data on the projected climate changes with some indication of uncertainty range. Variables available include terrestrial temperature change (maximum, minimum and average), total precipitation, wet-day frequency, and sea-surface temperature. This data can be presented both as observed climate and/or projected climate for a user defined time period. Some of these data have been used in the Wallace Initiative and data from the Wallace Initiative are also available to users. So, practitioners can select family, genus, species, dispersal model, climate model, emission model, and time slice and get maps showing projected range of the species over time. These tools have been designed to help make scientific data more readily available to adaptation practitioners around the world, especially in developing countries.

  3. Selection of climate change scenario data for impact modelling.

    PubMed

    Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.

  4. Factorial validity and internal consistency of the motivational climate in physical education scale.

    PubMed

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors.

  5. Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale

    PubMed Central

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617

  6. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  7. Evaluating the Effects of Climate Change on Summertime Ozone using a Relative Response Factor approach for Policy Makers

    EPA Science Inventory

    The impact of climate change on surface level ozone is examined through a multi-scale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the Relative Response Factor (RRFE), which es...

  8. Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling.

    PubMed

    Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P

    2018-01-01

    Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since the evaluation of species' conservation status and habitat quality should as far as possible be performed based on scalable indicators linking to meaningful processes, our framework may guide conservation managers in decision-making related to biodiversity monitoring and reporting schemes.

  9. The urban energy balance of a lightweight low-rise neighborhood in Andacollo, Chile

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Krayenhoff, E. Scott; Cordy, Paul

    2018-01-01

    Worldwide, the majority of rapidly growing neighborhoods are found in the Global South. They often exhibit different building construction and development patterns than the Global North, and urban climate research in many such neighborhoods has to date been sparse. This study presents local-scale observations of net radiation ( Q * ) and sensible heat flux ( Q H ) from a lightweight low-rise neighborhood in the desert climate of Andacollo, Chile, and compares observations with results from a process-based urban energy-balance model (TUF3D) and a local-scale empirical model (LUMPS) for a 14-day period in autumn 2009. This is a unique neighborhood-climate combination in the urban energy-balance literature, and results show good agreement between observations and models for Q * and Q H . The unmeasured latent heat flux ( Q E ) is modeled with an updated version of TUF3D and two versions of LUMPS (a forward and inverse application). Both LUMPS implementations predict slightly higher Q E than TUF3D, which may indicate a bias in LUMPS parameters towards mid-latitude, non-desert climates. Overall, the energy balance is dominated by sensible and storage heat fluxes with mean daytime Bowen ratios of 2.57 (observed Q H /LUMPS Q E )-3.46 (TUF3D). Storage heat flux ( ΔQ S ) is modeled with TUF3D, the empirical objective hysteresis model (OHM), and the inverse LUMPS implementation. Agreement between models is generally good; the OHM-predicted diurnal cycle deviates somewhat relative to the other two models, likely because OHM coefficients are not specified for the roof and wall construction materials found in this neighborhood. New facet-scale and local-scale OHM coefficients are developed based on modeled ΔQ S and observed Q * . Coefficients in the empirical models OHM and LUMPS are derived from observations in primarily non-desert climates in European/North American neighborhoods and must be updated as measurements in lightweight low-rise (and other) neighborhoods in various climates become available.

  10. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  11. CIM-EARTH: Community Integrated Model of Economic and Resource Trajectories for Humankind

    NASA Astrophysics Data System (ADS)

    Foster, I.; Elliott, J.; Munson, T.; Judd, K.; Moyer, E. J.; Sanstad, A. H.

    2010-12-01

    We report here on the development of an open source software framework termed CIM-EARTH that is intended to aid decision-making in climate and energy policy. Numerical modeling in support of evaluating policies to address climate change is difficult not only because of inherent uncertainties but because of the differences in scale and modeling approach required for various subcomponents of the system. Economic and climate models are structured quite differently, and while climate forcing can be assumed to be roughly global, climate impacts and the human response to them occur on small spatial scales. Mitigation policies likewise can be applied on scales ranging from the better part of a continent (e.g. a carbon cap-and-trade program for the entire U.S.) to a few hundred km (e.g. statewide renewable portfolio standards and local gasoline taxes). Both spatial and time resolution requirements can be challenging for global economic models. CIM-EARTH is a modular framework based around dynamic general equilibrium models. It is designed as a community tool that will enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of both mitigation policies and unchecked climate change. Modularity enables both integration of highly resolved component sub-models for energy and other key systems and also user-directed choice of tradeoffs between e.g. spatial, sectoral, and time resolution. This poster describes the framework architecture, the current realized version, and plans for future releases. As with other open-source models familiar to the climate community (e.g. CCSM), deliverables will be made publicly available on a regular schedule, and community input is solicited for development of new features and modules.

  12. Downscaling to the Climate Near the Ground: Measurements and Modeling Along the Macro-, Meso-, Topo-, and Microclimate Hierarchy

    NASA Astrophysics Data System (ADS)

    van de Ven, C.; Weiss, S. B.

    2009-12-01

    Most climate models are expressed at regional scales, with resolutions on the scales of kilometers. When used for ecological modeling, these climate models help explain only broad-scale trends, such as latitudinal and upslope migration of plants. However, more refined ecological models require down-scaled climate data at ecologically relevant spatial scales, and the goal of this presentation is to demonstrate robust downscaling methods. For example, in the White Mountains, eastern California, tree species, including bristlecone pine (Pinus longaeva) are seen moving not just upslope, but also sideways across aspects, and downslope into areas characterized by cold air drainage. Macroclimate in the White Mountains is semi-arid, residing in the rain shadow of the Sierra Nevada. Macroclimate is modified by mesoscale effects of mountain ranges, where climate becomes wetter and colder with elevation, the temperature decreasing according to the regionally and temporally-specific lapse rate. Local topography further modifies climate, where slope angle, aspect, and topographic position further impact the temperature at a given site. Finally, plants experience extremely localized microclimate, where surrounding vegetation provide differing degrees of shade. We measured and modeled topoclimate across the White Mountains using iButton Thermochron temperature data loggers during late summer in 2006 and 2008, and have documented effects of microclimatic temperature differences between sites in the open and shaded by shrubs. Starting with PRISM 800m data, we derived mesoscale lapse rates. Then, we calculated temperature differentials between each Thermochron and a long-term weather station in the middle of the range at Crooked Creek Valley. We modeled month-specific minimum temperature differentials by regressing the Thermochron-weather station minimum temperature differentials with various topographic parameters. Topographic position, the absolute value of topographic position, and slope combined to provide a very close fit (r2>0.9) to measured inversions of >8°C. Although topoclimatic maximum temperature models have been more elusive, regressions with degree hours greater than zero (DH>0) have been modeled with September insolation and slope (r2=0.7). In paired experiments, Thermochrons also recorded the temperature differences between the environment under sagebrush (Artemisia tridentata) and in the open, with an average minimum temperature difference of 2.1°C, and maximum temperature difference of 4.5°C. When we incorporate hourly weather station data, the strength of the inversion is weakened by wind, higher relative humidity, and cloudiness. This hierarchical modeling provides a template for downscaling climate and weather to ecologically relevant scales.

  13. Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory

    NASA Astrophysics Data System (ADS)

    Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui

    2018-01-01

    Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.

  14. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  15. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis.

    PubMed

    Prein, Andreas F; Gobiet, Andreas

    2017-01-01

    Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio-temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan-European data sets and a set that combines eight very high-resolution station-based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post-processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small-scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate-mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments.

  16. Predictors of Drought Recovery across Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Anderegg, W.

    2016-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.

  17. Modeling the intersections of Food, Energy, and Water in climate-vulnerable Ethiopia with an application to small-scale irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B. F.; Siddiqui, S.

    2017-12-01

    Africa is home to some of the most climate vulnerable populations in the world. Energy and agricultural development have diverse impacts on the region's food security and economic well-being from the household to the national level, particularly considering climate variability and change. Our ultimate goal is to understand coupled Food-Energy-Water (FEW) dynamics across spatial scales in order to quantify the sensitivity of critical human outcomes to FEW development strategies in Ethiopia. We are developing bottom-up and top-down multi-scale models, spanning local, sub-national and national scales to capture the FEW linkages across communities and climatic adaptation zones. The focus of this presentation is the sub-national scale multi-player micro-economic (MME) partial-equilibrium model with coupled food and energy sector for Ethiopia. With fixed large-scale economic, demographic, and resource factors from the national scale computable general equilibrium (CGE) model and inferences of behavior parameters from the local scale agent-based model (ABM), the MME studies how shocks such as drought (crop failure) and development of resilience technologies would influence FEW system at a sub-national scale. The MME model is based on aggregating individual optimization problems for relevant players. It includes production, storage, and consumption of food and energy at spatially disaggregated zones, and transportation in between with endogenously modeled infrastructure. The aggregated players for each zone have different roles such as crop producers, storage managers, and distributors, who make decisions according to their own but interdependent objective functions. The food and energy supply chain across zones is therefore captured. Ethiopia is dominated by rain-fed agriculture with only 2% irrigated farmland. Small-scale irrigation has been promoted as a resilience technology that could potentially play a critical role in food security and economic well-being in Ethiopia, but that also intersects with energy and water consumption. Here, we focus on the energy usage for small-scale irrigation and the collective impact on crop production and water resources across zones in the MME model.

  18. Floods in a changing climate

    Treesearch

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  19. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  20. Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins

    NASA Astrophysics Data System (ADS)

    Bring, Arvid; Asokan, Shilpa M.; Jaramillo, Fernando; Jarsjö, Jerker; Levi, Lea; Pietroń, Jan; Prieto, Carmen; Rogberg, Peter; Destouni, Georgia

    2015-06-01

    The multimodel ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) synthesizes the latest research in global climate modeling. The freshwater system on land, particularly runoff, has so far been of relatively low priority in global climate models, despite the societal and ecosystem importance of freshwater changes, and the science and policy needs for such model output on drainage basin scales. Here we investigate the implications of CMIP5 multimodel ensemble output data for the freshwater system across a set of drainage basins in the Northern Hemisphere. Results of individual models vary widely, with even ensemble mean results differing greatly from observations and implying unrealistic long-term systematic changes in water storage and level within entire basins. The CMIP5 projections of basin-scale freshwater fluxes differ considerably more from observations and among models for the warm temperate study basins than for the Arctic and cold temperate study basins. In general, the results call for concerted research efforts and model developments for improving the understanding and modeling of the freshwater system and its change drivers. Specifically, more attention to basin-scale water flux analyses should be a priority for climate model development, and an important focus for relevant model-based advice for adaptation to climate change.

  1. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  2. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and future periods. Implementation differences in these and other modeling choices contribute to significant variation among global-scale crop model assessments in addition to differences in crop model implementations that also cause large differences in site-specific crop modeling (Asseng et al., 2013; Bassu et al., 2014).

  3. Quantifying the Influence of Dynamics Across Scales on Regional Climate Uncertainty in Western North America

    NASA Astrophysics Data System (ADS)

    Goldenson, Naomi L.

    Uncertainties in climate projections at the regional scale are inevitably larger than those for global mean quantities. Here, focusing on western North American regional climate, several approaches are taken to quantifying uncertainties starting with the output of global climate model projections. Internal variance is found to be an important component of the projection uncertainty up and down the west coast. To quantify internal variance and other projection uncertainties in existing climate models, we evaluate different ensemble configurations. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find internal variability can be quantified consistently using a large ensemble or an ensemble of opportunity that includes small ensembles from multiple models and climate scenarios. The latter offers the advantage of also producing estimates of uncertainty due to model differences. We conclude that climate projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible. We then conduct a small single-model ensemble of simulations using the Model for Prediction Across Scales with physics from the Community Atmosphere Model Version 5 (MPAS-CAM5) and prescribed historical sea surface temperatures. In the global variable resolution domain, the finest resolution (at 30 km) is in our region of interest over western North America and upwind over the northeast Pacific. In the finer-scale region, extreme precipitation from atmospheric rivers (ARs) is connected to tendencies in seasonal snowpack in mountains of the Northwest United States and California. In most of the Cascade Mountains, winters with more AR days are associated with less snowpack, in contrast to the northern Rockies and California's Sierra Nevadas. In snowpack observations and reanalysis of the atmospheric circulation, we find similar relationships between frequency of AR events and winter season snowpack in the western United States. In spring, however, there is not a clear relationship between number of AR days and seasonal mean snowpack across the model ensemble, so caution is urged in interpreting the historical record in the spring season. Finally, the representation of the El Nino Southern Oscillation (ENSO)--an important source of interannual climate predictability in some regions--is explored in a large single-model ensemble using ensemble Empirical Orthogonal Functions (EOFs) to find modes of variance across the entire ensemble at once. The leading EOF is ENSO. The principal components (PCs) of the next three EOFs exhibit a lead-lag relationship with the ENSO signal captured in the first PC. The second PC, with most of its variance in the summer season, is the most strongly cross-correlated with the first. This approach offers insight into how the model considered represents this important atmosphere-ocean interaction. Taken together these varied approaches quantify the implications of climate projections regionally, identify processes that make snowpack water resources vulnerable, and seek insight into how to better simulate the large-scale climate modes controlling regional variability.

  4. Results from the VALUE perfect predictor experiment: process-based evaluation

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Soares, Pedro; Hertig, Elke; Brands, Swen; Huth, Radan; Cardoso, Rita; Kotlarski, Sven; Casado, Maria; Pongracz, Rita; Bartholy, Judit

    2016-04-01

    Until recently, the evaluation of downscaled climate model simulations has typically been limited to surface climatologies, including long term means, spatial variability and extremes. But these aspects are often, at least partly, tuned in regional climate models to match observed climate. The tuning issue is of course particularly relevant for bias corrected regional climate models. In general, a good performance of a model for these aspects in present climate does therefore not imply a good performance in simulating climate change. It is now widely accepted that, to increase our condidence in climate change simulations, it is necessary to evaluate how climate models simulate relevant underlying processes. In other words, it is important to assess whether downscaling does the right for the right reason. Therefore, VALUE has carried out a broad process-based evaluation study based on its perfect predictor experiment simulations: the downscaling methods are driven by ERA-Interim data over the period 1979-2008, reference observations are given by a network of 85 meteorological stations covering all European climates. More than 30 methods participated in the evaluation. In order to compare statistical and dynamical methods, only variables provided by both types of approaches could be considered. This limited the analysis to conditioning local surface variables on variables from driving processes that are simulated by ERA-Interim. We considered the following types of processes: at the continental scale, we evaluated the performance of downscaling methods for positive and negative North Atlantic Oscillation, Atlantic ridge and blocking situations. At synoptic scales, we considered Lamb weather types for selected European regions such as Scandinavia, the United Kingdom, the Iberian Pensinsula or the Alps. At regional scales we considered phenomena such as the Mistral, the Bora or the Iberian coastal jet. Such process-based evaluation helps to attribute biases in surface variables to underlying processes and ultimately to improve climate models.

  5. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra

    2015-07-15

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less

  6. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  7. Tradeoffs in Acceleration and Initialization of Superparameterized Global Atmospheric Models for MJO and Climate Science

    NASA Astrophysics Data System (ADS)

    Pritchard, M. S.; Bretherton, C. S.; DeMott, C. A.

    2014-12-01

    New trade-offs are discussed in the cloud superparameterization approach to explicitly representing deep convection in global climate models. Intrinsic predictability tests show that the memory of cloud-resolving-scale organization is not critical for producing desired modes of organized convection such as the Madden-Julian Oscillation (MJO). This has implications for the feasibility of data assimilation and real-world initialization for superparameterized weather forecasting. Climate simulation sensitivity tests demonstrate that 400% acceleration of cloud superparameterization is possible by restricting the 32-128 km scale regime without deteriorating the realism of the simulated MJO but the number of cloud resolving model grid columns is discovered to constrain the efficiency of vertical mixing, with consequences for the simulated liquid cloud climatology. Tuning opportunities for next generation accelerated superparameterized climate models are discussed.

  8. Determing Credibility of Regional Simulations of Future Climate

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2009-12-01

    Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.

  9. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  10. External validity of a generic safety climate scale for lone workers across different industries and companies.

    PubMed

    Lee, Jin; Huang, Yueng-hsiang; Robertson, Michelle M; Murphy, Lauren A; Garabet, Angela; Chang, Wen-Ruey

    2014-02-01

    The goal of this study was to examine the external validity of a 12-item generic safety climate scale for lone workers in order to evaluate the appropriateness of generalized use of the scale in the measurement of safety climate across various lone work settings. External validity evidence was established by investigating the measurement equivalence (ME) across different industries and companies. Confirmatory factor analysis (CFA)-based and item response theory (IRT)-based perspectives were adopted to examine the ME of the generic safety climate scale for lone workers across 11 companies from the trucking, electrical utility, and cable television industries. Fairly strong evidence of ME was observed for both organization- and group-level generic safety climate sub-scales. Although significant invariance was observed in the item intercepts across the different lone work settings, absolute model fit indices remained satisfactory in the most robust step of CFA-based ME testing. IRT-based ME testing identified only one differentially functioning item from the organization-level generic safety climate sub-scale, but its impact was minimal and strong ME was supported. The generic safety climate scale for lone workers reported good external validity and supported the presence of a common feature of safety climate among lone workers. The scale can be used as an effective safety evaluation tool in various lone work situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Using historical and projected future climate model simulations as drivers of agricultural and biological models (Invited)

    NASA Astrophysics Data System (ADS)

    Stefanova, L. B.

    2013-12-01

    Climate model evaluation is frequently performed as a first step in analyzing climate change simulations. Atmospheric scientists are accustomed to evaluating climate models through the assessment of model climatology and biases, the models' representation of large-scale modes of variability (such as ENSO, PDO, AMO, etc) and the relationship between these modes and local variability (e.g. the connection between ENSO and the wintertime precipitation in the Southeast US). While these provide valuable information about the fidelity of historical and projected climate model simulations from an atmospheric scientist's point of view, the application of climate model data to fields such as agriculture, ecology and biology may require additional analyses focused on the particular application's requirements and sensitivities. Typically, historical climate simulations are used to determine a mapping between the model and observed climate, either through a simple (additive for temperature or multiplicative for precipitation) or a more sophisticated (such as quantile matching) bias correction on a monthly or seasonal time scale. Plants, animals and humans however are not directly affected by monthly or seasonal means. To assess the impact of projected climate change on living organisms and related industries (e.g. agriculture, forestry, conservation, utilities, etc.), derivative measures such as the heating degree-days (HDD), cooling degree-days (CDD), growing degree-days (GDD), accumulated chill hours (ACH), wet season onset (WSO) and duration (WSD), among others, are frequently useful. We will present a comparison of the projected changes in such derivative measures calculated by applying: (a) the traditional temperature/precipitation bias correction described above versus (b) a bias correction based on the mapping between the historical model and observed derivative measures themselves. In addition, we will present and discuss examples of various application-based climate model evaluations, such as: (a) agricultural crop yield estimates and (b) species population viability estimates modeled using observed climate data vs. historical climate simulations.

  12. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

    PubMed Central

    Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael

    2005-01-01

    General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096

  13. Simulation of an ensemble of future climate time series with an hourly weather generator

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.; Kim, J.

    2010-12-01

    There is evidence that climate change is occurring in many regions of the world. The necessity of climate change predictions at the local scale and fine temporal resolution is thus warranted for hydrological, ecological, geomorphological, and agricultural applications that can provide thematic insights into the corresponding impacts. Numerous downscaling techniques have been proposed to bridge the gap between the spatial scales adopted in General Circulation Models (GCM) and regional analyses. Nevertheless, the time and spatial resolutions obtained as well as the type of meteorological variables may not be sufficient for detailed studies of climate change effects at the local scales. In this context, this study presents a stochastic downscaling technique that makes use of an hourly weather generator to simulate time series of predicted future climate. Using a Bayesian approach, the downscaling procedure derives distributions of factors of change for several climate statistics from a multi-model ensemble of GCMs. Factors of change are sampled from their distributions using a Monte Carlo technique to entirely account for the probabilistic information obtained with the Bayesian multi-model ensemble. Factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. The weather generator can reproduce a wide set of climate variables and statistics over a range of temporal scales, from extremes, to the low-frequency inter-annual variability. The final result of such a procedure is the generation of an ensemble of hourly time series of meteorological variables that can be considered as representative of future climate, as inferred from GCMs. The generated ensemble of scenarios also accounts for the uncertainty derived from multiple GCMs used in downscaling. Applications of the procedure in reproducing present and future climates are presented for different locations world-wide: Tucson (AZ), Detroit (MI), and Firenze (Italy). The stochastic downscaling is carried out with eight GCMs from the CMIP3 multi-model dataset (IPCC 4AR, A1B scenario).

  14. Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-07-01

    Uncertainties in climate modelling are well documented in literature. Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional scale. In the present work, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from statistically downscaled GCM projections in Columbia River Basin (CRB). Analysis is performed using two different statistically downscaled climate projections (with ten GCMs downscaled products each, for RCP 4.5 and RCP 8.5, from CMIP5 dataset) namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. The two datasets for BCSD and MACA are downscaled from observed data for both scenarios projections i.e. RCP4.5 and RCP8.5. Analysis is performed using spatial change (yearly scale), temporal change (monthly scale), percentile change (seasonal scale), quantile change (yearly scale), and wavelet analysis (yearly scale) in the future period from the historical period, respectively, at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice versa for temperature. Most of the models have indicated considerate positive change in quantiles and percentiles for both precipitation and temperature. Wavelet analysis provided insights into possible explanation to changes in precipitation.

  15. Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2016-04-01

    To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.

  16. Measuring school climate in high schools: a focus on safety, engagement, and the environment.

    PubMed

    Bradshaw, Catherine P; Waasdorp, Tracy E; Debnam, Katrina J; Johnson, Sarah Lindstrom

    2014-09-01

    School climate has been linked to multiple student behavioral, academic, health, and social-emotional outcomes. The US Department of Education (USDOE) developed a 3-factor model of school climate comprised of safety, engagement, and environment. This article examines the factor structure and measurement invariance of the USDOE model. Drawing upon 2 consecutive waves of data from over 25,000 high school students (46% minority), a series of exploratory and confirmatory factor analyses examined the fit of the Maryland Safe and Supportive Schools Climate Survey with the USDOE model. The results indicated adequate model fit with the theorized 3-factor model of school climate, which included 13 subdomains: safety (perceived safety, bullying and aggression, and drug use); engagement (connection to teachers, student connectedness, academic engagement, school connectedness, equity, and parent engagement); environment (rules and consequences, physical comfort, and support, disorder). We also found consistent measurement invariance with regard to student sex, grade level, and ethnicity. School-level interclass correlation coefficients ranged from 0.04 to .10 for the scales. Findings supported the USDOE 3-factor model of school climate and suggest measurement invariance and high internal consistency of the 3 scales and 13 subdomains. These results suggest the 56-item measure may be a potentially efficient, yet comprehensive measure of school climate. © 2014, American School Health Association.

  17. Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.

    2008-12-01

    The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.

  18. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  19. Beyond scenario planning: projecting the future using models at Wind Cave National Park (USA)

    NASA Astrophysics Data System (ADS)

    King, D. A.; Bachelet, D. M.; Symstad, A. J.

    2011-12-01

    Scenario planning has been used by the National Park Service as a tool for natural resource management planning in the face of climate change. Sets of plausible but divergent future scenarios are constructed from available information and expert opinion and serve as starting point to derive climate-smart management strategies. However, qualitative hypotheses about how systems would react to a particular set of conditions assumed from coarse scale climate projections may lack the scientific rigor expected from a federal agency. In an effort to better assess the range of likely futures at Wind Cave National Park, a project was conceived to 1) generate high resolution historic and future climate time series to identify local weather patterns that may or may not persist, 2) simulate the hydrological cycle in this geologically varied landscape and its response to future climate, 3) project vegetation dynamics and ensuing changes in the biogeochemical cycles given grazing and fire disturbances under new climate conditions, and 4) synthesize and compare results with those from the scenario planning exercise. In this framework, we tested a dynamic global vegetation model against local information on vegetation cover, disturbance history and stream flow to better understand the potential resilience of these ecosystems to climate change. We discuss the tradeoffs between a coarse scale application of the model showing regional trends with limited ability to project the fine scale mosaic of vegetation at Wind Cave, and a finer scale approach that can account for local slope effects on water balance and better assess the vulnerability of landscape facets, but requires more intensive data acquisition. We elaborate on the potential for sharing information between models to mitigate the often-limited treatment of biological feedbacks in the physical representations of soil and atmospheric processes.

  20. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations

    PubMed Central

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely. PMID:26244662

  1. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations.

    PubMed

    Garcia-Castellanos, Daniel; Jiménez-Munt, Ivone

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely.

  2. Developing perturbations for Climate Change Impact Assessments

    NASA Astrophysics Data System (ADS)

    Hewitson, Bruce

    Following the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report [TAR; IPCC, 2001], and the paucity of climate change impact assessments from developing nations, there has been a significant growth in activities to redress this shortcoming. However, undertaking impact assessments (in relation to malaria, crop stress, regional water supply, etc.) is contingent on available climate-scale scenarios at time and space scales of relevance to the regional issues of importance. These scales are commonly far finer than even the native resolution of the Global Climate Models (GCMs) (the principal tools for climate change research), let alone the skillful resolution (scales of aggregation at which GCM observational error is acceptable for a given application) of GCMs.Consequently, there is a growing demand for regional-scale scenarios, which in turn are reliant on techniques to downscale from GCMs, such as empirical downscaling or nested Regional Climate Models (RCMs). These methods require significant skill, experiential knowledge, and computational infrastructure in order to derive credible regional-scale scenarios. In contrast, it is often the case that impact assessment researchers in developing nations have inadequate resources with limited access to scientists in the broader international scientific community who have the time and expertise to assist. However, where developing effective downscaled scenarios is problematic, it is possible that much useful information can still be obtained for impact assessments by examining the system sensitivity to largerscale climate perturbations. Consequently, one may argue that the early phase of assessing sensitivity and vulnerability should first be characterized by evaluation of the first-order impacts, rather than immediately addressing the finer, secondary factors that are dependant on scenarios derived through downscaling.

  3. Inter-model variability in hydrological extremes projections for Amazonian sub-basins

    NASA Astrophysics Data System (ADS)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier

    2014-05-01

    Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.

  4. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    NASA Technical Reports Server (NTRS)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.

  5. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. © 2015 John Wiley & Sons Ltd.

  6. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    NASA Astrophysics Data System (ADS)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system was developed to allow users to easily select the most reliable reference climate data at each target point based on the elevation of grid cell. By constructing the best combination of reference data for the study domain, the accurate and reliable statistically downscaled climate projections could be significantly improved.

  7. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Model-Relevant Observations and the Beneficiary Modeling Efforts in the Realm of the EVS-2 Project ORACLES

    NASA Technical Reports Server (NTRS)

    Redemann, Jens

    2018-01-01

    Globally, aerosols remain a major contributor to uncertainties in assessments of anthropogenically-induced changes to the Earth climate system, despite concerted efforts using satellite and suborbital observations and increasingly sophisticated models. The quantification of direct and indirect aerosol radiative effects, as well as cloud adjustments thereto, even at regional scales, continues to elude our capabilities. Some of our limitations are due to insufficient sampling and accuracy of the relevant observables, under an appropriate range of conditions to provide useful constraints for modeling efforts at various climate scales. In this talk, I will describe (1) the efforts of our group at NASA Ames to develop new airborne instrumentation to address some of the data insufficiencies mentioned above; (2) the efforts by the EVS-2 ORACLES project to address aerosol-cloud-climate interactions in the SE Atlantic and (3) time permitting, recent results from a synergistic use of A-Train aerosol data to test climate model simulations of present-day direct radiative effects in some of the AEROCOM phase II global climate models.

  8. Climate modeling with decision makers in mind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andrew; Calvin, Katherine; Lamarque, Jean -Francois

    The need for regional- and local-scale climate information is increasing rapidly as decision makers seek to anticipate and manage a variety of context-specific climate risks over the next several decades. Furthermore, global climate models are not developed with these user needs in mind, and they typically operate at resolutions that are too coarse to provide information that could be used to support regional and local decisions.

  9. Climate modeling with decision makers in mind

    DOE PAGES

    Jones, Andrew; Calvin, Katherine; Lamarque, Jean -Francois

    2016-04-27

    The need for regional- and local-scale climate information is increasing rapidly as decision makers seek to anticipate and manage a variety of context-specific climate risks over the next several decades. Furthermore, global climate models are not developed with these user needs in mind, and they typically operate at resolutions that are too coarse to provide information that could be used to support regional and local decisions.

  10. Structural uncertainty of downscaled climate model output in a difficult-to-resolve environment: data sparseness and parameterization error contribution to statistical and dynamical downscaling output in the U.S. Caribbean region

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.

    2016-12-01

    Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.

  11. Detection and Attribution of Regional Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and oceanmore » circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.« less

  12. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    PubMed

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  14. Energy-Water-Land-Climate Nexus: Modeling Impacts from the Asset to Regional Scale

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Bennett, K. E.; Middleton, R. S.; Behery, S.; Macknick, J.; Corning-Padilla, A.; Brinkman, G.; Meng, M.

    2016-12-01

    A critical challenge for the energy-water-land nexus is understanding and modeling the connection between the natural system—including changes in climate, land use/cover, and streamflow—and the engineered system including water for energy, agriculture, and society. Equally important is understanding the linkage across scales; that is, how impacts at the asset level aggregate to influence behavior at the local to regional scale. Toward this need, a case study was conducted featuring multi-sector and multi-scale modeling centered on the San Juan River basin (a watershed that accounts for one-tenth of the Colorado River drainage area). Simulations were driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. The Variable Infiltration Capacity (VIC) hydrologic model was fitted with a custom vegetation mortality sub-model and used to estimate tributary inflows to the San Juan River and estimate reservoir evaporation. San Juan River operations, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries out to the year 2100. Major water demands included two large coal-fired power plants, a local electric utility, river-side irrigation, the Navajo Indian Irrigation Project and instream flows managed for endangered aquatic species. Also tracked were basin exports, including water (downstream flows to the Colorado River and interbasin transfers to the Rio Grande) and interstate electric power transmission. Implications for the larger western electric grid were assessed using PLEXOS, a sub-hourly dispatch, electric production-cost model. Results highlight asset-level interactions at the energy-water-land nexus driven by climate and population dynamics; specifically, growing vulnerabilities to shorted water deliveries. Analyses also explored linkages across geographic scales from the San Juan to the larger Colorado River and Rio Grande basins as well as the western power grid.

  15. RELATIVE EFFECTS OF OBSERVATIONALLY-NUDGED MODEL METEOROLOGY AND DOWN-SCALED GLOBAL CLIMATE MODEL METEOROLOGY ON BIOGENIC EMISSIONS FOR THE UNITED STATES

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) and National Oceanic and Atmospheric Administration (NOAA) participate in a multi-agency examination of the effects of climate change through the U.S. Climate Change Science Program (CCSP, 2003). The EPA Global Change Rese...

  16. GPCC - A weather generator-based statistical downscaling tool for site-specific assessment of climate change impacts

    USDA-ARS?s Scientific Manuscript database

    Resolution of climate model outputs are too coarse to be used as direct inputs to impact models for assessing climate change impacts on agricultural production, water resources, and eco-system services at local or site-specific scales. Statistical downscaling approaches are usually used to bridge th...

  17. Modeling current climate conditions for forest pest risk assessment

    Treesearch

    Frank H. Koch; John W. Coulston

    2010-01-01

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...

  18. Mid-21st century air quality at the urban scale under the influence of changed climate and emissions - case studies for Paris and Stockholm

    NASA Astrophysics Data System (ADS)

    Markakis, Konstantinos; Valari, Myrto; Engardt, Magnuz; Lacressonniere, Gwendoline; Vautard, Robert; Andersson, Camilla

    2016-02-01

    Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modelled at 4 and 1 km horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine-resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional-scale emission projections by comparing modelled pollutant concentrations between the fine- and coarse-scale simulations over the study areas. We show that over urban areas with major regional contribution (e.g. the city of Stockholm) the bias related to coarse-scale projections may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modelling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily mean and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The climate benefit on PM2.5 and PM10 in Paris is between -5 and -10 %, while for Stockholm we estimate mixed trends of up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily mean and maximum ozone and 20 % for PM. Through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily mean ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting from a health impact perspective.

  19. Two-way against one-way nesting for climate downscaling in Europe and the Mediterranean region using LMDZ4

    NASA Astrophysics Data System (ADS)

    Li, Shan; Li, Laurent; Le Treut, Hervé

    2016-04-01

    In the 21st century, the estimated surface temperature warming projected by General Circulation Models (GCMs) is between 0.3 and 4.8 °C, depending on the scenario considered. GCMs exhibit a good representation of climate on a global scale, but they are not able to reproduce regional climate processes with the same level of accuracy. Society and policymakers need model projections to define climate change adaptation and mitigation policies on a global, regional and local scale. Climate downscaling is mostly conducted with a regional model nested into the outputs of a global model. This one-way nesting approach is generally used in the climate community without feedbacks from Regional Climate Models (RCMs) to GCMs. This lack of interaction between the two models may affect regional modes of variability, in particular those with a boundary conflict. The objective of this study is to evaluate a two-way nesting configuration that makes an interactive coupling between the RCM and the GCM, an approach against the traditional configuration of one-way nesting system. An additional aim of this work is to examine if the two-way nesting system can improve the RCM performance. The atmospheric component of the IPSL integrated climate model (LMDZ) is configured at both regional (LMDZ-regional) and global (LMDZ-global) scales. The two models have the same configuration for the dynamical framework and the physical forcings. The climatology values of sea surface temperature (SST) are prescribed for the two models. The stretched-grid of LMDZ-global is applied to a region defined by Europe, the Mediterranean, North Africa and Western North Atlantic. To ensure a good statistical significance of results, all simulations last at least 80 years. The nesting process of models is performed by a relaxation procedure of a time scale of 90 minutes. In the case of two-way nesting, the exchange between the two models is every two hours. The relaxation procedure induces a boundary conflict, particularly in the eastern boundary for temperature and geopotential height. A correlation analysis on the synoptic scale evaluates the relationship between the GCM and the RCM. The beginning of the simulations shows a great consistency of the two models. When dominant dynamics apply, RCM inherits most of the GCM signal with a consistent spatial structure. On the contrary, when the atmospheric circulation is weak, there are not that many effects transferred from the GCM to the RCM. When the RCM has its own dynamics, the boundary conflict is more pronounced. Winter season is chosen for the two-way nesting test due to the predominant role of the atmospheric dynamics in winter. The new approach of a two-way nesting system reduces boundary bias, having a influence in some cases in climate model projections. The effect of two-way nesting is enhanced when using a finer grid.

  20. Describing Ecosystem Complexity through Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  1. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.

  2. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.

  3. A new climate modeling framework for convection-resolving simulation at continental scale

    NASA Astrophysics Data System (ADS)

    Charpilloz, Christophe; di Girolamo, Salvatore; Arteaga, Andrea; Fuhrer, Oliver; Hoefler, Torsten; Schulthess, Thomas; Schär, Christoph

    2017-04-01

    Major uncertainties remain in our understanding of the processes that govern the water cycle in a changing climate and their representation in weather and climate models. Of particular concern are heavy precipitation events of convective origin (thunderstorms and rain showers). The aim of the crCLIM project [1] is to propose a new climate modeling framework that alleviates the I/O-bottleneck in large-scale, convection-resolving climate simulations and thus to enable new analysis techniques for climate scientists. Due to the large computational costs, convection-resolving simulations are currently restricted to small computational domains or very short time scales, unless the largest available supercomputers system such as hybrid CPU-GPU architectures are used [3]. Hence, the COSMO model has been adapted to run on these architectures for research and production purposes [2]. However, the amount of generated data also increases and storing this data becomes infeasible making the analysis of simulations results impractical. To circumvent this problem and enable high-resolution models in climate we propose a data-virtualization layer (DVL) that re-runs simulations on demand and transparently manages the data for the analysis, that means we trade off computational effort (time) for storage (space). This approach also requires a bit-reproducible version of the COSMO model that produces identical results on different architectures (CPUs and GPUs) [4] that will be coupled with a performance model in order enable optimal re-runs depending on requirements of the re-run and available resources. In this contribution, we discuss the strategy to develop the DVL, a first performance model, the challenge of bit-reproducibility and the first results of the crCLIM project. [1] http://www.c2sm.ethz.ch/research/crCLIM.html [2] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, M. Bianco, and T. Schulthess. "Towards gpu-accelerated operational weather forecasting." In The GPU Technology Conference, GTC. 2013. [3] D. Leutwyler, O. Fuhrer, X. Lapillonne, D. Lüthi, and C. Schär. "Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19." Geoscientific Model Development 9, no. 9 (2016): 3393. [4] A. Arteaga, O. Fuhrer, and T. Hoefler. "Designing bit-reproducible portable high-performance applications." In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 1235-1244. IEEE, 2014.

  4. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis

    PubMed Central

    Gobiet, Andreas

    2016-01-01

    ABSTRACT Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio‐temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan‐European data sets and a set that combines eight very high‐resolution station‐based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post‐processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small‐scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate‐mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments. PMID:28111497

  5. Disentangling the effects of climate variability and functional change on ecosystem carbon dynamics using semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.

    2012-04-01

    The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).

  6. Spatiotemporal variability of snow depletion curves derived from SNODAS for the conterminous United States, 2004-2013

    USGS Publications Warehouse

    Driscoll, Jessica; Hay, Lauren E.; Bock, Andrew R.

    2017-01-01

    Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental-scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental-extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1-km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed-scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed-scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national-scale categorization of snowmelt processes.

  7. Direct and indirect effects of climate change on herbicide leaching--a regional scale assessment in Sweden.

    PubMed

    Steffens, Karin; Jarvis, Nicholas; Lewan, Elisabet; Lindström, Bodil; Kreuger, Jenny; Kjellström, Erik; Moeys, Julien

    2015-05-01

    Climate change is not only likely to improve conditions for crop production in Sweden, but also to increase weed pressure and the need for herbicides. This study aimed at assessing and contrasting the direct and indirect effects of climate change on herbicide leaching to groundwater in a major crop production region in south-west Sweden with the help of the regional pesticide fate and transport model MACRO-SE. We simulated 37 out of the 41 herbicides that are currently approved for use in Sweden on eight major crop types for the 24 most common soil types in the region. The results were aggregated accounting for the fractional coverage of the crop and the area sprayed with a particular herbicide. For simulations of the future, we used projections of five different climate models as model driving data and assessed three different future scenarios: (A) only changes in climate, (B) changes in climate and land-use (altered crop distribution), and (C) changes in climate, land-use, and an increase in herbicide use. The model successfully distinguished between leachable and non-leachable compounds (88% correctly classified) in a qualitative comparison against regional-scale monitoring data. Leaching was dominated by only a few herbicides and crops under current climate and agronomic conditions. The model simulations suggest that the direct effects of an increase in temperature, which enhances degradation, and precipitation which promotes leaching, cancel each other at a regional scale, resulting in a slight decrease in leachate concentrations in a future climate. However, the area at risk of groundwater contamination doubled when indirect effects of changes in land-use and herbicide use, were considered. We therefore concluded that it is important to consider the indirect effects of climate change alongside the direct effects and that effective mitigation strategies and strict regulation are required to secure future (drinking) water resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    NASA Astrophysics Data System (ADS)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be reached as the climate is further warmed. Finally, we suggest novel model validation techniques based upon comparing the characteristics of FY and MY ice within models to observations. We propose that keeping an account of FY and MY ice area within sea ice models offers a powerful new way to evaluate model projections of sea ice in a greenhouse warming climate.

  9. Statistical downscaling of GCM simulations to streamflow using relevance vector machine

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Mujumdar, P. P.

    2008-01-01

    General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.

  10. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    NASA Astrophysics Data System (ADS)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  11. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models

    PubMed Central

    Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita

    2010-01-01

    Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models. PMID:20080720

  12. An increase in aerosol burden due to the land-sea warming contrast

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  13. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.

    PubMed

    Devaraju, N; Bala, G; Nemani, R

    2015-09-01

    Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.

  14. Influences of Regional Climate Change on Air Quality across the Continental U.S. Projected from Downscaling IPCC ARS Simulations

    EPA Science Inventory

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate ...

  15. The new climate data record of total and spectral solar irradiance: Current progress and future steps

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug

    2016-04-01

    We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.

  16. Temperature variability is a key component in accurately forecasting the effects of climate change on pest phenology.

    PubMed

    Merrill, Scott C; Peairs, Frank B

    2017-02-01

    Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Investigation of models for large-scale meteorological prediction experiments

    NASA Technical Reports Server (NTRS)

    Spar, J.

    1981-01-01

    An attempt is made to compute the contributions of various surface boundary conditions to the monthly mean states generated by the 7 layer, 8 x 10 GISS climate model (Hansen et al., 1980), and also to examine the influence of initial conditions on the model climate simulations. Obvious climatic controls as the shape and rotation of the Earth, the solar radiation, and the dry composition of the atmosphere are fixed, and only the surface boundary conditions are altered in the various climate simulations.

  18. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results show that these factors are strongly interacting and are generating non-linear responses in recharge.

  19. On temporal stochastic modeling of precipitation, nesting models across scales

    NASA Astrophysics Data System (ADS)

    Paschalis, Athanasios; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2014-01-01

    We analyze the performance of composite stochastic models of temporal precipitation which can satisfactorily reproduce precipitation properties across a wide range of temporal scales. The rationale is that a combination of stochastic precipitation models which are most appropriate for specific limited temporal scales leads to better overall performance across a wider range of scales than single models alone. We investigate different model combinations. For the coarse (daily) scale these are models based on Alternating renewal processes, Markov chains, and Poisson cluster models, which are then combined with a microcanonical Multiplicative Random Cascade model to disaggregate precipitation to finer (minute) scales. The composite models were tested on data at four sites in different climates. The results show that model combinations improve the performance in key statistics such as probability distributions of precipitation depth, autocorrelation structure, intermittency, reproduction of extremes, compared to single models. At the same time they remain reasonably parsimonious. No model combination was found to outperform the others at all sites and for all statistics, however we provide insight on the capabilities of specific model combinations. The results for the four different climates are similar, which suggests a degree of generality and wider applicability of the approach.

  20. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    The methodology, which includes a sequence of rigorous analyses and calculations, is intended to reduce the addition of uncertainty to the climate data as a result of the downscaling while providing the fine-scale climate information necessary for ecological analyses. It results in new but consistent data sets for the US at 4 km, the southwest US at 270 m, and California at 90 m and illustrates the utility of fine-scale downscaling to analyses of ecological processes influenced by topographic complexity.

  1. Broad-scale climate influences on spring-spawning herring (Clupea harengus, L.) recruitment in the Western Baltic Sea.

    PubMed

    Gröger, Joachim P; Hinrichsen, Hans-Harald; Polte, Patrick

    2014-01-01

    Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.

  2. Broad-Scale Climate Influences on Spring-Spawning Herring (Clupea harengus, L.) Recruitment in the Western Baltic Sea

    PubMed Central

    Gröger, Joachim P.; Hinrichsen, Hans-Harald; Polte, Patrick

    2014-01-01

    Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea. PMID:24586279

  3. Estimation of climate change impact on dead fuel moisture at local scale by using weather generators

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Bortolu, Sara; Dubrovsky, Martin; Arca, Bachisio; Ventura, Andrea; Duce, Pierpaolo

    2015-04-01

    The moisture content of dead fuel is an important variable in fire ignition and fire propagation. Moisture exchange in dead materials is controlled by physical processes, and is clearly dependent on atmospheric changes. According to projections of future climate in Southern Europe, changes in temperature, precipitation and extreme events are expected. More prolonged drought seasons could influence fuel moisture content and, consequently, the number of days characterized by high ignition danger in Mediterranean ecosystems. The low resolution of the climate data provided by the general circulation models (GCMs) represents a limitation for evaluating climate change impacts at local scale. For this reason, the climate research community has called to develop appropriate downscaling techniques. One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking a stochastic weather generator with the climate model outputs. Weather generators linked to climate change scenarios can therefore be used to create synthetic weather series (air temperature and relative humidity, wind speed and precipitation) representing present and future climates at local scale. The main aims of this work are to identify useful tools to determine potential impacts of expected climate change on dead fuel status in Mediterranean shrubland and, in particular, to estimate the effect of climate changes on the number of days characterized by critical values of dead fuel moisture. Measurements of dead fuel moisture content (FMC) in Mediterranean shrubland were performed by using humidity sensors in North Western Sardinia (Italy) for six years. Meteorological variables were also recorded. Data were used to determine the accuracy of the Canadian Fine Fuels Moisture Code (FFM code) in modelling moisture dynamics of dead fuel in Mediterranean vegetation. Critical threshold values of FFM code for Mediterranean climate were identified by percentile analysis, and new fuel moisture code classes were also defined. A stochastic weather generator (M&Rfi), linked to climate change scenarios derived from 17 available General Circulation Models (GCMs), was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Western Sardinia, Italy. The number of days with critical FFM code values for present and future climate were calculated and the potential impact of future climate change was analysed.

  4. Model-based scenario planning to develop climate change adaptation strategies for rare plant populations in grassland reserves

    Treesearch

    Laura Phillips-Mao; Susan M. Galatowitsch; Stephanie A. Snyder; Robert G. Haight

    2016-01-01

    Incorporating climate change into conservation decision-making at site and population scales is challenging due to uncertainties associated with localized climate change impacts and population responses to multiple interacting impacts and adaptation strategies. We explore the use of spatially explicit population models to facilitate scenario analysis, a conservation...

  5. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.

    PubMed

    Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik

    2017-10-01

    Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. Describing the Climate of Student Organizations: The Student Organization Environment Scales.

    ERIC Educational Resources Information Center

    Winston, Roger B., Jr.; Bledsoe, Tyrone; Goldstein, Adam R.; Wisbey, Martha E.; Street, James L.; Brown, Steven R.; Goyen, Kenneth D.; Rounds, Linda E.

    1997-01-01

    Using M. R. Weisbord's model of organizational diagnosis, researchers developed the Student Organization Environment Scales to measure students' perceptions of the psychosocial environment or climate of college student organizations. Development of the instrument is described and estimates of its reliability and validity are reported. Describes…

  7. Effects of land-use and climate on Holocene vegetation composition in northern Europe

    NASA Astrophysics Data System (ADS)

    Marquer, Laurent; Gaillard, Marie-José; Sugita, Shinya; Poska, Anneli; Trondman, Anna-Kari; Mazier, Florence; Nielsen, Anne Birgitte; Fyfe, Ralph; Jönsson, Anna Maria

    2016-04-01

    Prior to the advent of agriculture, broad-scale vegetation patterns in Europe were controlled primarily by climate. Early agriculture can be detected in palaeovegetation records, but the relative extent to which past regional vegetation was climatically or anthropogenically-forced is of current scientific interest. Using comparisons of transformed pollen data, climate-model data, dynamic vegetation model simulations and anthropogenic land-cover change data, this study aims to estimate the relative impacts of human activities and climate on the Holocene vegetation composition of northern Europe at a subcontinental scale. The REVEALS model was used for pollen-based quantitative reconstruction of vegetation (RV). Climate variables from ECHAM and the extent of human deforestation from KK10 were used as explanatory variables to evaluate their respective impacts on RV. Indices of vegetation-composition changes based on RV and climate-induced vegetation simulated by the LPJ-GUESS model (LPJG) were used to assess the relative importance of climate and anthropogenic impacts. The results show that climate is the major predictor of Holocene vegetation changes until 5000 years ago. The similarity in rate of change and turnover between RV and LPJG decreases after this time. Changes in RV explained by climate and KK10 vary for the last 2000 years; the similarity in rate of change, turnover, and evenness between RV and LPJG decreases to the present. The main conclusions provide important insights on Neolithic forest clearances that affected regional vegetation from 6700 years ago, although climate (temperature and precipitation) still was a major driver of vegetation change (explains 37% of the variation) at the subcontinental scale. Land use became more important around 5000-4000 years ago, while the influence of climate decreased (explains 28% of the variation). Land-use affects all indices of vegetation compositional change during the last 2000 years; the influence of climate on vegetation, although reduced, remains at 16% until modern time while land-use explains 7%, which underlines that North-European vegetation is still climatically sensitive and, therefore, responds strongly to ongoing climate change.

  8. Is There Any Evidence for Rapid, Genetically-Based, Climatic Niche Expansion in the Invasive Common Ragweed?

    PubMed

    Gallien, Laure; Thuiller, Wilfried; Fort, Noémie; Boleda, Marti; Alberto, Florian J; Rioux, Delphine; Lainé, Juliette; Lavergne, Sébastien

    2016-01-01

    Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L.), a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence). Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.

  9. Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2013-12-01

    Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.

  10. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    NASA Astrophysics Data System (ADS)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  11. Evaluation of GCMs in the context of regional predictive climate impact studies.

    NASA Astrophysics Data System (ADS)

    Kokorev, Vasily; Anisimov, Oleg

    2016-04-01

    Significant improvements in the structure, complexity, and general performance of earth system models (ESMs) have been made in the recent decade. Despite these efforts, the range of uncertainty in predicting regional climate impacts remains large. The problem is two-fold. Firstly, there is an intrinsic conflict between the local and regional scales of climate impacts and adaptation strategies, on one hand, and larger scales, at which ESMs demonstrate better performance, on the other. Secondly, there is a growing understanding that majority of the impacts involve thresholds, and are thus driven by extreme climate events, whereas accent in climate projections is conventionally made on gradual changes in means. In this study we assess the uncertainty in projecting extreme climatic events within a region-specific and process-oriented context by examining the skills and ranking of ESMs. We developed a synthetic regionalization of Northern Eurasia that accounts for the spatial features of modern climatic changes and major environmental and socio-economical impacts. Elements of such fragmentation could be considered as natural focus regions that bridge the gap between the spatial scales adopted in climate-impacts studies and patterns of climate change simulated by ESMs. In each focus region we selected several target meteorological variables that govern the key regional impacts, and examined the ability of the models to replicate their seasonal and annual means and trends by testing them against observations. We performed a similar evaluation with regard to extremes and statistics of the target variables. And lastly, we used the results of these analyses to select sets of models that demonstrate the best performance at selected focus regions with regard to selected sets of target meteorological parameters. Ultimately, we ranked the models according to their skills, identified top-end models that "better than average" reproduce the behavior of climatic parameters, and eliminated the outliers. Since the criteria of selecting the "best" models are somewhat loose, we constructed several regional ensembles consisting of different number of high-ranked models and compared results from these optimized ensembles with observations and with the ensemble of all models. We tested our approach in specific regional application of the terrestrial Russian Arctic, considering permafrost and Artic biomes as key regional climate-dependent systems, and temperature and precipitation characteristics governing their state as target meteorological parameters. Results of this case study are deposited on the web portal www.permafrost.su/gcms

  12. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.

  13. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.

  14. Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape

    USGS Publications Warehouse

    Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M

    2015-01-01

    Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.

  15. Modeling dynamics of western juniper under climate change in a semiarid ecosystem

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Flores, A. N.

    2013-12-01

    Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.

  16. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  17. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  18. HPC Aspects of Variable-Resolution Global Climate Modeling using a Multi-scale Convection Parameterization

    EPA Science Inventory

    High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...

  19. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.

  20. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  1. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change.

    PubMed

    Morin, Xavier; Thuiller, Wilfried

    2009-05-01

    Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.

  2. Satellite orbit and data sampling requirements

    NASA Technical Reports Server (NTRS)

    Rossow, William

    1993-01-01

    Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.

  3. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  4. Mid-21st century air quality at the urban scale under the influence of changed climate and emissions: case studies for Paris and Stockholm

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Valari, M.; Engardt, M.; Lacressonnière, G.; Vautard, R.; Andersson, C.

    2015-10-01

    Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between -10 and -5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.

  5. A Review on Regional Convection-Permitting Climate Modeling: Demonstrations, Prospects, and Challenges

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; Brisson, E.; Kollet, S. J.; Schmidli, J.; Van Lipzig, N. P. M.; Leung, L. R.

    2015-12-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. We aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  6. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges.

    PubMed

    Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby

    2015-06-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  7. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    NASA Astrophysics Data System (ADS)

    Prein, Andreas F.; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P. M.; Leung, Ruby

    2015-06-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  8. Model uncertainties do not affect observed patterns of species richness in the Amazon

    PubMed Central

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503

  9. Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Castro, C. L.

    2009-12-01

    The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the North American Regional Reanalysis. With these conditions, downscaled CFS-WRF reforecast simulations can produce realistic continental-scale patterns of warm season precipitation. This includes a reasonable representation of the North American monsoon in the southwest U.S. and northwest Mexico, which is notoriously difficult to represent in a global atmospheric model. We anticipate that this research will help lead the way toward substantially improved real time operational forecasts of North American summer climate with a RCM.

  10. Knowledge discovery and nonlinear modeling can complement climate model simulations for predictive insights about climate extremes and their impacts

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Steinbach, M.; Kumar, V.

    2009-12-01

    The IPCC AR4 not only provided conclusive evidence about anticipated global warming at century scales, but also indicated with a high level of certainty that the warming is caused by anthropogenic emissions. However, an outstanding knowledge-gap is to develop credible projections of climate extremes and their impacts. Climate extremes are defined in this context as extreme weather and hydrological events, as well as changes in regional hydro-meteorological patterns, especially at decadal scales. While temperature extremes from climate models have relatively better skills, hydrological variables and their extremes have significant shortcomings. Credible projections about tropical storms, sea level rise, coastal storm surge, land glacier melts, and landslides remain elusive. The next generation of climate models is expected to have higher precision. However, their ability to provide more accurate projections of climate extremes remains to be tested. Projections of observed trends into the future may not be reliable in non-stationary environments like climate change, even though functional relationships derived from physics may hold. On the other hand, assessments of climate change impacts which are useful for stakeholders and policy makers depend critically on regional and decadal scale projections of climate extremes. Thus, climate impacts scientists often need to develop qualitative inferences about the not so-well predicted climate extremes based on insights from observations (e.g., increased hurricane intensity) or conceptual understanding (e.g., relation of wildfires to regional warming or drying and hurricanes to SST). However, neither conceptual understanding nor observed trends may be reliable when extrapolating in a non-stationary environment. These urgent societal priorities offer fertile grounds for nonlinear modeling and knowledge discovery approaches. Thus, qualitative inferences on climate extremes and impacts may be transformed into quantitative predictive insights based on a combination of hypothesis-guided data analysis and relatively hypothesis-free but data-guided discovery processes. The analysis and discovery approaches need to be cognizant of climate data characteristics like nonlinear processes, low-frequency variability, long-range spatial dependence and long-memory temporal processes; the value of physically-motivated conceptual understanding and functional associations; as well as possible thresholds and tipping points in the impacted natural, engineered or human systems. Case studies focusing on new methodologies as well as novel climate insights are discussed with a focus on stakeholder requirements.

  11. Assessing the Dynamic Effects of Climate on Individual Tree Growth Across Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; D'Amato, A. W.; Foster, J. R.; Bradford, J. B.

    2015-12-01

    The relationship between climate variability and an ecosystem process, such as forest growth, is frequently not fixed over time, but changes due to complex interactions between unobserved ecological factors and the process of interest. Climate data and forecasts are frequently spatially and temporally misaligned with ecological observations making inference regarding the effects of climate on ecosystem processes particularly challenging. Here we develop a Bayesian dynamic hierarchical model for annual tree growth increment that allows the effects of climate to evolve over time, applies climate data at a spatial-temporal scale consistent with observations, and controls for individual-level variability commonly encountered in ecological datasets. The model is applied to individual tree data from northern Minnesota using a modified Thornthwaite-type water balance model to transform PRISM temperature and precipitation estimates to physiologically relevant values of actual and potential evapotranspiration (AET, PET), and climatic water deficit. Model results indicate that mean tree growth is most sensitive to AET during the growing season and PET and minimum temperature in the spring prior to growth. The effects of these variables on tree growth, however, are not stationary with significant effects observed in only a subset of years during the 111-year study period. Importantly, significant effects of climate do not result from anomalous climate observations, but follow from large growth deviations unexplained by tree age and size, and time since forest disturbance. Results differ markedly from alternative models that assume the effects of climate are stationary over time or apply climate estimates at the individual scale. Forecasts of future tree growth as a function of climate follow directly from the dynamic hierarchical model allowing for assessment of forest change. Current work is focused on extending the model framework to include regional climate and ecosystem effects for application to a larger tree growth dataset spanning a latitudinal gradient within the US from Maine to Florida.

  12. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.

  13. Statistical Downscaling in Multi-dimensional Wave Climate Forecast

    NASA Astrophysics Data System (ADS)

    Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.

    2009-04-01

    Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the suitability of this methodology to be used for seasonal forecast and for long-term climate change scenario projection of wave climate.

  14. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    NASA Astrophysics Data System (ADS)

    Sanchez-Gomez, Emilia; Somot, S.; Déqué, M.

    2009-10-01

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

  15. Comparing Mid-Century Climate Change Projections at Convective Resolving Scales (2-km) for Life Zones Within Puerto Rico

    NASA Astrophysics Data System (ADS)

    Bowden, J.; Wootten, A.; Terando, A. J.; Boyles, R.; Misra, V.; Bhardwaj, A.

    2016-12-01

    Puerto Rico is home to over 3.5 million people and numerous endemic plant and animal species that may be at risk as a result of anthropogenic climate change. This study downscales three CMIP5 Global Circulation Models (GCMs) to a 2-km horizontal resolution using different regional climate models (RCMs) to resolve the island's climate. Here we compare projected climate change from a single GCM, CCSM4, from two RCMs centered on the mid-century, 2041-2060, for a high greenhouse gas emission scenario, RCP8.5. We will discuss similarities and differences in ecologically relevant climate variables, which were selected based on dialogue with experts who have knowledge about potential biological impacts of climate change for current life zones within Puerto Rico. Notable differences appear between the RCMs and include regions with critical ecosystems, such as the El Yunque National Forest in northeast Puerto Rico. This study helps to highlight RCMs structural uncertainty at convective resolving scales.

  16. Extraction of Urban Morphology Parameters from Generic European Datasets: A Case Study for Antwerp, Berlin and Almada

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart

    2014-05-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heat waves. The response of urban societies to the evolving climate depends not only on their regional climate characteristics but also on other local factors such as the urban heat island effect. Simulation of this phenomenon with local urban climate models requires comprehensive information about the urban morphology. This study focusses on the extraction of the planar and frontal area indices from detailed 3D city models and their relationship with the European Soil Sealing Level database from the European Environment Agency. These parameters have been calculated on a 1km2 grid and compared with soil sealing values aggregated at the same spatial resolution. The optimal size of the grid is a trade-off between the level of detail and the robustness of the established relationships by reducing the scatter at small scales. Moreover, the transferability of the results to other geographical areas has been investigated. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission and include the cities of Antwerp (BE), Berlin (DE) and Almada (PT) represented by different climate and urban characteristics. First results show a correlation of 70% between the planar area index and the averaged soil sealing using a linear regression model at a 1km scale. Moreover, a good correspondence has been found between the relationships for Antwerp and Berlin which is promising for urban climate modellers to reduce model complexity and analyse various climate scenarios in an effective way.

  17. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  18. ESiWACE: A Center of Excellence for HPC applications to support cloud resolving earth system modelling

    NASA Astrophysics Data System (ADS)

    Biercamp, Joachim; Adamidis, Panagiotis; Neumann, Philipp

    2017-04-01

    With the exa-scale era approaching, length and time scales used for climate research on one hand and numerical weather prediction on the other hand blend into each other. The Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE) represents a European consortium comprising partners from climate, weather and HPC in their effort to address key scientific challenges that both communities have in common. A particular challenge is to reach global models with spatial resolutions that allow simulating convective clouds and small-scale ocean eddies. These simulations would produce better predictions of trends and provide much more fidelity in the representation of high-impact regional events. However, running such models in operational mode, i.e with sufficient throughput in ensemble mode clearly will require exa-scale computing and data handling capability. We will discuss the ESiWACE initiative and relate it to work-in-progress on high-resolution simulations in Europe. We present recent strong scalability measurements from ESiWACE to demonstrate current computability in weather and climate simulation. A special focus in this particular talk is on the Icosahedal Nonhydrostatic (ICON) model used for a comparison of high resolution regional and global simulations with high quality observation data. We demonstrate that close-to-optimal parallel efficiency can be achieved in strong scaling global resolution experiments on Mistral/DKRZ, e.g. 94% for 5km resolution simulations using 36k cores on Mistral/DKRZ. Based on our scalability and high-resolution experiments, we deduce and extrapolate future capabilities for ICON that are expected for weather and climate research at exascale.

  19. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1

  20. Elucidating Critical Zone Process Interactions with an Integrated Hydrology Model in a Headwaters Research Catchment

    NASA Astrophysics Data System (ADS)

    Collins, C.; Maxwell, R. M.

    2017-12-01

    Providence Creek (P300) watershed is an alpine headwaters catchment located at the Southern Sierra Critical Zone Observatory (SSCZO). Evidence of groundwater-dependent vegetation and drought-induced tree mortality at P300 along with the effect of subsurface characterization on mountain ecohydrology motivates this study. A hyper resolution integrated hydrology model of this site, along with extensive instrumentation, provides an opportunity to study the effects of lateral groundwater flow on vegetation's tolerance to drought. ParFlow-CLM is a fully integrated surface-subsurface model that is driven with reconstructed meteorology, such as the North American Land Data Assimilation System project phase 2 (NLDAS-2) dataset. However, large-scale data products mute orographic effects on climate at smaller scales. Climate variables often do not behave uniformly in highly heterogeneous mountain regions. Therefore, forcing physically-based integrated hydrologic models—especially of mountain headwaters catchments—with a large-scale data product is a major challenge. Obtaining reliable observations in complex terrain is challenging and while climate data products introduce uncertainties likewise, documented discrepancies between several data products and P300 observations suggest these data products may suffice. To tackle these issues, a suite of simulations was run to parse out (1) the effects of climate data source (data products versus observations) and (2) the effects of climate data spatial variability. One tool for evaluating the effect of climate data on model outputs is the relationship between latent head flux (LH) and evapotranspiration (ET) partitioning with water table depth (WTD). This zone of LH sensitivity to WTD is referred to as the "critical zone." Preliminary results suggest that these critical zone relationships are preserved despite forcing albeit significant shifts in magnitude. These results demonstrate that integrated hydrology models are sensitive to climate data thereby impacting the accuracy of hydrologic modeling of headwaters catchments used for water management and planning purposes and exploring the effects of climate change perturbations.

  1. Challenges in global modeling of wetland extent and wetland methane dynamics

    NASA Astrophysics Data System (ADS)

    Spahni, R.; Melton, J. R.; Wania, R.; Stocker, B. D.; Zürcher, S.; Joos, F.

    2012-12-01

    Global wetlands are known to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. Modelling of global wetland extent and wetland CH4 dynamics remains a challenge. Here we present results from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) that investigated our present ability to simulate large scale wetland characteristics (e.g. wetland type, water table, carbon cycling, gas transport, etc.) and corresponding CH4 emissions. Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The WETCHIMP experiments showed that while models disagree in spatial and temporal patterns of simulated CH4 emissions and wetland areal extent, they all do agree on a strong positive response to increased carbon dioxide concentrations. WETCHIMP made clear that we currently lack observation data sets that are adequate to evaluate model CH4 soil-atmosphere fluxes at a spatial scale comparable to model grid cells. Thus there are substantial parameter and structural uncertainties in large-scale CH4 emission models. As an illustration of the implications of CH4 emissions on climate we show results of the LPX-Bern model, as one of the models participating in WETCHIMP. LPX-Bern is forced with observed 20th century climate and climate output from an ensemble of five comprehensive climate models for a low and a high emission scenario till 2100 AD. In the high emission scenario increased substrate availability for methanogenesis due to a strong stimulation of net primary productivity, and faster soil turnover leads to an amplification of CH4 emissions with the sharpest increase in peatlands (+180% compared to present). Combined with prescribed anthropogenic CH4 emissions, simulated atmospheric CH4 concentration reaches ~4500 ppbv by 2100 AD, about 800 ppbv more than in standard IPCC scenarios. This represents a significant contribution to radiative forcing of global climate.

  2. Finding "Models" in Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Ruby

    2017-05-01

    Internationally recognized Climate Scientist Ruby Leung is a cloud gazer. But rather than looking for shapes, Ruby’s life’s calling is to develop regional atmospheric models to better predict and understand the effects of global climate change at scales relevant to humans and the environment. Ruby’s accomplishments include developing novel methods for modeling mountain clouds and precipitation in climate models, and improving understanding of hydroclimate variability and change. She also has led efforts to develop regional climate modeling capabilities in the Weather Research and Forecasting model that is widely adopted by scientists worldwide. Ruby is part of a team of PNNLmore » researchers studying the impacts of global warming.« less

  3. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Attema, Jisk

    2015-08-01

    Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.

  4. Increasing the relevance of GCM simulations for Climate Services

    NASA Astrophysics Data System (ADS)

    Smith, L. A.; Suckling, E.

    2012-12-01

    The design and interpretation of model simulations for climate services differ significantly from experimental design for the advancement of the fundamental research on predictability that underpins it. Climate services consider the sources of best information available today; this calls for a frank evaluation of model skill in the face of statistical benchmarks defined by empirical models. The fact that Physical simulation models are thought to provide the only reliable method for extrapolating into conditions not previously observed has no bearing on whether or not today's simulation models outperform empirical models. Evidence on the length scales on which today's simulation models fail to outperform empirical benchmarks is presented; it is illustrated that this occurs even on global scales in decadal prediction. At all timescales considered thus far (as of July 2012), predictions based on simulation models are improved by blending with the output of statistical models. Blending is shown to be more interesting in the climate context than it is in the weather context, where blending with a history-based climatology is straightforward. As GCMs improve and as the Earth's climate moves further from that of the last century, the skill from simulation models and their relevance to climate services is expected to increase. Examples from both seasonal and decadal forecasting will be used to discuss a third approach that may increase the role of current GCMs more quickly. Specifically, aspects of the experimental design in previous hind cast experiments are shown to hinder the use of GCM simulations for climate services. Alternative designs are proposed. The value in revisiting Thompson's classic approach to improving weather forecasting in the fifties in the context of climate services is discussed.

  5. Do GCM's Predict the Climate.... Or the Low Frequency Weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varon, D.; Schertzer, D. J.

    2011-12-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply predicting this low frequency weather so as to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. We examine this using wavelet analyses of forced and unforced GCM outputs, including the ECHO-G simulation used in the Millenium project. For example, we find that climate scenarios with large CO2 increases do give rise to a climate regime but that Hc>1 i.e. much larger than that of natural variability which for temperatures has Hc≈0.4. In comparison, the (largely volcanic) forcing of the ECHO-G Millenium simulation is fairly realistic (Hc≈0.4), although it is not clear that this mechanism can explain the even lower frequency variability found in the paleotemperature series, nor is it clear that this is compatible with low frequency solar or orbital forcings.

  6. Adapting wheat to uncertain future

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Stratonovitch, Pierre

    2015-04-01

    This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.

  7. Geodynamic contributions to global climatic change

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.

  8. Towards Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO Regional Model

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Cumming, Benjamin; Lapillonne, Xavier; Gysi, Tobias; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph

    2014-05-01

    The representation of moist convection is a major shortcoming of current global and regional climate models. State-of-the-art global models usually operate at grid spacings of 10-300 km, and therefore cannot fully resolve the relevant upscale and downscale energy cascades. Therefore parametrization of the relevant sub-grid scale processes is required. Several studies have shown that this approach entails major uncertainties for precipitation processes, which raises concerns about the model's ability to represent precipitation statistics and associated feedback processes, as well as their sensitivities to large-scale conditions. Further refining the model resolution to the kilometer scale allows representing these processes much closer to first principles and thus should yield an improved representation of the water cycle including the drivers of extreme events. Although cloud-resolving simulations are very useful tools for climate simulations and numerical weather prediction, their high horizontal resolution and consequently the small time steps needed, challenge current supercomputers to model large domains and long time scales. The recent innovations in the domain of hybrid supercomputers have led to mixed node designs with a conventional CPU and an accelerator such as a graphics processing unit (GPU). GPUs relax the necessity for cache coherency and complex memory hierarchies, but have a larger system memory-bandwidth. This is highly beneficial for low compute intensity codes such as atmospheric stencil-based models. However, to efficiently exploit these hybrid architectures, climate models need to be ported and/or redesigned. Within the framework of the Swiss High Performance High Productivity Computing initiative (HP2C) a project to port the COSMO model to hybrid architectures has recently come to and end. The product of these efforts is a version of COSMO with an improved performance on traditional x86-based clusters as well as hybrid architectures with GPUs. We present our redesign and porting approach as well as our experience and lessons learned. Furthermore, we discuss relevant performance benchmarks obtained on the new hybrid Cray XC30 system "Piz Daint" installed at the Swiss National Supercomputing Centre (CSCS), both in terms of time-to-solution as well as energy consumption. We will demonstrate a first set of short cloud-resolving climate simulations at the European-scale using the GPU-enabled COSMO prototype and elaborate our future plans on how to exploit this new model capability.

  9. Quantifying the relative contribution of climate and human impacts on streamflow at seasonal scale

    NASA Astrophysics Data System (ADS)

    Xin, Z.; Zhang, L.; Li, Y.; Zhang, C.

    2017-12-01

    Both climate change and human activities have induced changes to hydrology. The quantification of their impacts on streamflow is a challenge, especially at the seasonal scale due to seasonality of climate and human impacts, i.e., water use for irrigation and water storage and release due to reservoir operation. In this study, the decomposition method based on the Budyko hypothesis is extended to the seasonal scale and is used to quantify the climate and human impacts on annual and seasonal streamflow changes. The results are further compared and verified with those simulated by the hydrological method of abcd model. Data are split into two periods (1953-1974 and 1975-2005) to quantify the change. Three seasons, including wet, dry and irrigation seasons are defined by introducing the monthly aridity index. In general, results showed a satisfactory agreement between the Budyko decomposition method and abcd model. Both climate change and human activities were found to induce a decrease in streamflow at the annual scale, with 67% of the change contributed by human activities. At the seasonal scale, the human-induced contribution to the reduced stream flow was 64% and 73% for dry and wet seasons, respectively; whereas in the irrigation season, the impact of human activities on reducing the streamflow was more pronounced (180%) since the climate contributes to increased streamflow. In addition, the quantification results were analyzed for each month in the wet season to reveal the effects of intense precipitation and reservoir operation rules during flood season.

  10. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  11. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback: The PCN Incubation-Panarctic Thermal (PInc-PanTher) Scaling Approach

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Schuur, E.; Schaedel, C.; Bohn, T. J.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A.; Marchenko, S. S.; McGuire, A. D.; Natali, S.; Nicolsky, D.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M. R.

    2015-12-01

    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a 3-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100.

  12. Climate change unlikely to increase malaria burden in West Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2016-11-01

    The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.

  13. Computational data sciences for assessment and prediction of climate extremes

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  14. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    PubMed

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations.

    PubMed

    Gascuel-Odoux, Chantal; Aurousseau, Pierre; Durand, Patrick; Ruiz, Laurent; Molenat, Jérôme

    2010-11-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 year variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two-box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according to their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long-term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. Copyright © 2009 Elsevier B.V. All rights reserved.

  16. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.

    2017-12-01

    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the time this contribution is being written, the proposed testbed represents the first implementation of a distributed large-scale, multi-model experiment in the ESGF/CMIP context, joining together server-side approaches for scientific data analysis, HPDA frameworks, end-to-end workflow management, and cloud computing.

  17. Atmospheric River Frequency and Intensity Changes in CMIP5 Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Warner, M.; Mass, C.; Salathe, E. P., Jr.

    2012-12-01

    Most extreme precipitation events that occur along the North American west coast are associated with narrow plumes of above-average water vapor concentration that stretch from the tropics or subtropics to the West Coast. These events generally occur during the wet season (October-March) and are referred to as atmospheric rivers (AR). ARs can cause major river management problems, damage from flooding or landslides, and loss of life. It is currently unclear how these events will change in frequency and intensity as a result of climate change in the coming century. While climate model global mean precipitation match observations reasonably well in historical runs, precipitation frequency and intensity is generally poorly represented at local scales; however, synoptic-scale features are more realistically simulated by climate models, and AR events can be identified by extremely high values of integrated water vapor flux at points near the West Coast. There have been many recent studies indicating changes in synoptic-scale features under climate change that could have meaningful impacts on the frequency and intensity of ARs. In this study, a suite of CMIP5 models are used to analyze predicted changes in frequency and intensity of AR events impacting the West Coast from the contemporary period (1970-1999) to the end of this century (2070-2099). Generally, integrated water vapor is predicted to increase in these models (both the mean and extremes) while low-level wind decreases and upper-level wind increases. This study aims to determine the influence of these changes on precipitation intensity in AR events in future climate simulations.

  18. A nonparametric stochastic method for generating daily climate-adjusted streamflows

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Moglen, G. E.

    2013-10-01

    A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.

  19. Normal forms for reduced stochastic climate models

    PubMed Central

    Majda, Andrew J.; Franzke, Christian; Crommelin, Daan

    2009-01-01

    The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D; Johansen, Hans; Evans, Katherine J

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy andmore » fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  1. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  2. Climate and landscape drive the pace and pattern of conifer encroachment into subalpine meadows.

    PubMed

    Lubetkin, Kaitlin C; Westerling, Anthony LeRoy; Kueppers, Lara M

    2017-09-01

    Mountain meadows have high biodiversity and help regulate stream water release following the snowmelt pulse. However, many meadows are experiencing woody plant encroachment, threatening these ecosystem services. While there have been field surveys of individual meadows and remote sensing-based landscape-scale studies of encroachment, what is missing is a broad-scale, ground-based study to understand common regional drivers, especially at high elevations, where land management has often played a less direct role. With this study, we ask: What are the climate and landscape conditions conducive to woody plant encroachment at the landscape scale, and how has historical climate variation affected tree recruitment in subalpine meadows over time? We measured density of encroaching trees across 340 subalpine meadows in the central Sierra Nevada, California, USA, and used generalized additive models (GAMs) to determine the relationship between landscape-scale patterns of encroachment and meadow environmental properties. We determined ages of trees in 30 survey meadows, used observed climate and GAMs to model the relationship between timing of recruitment and climate since the early 1900s, and extrapolated recruitment patterns into the future using downscaled climate scenarios. Encroachment was high among meadows with lodgepole pine (Pinus contorta Douglas ex Loudon var. murrayana (Balf.) Engelm.) in the immediate vicinity, at lower elevations, with physical conditions favoring strong soil drying, and with maximum temperatures above or below average. Climatic conditions during the year of germination were unimportant, with tree recruitment instead depending on a 3-yr seed production period prior to germination and a 6-yr seedling establishment period following germination. Recruitment was high when the seed production period had high snowpack, and when the seedling establishment period had warm summer maximum temperatures, high summer precipitation, and high snowpack. Applying our temporal model to downscaled output from four global climate models indicated that the average meadow will shift to forest by the end of the 21st century. Sierra Nevada meadow encroachment by conifers is ubiquitous and associated with climate conditions increasingly favorable for tree recruitment, which will lead to substantial changes in subalpine meadows and the ecosystem services they provide. © 2017 by the Ecological Society of America.

  3. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  4. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  5. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE PAGES

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...

    2018-01-22

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  6. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    PubMed

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  8. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  9. Statistical downscaling of daily precipitation over Llobregat river basin in Catalonia (Spain) using three downscaling methods.

    NASA Astrophysics Data System (ADS)

    Ballinas, R.; Versini, P.-A.; Sempere, D.; Escaler, I.

    2009-09-01

    Any long-term change in the patterns of average weather in a global or regional scale is called climate change. It may cause a progressive increase of atmospheric temperature and consequently may change the amount, frequency and intensity of precipitation. All these changes of meteorological parameters may modify the water cycle: run-off, infiltration, aquifer recharge, etc. Recent studies in Catalonia foresee changes in hydrological systems caused by climate change. This will lead to alterations in the hydrological cycle that could impact in land use, in the regimen of water extractions, in the hydrological characteristics of the territory and reduced groundwater recharge. Besides, can expect a loss of flow in rivers. In addition to possible increases in the frequency of extreme rainfall, being necessary to modify the design of infrastructure. Because this, it work focuses on studying the impacts of climate change in one of the most important basins in Catalonia, the Llobregat River Basin. The basin is the hub of the province of Barcelona. It is a highly populated and urbanized catchment, where water resources are used for different purposes, as drinking water production, agricultural irrigation, industry and hydro-electrical energy production. In consequence, many companies and communities depend on these resources. To study the impact of climate change in the Llobregat basin, storms (frequency, intensity) mainly, we will need regional climate change information. A regional climate is determined by interactions at large, regional and local scales. The general circulation models (GCMs) are run at too coarse resolution to permit accurate description of these regional and local interactions. So far, they have been unable to provide consistent estimates of climate change on a local scale. Several regionalization techniques have been developed to bridge the gap between the large-scale information provided by GCMs and fine spatial scales required for regional and environmental impact studies. Downscaling methods to assess the effect of large-scale circulations on local parameters have. Statistical downscaling methods are based on the view that regional climate can be conditioned by two factors: large-scale climatic state and regional/local features. Local climate information is derived by first developing a statistical model which relates large-scale variables or "predictors" for which GCMs are trustable to regional or local surface "predictands" for which models are less skilful. The main advantage of these methods is that they are computationally inexpensive, and can be applied to outputs from different GCM experiments. Three statistical downscaling methods are applied: Analogue method, Delta Change and Direct Forcing. These methods have been used to determine daily precipitation projections at rain gauge location to study the intensity, frequency and variability of storms in a context of climate change in the Llobregat River Basin in Catalonia, Spain. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program). It deals with Medium and long term water resources modelling as a tool for planning and global change adaptation. Two stakeholders involved in the project provided the historical time series: Catalan Water Agency (ACA) and the State Meteorological Agency (AEMET).

  10. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?

    NASA Astrophysics Data System (ADS)

    Ban, Nikolina; Schmidli, Juerg; Schär, Christoph

    2015-04-01

    Climate models project that heavy precipitation events intensify with climate change. It is generally accepted that extreme day-long events will increase at a rate of about 6-7% per degree warming, consistent with the Clausius-Clapeyron relation. However, recent studies suggest that sub-daily (e.g. hourly) precipitation extremes may increase at about twice this rate (referred to as super-adiabatic scaling). Conventional climate models are not suited to assess such events, due to the limited spatial resolution and the need to parameterize convective precipitation (i.e. thunderstorms and rain showers). Here we employ a convection-resolving version of the COSMO model across an extended region (1100 km x 1100 km) covering the European Alps to investigate the differences between parameterized and explicit convection in climate-change scenarios. We conduct 10-year long integrations at resolutions of 12 and 2km. Validation using ERA-Interim driven simulations reveals major improvements with the 2km resolution, in particular regarding the diurnal cycle of mean precipitation and the representation of hourly extremes. In addition, 2km simulations replicate the observed super-adiabatic scaling at precipitation stations, i.e. peak hourly events increase faster with environmental temperature than the Clausius-Clapeyron scaling of 7%/K (see Ban et al. 2014). Convection-resolving climate change scenarios are conducted using control (1991-2000) and scenario (2081-2090) simulations driven by a CMIP5 GCM (i.e. the MPI-ESM-LR) under the IPCC RCP8.5 scenario. Consistent with previous results, projections reveal a significant decrease of mean summer precipitation (by 30%). However, unlike previous studies, we find that increase in both extreme day-long and hour-long precipitation events asymptotically intensify with the Clausius-Clapeyron relation in 2km simulation (Ban et al. 2015). Differences to previous studies might be due to the model or region considered, but we also show that it is inconsistent to extrapolate from present-day super-adiabatic precipitation scaling into the future. The applicability of the Clausius-Clapeyron scaling across the whole event spectrum is a potentially useful result for climate impact adaptation. Ban, N., J. Schmidli and C. Schär (2015): Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Submitted to GRL. Ban, N., J. Schmidli and C. Schär (2014): Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos.,119, 7889-7907, doi:10.1002/2014JD021478

  11. Simulation of Drought-induced Tree Mortality Using a New Individual and Hydraulic Trait-based Model (S-TEDy)

    NASA Astrophysics Data System (ADS)

    Sinha, T.; Gangodagamage, C.; Ale, S.; Frazier, A. G.; Giambelluca, T. W.; Kumagai, T.; Nakai, T.; Sato, H.

    2017-12-01

    Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.

  12. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.

  13. The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation

    PubMed Central

    Thompson, David W. J.; van den Broeke, Michiel R.

    2017-01-01

    Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735

  14. Mountain Plant Community Sentinels: AWOL

    NASA Astrophysics Data System (ADS)

    Malanson, G. P.

    2017-12-01

    Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.

  15. Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method

    NASA Astrophysics Data System (ADS)

    Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil

    2014-05-01

    Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.

  16. A megaregion-scale approach for assessing the impacts of climate change and strategic management decisions in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Stewart, R. J.; Miara, A.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Wollheim, W. M.; Melillo, J. M.; Fekete, B. M.; Dilekli, N.; Duchin, F.; Gross, B.; Bhatt, V.

    2014-12-01

    'Megaregions' have been identified as an important new scale of geography for policy decision-making in the United States. These regions extend beyond local boundaries (ie. cities, states) to incorporate areas with linked economies, infrastructure and land-use patterns and shared climate and environmental systems, such as watersheds. The corridor of densely connected metropolitan areas and surrounding hinterlands along the U.S. east coast from Maine to Virginia is the archetype of this type of unit: The Northeast Megaregion. The Northeast faces a unique set of policy challenges including: projections of a wetter, more extreme climate, aging and underfunded infrastructure and economically distressed rural areas. Megaregion-scale policy efforts such as the Regional Greenhouse Gas Initiative (RGGI) and support for a regional food system have been recognized as strategic tools for climate change mitigation and adaptation, but decision-makers have limited information on the potential consequences of these strategies on the complex natural-human system of the Northeast, under various scenarios of global climate change. We have developed a Northeast Regional Earth System Model (NE-RESM) as a framework to provide this type of information. We integrate terrestrial ecosystem, hydrologic, energy system and economic models to investigate scenarios of paired regional socioeconomic pathways and global climate projections. Our initial results suggest that megaregion-scale strategic decisions in the Northeast may have important consequences for both local water management and global climate change mitigation.

  17. A conditional approach to determining the effect of anthropogenic climate change on very rare events.

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Pall, Pardeep; Zarzycki, Colin; Stone, Daithi

    2016-04-01

    Probabilistic extreme event attribution is especially difficult for weather events that are caused by extremely rare large-scale meteorological patterns. Traditional modeling techniques have involved using ensembles of climate models, either fully coupled or with prescribed ocean and sea ice. Ensemble sizes for the latter case ranges from several 100 to tens of thousand. However, even if the simulations are constrained by the observed ocean state, the requisite large-scale meteorological pattern may not occur frequently enough or even at all in free running climate model simulations. We present a method to ensure that simulated events similar to the observed event are modeled with enough fidelity that robust statistics can be determined given the large scale meteorological conditions. By initializing suitably constrained short term ensemble hindcasts of both the actual weather system and a counterfactual weather system where the human interference in the climate system is removed, the human contribution to the magnitude of the event can be determined. However, the change (if any) in the probability of an event of the observed magnitude is conditional not only on the state of the ocean/sea ice system but also on the prescribed initial conditions determined by the causal large scale meteorological pattern. We will discuss the implications of this technique through two examples; the 2013 Colorado flood and the 2014 Typhoon Haiyan.

  18. Satellite-based Monitoring of global Precipitation using the PERSIANN system: from Weather- to Climate-scales with some application examples

    NASA Astrophysics Data System (ADS)

    Switzer, A.; Yap, W.; Lauro, F.; Gouramanis, C.; Dominey-Howes, D.; Labbate, M.

    2016-12-01

    This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.

  19. Satellite-based Monitoring of global Precipitation using the PERSIANN system: from Weather- to Climate-scales with some application examples

    NASA Astrophysics Data System (ADS)

    Sorooshian, S.; Nguyen, P.; Hsu, K. L.

    2017-12-01

    This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.

  20. Bridging the spectral divide: a case study with PAGES2k, the CESM Last Millennium Ensemble and proxy system models

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Emile-Geay, J.; Ault, T.; McKay, N.; Dee, S.

    2017-12-01

    A grand challenge for paleoclimatology is to constrain climate model behavior on timescales longer than the instrumental record. Of particular interest is the spectrum of temperature as sensed by climate proxies. The "continuum" of climate variability [Huybers & Curry, Nature 2006] is often characterized by its scaling exponent β , where the spectral density S and the frequency f satisfy the power law S ∝ f-β . Recent studies have voiced concern that climate models underestimate scaling behavior compared to proxies [Laepple & Huybers, PNAS 2014]. Part of this discrepancy is known to lie in the complex processes whereby proxies transform climate signals [Dee et al, EPSL in press], yet many questions remain open. Here we leverage a recent multiproxy compilation [PAGES 2k Consortium, Sci Data 2017] to characterize scaling behavior over the Common Era using an interpolation-free method [Kirchner & Neal, PNAS 2013]. Proxy spectra are compared to spectra derived from the CESM Last Millennium Ensemble [Otto-Bliesner et al, BAMS 2016], using: (a) a naive model where proxies are assumed linearly related to annual temperature vs (b) proxy system models [Evans et al, QSR 2013] of varying complexity. Scaling behavior varies considerably by archive: on average the strongest centennial slopes are observed for lake sediments (β =1.2), while the smallest are observed for glacier ice (β =0.24). Results confirm that the CESM Last Millennium simulation (LM) exhibits decadal-centennial scaling closer to proxy spectra than the pre-industrial control run (PI): the latter shows a "blue" spectrum (β <0), while the former and the proxies display redder spectra (β >0), suggesting that forcings are essential to reduce the spectral divide. Yet, even with forcings, LM spectra are flatter than the proxy spectra. Subsequent work will investigate the roles of seasonal sensitivity (trees, foraminifera, alkenones), multivariate influences (corals, trees), detrending (trees) and post-depositional processes (ice cores, lake & marine sediments) on spectral discrepancies, and clarify whether CESM's temperature spectra truly exhibit a scaling deficiency, or whether the spectral divide is an artifact of imperfect data-model comparisons using naive assumptions.

  1. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  2. Long-range climate impacts on crop yield and the implications of enacting global carbon mitigation policies

    EPA Science Inventory

    Research on climate impacts and agriculture over the past two decades has applied simulation models at a range of scales and future climate scenarios, finding that crop growth and yield responds to changing climate conditions, and that the impacts are regional and highly depende...

  3. Climate change, ecosystem impacts, and management for Pacific salmon

    Treesearch

    D.E. Schindler; X. Augerot; E. Fleishman; N.J. Mantua; B. Riddell; M. Ruckelshaus; J. Seeb; M. Webster

    2008-01-01

    As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological...

  4. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    PubMed Central

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  5. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.

    2015-12-01

    A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.

  6. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  7. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to be 36% higher than those predicted during the second period. The climate projections of the PCM model had more positive impact on soil C sequestration than those predicted with the HadCM3 model.

  8. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    EPA Science Inventory

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  9. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    DOE PAGES

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; ...

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less

  10. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-09-01

    Urban areas are usually warmer than their surrounding natural areas, an effect known as the urban heat island effect. As such, they are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine unprecedented long-term (35 years) urban climate model integrations at the convection-permitting scale (2.8 km resolution) with information from an ensemble of general circulation models to assess temperature-based heat stress for Belgium, a densely populated midlatitude maritime region. We discover that the heat stress increase toward the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heat waves, and urban expansion. Cities experience a heat stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat stress surpasses everywhere the urban hot spots of today. Our results demonstrate the need to combine information from climate models, acting on different scales, for climate change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  11. The Kain-Fritsch Scheme: Science Updates & Revisiting Gray-Scale Issues from the NWP & Regional Climatae Perspectives

    EPA Science Inventory

    It’s just a matter of time before we see global climate models increasing their spatial resolution to that now typical of regional models. This encroachment brings in an urgent need for making regional NWP and climate models applicable at certain finer resolutions. One of the hin...

  12. Spatial models reveal the microclimatic buffering capacity of old-growth forests

    Treesearch

    Sarah J. K. Frey; Adam S. Hadley; Sherri L. Johnson; Mark Schulze; Julia A. Jones; Matthew. G. Betts

    2016-01-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by...

  13. Simulating forage crop production in a northern climate with the Integrated Farm System Model

    USDA-ARS?s Scientific Manuscript database

    Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...

  14. Continental-scale temperature covariance in proxy reconstructions and climate models

    NASA Astrophysics Data System (ADS)

    Hartl-Meier, Claudia; Büntgen, Ulf; Smerdon, Jason; Zorita, Eduardo; Krusic, Paul; Ljungqvist, Fredrik; Schneider, Lea; Esper, Jan

    2017-04-01

    Inter-continental temperature variability over the past millennium has been reported to be more coherent in climate model simulations than in multi-proxy-based reconstructions, a finding that undermines the representation of spatial variability in either of these approaches. We assess the covariance of summer temperatures among Northern Hemisphere continents by comparing tree-ring based temperature reconstructions with state-of-the-art climate model simulations over the past millennium. We find inter-continental temperature covariance to be larger in tree-ring-only reconstructions compared to those derived from multi-proxy networks, thus enhancing the agreement between proxy- and model-based spatial representations. A detailed comparison of simulated temperatures, however, reveals substantial spread among the models. Over the past millennium, inter-continental temperature correlations are driven by the cooling after major volcanic eruptions in 1257, 1452, 1601, and 1815. The coherence of these synchronizing events appears to be elevated in several climate simulations relative to their own covariance baselines and the proxy reconstructions, suggesting these models overestimate the amplitude of cooling in response to volcanic forcing at large spatial scales.

  15. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.

  16. The Quaternary fossil-pollen record and global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less

  17. Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2016-12-01

    Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.

  18. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  19. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    PubMed

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Zhang, Mingfang

    2010-12-01

    Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.

  1. Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0

    NASA Astrophysics Data System (ADS)

    Fuhrer, Oliver; Chadha, Tarun; Hoefler, Torsten; Kwasniewski, Grzegorz; Lapillonne, Xavier; Leutwyler, David; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph; Schulthess, Thomas C.; Vogt, Hannes

    2018-05-01

    The best hope for reducing long-standing global climate model biases is by increasing resolution to the kilometer scale. Here we present results from an ultrahigh-resolution non-hydrostatic climate model for a near-global setup running on the full Piz Daint supercomputer on 4888 GPUs (graphics processing units). The dynamical core of the model has been completely rewritten using a domain-specific language (DSL) for performance portability across different hardware architectures. Physical parameterizations and diagnostics have been ported using compiler directives. To our knowledge this represents the first complete atmospheric model being run entirely on accelerators on this scale. At a grid spacing of 930 m (1.9 km), we achieve a simulation throughput of 0.043 (0.23) simulated years per day and an energy consumption of 596 MWh per simulated year. Furthermore, we propose a new memory usage efficiency (MUE) metric that considers how efficiently the memory bandwidth - the dominant bottleneck of climate codes - is being used.

  2. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  3. Upgrades to the REA method for producing probabilistic climate change projections

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Gao, Xuejie; Giorgi, Filippo

    2010-05-01

    We present an augmented version of the Reliability Ensemble Averaging (REA) method designed to generate probabilistic climate change information from ensembles of climate model simulations. Compared to the original version, the augmented one includes consideration of multiple variables and statistics in the calculation of the performance-based weights. In addition, the model convergence criterion previously employed is removed. The method is applied to the calculation of changes in mean and variability for temperature and precipitation over different sub-regions of East Asia based on the recently completed CMIP3 multi-model ensemble. Comparison of the new and old REA methods, along with the simple averaging procedure, and the use of different combinations of performance metrics shows that at fine sub-regional scales the choice of weighting is relevant. This is mostly because the models show a substantial spread in performance for the simulation of precipitation statistics, a result that supports the use of model weighting as a useful option to account for wide ranges of quality of models. The REA method, and in particular the upgraded one, provides a simple and flexible framework for assessing the uncertainty related to the aggregation of results from ensembles of models in order to produce climate change information at the regional scale. KEY WORDS: REA method, Climate change, CMIP3

  4. Reducing uncertainty in Climate Response Time Scale by Bayesian Analysis of the 8.2 ka event

    NASA Astrophysics Data System (ADS)

    Lorenz, A.; Held, H.; Bauer, E.; Schneider von Deimling, T.

    2009-04-01

    We analyze the possibility of uncertainty reduction in Climate Response Time Scale by utilizing Greenland ice-core data that contain the 8.2 ka event within a Bayesian model-data intercomparison with the Earth system model of intermediate complexity, CLIMBER-2.3. Within a stochastic version of the model it has been possible to mimic the 8.2 ka event within a plausible experimental setting and with relatively good accuracy considering the timing of the event in comparison to other modeling exercises [1]. The simulation of the centennial cold event is effectively determined by the oceanic cooling rate which depends largely on the ocean diffusivity described by diffusion coefficients of relatively wide uncertainty ranges. The idea now is to discriminate between the different values of diffusivities according to their likelihood to rightly represent the duration of the 8.2 ka event and thus to exploit the paleo data to constrain uncertainty in model parameters in analogue to [2]. Implementing this inverse Bayesian Analysis with this model the technical difficulty arises to establish the related likelihood numerically in addition to the uncertain model parameters: While mainstream uncertainty analyses can assume a quasi-Gaussian shape of likelihood, with weather fluctuating around a long term mean, the 8.2 ka event as a highly nonlinear effect precludes such an a priori assumption. As a result of this study [3] the Bayesian Analysis showed a reduction of uncertainty in vertical ocean diffusivity parameters of factor 2 compared to prior knowledge. This learning effect on the model parameters is propagated to other model outputs of interest; e.g. the inverse ocean heat capacity, which is important for the dominant time scale of climate response to anthropogenic forcing which, in combination with climate sensitivity, strongly influences the climate systems reaction for the near- and medium-term future. 1 References [1] E. Bauer, A. Ganopolski, M. Montoya: Simulation of the cold climate event 8200 years ago by meltwater outburst from lake Agassiz. Paleoceanography 19:PA3014, (2004) [2] T. Schneider von Deimling, H. Held, A. Ganopolski, S. Rahmstorf, Climate sensitivity estimated from ensemble simulations of glacial climates, Climate Dynamics 27, 149-163, DOI 10.1007/s00382-006-0126-8 (2006). [3] A. Lorenz, Diploma Thesis, U Potsdam (2007).

  5. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  6. Understanding the dust cycle at high latitudes: integrating models and observations

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.; Winckler, G.; Potenza, M. A. C.; Baccolo, G.; Balkanski, Y.

    2017-12-01

    Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. Paleodust archives from land, ocean, and ice sheets preserve the history of dust deposition for a range of spatial scales from close to the major hemispheric sources to remote sinks such as the polar ice sheets. In each hemisphere common features on the glacial-interglacial time scale mark the baseline evolution of the dust cycle, and inspired the hypothesis that increased dust deposition to ocean stimulated the glacial biological pump contributing to the reduction of atmospheric carbon dioxide levels. On the other hand finer geographical and temporal scales features are superposed to these glacial-interglacial trends, providing the chance of a more sophisticated understanding of the dust cycle, for instance allowing distinctions in terms of source availability or transport patterns as recorded by different records. As such paleodust archives can prove invaluable sources of information, especially when characterized by a quantitative estimation of the mass accumulation rates, and interpreted in connection with climate models. We review our past work and present ongoing research showing how climate models can help in the interpretation of paleodust records, as well as the potential of the same observations for constraining the representation of the global dust cycle embedded in Earth System Models, both in terms of magnitude and physical parameters related to particle sizes and optical properties. Finally we show the impacts on climate, based on this kind of observationally constrained model simulations.

  7. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    NASA Astrophysics Data System (ADS)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  8. Uncertainties in data-model comparisons: Spatio-temporal scales for past climates

    NASA Astrophysics Data System (ADS)

    Lohmann, G.

    2016-12-01

    Data-model comparisons are hindered by uncertainties like varying reservoir ages or potential seasonality bias of the recorder systems, but also due to the models' difficulty to represent the spatio-temporal variability patterns. For the Holocene we detect a sensitivity to horizontal resolution in the atmosphere, the representation of atmospheric dynamics, as well as the dynamics of the western boundary currents in the ocean. These features can create strong spatial heterogeneity in the North Atlantic and Pacific Oceans over long timescales (unlike a diffusive spatio-temporal scale separation). Futhermore, it is shown that such non-linear mechanisms could create a non-trivial response to seasonal insolation forcing via an atmospheric bridge inducing non-uniform temperature anomalies over the northern continents on multi-millennial time scales. Through the fluctuation-dissipation-theorem, climate variability and sensitivity are ultimately coupled. It is argued that some obvious biases between models and data may be linked to the missing key persistent component of the atmospheric dynamics, the North Atlantic blocking activity. It is shown that blocking is also linked to Atlantic multidecadal ocean variability and to extreme events. Interestingly, several proxies provide a measure of the frequency of extreme events, and a proper representation is a true challenge for climate models. Finally, case studies from deep paleo are presented in which changes in land-sea distribution or subscale parameterizations can cause relatively large effects on surface temperature. Such experiments can explore the phase space of solutions, but show the limitation of past climates to constrain climate sensitivity.

  9. About ICLUS

    EPA Pesticide Factsheets

    ICLUS is a project for developing scenarios broadly consistent with global-scale, peer-reviewed storylines of population growth and economic development, which are used by climate change modelers to develop projections of future climate.

  10. The Art and Science of Climate Model Tuning

    DOE PAGES

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...

    2017-03-31

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  11. The Art and Science of Climate Model Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  12. A downscaling method for the assessment of local climate change

    NASA Astrophysics Data System (ADS)

    Bruno, E.; Portoghese, I.; Vurro, M.

    2009-04-01

    The use of complimentary models is necessary to study the impact of climate change scenarios on the hydrological response at different space-time scales. However, the structure of GCMs is such that their space resolution (hundreds of kilometres) is too coarse and not adequate to describe the variability of extreme events at basin scale (Burlando and Rosso, 2002). To bridge the space-time gap between the climate scenarios and the usual scale of the inputs for hydrological prediction models is a fundamental requisite for the evaluation of climate change impacts on water resources. Since models operate a simplification of a complex reality, their results cannot be expected to fit with climate observations. Identifying local climate scenarios for impact analysis implies the definition of more detailed local scenario by downscaling GCMs or RCMs results. Among the output correction methods we consider the statistical approach by Déqué (2007) reported as a ‘Variable correction method' in which the correction of model outputs is obtained by a function build with the observation dataset and operating a quantile-quantile transformation (Q-Q transform). However, in the case of daily precipitation fields the Q-Q transform is not able to correct the temporal property of the model output concerning the dry-wet lacunarity process. An alternative correction method is proposed based on a stochastic description of the arrival-duration-intensity processes in coherence with the Poissonian Rectangular Pulse scheme (PRP) (Eagleson, 1972). In this proposed approach, the Q-Q transform is applied to the PRP variables derived from the daily rainfall datasets. Consequently the corrected PRP parameters are used for the synthetic generation of statistically homogeneous rainfall time series that mimic the persistency of daily observations for the reference period. Then the PRP parameters are forced through the GCM scenarios to generate local scale rainfall records for the 21st century. The statistical parameters characterizing daily storm occurrence, storm intensity and duration needed to apply the PRP scheme are considered among STARDEX collection of extreme indices.

  13. Projected changes over western Canada using convection-permitting regional climate model and the pseudo-global warming method

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kurkute, S.; Chen, L.

    2017-12-01

    Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.

  14. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  15. Application of empirical and dynamical closure methods to simple climate models

    NASA Astrophysics Data System (ADS)

    Padilla, Lauren Elizabeth

    This dissertation applies empirically- and physically-based methods for closure of uncertain parameters and processes to three model systems that lie on the simple end of climate model complexity. Each model isolates one of three sources of closure uncertainty: uncertain observational data, large dimension, and wide ranging length scales. They serve as efficient test systems toward extension of the methods to more realistic climate models. The empirical approach uses the Unscented Kalman Filter (UKF) to estimate the transient climate sensitivity (TCS) parameter in a globally-averaged energy balance model. Uncertainty in climate forcing and historical temperature make TCS difficult to determine. A range of probabilistic estimates of TCS computed for various assumptions about past forcing and natural variability corroborate ranges reported in the IPCC AR4 found by different means. Also computed are estimates of how quickly uncertainty in TCS may be expected to diminish in the future as additional observations become available. For higher system dimensions the UKF approach may become prohibitively expensive. A modified UKF algorithm is developed in which the error covariance is represented by a reduced-rank approximation, substantially reducing the number of model evaluations required to provide probability densities for unknown parameters. The method estimates the state and parameters of an abstract atmospheric model, known as Lorenz 96, with accuracy close to that of a full-order UKF for 30-60% rank reduction. The physical approach to closure uses the Multiscale Modeling Framework (MMF) to demonstrate closure of small-scale, nonlinear processes that would not be resolved directly in climate models. A one-dimensional, abstract test model with a broad spatial spectrum is developed. The test model couples the Kuramoto-Sivashinsky equation to a transport equation that includes cloud formation and precipitation-like processes. In the test model, three main sources of MMF error are evaluated independently. Loss of nonlinear multi-scale interactions and periodic boundary conditions in closure models were dominant sources of error. Using a reduced order modeling approach to maximize energy content allowed reduction of the closure model dimension up to 75% without loss in accuracy. MMF and a comparable alternative model peformed equally well compared to direct numerical simulation.

  16. Application of statistical downscaling technique for the production of wine grapes (Vitis vinifera L.) in Spain

    NASA Astrophysics Data System (ADS)

    Gaitán Fernández, E.; García Moreno, R.; Pino Otín, M. R.; Ribalaygua Batalla, J.

    2012-04-01

    Climate and soil are two of the most important limiting factors for agricultural production. Nowadays climate change has been documented in many geographical locations affecting different cropping systems. The General Circulation Models (GCM) has become important tools to simulate the more relevant aspects of the climate expected for the XXI century in the frame of climatic change. These models are able to reproduce the general features of the atmospheric dynamic but their low resolution (about 200 Km) avoids a proper simulation of lower scale meteorological effects. Downscaling techniques allow overcoming this problem by adapting the model outcomes to local scale. In this context, FIC (Fundación para la Investigación del Clima) has developed a statistical downscaling technique based on a two step analogue methods. This methodology has been broadly tested on national and international environments leading to excellent results on future climate models. In a collaboration project, this statistical downscaling technique was applied to predict future scenarios for the grape growing systems in Spain. The application of such model is very important to predict expected climate for the different growing crops, mainly for grape, where the success of different varieties are highly related to climate and soil. The model allowed the implementation of agricultural conservation practices in the crop production, detecting highly sensible areas to negative impacts produced by any modification of climate in the different regions, mainly those protected with protected designation of origin, and the definition of new production areas with optimal edaphoclimatic conditions for the different varieties.

  17. Effects of lateral boundary condition resolution and update frequency on regional climate model predictions

    NASA Astrophysics Data System (ADS)

    Pankatz, Klaus; Kerkweg, Astrid

    2015-04-01

    The work presented is part of the joint project "DecReg" ("Regional decadal predictability") which is in turn part of the project "MiKlip" ("Decadal predictions"), an effort funded by the German Federal Ministry of Education and Research to improve decadal predictions on a global and regional scale. In MiKlip, one big question is if regional climate modeling shows "added value", i.e. to evaluate, if regional climate models (RCM) produce better results than the driving models. However, the scope of this study is to look more closely at the setup specific details of regional climate modeling. As regional models only simulate a small domain, they have to inherit information about the state of the atmosphere at their lateral boundaries from external data sets. There are many unresolved questions concerning the setup of lateral boundary conditions (LBC). External data sets come from global models or from global reanalysis data-sets. A temporal resolution of six hours is common for this kind of data. This is mainly due to the fact, that storage space is a limiting factor, especially for climate simulations. However, theoretically, the coupling frequency could be as high as the time step of the driving model. Meanwhile, it is unclear if a more frequent update of the LBCs has a significant effect on the climate in the domain of the RCM. The first study examines how the RCM reacts to a higher update frequency. The study is based on a 30 year time slice experiment for three update frequencies of the LBC, namely six hours, one hour and six minutes. The evaluation of means, standard deviations and statistics of the climate in the regional domain shows only small deviations, some statistically significant though, of 2m temperature, sea level pressure and precipitation. The second part of the first study assesses parameters linked to cyclone activity, which is affected by the LBC update frequency. Differences in track density and strength are found when comparing the simulations. Theoretically, regional down-scaling should act like a magnifying glass. It should reveal details on small scales which a global model cannot resolve, but it should not affect the large scale flow. As the development of the small scale features takes some time, it is important that the air stays long enough within the regional domain. The spin-up time of the small scale features is, of course, dependent on the resolution of the LBC and the resolution of the RCM. The second study examines the quality of decadal hind-casts over Europe of the decade 2001-2010 when the horizontal resolution of the driving model, namely 2.8°, 1.8°, 1.4°, 1.1°, from which the LBC are calculated, is altered. The study shows, that a smaller resolution gap between LBC resolution and RCM resolution might be beneficial.

  18. Weak hydrological sensitivity to temperature change over land, independent of climate forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjorn H.

    2017-04-01

    As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.

  19. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  20. "The Effect of Alternative Representations of Lake Temperatures and Ice on WRF Regional Climate Simulations"

    EPA Science Inventory

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...

  1. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  2. Development and initial validation of an Aviation Safety Climate Scale.

    PubMed

    Evans, Bronwyn; Glendon, A Ian; Creed, Peter A

    2007-01-01

    A need was identified for a consistent set of safety climate factors to provide a basis for aviation industry benchmarking. Six broad safety climate themes were identified from the literature and consultations with industry safety experts. Items representing each of the themes were prepared and administered to 940 Australian commercial pilots. Data from half of the sample (N=468) were used in an exploratory factor analysis that produced a 3-factor model of Management commitment and communication, Safety training and equipment, and Maintenance. A confirmatory factor analysis on the remaining half of the sample showed the 3-factor model to be an adequate fit to the data. The results of this study have produced a scale of safety climate for aviation that is both reliable and valid. This study developed a tool to assess the level of perceived safety climate, specifically of pilots, but may also, with minor modifications, be used to assess other groups' perceptions of safety climate.

  3. From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Latif, Mojib

    2017-04-01

    We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes internal to the Earth system to climate variability at different time scales. Third, in order to achieve a higher level of understanding of natural climate variability at time scales of millennia, its governing processes and implications for the future climate, we bring together three different research communities: the Earth system modeling community, the proxy data community and the computational science community. The consortium consists of 18 partners including all major modelling centers within Germany. The funding comprises approximately 65 PostDoc positions and more than 120 scientists are involved. PalMod is coordinated at the Helmholtz Centre for Ocean Research Kiel (GEOMAR).

  4. Islands Climatology at Local Scale. Downscaling with CIELO model

    NASA Astrophysics Data System (ADS)

    Azevedo, Eduardo; Reis, Francisco; Tomé, Ricardo; Rodrigues, Conceição

    2016-04-01

    Islands with horizontal scales of the order of tens of km, as is the case of the Atlantic Islands of Macaronesia, are subscale orographic features for Global Climate Models (GCMs) since the horizontal scales of these models are too coarse to give a detailed representation of the islands' topography. Even the Regional Climate Models (RCMs) reveals limitations when they are forced to reproduce the climate of small islands mainly by the way they flat and lowers the elevation of the islands, reducing the capacity of the model to reproduce important local mechanisms that lead to a very deep local climate differentiation. Important local thermodynamics mechanisms like Foehn effect, or the influence of topography on radiation balance, have a prominent role in the climatic spatial differentiation. Advective transport of air - and the consequent induced adiabatic cooling due to orography - lead to transformations of the state parameters of the air that leads to the spatial configuration of the fields of pressure, temperature and humidity. The same mechanism is in the origin of the orographic clouds cover that, besides the direct role as water source by the reinforcement of precipitation, act like a filter to direct solar radiation and as a source of long-wave radiation that affect the local balance of energy. Also, the saturation (or near saturation) conditions that they provide constitute a barrier to water vapour diffusion in the mechanisms of evapotranspiration. Topographic factors like slope, aspect and orographic mask have also significant importance in the local energy balance. Therefore, the simulation of the local scale climate (past, present and future) in these archipelagos requires the use of downscaling techniques to adjust locally outputs obtained at upper scales. This presentation will discuss and analyse the evolution of the CIELO model (acronym for Clima Insular à Escala LOcal) a statistical/dynamical technique developed at the University of the Azores, which has been improved since its original version, constituting currently a downscaling tool widely applied with success in different islands of Macaronesia. Recently the CIELO model has been tested against data from the Eastern North Atlantic (ENA), Graciosa Island ARM facility programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and the University of the Azores).

  5. [Lake eutrophication modeling in considering climatic factors change: a review].

    PubMed

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  6. Regional-Scale Climate Change: Observations and Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less

  7. Using Four Downscaling Techniques to Characterize Uncertainty in Updating Intensity-Duration-Frequency Curves Under Climate Change

    NASA Astrophysics Data System (ADS)

    Cook, L. M.; Samaras, C.; McGinnis, S. A.

    2017-12-01

    Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.

  8. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing the impacts of multiple GCM ensemble members. The implications of various approaches to dealing with uncertainty, such as these, must be carefully communicated to decision makers in order for projected climate impacts to be viewed as credible and used appropriately.

  9. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.

  10. A Multiscale Simulation Framework to Investigate Hydrobiogeochemical Processes in the Groundwater-Surface Water Interaction Zone

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Yang, X.; Song, X.; Chen, X.; Hammond, G. E.; Song, H. S.; Hou, Z.; Murray, C. J.; Tartakovsky, A. M.; Tartakovsky, G.; Yang, X.; Zachara, J. M.

    2016-12-01

    Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.

  11. Regional climate model sensitivity to domain size

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  12. Assessing Hydrological and Energy Budgets in Amazonia through Regional Downscaling, and Comparisons with Global Reanalysis Products

    NASA Astrophysics Data System (ADS)

    Nunes, A.; Ivanov, V. Y.

    2014-12-01

    Although current global reanalyses provide reasonably accurate large-scale features of the atmosphere, systematic errors are still found in the hydrological and energy budgets of such products. In the tropics, precipitation is particularly challenging to model, which is also adversely affected by the scarcity of hydrometeorological datasets in the region. With the goal of producing downscaled analyses that are appropriate for a climate assessment at regional scales, a regional spectral model has used a combination of precipitation assimilation with scale-selective bias correction. The latter is similar to the spectral nudging technique, which prevents the departure of the regional model's internal states from the large-scale forcing. The target area in this study is the Amazon region, where large errors are detected in reanalysis precipitation. To generate the downscaled analysis, the regional climate model used NCEP/DOE R2 global reanalysis as the initial and lateral boundary conditions, and assimilated NOAA's Climate Prediction Center (CPC) MORPHed precipitation (CMORPH), available at 0.25-degree resolution, every 3 hours. The regional model's precipitation was successfully brought closer to the observations, in comparison to the NCEP global reanalysis products, as a result of the impact of a precipitation assimilation scheme on cumulus-convection parameterization, and improved boundary forcing achieved through a new version of scale-selective bias correction. Water and energy budget terms were also evaluated against global reanalyses and other datasets.

  13. Complex systems approach to fire dynamics and climate change impacts

    NASA Astrophysics Data System (ADS)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire sizes are also well fitted by a power law. A possible interpretation is that the spatial structure of fire in savannas is strongly constrained by the spatial structure of their environment. Instead of resulting from ecosystem self-organization as in the model, in this case the scale invariance in fire events would be just a reflection of scale invariance in the environment in which the ecosystem lives. These results suggest at least three major types of fire dynamics: endogenous scaling, percolating, and exogenous scaling, in addition to intermediate options. The world's biomes can be classified based on the type of dynamics that is most likely to apply in each of them, and forecasts can be carried out with the tools developed for each of these types.

  14. Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0

    NASA Astrophysics Data System (ADS)

    Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.

  15. Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study

    NASA Astrophysics Data System (ADS)

    Mitsui, Takahito; Crucifix, Michel

    2017-04-01

    The last glacial period was punctuated by a series of abrupt climate shifts, the so-called Dansgaard-Oeschger (DO) events. The frequency of DO events varied in time, supposedly because of changes in background climate conditions. Here, the influence of external forcings on DO events is investigated with statistical modelling. We assume two types of simple stochastic dynamical systems models (double-well potential-type and oscillator-type), forced by the northern hemisphere summer insolation change and/or the global ice volume change. The model parameters are estimated by using the maximum likelihood method with the NGRIP Ca^{2+} record. The stochastic oscillator model with at least the ice volume forcing reproduces well the sample autocorrelation function of the record and the frequency changes of warming transitions in the last glacial period across MISs 2, 3, and 4. The model performance is improved with the additional insolation forcing. The BIC scores also suggest that the ice volume forcing is relatively more important than the insolation forcing, though the strength of evidence depends on the model assumption. Finally, we simulate the average number of warming transitions in the past four glacial periods, assuming the model can be extended beyond the last glacial, and compare the result with an Iberian margin sea-surface temperature (SST) record (Martrat et al. in Science 317(5837): 502-507, 2007). The simulation result supports the previous observation that abrupt millennial-scale climate changes in the penultimate glacial (MIS 6) are less frequent than in the last glacial (MISs 2-4). On the other hand, it suggests that the number of abrupt millennial-scale climate changes in older glacial periods (MISs 6, 8, and 10) might be larger than inferred from the SST record.

  16. Using a Freshwater Lake Model Coupled with WRF for Dynamical Downscaling Applications

    EPA Science Inventory

    The ability to represent extremes in temperature and precipitation in regional climates (including those affected by inland lakes) has become an area of focus as regional climate models (RCMs) simulate smaller temporal and spatial scales. When using the Weather Research and Fore...

  17. Modeling Forest Composition and Carbon Dynamics Under Projected Climate-Fire Interactions in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liang, S.; Hurteau, M. D.; Westerling, A. L.

    2014-12-01

    The Sierra Nevada Mountains are occupied by a diversity of forest types that sort by elevation. The interaction of changing climate and altered disturbance regimes (e.g. fire) has the potential to drive changes in forest distribution as a function of species-specific response. Quantifying the effects of these drivers on species distributions and productivity under future climate-fire interactions is necessary for informing mitigation and adaptation efforts. In this study, we assimilated forest inventory and soil survey data and species life history traits into a landscape model, LANDIS-II, to quantify the response of forest dynamics to the interaction of climate change and large wildfire frequency in the Sierra Nevada. We ran 100-year simulations forced with historical climate and climate projections from three models (GFDL, CNRM and CCSM3) driven by the A2 emission scenario. We found that non-growing season NPP is greatly enhanced by 15%-150%, depending on the specific climate projection. The greatest increase occurs in subalpine forests. Species-specific response varied as a function of life history characteristics. The distribution of drought and fire-tolerant species, such as ponderosa pine, expanded by 7.3-9.6% from initial conditions, while drought and fire-intolerant species, such as white fir, showed little change in the absence of fire. Changes in wildfire size and frequency influence species distributions by altering the successional stage of burned patches. The range of responses to different climate models demonstrates the sensitivity of these forests to climate variability. The scale of climate projections relative to the scale of forest simulations presents a source of uncertainty, particularly at the ecotone between forest types and for identifying topographically mediated climate refugia. Improving simulations will likely require higher resolution climate projections.

  18. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.

  19. A test of multiple hypotheses for the species richness gradient of South American owls.

    PubMed

    Diniz-Filho, José Alexandre Felizola; Rangel, Thiago F L V B; Hawkins, Bradford A

    2004-08-01

    Many mechanisms have been proposed to explain broad scale spatial patterns in species richness. In this paper, we evaluate five explanations for geographic gradients in species richness, using South American owls as a model. We compared the explanatory power of contemporary climate, landcover diversity, spatial climatic heterogeneity, evolutionary history, and area. An important aspect of our analyses is that very different hypotheses, such as history and area, can be quantified at the same observation scale and, consequently can be incorporated into a single analytical framework. Both area effects and owl phylogenetic history were poorly associated with richness, whereas contemporary climate, climatic heterogeneity at the mesoscale and landcover diversity explained ca. 53% of the variation in species richness. We conclude that both climate and environmental heterogeneity should be retained as plausible explanations for the diversity gradient. Turnover rates and scaling effects, on the other hand, although perhaps useful for detecting faunal changes and beta diversity at local and regional scales, are not strong explanations for the owl diversity gradient.

  20. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio-economic perspective). In our presentation we will show the cases of Peru and the Philippines, and discuss the implications for agriculture policies and risk management.

  1. Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington.

    Treesearch

    Michael J. Case; David L. Peterson

    2005-01-01

    Information about the sensitivity to climate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is valuable because it will allow forest managers to maximize growth, better understand how carbon sequestration may change over time, and better model and predict future ecosystem responses to climatic change. We examined the effects of climatic...

  2. Impacts on regional climate of an afforestation scenario under a +2°C global warming climate

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Noblet-Ducoudré Nathalie, de; Marc, Stéfanon

    2017-04-01

    Through surface-atmosphere interactions (SAI), land-use and land-cover changes (LULCCs) alter atmospheric conditions with effects on climate at different scales, from local/regional (a few ten kilometres) (Pielke et al., 2011) to global scales (a few hundred kilometres) (Mahmood et al., 2014). Focusing on the regional scale, in the context of climate change, LULCCs may either enhance or dampen climate impacts via changes in SAI they may initiate. Those LULCC-driven atmospheric impacts could in turn influence e.g. the functioning of terrestrial ecosystems, with consequences on mitigation and adaptation strategies. Despite LULCC impacts on regional climate are largely discussed in the literature, in Europe information is missing on LULCC impacts under future climate conditions on a country scale (Galos et al., 2015). The latest COPs have urged the scientific community to explore the impacts of reduced global warming (1.5°C to a +2°C) on the Earth system. LULCCs will be one major tool to achieve such targets. In this framework, we investigate impacts on regional climate of a modified landscape under a +2°C climatic scenario. To this purpose, we performed sensitivity studies over western Europe with a fully coupled land-atmosphere regional climate model, WRF-ORCHIDEE (Drobinski et al., 2012, Stefanon et al., 2014). A +2°C scenario was selected among those proposed by the "Impact2C" project (Vautard et al., 2014), and the afforested land-cover scenario proposed in the RCP4.5 is prescribed. We have chosen the maximum extent of forest RCP4.5 simulates for Europe at the end of the 21st century. WRF-ORCHIDEE is fed with boundary atmospheric conditions from the global climate model LMDZ for PD (1971-2000) and the +2°C warming period for the LMDZ model (2028-2057). Preliminary results over the target domain show that, under a +2°C global warming scenario, afforestation contributes by 2% to the total warming due to both climate change and LULCCs. During summer, the afforestation of 1000 km2 increases the mean surface atmospheric temperature by +0.18°C. However, during the same season, afforestation reduces the occurrence of extreme temperatures (> 30°C). By analysing LULCC impacts on both mean climate and extremes, this study aims to possibly raise awareness among decision-makers and land planners on the role LULCCs may play in the context of climate change. References Drobinski, P., et al.: Model of the Regional Coupled Earth system (MORCE): Application to process and climate studies in vulnerable regions, Environ. Modell. Softw., 35, 1-18, 2012. Galos, B., et al.: Regional characteristics of climate change altering effects of afforestation, Environ. Res. Lett., 6, 2015. Mahmood, R., et al.: Land cover changes and their biogeophysical effects on climate, Int. J. Climatol., 34, 929-953, 2014. Pielke, R. A., et al.: Land use/land cover changes and climate: modeling analysis and observational evidence, WIREs Clim Change, 2(6), 828-850, 2011. Stefanon, M., et al.: Simulating the effect of anthropogenic vegetation land cover on heatwave temperatures over central France, Clim. Res., 60: 133-146, 2014. Vautard R., et al.: The European climate under a 2° C global warming. Environ. Res. Lett., 9, 2014.

  3. The evolution of scaling laws in the sea ice floe size distribution

    NASA Astrophysics Data System (ADS)

    Horvat, Christopher; Tziperman, Eli

    2017-09-01

    The sub-gridscale floe size and thickness distribution (FSTD) is an emerging climate variable, playing a leading-order role in the coupling between sea ice, the ocean, and the atmosphere. The FSTD, however, is difficult to measure given the vast range of horizontal scales of individual floes, leading to the common use of power-law scaling to describe it. The evolution of a coupled mixed-layer-FSTD model of a typical marginal ice zone is explicitly simulated here, to develop a deeper understanding of how processes active at the floe scale may or may not lead to scaling laws in the floe size distribution. The time evolution of mean quantities obtained from the FSTD (sea ice concentration, mean thickness, volume) is complex even in simple scenarios, suggesting that these quantities, which affect climate feedbacks, should be carefully calculated in climate models. The emergence of FSTDs with multiple separate power-law regimes, as seen in observations, is found to be due to the combination of multiple scale-selective processes. Limitations in assuming a power-law FSTD are carefully analyzed, applying methods used in observations to FSTD model output. Two important sources of error are identified that may lead to model biases: one when observing an insufficiently small range of floe sizes, and one from the fact that floe-scale processes often do not produce power-law behavior. These two sources of error may easily lead to biases in mean quantities derived from the FSTD of greater than 100%, and therefore biases in modeled sea ice evolution.

  4. Rainfall extremes, weather and climatic characterization over complex terrain: A data-driven approach based on signal enhancement methods and extreme value modeling

    NASA Astrophysics Data System (ADS)

    Pineda, Luis E.; Willems, Patrick

    2017-04-01

    Weather and climatic characterization of rainfall extremes is both of scientific and societal value for hydrometeorogical risk management, yet discrimination of local and large-scale forcing remains challenging in data-scarce and complex terrain environments. Here, we present an analysis framework that separate weather (seasonal) regimes and climate (inter-annual) influences using data-driven process identification. The approach is based on signal-to-noise separation methods and extreme value (EV) modeling of multisite rainfall extremes. The EV models use a semi-automatic parameter learning [1] for model identification across temporal scales. At weather scale, the EV models are combined with a state-based hidden Markov model [2] to represent the spatio-temporal structure of rainfall as persistent weather states. At climatic scale, the EV models are used to decode the drivers leading to the shift of weather patterns. The decoding is performed into a climate-to-weather signal subspace, built via dimension reduction of climate model proxies (e.g. sea surface temperature and atmospheric circulation) We apply the framework to the Western Andean Ridge (WAR) in Ecuador and Peru (0-6°S) using ground data from the second half of the 20th century. We find that the meridional component of winds is what matters for the in-year and inter-annual variability of high rainfall intensities alongside the northern WAR (0-2.5°S). There, low-level southerly winds are found as advection drivers for oceanic moist of the normal-rainy season and weak/moderate the El Niño (EN) type; but, the strong EN type and its unique moisture surplus is locally advected at lowlands in the central WAR. Moreover, the coastal ridges, south of 3°S dampen meridional airflows, leaving local hygrothermal gradients to control the in-year distribution of rainfall extremes and their anomalies. Overall, we show that the framework, which does not make any prior assumption on the explanatory power of the weather and climate drivers, allows identification of well-known features of the regional climate in a purely data-driven fashion. Thus, this approach shows potential for characterization of precipitation extremes in data-scarce and orographically complex regions in which model reconstructions are the only climate proxies References [1] Mínguez, R., F.J. Méndez, C. Izaguirre, M. Menéndez, and I.J. Losada (2010), Pseudooptimal parameter selection of non-stationary generalized extreme value models for environmental variables, Environ. Modell. Softw. 25, 1592-1607. [2] Pineda, L., P. Willems (2016), Multisite Downscaling of Seasonal Predictions to Daily Rainfall Characteristics over Pacific-Andean River Basins in Ecuador and Peru using a non-homogenous hidden Markov model, J. Hydrometeor, 17(2), 481-498, doi:10.1175/JHM-D-15-0040.1, http://journals.ametsoc.org/doi/full/10.1175/JHM-D-15-0040.1

  5. The hydrological cycle at European Fluxnet sites: modeling seasonal water and energy budgets at local scale.

    NASA Astrophysics Data System (ADS)

    Stockli, R.; Vidale, P. L.

    2003-04-01

    The importance of correctly including land surface processes in climate models has been increasingly recognized in the past years. Even on seasonal to interannual time scales land surface - atmosphere feedbacks can play a substantial role in determining the state of the near-surface climate. The availability of soil moisture for both runoff and evapotranspiration is dependent on biophysical processes occuring in plants and in the soil acting on a wide time-scale from minutes to years. Fluxnet site measurements in various climatic zones are used to drive three generations of LSM's (land surface models) in order to assess the level of complexity needed to represent vegetation processes at the local scale. The three models were the Bucket model (Manabe 1969), BATS 1E (Dickinson 1984) and SiB 2 (Sellers et al. 1996). Evapotranspiration and runoff processes simulated by these models range from simple one-layer soils and no-vegetation parameterizations to complex multilayer soils, including realistic photosynthesis-stomatal conductance models. The latter is driven by satellite remote sensing land surface parameters inheriting the spatiotemporal evolution of vegetation phenology. In addition a simulation with SiB 2 not only including vertical water fluxes but also lateral soil moisture transfers by downslope flow is conducted for a pre-alpine catchment in Switzerland. Preliminary results are presented and show that - depending on the climatic environment and on the season - a realistic representation of evapotranspiration processes including seasonally and interannually-varying state of vegetation is significantly improving the representation of observed latent and sensible heat fluxes on the local scale. Moreover, the interannual evolution of soil moisture availability and runoff is strongly dependent on the chosen model complexity. Biophysical land surface parameters from satellite allow to represent the seasonal changes in vegetation activity, which has great impact on the yearly budget of transpiration fluxes. For some sites, however, the hydrological cycle is simulated reasonably well even with simple land surface representations.

  6. Quantifying the Value of Downscaled Climate Model Information for Adaptation Decisions: When is Downscaling a Smart Decision?

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.

    2015-12-01

    Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.

  7. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  8. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  9. Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes.

    PubMed

    Becker, J K; Lindborg, T; Thorne, M C

    2014-12-01

    In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Synoptic Weather Typing Approach to Assess Climate Change Impacts on Meteorological and Hydrological Risks at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Cheng, Chad Shouquan; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.

  11. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul

    2016-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  12. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2016-12-01

    The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  13. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.

    2017-08-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  14. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.

    2017-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  15. Theoretical electron scattering amplitudes and spin polarizations. Electron energies 100 to 1500 eV Part II. Be, N, O, Al, Cl, V, Co, Cu, As, Nb, Ag, Sn, Sb, I, and Ta targets

    NASA Astrophysics Data System (ADS)

    Wildhaber, M. L.; Wikle, C. K.; Anderson, C. J.; Franz, K. J.; Moran, E. H.; Dey, R.

    2012-12-01

    Recent decades have brought substantive changes in land use and climate across the earth, prompting a need to think of population and community ecology not as a static entity, but as a dynamic process. Increasingly there is evidence of ecological changes due to climate change. Although much of this evidence comes from ground-truth observations of biogeographic data, there is increasing reliance on models that relate climate variables to biological systems. Such models can then be used to explore potential changes to population and community level ecological systems in response to climate scenarios as obtained from global climate models (GCMs). A key issue associated with modeling ecosystem response to climate is GCM downscaling to regional and local ecological/biological response models that can be used in vulnerability and risk assessments of the potential effects of climate change. The need is for an explicit means for scaling results up or down multiple hierarchical levels and an effective assessment of the level of uncertainty surrounding current knowledge, data, and data collection methods with these goals identified as in need of acceleration in the U.S. Climate Change Science Program FY2009 Implementation Priorities. In the end, such work should provide the information needed to develop adaptation and mitigation methodologies to minimize the effects of directional and nonlinear climate change on the Nation's land, water, ecosystems, and biological populations. We are working to develop an approach that includes multi-scale and hierarchical Bayesian modeling of Missouri River sturgeon population dynamics. Statistical linkages are defined to quantify implications of climate on fish populations of the Missouri River ecosystem. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. The model must include linkages between climate and habitat, and between habitat and population. A key advantage of the hierarchical approach used in this study is that it incorporates various sources of observations and includes established scientific knowledge, and associated uncertainties. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. The predictive modeling system being developed will be a powerful tool for evaluating management options for coping with global change consequences and assessing uncertainty of those evaluations. Specifically for the endangered pallid sturgeon (Scaphirhynchus albus), we are already able to assess potential effects of any climate scenario on growth and population size distribution. Future models will incorporate survival and reproduction. Ultimately, these models provide guidance for successful recovery and conservation of the pallid sturgeon. Here we present a basic outline of the approach we are developing and a simple pallid sturgeon example to demonstrate how multiple scales and parameter uncertainty are incorporated.

  16. Comparison of a species distribution model and a process model from a hierarchical perspective to quantify effects of projected climate change on tree species

    Treesearch

    Jeffrey E. Schneiderman; Hong S. He; Frank R. Thompson; William D. Dijak; Jacob S. Fraser

    2015-01-01

    Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to...

  17. Focus on Agriculture and Forestry Benefits of Reducing Climate Change Impacts

    EPA Science Inventory

    The objective of this focus issue is to present the methods and results of modeling exercises that estimate the impacts of climate change on agriculture and forestry under a consistent set of climate projections that represent futures with and without global-scale GHG mitigation....

  18. The Impact of ARM on Climate Modeling. Chapter 26

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Del Genio, Anthony D.; Donner, Leo J.; Collins, William D.; Klein, Stephen A.

    2016-01-01

    Climate models are among humanity's most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability, and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of the Earth down to one hundred kilometers or smaller, and implicitly include the effects of processes on even smaller scales down to a micron or so. The atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM). In an AGCM, calculations are done on a three-dimensional grid, which in some of today's climate models consists of several million grid cells. For each grid cell, about a dozen variables are time-stepped as the model integrates forward from its initial conditions. These so-called prognostic variables have special importance because they are the only things that a model remembers from one time step to the next; everything else is recreated on each time step by starting from the prognostic variables and the boundary conditions. The prognostic variables typically include information about the mass of dry air, the temperature, the wind components, water vapor, various condensed-water species, and at least a few chemical species such as ozone. A good way to understand how climate models work is to consider the lengthy and complex process used to develop one. Lets imagine that a new AGCM is to be created, starting from a blank piece of paper. The model may be intended for a particular class of applications, e.g., high-resolution simulations on time scales of a few decades. Before a single line of code is written, the conceptual foundation of the model must be designed through a creative envisioning that starts from the intended application and is based on current understanding of how the atmosphere works and the inventory of mathematical methods available.

  19. Toward a U.S. National Phenological Assessment

    NASA Astrophysics Data System (ADS)

    Henebry, Geoffrey M.; Betancourt, Julio L.

    2010-01-01

    Third USA National Phenology Network (USA-NPN) and Research Coordination Network (RCN) Annual Meeting; Milwaukee, Wisconsin, 5-9 October 2009; Directional climate change will have profound and lasting effects throughout society that are best understood through fundamental physical and biological processes. One such process is phenology: how the timing of recurring biological events is affected by biotic and abiotic forces. Phenology is an early and integrative indicator of climate change readily understood by nonspecialists. Phenology affects the planting, maturation, and harvesting of food and fiber; pollination; timing and magnitude of allergies and disease; recreation and tourism; water quantity and quality; and ecosystem function and resilience. Thus, phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal time scales. Changes in phenologies have already manifested myriad effects of directional climate change. As these changes continue, it is critical to establish a comprehensive suite of benchmarks that can be tracked and mapped at local to continental scales with observations and climate models.

  20. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    NASA Astrophysics Data System (ADS)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  1. Clouds, weather, climate, and modeling for K-12 and public audiences from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.

    2010-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  2. Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro

    2011-01-01

    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology

  3. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song

    2016-11-01

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.

  4. Economic impacts of climate change on water resources in the coterminous United States

    EPA Science Inventory

    A national-scale simulation-optimization model was created to generate estimates of economic impacts associated with changes in water supply and demand as influenced by climate change. Water balances were modeled for the 99 assessment sub-regions, and are presented for 18 water r...

  5. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle.

    PubMed

    Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K

    2013-05-28

    The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.

  6. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    NASA Astrophysics Data System (ADS)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  7. A Dynamic Evaluation Of A Model And An Estimate Of The Air Quality And Regional Climate Impacts Of Enhanced Solar Power Generation

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.

    2012-12-01

    We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences between 2005 and 2008 to corresponding modeled differences. Modeling was extended to future scenarios (2030) to simulate air quality and regional climate effects of large-scale adoption of solar power. The 2030-year was selected to allow time for development of solar generation infrastructure. The 2030 emission scenario was scaled, with separate factors for different economic sectors, from the 2008 National Emissions Inventory. The changes to emissions caused by the introduction of large-scale solar power (here assumed to be 10% of total energy generation) are based on results from a parallel project that used an electricity grid model applied over multiple regions across the country. The regional climate and air quality effects of future large-scale solar power adoption are analyzed in the context of uncertainty quantified by the dynamic evaluation of the historical (2005 and 2008) WRF/Chem simulations.

  8. Grand challenges in understanding the interplay of climate and land changes

    USGS Publications Warehouse

    Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.; Ford, James D.; Fox, Andrew; Gallo, Kevin; Hatfield, Jerry L.; Henebry, Geoffrey M.; Huntington, Thomas G.; Liu, Zhihua; Loveland, Thomas R.; Norby, Richard J.; Sohl, Terry L.; Steiner, Allison L.; Yuan, Wenping; Zhang, Zhao; Zhao, Shuqing

    2017-01-01

    Half of Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affect a myriad of land surface processes and the adaptation behaviors. This study reviews the status and major knowledge gaps in the interactions of land and atmospheric changes and present 11 grand challenge areas for the scientific research and adaptation community in the coming decade. These land-cover and land-use change (LCLUC)-related areas include 1) impacts on weather and climate, 2) carbon and other biogeochemical cycles, 3) biospheric emissions, 4) the water cycle, 5) agriculture, 6) urbanization, 7) acclimation of biogeochemical processes to climate change, 8) plant migration, 9) land-use projections, 10) model and data uncertainties, and, finally, 11) adaptation strategies. Numerous studies have demonstrated the effects of LCLUC on local to global climate and weather systems, but these putative effects vary greatly in magnitude and even sign across space, time, and scale and thus remain highly uncertain. At the same time, many challenges exist toward improved understanding of the consequences of atmospheric and climate change on land process dynamics and services. Future effort must improve the understanding of the scale-dependent, multifaceted perturbations and feedbacks between land and climate changes in both reality and models. To this end, one critical cross-disciplinary need is to systematically quantify and better understand measurement and model uncertainties. Finally, LCLUC mitigation and adaptation assessments must be strengthened to identify implementation barriers, evaluate and prioritize opportunities, and examine how decision-making processes work in specific contexts.

  9. Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century.

    PubMed

    Dessler, A E; Ye, H; Wang, T; Schoeberl, M R; Oman, L D; Douglass, A R; Butler, A H; Rosenlof, K H; Davis, S M; Portmann, R W

    2016-03-16

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by ~1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.

  10. Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century

    PubMed Central

    Dessler, A.E.; Ye, H.; Wang, T.; Schoeberl, M.R.; Oman, L.D.; Douglass, A.R.; Butler, A.H.; Rosenlof, K.H.; Davis, S.M.; Portmann, R.W.

    2018-01-01

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by ~1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50–80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales — on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community. PMID:29551841

  11. Transport of Ice into the Stratosphere and the Humidification of the Stratosphere over the 21st Century

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Ye, H.; Wang, T.; Schoeberl, M. R.; Oman, L. D.; Douglass, A. R.; Butler, A. H.; Rosenlof, K. H.; Davis, S. M.; Portmann, R. W.

    2016-01-01

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by approx. 1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.

  12. Spatial and temporal connections in groundwater contribution to evaporation

    NASA Astrophysics Data System (ADS)

    Lam, A.; Karssenberg, D.; van den Hurk, B. J. J. M.; Bierkens, M. F. P.

    2011-02-01

    In climate models, lateral terrestrial water fluxes are usually neglected. We estimated the contribution of vertical and lateral groundwater fluxes to the land surface water budget at a subcontinental scale, by modelling convergence of groundwater and surfacewater fluxes. We present a hydrological model of the entire Danube Basin at 5 km resolution, and use it to show the importance of groundwater for the surface climate. The contribution of groundwater to evaporation is significant, and can be upwards of 30% in summer. We show that this contribution is local by presenting the groundwater travel times and the magnitude of groundwater convergence. Throughout the Danube Basin the lateral fluxes of groundwater are negligible when modelling at this scale and resolution. Also, it is shown that the contribution of groundwater to evaporation has important temporal characteristics. An experiment with the same model shows that a wet episode influences groundwaters contribution to summer evaporation for several years afterwards. This indicates that modelling groundwater flow has the potential to augment the multi-year memory of climate models.

  13. Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting

    PubMed Central

    Van Houtan, Kyle S.; Halley, John M.

    2011-01-01

    The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence. PMID:21589639

  14. Long-term climate forcing in loggerhead sea turtle nesting.

    PubMed

    Van Houtan, Kyle S; Halley, John M

    2011-04-27

    The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions--such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence.

  15. Do we need demographic data to forecast plant population dynamics?

    USGS Publications Warehouse

    Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.

    2017-01-01

    Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist for many plant species. Modelers should exploit these data to predict the impacts of environmental change.

  16. Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Brown, C.; Doss-Gollin, J.

    2016-12-01

    Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.

  17. The Practitioner's Dilemma: How to Assess the Credibility of Downscaled Climate Projections

    NASA Technical Reports Server (NTRS)

    Barsugli, Joseph J.; Guentchev, Galina; Horton, Radley M.; Wood, Andrew; Mearns, Lindo O.; Liang, Xin-Zhong; Winkler, Julia A.; Dixon, Keith; Hayhoe, Katharine; Rood, Richard B.; hide

    2013-01-01

    Suppose you are a city planner, regional water manager, or wildlife conservation specialist who is asked to include the potential impacts of climate variability and change in your risk management and planning efforts. What climate information would you use? The choice is often regional or local climate projections downscaled from global climate models (GCMs; also known as general circulation models) to include detail at spatial and temporal scales that align with those of the decision problem. A few years ago this information was hard to come by. Now there is Web-based access to a proliferation of high-resolution climate projections derived with differing downscaling methods.

  18. Late Pleistocene climate drivers of early human migration.

    PubMed

    Timmermann, Axel; Friedrich, Tobias

    2016-10-06

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  19. Evaluating the uncertainty of predicting future climate time series at the hourly time scale

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2011-12-01

    A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.

  20. Late Pleistocene climate drivers of early human migration

    NASA Astrophysics Data System (ADS)

    Timmermann, Axel; Friedrich, Tobias

    2016-10-01

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  1. A Linked Model for Simulating Stand Development and Growth Processes of Loblolly Pine

    Treesearch

    V. Clark Baldwin; Phillip M. Dougherty; Harold E. Burkhart

    1998-01-01

    Linking models of different scales (e.g., process, tree-stand-ecosystem) is essential for furthering our understanding of stand, climatic, and edaphic effects on tree growth and forest productivity. Moreover, linking existing models that differ in scale and levels of resolution quickly identifies knowledge gaps in information required to scale from one level to another...

  2. Sharing the Data along with the Responsibility: Examining an Analytic Scale-Based Model for Assessing School Climate.

    ERIC Educational Resources Information Center

    Shindler, John; Taylor, Clint; Cadenas, Herminia; Jones, Albert

    This study was a pilot effort to examine the efficacy of an analytic trait scale school climate assessment instrument and democratic change system in two urban high schools. Pilot study results indicate that the instrument shows promising soundness in that it exhibited high levels of validity and reliability. In addition, the analytic trait format…

  3. Extreme weather and climate events with ecological relevance: a review

    PubMed Central

    Meehl, Gerald A.

    2017-01-01

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483866

  4. Extreme weather and climate events with ecological relevance: a review.

    PubMed

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  5. An overview of the South Atlantic Ocean climate variability and air-sea interaction processes

    NASA Astrophysics Data System (ADS)

    Pezzi, L. P.; Parise, C. K.; Souza, R.; Gherardi, D. F.; Camargo, R.; Soares, H. C.; Silveira, I.

    2013-05-01

    The Ocean Modeling Group at the National Institute of Space Research (INPE) in Brazil has been developing several studies to understand the role of the Atlantic ocean on the South America climate. Studies include simulating the dynamics of the Tropical South-Atlantic Ocean and Southern Ocean. This is part of an ongoing international cooperation, in which Brazil participates with in situ observations, numerical modeling and statistical analyses. We have focused on the understanding of the impacts of extreme weather events over the Tropical South Atlantic Ocean and their prediction on different time-scales. One such study is aimed at analyzing the climate signal generated by imposing an extreme condition on the Antarctic sea ice and considering different complexities of the sea ice model. The influence of the Brazil-Malvinas Confluence (BMC) region on the marine atmospheric boundary layer (MABL) is also investigated through in situ data analysis of different cruises and numerical experiments with a regional numerical model. There is also an ongoing investigation that revealed basin-scale interannual climate variation with impacts on the Brazilian Large Marine Ecosystems (LMEs), which are strongly correlated with climate indices such as ENSO, AAO and PDO.

  6. Climatic Impacts of a Volcanic Double Event: 536/540 CE

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Sigl, M.; Stordal, F.; Svensen, H.

    2015-12-01

    Volcanic activity in and around the year 536 CE led to the coldest decade of the Common Era, and has been speculatively linked to large-scale societal crises around the world. Using a coupled aerosol-climate model, with eruption parameters constrained by recently re-dated ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from a sequence of two major volcanic eruptions in 536 and 540 CE. Comparing with a reconstruction of volcanic forcing over the past 1200 years, we estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic "double event" was larger than that of any known period. Earth system model simulations including the volcanic forcing are used to explore the temperature and precipitation anomalies associated with the eruptions, and compared to available proxy records, including maximum latewood density (MXD) temperature reconstructions. Special attention is placed on the decadal persistence of the cooling signal in tree rings, and whether the climate model simulations reproduce such long-term climate anomalies. Finally, the climate model results will be used to explore the probability of socioeconomic crisis resulting directly from the volcanic radiative forcing in different regions of the world.

  7. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  8. Using Scaling to Understand, Model and Predict Global Scale Anthropogenic and Natural Climate Change

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; del Rio Amador, L.

    2014-12-01

    The atmosphere is variable over twenty orders of magnitude in time (≈10-3 to 1017 s) and almost all of the variance is in the spectral "background" which we show can be divided into five scaling regimes: weather, macroweather, climate, macroclimate and megaclimate. We illustrate this with instrumental and paleo data. Based the signs of the fluctuation exponent H, we argue that while the weather is "what you get" (H>0: fluctuations increasing with scale), that it is macroweather (H<0: fluctuations decreasing with scale) - not climate - "that you expect". The conventional framework that treats the background as close to white noise and focuses on quasi-periodic variability assumes a spectrum that is in error by a factor of a quadrillion (≈ 1015). Using this scaling framework, we can quantify the natural variability, distinguish it from anthropogenic variability, test various statistical hypotheses and make stochastic climate forecasts. For example, we estimate the probability that the warming is simply a giant century long natural fluctuation is less than 1%, most likely less than 0.1% and estimate return periods for natural warming events of different strengths and durations, including the slow down ("pause") in the warming since 1998. The return period for the pause was found to be 20-50 years i.e. not very unusual; however it immediately follows a 6 year "pre-pause" warming event of almost the same magnitude with a similar return period (30 - 40 years). To improve on these unconditional estimates, we can use scaling models to exploit the long range memory of the climate process to make accurate stochastic forecasts of the climate including the pause. We illustrate stochastic forecasts on monthly and annual scale series of global and northern hemisphere surface temperatures. We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow: for example, using hindcasts we find that at 10 year forecast horizons we can still explain ≈ 15% of the anomaly variance. These scaling hindcasts have comparable - or smaller - RMS errors than existing GCM's. We discuss how these be further improved by going beyond time series forecasts to space-time.

  9. Anthropology is missing: on the World Development Report 2010: Development and Climate Change.

    PubMed

    Trostle, James

    2010-07-01

    When the World Bank publishes a report on climate change, the world takes notice. What are its diagnoses and treatments, and how present is anthropology in this analysis? The 2010 World Development Report on climate change provides few new diagnostic tools and no clear Bank policy revisions. It often fails to harmonize neoliberal development rhetoric with new climate-change imperatives. It nods to the importance of social context and risk perception yet refers primarily to behavioral economics and psychological constructs. Although anthropologists are documenting the local effects and human responses to larger-scale, climate-driven processes, our work is absent in the report. To play a role at global scale we would do well to learn more about concepts like nonlinearity and emergence, systems analysis, modeling, and disease dynamics. Our adroitness in developing metaphors and methods for crossing scale will make our efforts more visible and applicable.

  10. Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain

    NASA Astrophysics Data System (ADS)

    Garijo, Carlos; Mediero, Luis

    2018-04-01

    Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.

  11. A review on vegetation models and applicability to climate simulations at regional scale

    NASA Astrophysics Data System (ADS)

    Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki

    2011-11-01

    The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.

  12. Extreme weather: Subtropical floods and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.

  13. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    NASA Astrophysics Data System (ADS)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  14. Extratropical Respones to Amazon Deforestation

    NASA Astrophysics Data System (ADS)

    Badger, A.; Dirmeyer, P.

    2014-12-01

    Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.

  15. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  16. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2013-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  17. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.

    PubMed

    Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J

    2012-02-19

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.

  18. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  19. Hydrogeologic controls on streamflow sensitivity to climate variation

    Treesearch

    Anne Jefferson; Anne Nolin; Sarah Lewis; Christina Tague

    2008-01-01

    Climate models project warmer temperatures for the north-west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies....

  20. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

Top