Sample records for scale combustion tests

  1. Scaling study of the combustion performance of gas—gas rocket injectors

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping

    2011-10-01

    To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.

  2. Scaling Techniques for Combustion Device Random Vibration Predictions

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.

    2016-01-01

    This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.

  3. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  4. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  5. Japanese RDF-fired power generation system and fundamental research on RDF combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narukawa, Kimihito; Goto, Hidenori; Chen, Y.

    1997-12-31

    Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even inmore » small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.« less

  6. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  7. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James

    2008-01-01

    The objectives are: a) Re-introduce to you the concept of scaling; b) Describe the scaling research conducted in the 1950s and early 1960s, and present some of their conclusions; c) Narrow the focus to scaling for performance of combustion devices for liquid propellant rocket engines; and d) Present some results of subscale to full-scale performance from historical programs. Scaling is "The ability to develop new combustion devices with predictable performance on the basis of test experience with old devices." Scaling can be used to develop combustion devices of any thrust size from any thrust size. Scaling is applied mostly to increase thrust. Objective is to use scaling as a development tool. - Move injector design from an "art" to a "science"

  8. STE thrust chamber technology: Main injector technology program and nozzle Advanced Development Program (ADP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the STME Main Injector Program was to enhance the technology base for the large-scale main injector-combustor system of oxygen-hydrogen booster engines in the areas of combustion efficiency, chamber heating rates, and combustion stability. The initial task of the Main Injector Program, focused on analysis and theoretical predictions using existing models, was complemented by the design, fabrication, and test at MSFC of a subscale calorimetric, 40,000-pound thrust class, axisymmetric thrust chamber operating at approximately 2,250 psi and a 7:1 expansion ratio. Test results were used to further define combustion stability bounds, combustion efficiency, and heating rates using a large injector scale similar to the Pratt & Whitney (P&W) STME main injector design configuration including the tangential entry swirl coaxial injection elements. The subscale combustion data was used to verify and refine analytical modeling simulation and extend the database range to guide the design of the large-scale system main injector. The subscale injector design incorporated fuel and oxidizer flow area control features which could be varied; this allowed testing of several design points so that the STME conditions could be bracketed. The subscale injector design also incorporated high-reliability and low-cost fabrication techniques such as a one-piece electrical discharged machined (EDMed) interpropellant plate. Both subscale and large-scale injectors incorporated outer row injector elements with scarfed tip features to allow evaluation of reduced heating rates to the combustion chamber.

  9. Experimental Replication of an Aeroengine Combustion Instability

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  10. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents CFB process analysis focused on combustion and NO profiles in pilot and industrial scale bituminous coal combustion.

  11. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  12. DEVELOPMENT OF A HAZARDOUS WASTE INCINERATOR TARGET ANALYTE LIST OF PRODUCTS OF INCOMPLETE COMBUSTION

    EPA Science Inventory

    The report gives results of pilot-scale incineration testing to develop a comprehensive list of products of incomplete combustion (PICs) from hazardous waste combustion (HWC) systems. Project goals were to: (1) identify the total mass of organic compounds sufficiently to estimate...

  13. Characteristics of coking coal burnout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.; Bailey, J.G.

    An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration,more » anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.« less

  14. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.

    PubMed

    Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  15. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  16. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    PubMed

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  17. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale testsmore » at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.« less

  18. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  19. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  20. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  1. Experimental investigation on gaseous emissions from the combustion of date palm residues in laboratory scale furnace.

    PubMed

    El may, Yassine; Jeguirim, Mejdi; Dorge, Sophie; Trouvé, Gwenaelle; Said, Rachid

    2013-03-01

    Emissions characteristics from the combustion of five date palm residues, DPR, (Date Palm Leaflets, Date Palm Rachis, Date Palm Trunk, Date Stones and fruitstalk prunings) in a laboratory scale furnace were investigated. Release of gaseous products such as CO2, CO, VOC, NOx and SO2 were measured at 600-800°C. The main goal was to analyze thermal behaviors and gaseous emissions in order to select the most convenient biofuel for an application in domestic boiler installations. Regards to biofuel characteristics, date stone have the highest energy density (11.4GJ/m(3)) and the lowest ash content (close to 1.2%). Combustion tests show that among the tested date palm residues, date stone may be the promising biofuel for the design of combustion processing system. However, a special attention to the design of the secondary air supply should be given to prevent high emissions of CO and volatile matters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Design assessment of a 150 kWt CFBC Test Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batu, A.; Selcuk, N.; Kulah, G.

    2010-04-15

    For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less

  3. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical oxy-combustor from a current TRL of 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment, and enable the evaluation and continued refinement of the supercritical oxy-combustor and critical secondary systems.« less

  4. Review of Air Vitiation Effects on Scramjet Ignition and Flameholding Combustion Processes

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Bruno, Claudio; Chinitz, W.

    2002-01-01

    This paper offers a detailed review and analysis of more than 100 papers on the physics and chemistry of scramjet ignition and flameholding combustion processes, and the known effects of air vitiation on these processes. The paper attempts to explain vitiation effects in terms of known chemical kinetics and flame propagation phenomena. Scaling methodology is also examined, and a highly simplified Damkoehler scaling technique based on OH radical production/destruction is developed to extrapolate ground test results, affected by vitiation, to flight testing conditions. The long term goal of this effort is to help provide effective means for extrapolating ground test data to flight, and thus to reduce the time and expense of both ground and flight testing.

  5. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  6. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bradley; Davis, Kevin; Senior, Constance

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent inmore » the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.« less

  7. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improvesmore » the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.« less

  8. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    PubMed

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  9. Fireside corrosion in oxy-fuel combustion of coal

    DOE PAGES

    Holcomb, Gordon R.; Tylczak, Joseph; Meier, Gerald H.; ...

    2011-08-01

    Oxy-fuel combustion is based on burning fossil fuels in a mixture of recirculated flue gas and oxygen, rather than in air. An optimized oxy-combustion power plant will have ultra-low emissions since the flue gas that results from oxy-fuel combustion consists almost entirely of CO2 and water vapor. Once the water vapor is condensed, it is relatively easy to sequester the CO2 so that it does not escape into the atmosphere. A variety of laboratory tests comparing air-firing to oxy-firing conditions, and tests examining specific simpler combinations of oxidants, were conducted at 650-700 C. Alloys studied included model Fe-Cr and Ni-Crmore » alloys, commercial ferritic steels, austenitic steels, and nickel base superalloys. Furthermore, the observed corrosion behavior shows accelerated corrosion even with sulfate additions that remain solid at the tested temperatures, encapsulation of ash components in outer iron oxide scales, and a differentiation between oxy-fuel combustion flue gas recirculation choices.« less

  10. Effects of combustibles on internal quasi-static loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.

    1984-08-01

    The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less

  11. SiC Recession Due to SiO2 Scale Volatility Under Combustion Conditions. Part 2; Thermodynamics and Gaseous Diffusion Model

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Smialek, James L.; Robinson, Raymond C.; Fox, Dennis S.; Jacobson, Nathan S.

    1998-01-01

    In combustion environments, volatilization of SiO2 to Si-O-H(g) species is a critical issue. Available thermochemical data for Si-O-H(g) species were used to calculate boundary layer controlled fluxes from SiO2. Calculated fluxes were compared to volatilization rates Of SiO2 scales grown on SiC which were measured in Part 1 of this paper. Calculated volatilization rates were also compared to those measured in synthetic combustion gas furnace tests. Probable vapor species were identified in both fuel-lean and fuel-rich combustion environments based on the observed pressure, temperature and velocity dependencies as well as the magnitude of the volatility rate. Water vapor is responsible for the degradation of SiO2 in the fuel-lean environment. Silica volatility in fuel-lean combustion environments is attributed primarily to the formation of Si(OH)4(g) with a small contribution of SiO(OH)2(g).

  12. Cleaner co-combustion of lignite-biomass-waste blends by utilising inhibiting compounds of toxic emissions.

    PubMed

    Skodras, G; Palladas, A; Kaldis, S P; Sakellaropoulos, G P

    2007-04-01

    In this paper, the co-combustion behaviour of coal with wastes and biomass and the related toxic gaseous emissions were investigated. The objective of this work is to add on towards a cleaner co-combustion of lignite-waste-biomass blends by utilizing compounds that could inhibit the formation of toxic pollutants. A series of co-combustion tests was performed in a pilot scale incinerator, and the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were measured. The co-combustion behaviour of lignite with olive kernels, MDF and sawdust was studied and the ability of additives such as urea, almond shells and municipal sewage sludge to reduce the PCDD/F emissions was examined. All blends were proven good fuels and reproducible combustion conditions were achieved. The addition of inhibitors prior to combustion showed in some cases, relatively high PCDD/F emissions reduction. Among the inhibitors tested, urea seems to achieve a reduction of PCDD/F emissions for all fuel blends, while an unstable behaviour was observed for the others.

  13. Overview of Marshall Space Flight Center Activities for the Combustion Stability Tool Development Program

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Greene, W. D.

    2016-01-01

    This presentation covers the overall scope, schedule, and activities associated with the NASA - Marshall Space Flight Center (MSFC) involvement with the Combustion Stability Tool Development (CSTD) program. The CSTD program is funded by the Air Force Space & Missile Systems Center; it is approximately two years in duration and; and it is sponsoring MSFC to: design, fabricate, & execute multi-element hardware testing, support Air Force Research Laboratory (AFRL) single element testing, and execute testing of a small-scale, multi-element combustion chamber. Specific MSFC Engineering Directorate involvement, per CSTD-sponsored task, will be outlined. This presentation serves a primer for the corresponding works that provide details of the technical work performed by individual groups within MSFC.

  14. Enhanced Combustion Low NOx Pulverized Coal Burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Towle; Richard Donais; Todd Hellewell

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less

  15. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.

  16. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    USDA-ARS?s Scientific Manuscript database

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  17. Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-12-01

    Numerical simulations are performed for full scale scramjet combustor of a hypersonic airbreathing vehicle with ethylene fuel at ground test conditions corresponding to flight Mach number, altitude and stagnation enthalpy of 6.0, 30 km and 1.61 MJ/kg respectively. Three dimensional RANS equations are solved along with species transport equations and SST-kω turbulence model using Commercial CFD software CFX-11. Both nonreacting (with fuel injection) and reacting flow simulations [using a single step global reaction of ethylene-air with combined combustion model (CCM)] are carried out. The computational methodology is first validated against experimental results available in the literature and the performance parameters of full scale combustor in terms of thrust, combustion efficiency and total pressure loss are estimated from the simulation results. Parametric studies are conducted to study the effect of fuel equivalence ratio on the mixing and combustion behavior of the combustor.

  18. Combustion characteristics of lodge pole pine wood chips. Technical progress report No. 15, September 16, 1978-September 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1979-09-01

    Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less

  19. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  20. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  1. Computer code for the prediction of nozzle admittance

    NASA Technical Reports Server (NTRS)

    Nguyen, Thong V.

    1988-01-01

    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.

  2. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NO x ) reduction technology by combustion modification which has economic benefits as a method of controlling NO x emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NO x reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NO x in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N 2 ), carbon dioxide (CO 2 ) and steam (H 2 O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NO x concentration greatly. We investigated the influence of factors determining the nitrogen oxides (NO x ) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NO x emissions the most.

  3. Space transportation booster engine thrust chamber technology, large scale injector

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1993-01-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  4. Parallel distributed, reciprocal Monte Carlo radiation in coupled, large eddy combustion simulations

    NASA Astrophysics Data System (ADS)

    Hunsaker, Isaac L.

    Radiation is the dominant mode of heat transfer in high temperature combustion environments. Radiative heat transfer affects the gas and particle phases, including all the associated combustion chemistry. The radiative properties are in turn affected by the turbulent flow field. This bi-directional coupling of radiation turbulence interactions poses a major challenge in creating parallel-capable, high-fidelity combustion simulations. In this work, a new model was developed in which reciprocal monte carlo radiation was coupled with a turbulent, large-eddy simulation combustion model. A technique wherein domain patches are stitched together was implemented to allow for scalable parallelism. The combustion model runs in parallel on a decomposed domain. The radiation model runs in parallel on a recomposed domain. The recomposed domain is stored on each processor after information sharing of the decomposed domain is handled via the message passing interface. Verification and validation testing of the new radiation model were favorable. Strong scaling analyses were performed on the Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model, respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan, respectively.

  5. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.

  6. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  7. Space shuttle orbital maneuvering engine platelet injector program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A platelet face injector for the Orbit Maneuvering Engine (OME) on the space shuttle was evaluated as a means of obtaining additional design margin and lower cost. The program was conducted in three phases. The first phase evaluated single injection elements, or unielements; it involved visual flow studies, mixing experiments using propellant simulants, and hot firings to assess combustion efficiency, chamber wall compatibility, and injector face temperatures. In the second phase, subscale units producing 600 lbf thrust were used to further evaluate the orifice patterns chosen on the basis of unielement testing. In addition to combustion efficiency, chamber and injector heat transfer, the subscale testing provided a preliminary indication of injector stability. Full scale testing of the selected patterns at 6,000 lbf thrust was performed in the third phase. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects on combustion stability of acoustic cavity configuration, including cavity depth, open area, inlet contour, and other parameters, were investigated.

  8. Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program

    NASA Technical Reports Server (NTRS)

    Lund, Gary K.; Starrett, William David; Jensen, Kent C.; McNeal, Curtis (Technical Monitor)

    2001-01-01

    As part of a NASA funded contract to develop and demonstrate a gas generator cycle hybrid rocket motor for upper stage space motor applications, the development and demonstration of a low sensitivity, high performance fuel composition was undertaken. The ultimate goal of the development program was to demonstrate successful hybrid operation (start, stop, throttling) of the fuel with high concentration (90+%) hydrogen peroxide. The formulation development and lab-scale testing of a simple DOT Class 1.4c gas generator propellant is described. Both forward injected center perforated and aft injected end burner hybrid combustion behavior were evaluated with gaseous oxygen and catalytically decomposed 90% hydrogen peroxide. Cross flow and static environments were found to yield profoundly different combustion behaviors, which were further governed by binder type, oxidizer level and, significantly, oxidizer particle size. Primary extinguishment was accomplished via manipulation of PDL behavior and oxidizer turndown, which is enhanced with the hydrogen peroxide system. Laboratory scale combustor results compared very well with 11-inch and 24-inch sub-scale test results with 90% hydrogen peroxide.

  9. Simultaneous high-speed schlieren and OH chemiluminescence imaging in a hybrid rocket combustor at elevated pressures

    NASA Astrophysics Data System (ADS)

    Miller, Victor; Jens, Elizabeth T.; Mechentel, Flora S.; Cantwell, Brian J.; Stanford Propulsion; Space Exploration Group Team

    2014-11-01

    In this work, we present observations of the overall features and dynamics of flow and combustion in a slab-type hybrid rocket combustor. Tests were conducted in the recently upgraded Stanford Combustion Visualization Facility, a hybrid rocket combustor test platform capable of generating constant mass-flux flows of oxygen. High-speed (3 kHz) schlieren and OH chemiluminescence imaging were used to visualize the flow. We present imaging results for the combustion of two different fuel grains, a classic, low regression rate polymethyl methacrylate (PMMA), and a high regression rate paraffin, and all tests were conducted in gaseous oxygen. Each fuel grain was tested at multiple free-stream pressures at constant oxidizer mass flux (40 kg/m2s). The resulting image sequences suggest that aspects of the dynamics and scaling of the system depend strongly on both pressure and type of fuel.

  10. A combustion model for studying the effects of ideal gas properties on jet noise

    NASA Astrophysics Data System (ADS)

    Jacobs, Jerin; Tinney, Charles

    2016-11-01

    A theoretical combustion model is developed to simulate the influence of ideal gas effects on various aeroacoustic parameters over a range of equivalence ratios. The motivation is to narrow the gap between laboratory and full-scale jet noise testing. The combustion model is used to model propane combustion in air and kerosene combustion in air. Gas properties from the combustion model are compared to real lab data acquired at the National Center for Physical Acoustics at the University of Mississippi as well as outputs from NASA's Chemical Equilibrium Analysis code. Different jet properties are then studied over a range of equivalence ratios and pressure ratios for propane combustion in air, kerosene combustion in air and heated air. The findings reveal negligible differences between the three constituents where the density and sound speed ratios are concerned. Albeit, the area ratio required for perfectly expanded flow is shown to be more sensitive to gas properties, relative to changes in the temperature ratio.

  11. Experimental study of combustion in hydrogen peroxide hybrid rockets

    NASA Astrophysics Data System (ADS)

    Wernimont, Eric John

    Combustion behavior in a hydrogen peroxide oxidized hybrid rocket motor is investigated with a series of experiments. Hybrid chemical rocket propulsion is presently of interest due to reduced system complexity compared to classical chemical propulsion systems. Reduced system complexity, by use of a storable oxidizer and a hybrid configuration, is expected to reduce propulsive costs. The fuel in this study is polyethylene which has the potential of continuous manufacture leading to further reduced system costs. The study investigated parameters of interest for nominal design of a full scale hydrogen peroxide oxidized hybrid rocket. Amongst these parameters is the influence of chamber pressure, mass flux, fuel molecular weight and fuel density on fuel regression rate. Effects of chamber pressure and aft combustion length on combustion efficiency and non-acoustic combustion oscillations are also examined. The fuel regression behavior is found to be strongly influenced by both chamber pressure and mass flux. Combustion efficiencies in the upper 90% range are attained by simple changes to the aft combustion chamber length as well as increased combustion pressure. Fuel burning surface is found to be influenced by the density of the polyethylene polymer as well as molecular weight. The combustion is observed to be exceptionally smooth (oscillations less than 5% zero-to-peak of mean) in all motors tested in this program. Tests using both a single port fuel gain and a novel radial flow hybrid are also performed.

  12. Combustion characteristics of Douglas Fir planer shavings. Technical progress report No. 4, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less

  13. Development of Supersonic Combustion Experiments for CFD Modeling

    NASA Technical Reports Server (NTRS)

    Baurle, Robert; Bivolaru, Daniel; Tedder, Sarah; Danehy, Paul M.; Cutler, Andrew D.; Magnotti, Gaetano

    2007-01-01

    This paper describes the development of an experiment to acquire data for developing and validating computational fluid dynamics (CFD) models for turbulence in supersonic combusting flows. The intent is that the flow field would be simple yet relevant to flows within hypersonic air-breathing engine combustors undergoing testing in vitiated-air ground-testing facilities. Specifically, it describes development of laboratory-scale hardware to produce a supersonic combusting coaxial jet, discusses design calculations, operability and types of flames observed. These flames are studied using the dual-pump coherent anti- Stokes Raman spectroscopy (CARS) - interferometric Rayleigh scattering (IRS) technique. This technique simultaneously and instantaneously measures temperature, composition, and velocity in the flow, from which many of the important turbulence statistics can be found. Some preliminary CARS data are presented.

  14. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  15. Chemicl-looping combustion of coal with metal oxide oxygen carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, R.; Tian, H.; Richards, G.

    2009-01-01

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C.more » The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.« less

  16. Characterisation of acoustic energy content in an experimental combustion chamber with and without external forcing

    NASA Astrophysics Data System (ADS)

    Webster, S.; Hardi, J.; Oschwald, M.

    2015-03-01

    The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.

  17. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  18. PILOT-SCALE INCINERATION TEST BURN OF TCDD-CONTAMINATED TRICHLOROPHENOL PRODUCTION WASTE

    EPA Science Inventory

    A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This w...

  19. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  20. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Astrophysics Data System (ADS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-10-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  2. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  3. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg

    The primary objectives of the FutureGen 2.0 CO 2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO 2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO 2 capture in steady-state operations. The project was to be fully integratedmore » in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO 2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO 2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO 2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will be helpful to plotting the course of, and successfully executing future large demonstration projects. This Final Scientific and Technical Report describes the technology and engineering basis of the project, inclusive of process systems, performance, effluents and emissions, and controls. Further, the project cost estimate, schedule, and permitting requirements are presented, along with a project risk and opportunity assessment. Lessons-learned related to these elements are summarized in this report. Companion reports Oxy-combustion further document the accomplishments and learnings of the project, including: A.01 Project Management Report which describes what was done to coordinate the various participants, and to track their performance with regard to schedule and budget B.02 Lessons Learned - Technology Integration, Value Improvements, and Program Management, which describes the innovations and conclusions that we arrived upon during the development of the project, and makes recommendations for improvement of future projects of a similar nature . B.03 Project Economics, which details the capital and operation costs and their basis, and also illustrates the cost of power produced by the plant with certain sensitivities. B.04 Power Plant, Pipeline, and Injection Site Interfaces, which details the interfaces between the two FutureGen projects B.05 Contractual Mechanisms for Design, Construction, and Operation, which describes the major EPC, and Operations Contracts required to execute the project.« less

  4. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.

  5. Experimental Methodology for Measuring Combustion and Injection-Coupled Responses

    NASA Technical Reports Server (NTRS)

    Cavitt, Ryan C.; Frederick, Robert A.; Bazarov, Vladimir G.

    2006-01-01

    A Russian scaling methodology for liquid rocket engines utilizing a single, full scale element is reviewed. The scaling methodology exploits the supercritical phase of the full scale propellants to simplify scaling requirements. Many assumptions are utilized in the derivation of the scaling criteria. A test apparatus design is presented to implement the Russian methodology and consequently verify the assumptions. This test apparatus will allow researchers to assess the usefulness of the scaling procedures and possibly enhance the methodology. A matrix of the apparatus capabilities for a RD-170 injector is also presented. Several methods to enhance the methodology have been generated through the design process.

  6. High Fidelity Modeling of Turbulent Mixing and Chemical Kinetics Interactions in a Post-Detonation Flow Field

    NASA Astrophysics Data System (ADS)

    Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael

    2015-06-01

    Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.

  7. Oxygen-hydrogen torch is a small-scale steam generator

    NASA Technical Reports Server (NTRS)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  8. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  9. Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.; Meyer, Michael L.

    1996-01-01

    In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.

  10. Emission Modeling of an Interturbine Burner Based on Flameless Combustion

    PubMed Central

    2017-01-01

    Since its discovery, the flameless combustion (FC) regime has been a promising alternative to reduce pollutant emissions of gas turbine engines. This combustion mode is characterized by well-distributed reaction zones, which potentially decreases temperature gradients, acoustic oscillations, and NOx emissions. Its attainment within gas turbine engines has proved to be challenging because previous design attempts faced limitations related to operational range and combustion efficiency. Along with an aircraft conceptual design, the AHEAD project proposed a novel hybrid engine. One of the key features of the proposed hybrid engine is the use of two combustion chambers, with the second combustor operating in the FC mode. This novel configuration would allow the facilitation of the attainment of the FC regime. The conceptual design was adapted to a laboratory scale combustor that was tested at elevated temperature and atmospheric pressure. In the current work, the emission behavior of this scaled combustor is analyzed using computational fluid dynamics (CFD) and chemical reactor network (CRN). The CFD was able to provide information with the flow field in the combustor, while the CRN was used to model and predict emissions. The CRN approach allowed the analysis of the NOx formation pathways, indicating that the prompt NOx was the dominant pathway in the combustor. The combustor design can be improved by modifying the mixing between fuel and oxidizer as well as the split between combustion and dilution air. PMID:29910533

  11. Atomic-Scale Factors of Combustion Nanocatalysts

    DTIC Science & Technology

    2014-03-27

    AFRL-OSR-VA-TR-2014-0122 ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS Uzi Landman GEORGIA TECH RESEARCH CORPORATION Final Report 05/19/2014...Prescribed by ANSI Std. Z39.18 27-03-2014 Final 01-06-2008 - 31-12-2013 MURI 08) - ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS N/A FA9550-08...of predictive capabilities, addressing the creation, characterization, atomic- scale manipulations, and control of nanometer- scale catalytic systems

  12. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Steven; Rapp, Robert

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zonemore » and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.« less

  13. Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkedahl, Bruce

    Much attention has been focused on renewable energy use in large-scale utilities and very small scale distributed energy systems. However, there is little information available regarding renewable energy options for midscale municipal utilities. The Willmar Municipal Utilities Corn Cob-Coal Co-Combustion Project was initiated to investigate opportunities available for small to midscale municipal utilities to "go green". The overall goal of the Project was to understand the current renewable energy research and energy efficiency projects that are or have been implemented at both larger and smaller scale and determine the applicability to midscale municipal utilities. More specific objectives for Task 2.0more » of this project were to determine the technical feasibility of co-combusting com cobs with coal in the existing WMU boiler, and to identify any regulatory issues that might need to be addressed if WMU were to obtain a significant portion of its heat from such co-combustion. This report addresses the issues as laid out in the study proposal. The study investigated the feasibility of and demonstrated the technical effectiveness of co-combusting corn cobs with coal in the Willmar Municipal Utilities stoker boiler steam generation power plant. The results of the WMU Co-Combustion Project will serve as a model for other midscale utilities who wish to use corn cobs to generate renewable electrical energy. As a result of the Co-Combustion Project, the WMU plans to upgrade their stoker boiler to accept whole corn cobs as well as other types of biomass, while still allowing the fuel delivery system to use 100% coal as needed. Benefits of co-combustion will include: energy security, reduced Hg and CO 2 air emissions, improved ash chemistry, potential future carbon credit sales, an immediate positive effect on the local economy, and positive attention focused on the WMU and the City of Willmar. The first step in the study was to complete a feasibility analysis. The feasibility analysis anticipated only positive results from the combustion of corn cobs with coal in the WMU power plant boiler, and therefore recommended that the project proceed. The study proceeded with a review of the existing WMU Power Plant configuration; cob fuel analyses; an application for an Air Quality Permit from the Minnesota Pollution Control Agency to conduct the co-combustion test burns; identification of and a site visit to a similar facility in Iowa; an evaluation of cob grinding machines; and agreements with a corn grower, a cob harvester, and the City of Willmar to procure, harvest, and store cobs. The WMU power plant staff constructed a temporary cob feed system whereby the cobs could be injected into the #3 Boiler firebox, at rates up to 40% of the boiler total heat input. Test burns were conducted, during which air emissions were monitored and fuel and ash samples analyzed. The results of the test burns indicated that the monitored flue gas quality improved slightly during the test burns. The WMU was able to determine that modifications to the #3 Boiler fuel feed system to accept com cobs on a permanent basis would be technically feasible and would enable the WMU to generate electricity from renewable fuels on a dispatchable basis.« less

  15. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Graham, Bart

    2016-01-01

    Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.

  16. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  17. Engine-Scale Combustor Rig Designed, Fabricated, and Tested for Combustion Instability Control Research

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.

    2000-01-01

    Low-emission combustor designs are prone to combustor instabilities. Because active control of these instabilities may allow future combustors to meet both stringent emissions and performance requirements, an experimental combustor rig was developed for investigating methods of actively suppressing combustion instabilities. The experimental rig has features similar to a real engine combustor and exhibits instabilities representative of those in aircraft gas turbine engines. Experimental testing in the spring of 1999 demonstrated that the rig can be tuned to closely represent an instability observed in engine tests. Future plans are to develop and demonstrate combustion instability control using this experimental combustor rig. The NASA Glenn Research Center at Lewis Field is leading the Combustion Instability Control program to investigate methods for actively suppressing combustion instabilities. Under this program, a single-nozzle, liquid-fueled research combustor rig was designed, fabricated, and tested. The rig has many of the complexities of a real engine combustor, including an actual fuel nozzle and swirler, dilution cooling, and an effusion-cooled liner. Prior to designing the experimental rig, a survey of aircraft engine combustion instability experience identified an instability observed in a prototype engine as a suitable candidate for replication. The frequency of the instability was 525 Hz, with an amplitude of approximately 1.5-psi peak-to-peak at a burner pressure of 200 psia. The single-nozzle experimental combustor rig was designed to preserve subcomponent lengths, cross sectional area distribution, flow distribution, pressure-drop distribution, temperature distribution, and other factors previously found to be determinants of burner acoustic frequencies, mode shapes, gain, and damping. Analytical models were used to predict the acoustic resonances of both the engine combustor and proposed experiment. The analysis confirmed that the test rig configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.

  18. Physicochemical characterization of fine particles from small-scale wood combustion

    NASA Astrophysics Data System (ADS)

    Lamberg, Heikki; Nuutinen, Kati; Tissari, Jarkko; Ruusunen, Jarno; Yli-Pirilä, Pasi; Sippula, Olli; Tapanainen, Maija; Jalava, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Saarnio, Karri; Hillamo, Risto; Hirvonen, Maija-Riitta; Jokiniemi, Jorma

    2011-12-01

    Emissions from small-scale wood combustion appliances are of special interest since fine particles have been consistently associated with adverse health effects. It has been reported that the physicochemical characteristics of the emitted particles affect also their toxic properties but the mechanisms behind these phenomena and the causative role of particles from wood combustion sources are still mostly unknown. Combustion situations vary significantly in small-scale appliances, especially in batch combustion. Combustion behaviour is affected by fuel properties, appliance type and operational practice. Particle samples were collected from six appliances representing different combustion situations in small-scale combustion. These appliances were five wood log fuelled stoves, including one stove equipped with modern combustion technology, three different conventional combustion appliances and one sauna stove. In addition, a modern small-scale pellet boiler represented advanced continuous combustion technology. The aim of the study was to analyze gas composition and fine particle properties over different combustion situations. Fine particle (PM 1) emissions and their chemical constituents emerging from different combustion situations were compared and this physicochemical data was combined with the toxicological data on cellular responses induced by the same particles (see Tapanainen et al., 2011). There were significant differences in the particle emissions from different combustion situations. Overall, the efficient combustion in the pellet boiler produced the smallest emissions whereas inefficient batch combustion in a sauna stove created the largest emissions. Improved batch combustion with air-staging produced about 2.5-fold PM 1 emissions compared to the modern pellet boiler (50.7 mg MJ -1 and 19.7 mg MJ -1, respectively), but the difference in the total particulate PAH content was 750-fold (90 μg MJ -1 and 0.12 μg MJ -1, respectively). Improved batch combustion and conventional batch combustion showed almost the same PM 1 emissions (51.6 mg MJ -1), but a 10-fold difference in total particulate PAH emissions (910 μg MJ -1). These results highlight that same PM 1 emissions can be associated with very different chemical compositions, potentially leading to different toxic properties of the particles. Thus, changing from an old, less efficient, combustion appliance to a modern appliance can have a greater impact on toxic properties than the emitted PM 1 mass might indicate.

  19. Compact Analyzer/Controller For Oxygen-Enrichment System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Singh, Jag J.; Sprinkle, Danny R.

    1990-01-01

    System controls hypersonic air-breathing engine tests. Compact analyzer/controller developed, built, and tested in small-scale wind tunnel prototype of the 8' HTT (High-Temperature Tunnel). Monitors level of oxygen and controls addition of liquid oxygen to enrich atmosphere for combustion. Ensures meaningful ground tests of hypersonic engines in range of speeds from mach 4 to mach 7.

  20. Low NO sub x heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    Russell, P.; Beal, G.; Hinton, B.

    1981-01-01

    A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.

  1. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-22

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  2. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    PubMed Central

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  3. Ignition and flame-growth modeling on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2010-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...

  4. Ignition and flame travel on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2007-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...

  5. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Shoji; Namba, Hideki; Tokunaga, Okihiro

    1995-06-01

    Construction of a pilot plant of the treatment capacity of 12,000 m{sup 3}N/h flue gas was completed in November, 1992 in the Shin-Nagoya Thermal Power Station, Nagoya for electron beam purification of flue-gas from coal combustion boiler and the operation had been continued during one year. The results obtained In the tests shows that the target removal efficiency for SO{sub 2} (94 %) and for NO{sub x} (80 %) was achieved with appropriate operation conditions (electron beam dose, temperature, amount of ammonia etc.). The effective collection of powdery by-products was performed by an electrostatic precipitator.

  6. Distributed Combustion in Solid Propellants

    DTIC Science & Technology

    1993-03-01

    SENTRY. During that year three full scale development motors were test fired. All three motors experienced an unacceptabiy high level of combustion...CO. Thermochemical Implications," Journal of Physical Chemistry , 1986, Vol. 90, pp. 1688-1691. Rundinger, G., "Effect of Velocity Slip on the...resulting equation is found to be M (r, l = Lelnf 1 F (T-f- T’) I F(Tf- Ts) -J (B.20) where (p is given by P = (MvQ1 + McQ + H) Mil and F is the ratio of

  7. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, M.

    1996-10-01

    The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less

  8. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  9. Space shuttle maneuvering engine reusable thrust chamber program. Task 11: Stability analyses and acoustic model testing data dump

    NASA Technical Reports Server (NTRS)

    Oberg, C. L.

    1974-01-01

    The combustion stability characteristics of engines applicable to the Space Shuttle Orbit Maneuvering System and the adequacy of acoustic cavities as a means of assuring stability in these engines were investigated. The study comprised full-scale stability rating tests, bench-scale acoustic model tests and analysis. Two series of stability rating tests were made. Acoustic model tests were made to determine the resonance characteristics and effects of acoustic cavities. Analytical studies were done to aid design of the cavity configurations to be tested and, also, to aid evaluation of the effectiveness of acoustic cavities from available test results.

  10. Modelling the combustion of charcoal in a model blast furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Shiozawa, Tomo; Yu, Aibing; Austin, Peter

    2013-07-01

    The pulverized charcoal (PCH) combustion in ironmaking blast furnaces is abstracting remarkable attention due to various benefits such as lowering CO2 emission. In this study, a three-dimensional CFD model is used to simulate the flow and thermo-chemical behaviours in this process. The model is validated against the experimental results from a pilot-scale combustion test rig for a range of conditions. The typical flow and thermo-chemical phenomena is simulated. The effect of charcoal type, i.e. VM content is examined, showing that the burnout increases with VM content in a linear relationship. This model provides an effective way for designing and optimizing PCH operation in blast furnace practice.

  11. Overpressure resulting from combustion of explosive gas in an unconfined geometry

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.

    1982-02-01

    In preparation for a series of large scale spill tests of liquefied gaseous fuels, the problem of designing safe storage facilities for the fuels as part of a proposed spill test facility arose. The design had to take into account the potential hazards associated with large quantities of fuel, including the hazard of overpressures which develop during various modes of combustion or explosion. The overpressure question, the results of which are presented, was studied. All the pertinent information on overpressure that is available in the open literature is summarized and is presented in a form that can be readily converted into design criteria for the fuel storage facility. Various modes of combustion are reviewed and categorized according to their capability of producing sizable overpressures, and some comments are made on how deviations from the ideal situations considered in analytical studies will affect the results.

  12. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  13. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  14. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  15. Progress in Validation of Wind-US for Ramjet/Scramjet Combustion

    NASA Technical Reports Server (NTRS)

    Engblom, William A.; Frate, Franco C.; Nelson, Chris C.

    2005-01-01

    Validation of the Wind-US flow solver against two sets of experimental data involving high-speed combustion is attempted. First, the well-known Burrows- Kurkov supersonic hydrogen-air combustion test case is simulated, and the sensitively of ignition location and combustion performance to key parameters is explored. Second, a numerical model is developed for simulation of an X-43B candidate, full-scale, JP-7-fueled, internal flowpath operating in ramjet mode. Numerical results using an ethylene-air chemical kinetics model are directly compared against previously existing pressure-distribution data along the entire flowpath, obtained in direct-connect testing conducted at NASA Langley Research Center. Comparison to derived quantities such as burn efficiency and thermal throat location are also made. Reasonable to excellent agreement with experimental data is demonstrated for key parameters in both simulation efforts. Additional Wind-US feature needed to improve simulation efforts are described herein, including maintaining stagnation conditions at inflow boundaries for multi-species flow. An open issue regarding the sensitivity of isolator unstart to key model parameters is briefly discussed.

  16. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    EPA Science Inventory

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  17. Investigation on Composite Throat Insert For Cryogenic Engines

    NASA Astrophysics Data System (ADS)

    Ayyappan, G.; Tiwari, S. B.; Praveen, RS; Mohankumar, L.; Jathaveda, M.; Ganesh, P.

    2017-02-01

    Injector element testing is an important step in the development and qualification of the cryogenic rocket engines. For the purpose of characterising the injectors, sub scale chambers are used. In order to assess the performance of the injectors, different configurations of the injectors are tested using a combustion chamber and a convergent-divergent nozzle. Pressure distribution along the wall of the chamber and throat insert is obtained from the CFD analysis and temperature distribution is obtained from thermal analysis. Thermo-structural analysis is carried out for the sub-scale model of throat inert using temperature dependent material properties. For the experiments a sub-scale model of the thrust chamber is realised. Injector element tests are carried out for the studies. The objective of the present study is to investigate the behaviour of different throat inserts, mainly graphite, 2-D Carbon-Carbon(2D C-C), 4-D Carbon-Carbon (4D C-C) and Silica Phenolic (SP), under pressure and thermal load for repeated operation of the engine. Analytical results are compared with the test results. The paper gives the results of theoretical studies and experiments conducted with all the four type of throat material. It is concluded that 2D C-C is superior in terms of throat erosion being the least under specified combustion environment.

  18. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than themore » higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.« less

  19. Optimization of Pressurized Oxy-Combustion with Flameless Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malavasi, Massimo; Landegger, Gregory

    2014-06-30

    Pressurized OxyECombustion is one of the most promising technologies for utility-scale power generation plants. Benefits include the ability to burn low rank coal and capture CO 2. By increasing the flue gas pressure during this process, greater efficiencies are derived from increased quantity and quality of thermal energy recovery. UPA with modeling support from MIT and testing and data verification by Georgia Tech’s Research Center designed and built a 100 kW system capable of demonstrating pressurized oxyEcombustion using a flameless combustor. Wyoming PRB coal was run at 15 and 32 bar. Additional tests were not completed but sampled data demonstratedmore » the viability of the technology over a broader range of operating pressures, Modeling results illustrated a flat efficiency curve over 20 bar, with optimum efficiency achieved at 29 bar. This resulted in a 33% (HHV) efficiency, a 5 points increase in efficiency versus atmospheric oxy-combustion, and a competitive cost of electricity plus greater CO 2 avoidance costs then prior study’s presented. UPA’s operation of the bench-scale system provided evidence that key performance targets were achieved: flue gas sampled at the combustor outlet had non-detectable residual fly ashes, and low levels of SO3 and heavy-metal. These results correspond to prior pressurized oxy-combustion testing completed by IteaEEnel.« less

  20. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  1. Development and testing of 11- and 24-inch hybrid motors under the joint government/industry IR&D program

    NASA Technical Reports Server (NTRS)

    Boardman, T. A.; Carpenter, R. L.; Goldberg, B. E.; Shaeffer, C. W.

    1993-01-01

    Establishment of a test facility and associated 11-in.-diameter motor for hybrid propulsion technology development at NASA's George C. Marshall Space Flight Center is discussed in this paper. Results of twenty 11-in.-diameter motor tests with a UTF-29901 (60 percent polycyclopentadiene, 40 percent hydroxyl-terminated polybutadiene)/gaseous oxygen propellant system are presented. Tests at this scale have developed fuel regression correlations for comparison with results of yet-to-be-completed, 24-in.-diameter motor tests; demonstrated combustion efficiency levels in the 95 percent range for both single- and multiple-port grain configurations; have shown smooth and stable throttling characteristics over flight-type throttle ranges; and have begun to establish criteria for stable combustion in hybrid motors. The testing of 24-in. motors has not as yet been initiated and is not addressed.

  2. NOx Emission Reduction by Oscillating combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less

  3. NOx Emission Reduction by Oscillating Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less

  4. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  5. A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Gore, Brian W.; Hawkins, Gary F.; Hess, Peter A.; Moore, Teresa A.; Fournier, Eric W.

    2010-01-01

    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted.

  6. Combustion Of Poultry-Derived Fuel in a CFBC

    NASA Astrophysics Data System (ADS)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  7. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    NASA Astrophysics Data System (ADS)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  8. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less

  9. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    NASA Astrophysics Data System (ADS)

    Jae-Ou, Chae; Young-Jun, Jeong; V, M. Shmelev; A, A. Denicaev; V, M. Poutchkov; V, Ravi

    2006-07-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.

  10. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  11. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  12. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  13. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.

  14. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    NASA Astrophysics Data System (ADS)

    Tan, Giam

    2009-11-01

    The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.

  15. RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...

  16. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less

  17. Effect of oxy-combustion flue gas on mercury oxidation.

    PubMed

    Fernández-Miranda, Nuria; Lopez-Anton, M Antonia; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2014-06-17

    This study evaluates the effect of the gases present in a typical oxy-coal combustion atmosphere on mercury speciation and compares it with the mercury speciation produced in conventional air combustion atmospheres. The work was performed at laboratory scale at 150 °C. It was found that the minor constituents (SO2, NOx, and HCl) significantly modify the percentages of Hg(2+) in the gas. The influence of these species on mercury oxidation was demostrated when they were tested individually and also when they were blended in different gas compositions, although the effect was different to the sum of their individual effects. Of the minor constituents, NOx were the main species involved in oxidation of mercury. Moreover, it was found that a large concentration of H2O vapor also plays an important role in mercury oxidation. Around 50% of the total mercury was oxidized in atmospheres with H2O vapor concentrations typical of oxy-combustion conditions. When the atmospheres have similar concentrations of SO2, NO, NO2, HCl, and H2O, the proportion of Hg(0)/Hg(2+) is similar regardless of whether CO2 (oxy-fuel combustion) or N2 (air combustion) are the main components of the gas.

  18. Design and verification of a turbofan swirl augmentor

    NASA Technical Reports Server (NTRS)

    Egan, W. J., Jr.; Shadowen, J. H.

    1978-01-01

    The paper discusses the details of the design and verification testing of a full-scale turbofan 'swirl' augmentor at sea level and altitude. No flameholders are required in the swirl augmentor since the radial motion of the hot pilot gases and subsequent combustion products provides a continuous ignition front across the stream. Results of rig testing of this full-scale swirl augmentor on an F100 engine, which are very encouraging, and future development plans are presented. The results validate the application of the centrifugal-force swirling flow concept to a turbofan augmentor.

  19. Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20-25 kW) and medium (5-10 MW) scale

    NASA Astrophysics Data System (ADS)

    Kaivosoja, T.; Jalava, P. I.; Lamberg, H.; Virén, A.; Tapanainen, M.; Torvela, T.; Tapper, U.; Sippula, O.; Tissari, J.; Hillamo, R.; Hirvonen, M.-R.; Jokiniemi, J.

    2013-10-01

    The aim of this study was to compare four alternatives for providing decentralized energy production in small communities in terms of their flue gas emissions and toxicological properties of the emissions. In this study, two different size classes of boilers were examined and the use of fossil fuel oils was compared against wood fuels. The lowest PM1 emission, 0.1 mg MJ-1, was observed from small-scale light fuel oil combustion. In medium-scale wood combustion, PM1 emission values from a grate fired wood combustion boiler (10 MW) without particulate filtration were the highest (264 mg MJ-1) but were substantially reduced down to 0.6 mg MJ-1 due to the usage of an electrostatic precipitator (ESP). The wood combustion particles were mainly formed of potassium salts. In light fuel oil combustion, one of the main components in the particles was sulphate whereas in heavy fuel oil combustion also significant amounts of V and Ni were emitted. Pellet combustion produced the lowest PAH emissions. Overall, oil combustion produced higher amount of PAHs than wood combustion. This was indicated also as a higher cytotoxicity of the oil combustion samples when compared to those from wood combustion in the corresponding scale of boilers. However, when calculated on an equal mass basis, the particles collected after ESP were even more cytotoxic which can be explained by the altered chemical characteristics of the emissions in the ESP. Due to the variation in the emissions and in the toxicity of the emissions, we propose that in the long term, not only the emission levels but also the toxicity of the emissions should be taken into account in the regulations of the emission limits of the combustion plants.

  20. Combustion performance and scale effect from N2O/HTPB hybrid rocket motor simulations

    NASA Astrophysics Data System (ADS)

    Shan, Fanli; Hou, Lingyun; Piao, Ying

    2013-04-01

    HRM code for the simulation of N2O/HTPB hybrid rocket motor operation and scale effect analysis has been developed. This code can be used to calculate motor thrust and distributions of physical properties inside the combustion chamber and nozzle during the operational phase by solving the unsteady Navier-Stokes equations using a corrected compressible difference scheme and a two-step, five species combustion model. A dynamic fuel surface regression technique and a two-step calculation method together with the gas-solid coupling are applied in the calculation of fuel regression and the determination of combustion chamber wall profile as fuel regresses. Both the calculated motor thrust from start-up to shut-down mode and the combustion chamber wall profile after motor operation are in good agreements with experimental data. The fuel regression rate equation and the relation between fuel regression rate and axial distance have been derived. Analysis of results suggests improvements in combustion performance to the current hybrid rocket motor design and explains scale effects in the variation of fuel regression rate with combustion chamber diameter.

  1. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; CFD RSRM Full-Scale Analyses

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.

  2. Animal Exposure During Burn Tests

    NASA Technical Reports Server (NTRS)

    Gaume, J. G.

    1978-01-01

    An animal exposure test system (AETS) was designed and fabricated for the purpose of collecting physiological and environmental (temperature) data from animal subjects exposed to combustion gases in large scale fire tests. The AETS consisted of an open wire mesh, two-compartment cage, one containing an exercise wheel for small rodents, and the other containing one rat instrumented externally for electrocardiogram (ECG) and respiration. Cage temperature is measured by a thermistor located in the upper portion of the rat compartment. Animal activity is monitored by the ECG and the records indicate an increase in EMG (electromyograph) noise super-imposed by the increased activity of the torso musculature. Examples of the recordings are presented and discussed as to their significance regarding toxicity of fire gases and specific events occurring during the test. The AETS was shown to be a useful tool in screening materials for the relative toxicity of their outgassing products during pyrolysis and combustion.

  3. Measurement of the spatial dependence of temperature and gas and soot concentrations within large open hydrocarbon fuel fires

    NASA Technical Reports Server (NTRS)

    Johnson, H. T.; Linley, L. J.; Mansfield, J. A.

    1982-01-01

    A series of large-scale JP-4 fuel pool fire tests was conducted to refine existing mathematical models of large fires. Seven tests were conducted to make chemical concentration and temperature measurements in 7.5 and 15 meter-diameter pool fires. Measurements were made at heights of 0.7, 1.4, 2.9, 5.7, 11.4, and 21.3 meters above the fires. Temperatures were measured at up to 50 locations each second during the fires. Chemistry samples were taken at up to 23 locations within the fires and analyzed for combustion chemistry and soot concentration. Temperature and combustion chemistry profiles obtained during two 7.5 meter-diameter and two 15 meter-diameter fires are included.

  4. Meat and bone meal as secondary fuel in fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Fryda; K. Panopoulos; P. Vourliotis

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less

  5. Furniture wood wastes: Experimental property characterisation and burning tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatano, Fabio; Barbadoro, Luca; Mangani, Giovanna

    2009-10-15

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675more » to 5105 kcal kg{sup -1} for HHV, and from 3304 to 4634 kcal kg{sup -1} for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM{sub 1} fraction during incomplete industrial wood burning.« less

  6. Experimental Investigation of Magnesium Powder Combustion With C02 for Mars Ascent Applications

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ronald J.

    2005-01-01

    Combustion of metals with CO2 has been identified as a possible propellant for Mars ascent applications. CO2 could be condensed from the Martian atmosphere, reducing the amount of propellant that must be transported from Earth. An attractive feature of this approach compared to other in situ propellant concepts is that no chemical processing on Mars is required. Magnesium has been identified as the most promising metal for this application because it ignites and burns easily in CO2. Preliminary systems studies indicate a 2 to 1 delivered mass advantage for Mg ascent propulsion using in situ C02, as compared to a conventional storable propellant system. The Propulsion Research Center at MSFC is undertaking an experimental investigation of magnesium powder combustion with CO2 in order to provide fundamental data on the combustion performance of Mg powder + CO2 mixtures needed to assess the feasibility of developing a practical Mg powder + CO2 rocket engine. Initial combustion experiments will be carried out in a small scale atmospheric pressure dump combustor. Effects of varying the Mg particle size, firing rate and O/F ratio on combustion stability and efficiency will be investigated. The combustion process will be characterized by optical flame measurements and extraction of combustion product samples. The experimental facility is currently being prepared and combustion experiments will begin during the first quarter of 2005. The final paper will describe the test facility and initial experimental results.

  7. Mathematical modelling of particle mixing effect on the combustion of municipal solid wastes in a packed-bed furnace.

    PubMed

    Yang, Yao Bin; Swithenbank, Jim

    2008-01-01

    Packed bed combustion is still the most common way to burn municipal solid wastes. In this paper, a dispersion model for particle mixing, mainly caused by the movement of the grate in a moving-burning bed, has been proposed and transport equations for the continuity, momentum, species, and energy conservation are described. Particle-mixing coefficients obtained from model tests range from 2.0x10(-6) to 3.0x10(-5)m2/s. A numerical solution is sought to simulate the combustion behaviour of a full-scale 12-tonne-per-h waste incineration furnace at different levels of bed mixing. It is found that an increase in mixing causes a slight delay in the bed ignition but greatly enhances the combustion processes during the main combustion period in the bed. A medium-level mixing produces a combustion profile that is positioned more at the central part of the combustion chamber, and any leftover combustible gases (mainly CO) enter directly into the most intensive turbulence area created by the opposing secondary-air jets and thus are consumed quickly. Generally, the specific arrangement of the impinging secondary-air jets dumps most of the non-uniformity in temperature and CO into the gas flow coming from the bed-top, while medium-level mixing results in the lowest CO emission at the furnace exit and the highest combustion efficiency in the bed.

  8. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    NASA Technical Reports Server (NTRS)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  9. GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, CHARCOAL-MAKING KILNS IN THAILAND

    EPA Science Inventory

    The report gives results of measurements of airborne emissions, during typical operating conditions, from charcoal-making kilns commonly used in the developing world. The kilns tested were of five types: brick beehive, mud beehive, earth mound, rice husk mound, and single (oil) d...

  10. OBSERVATIONS ON THE EFFECT OF PROCESS PARAMETERS ON DIOXIN/FURAN YIELD IN MUNICIPAL WASTE AND COAL SYSTEMS

    EPA Science Inventory

    Effects of fly ash loading; ash-borne, extractable organics; sulfur dioxide (SO2) and hydrogen chloride concentration; and combustion quality on the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were evaluated in pilot scale tests simu...

  11. 40 CFR 98.144 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... (Reapproved 2006) Standard Test Method for Major and Minor Elements in Combustion Residues from Coal...

  12. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    PubMed

    Seifert, Erin L; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R; Wohlgemuth, Gert; Adams, Sean H; Harper, Mary-Ellen

    2010-03-24

    Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates) and 9 microM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle.

  13. Long-Chain Fatty Acid Combustion Rate Is Associated with Unique Metabolite Profiles in Skeletal Muscle Mitochondria

    PubMed Central

    Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen

    2010-01-01

    Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle. PMID:20352092

  14. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  15. Determination of the fire hazards of mine materials using a radiant panel.

    PubMed

    Harteis, S P; Litton, C D; Thomas, R A

    2016-01-01

    The objective of this study was to develop a laboratory-scale method to rank the ignition and fire hazards of commonly used underground mine materials and to eliminate the need for the expensive large-scale tests that are currently being used. A radiant-panel apparatus was used to determine the materials' relevant thermal characteristics: time to ignition, critical heat flux for ignition, heat of gasification, and mass-loss rate. Three thermal parameters, TRP , TP1 and TP4 , were derived from the data, then developed and subsequently used to rank the combined ignition and fire hazards of the combustible materials from low hazard to high hazard. The results compared favorably with the thermal and ignition hazards of similar materials reported in the literature and support this approach as a simpler one for quantifying these combustible hazards.

  16. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  17. 16 CFR § 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test procedures for smoldering combustion. Â... procedures for smoldering combustion. This section provides the test method for determining smoldering combustion characteristics of materials used for thermal insulation. This test shall be conducted on...

  18. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  19. Enhancement of fine-scale mixing for fuel-rich plume combustion

    NASA Astrophysics Data System (ADS)

    Schadow, K. C.; Gutmark, E.; Parr, T. P.; Parr, D. M.; Wilson, K. J.; Ferrell, G. B.

    1987-01-01

    The effect of enhancing small-scale turbulent structures on the combustion intensity and flame stability was studied in nonreacting and reacting flows. Hot-wire anemometry was used to map the mean and turbulent flow fields of the nonreacting flows. Reacting flows were studied in a free flame and in a ducted gas-generator fuel-rich plume using Planar Laser Induced Fluorescence, a rake of thermocouples and high speed photography. A modified circular nozzle having several backward facing steps upstream of its exit was used to introduce numerous inflection points in the initial mean velocity profiles, thus producing multiple corresponding sources of small-scale turbulence generators. Cold flow tests showed turbulence increases of up to six times the initial turbulence level relative to a circular nozzle. The ensuing result was that the flame of this nozzle was more intense with a homogeneous heat release. The fuel-rich plume was stable even in supersonic speeds, and secondary ignition was obtained under conditions that prevented sustained afterburning using the circular nozzle.

  20. Contractor's STTR Phase I Final Report- Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500ºC. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO 2 and SO x).« less

  1. Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500C. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO2 and SOx).« less

  2. Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites

    NASA Astrophysics Data System (ADS)

    Sathiyanathan, Kartheephan

    This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.

  3. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties ofmore » the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.« less

  4. Numerical Simulation of Wall Heat Load in Combustor Flow

    NASA Astrophysics Data System (ADS)

    Panara, D.; Hase, M.; Krebs, W.; Noll, B.

    2007-09-01

    Due to the major mechanism of NOx generation, there is generally a temperature trade off between improved cycle efficiency, material constraints and low NOx emission. The cycle efficiency is proportional to the highest cycle temperature, but unfortunately also the NOx production increases with increasing combustion temperature. For this reason, the modern combustion chamber design has been oriented towards lean premixed combustion system and more and more attention must be focused on the cooling air management. The challenge is to ensure sufficiently low temperature of the combustion liner with very low amount of film or effusion cooling air. Correct numerical prediction of temperature fields and wall heat load are therefore of critical interest in the modern combustion chamber design. Moreover, lean combustion technology has shown the appearance of thermo-acoustic instabilities which have to be taken into account in the simulation and, more in general, in the design of reliable combustion systems. In this framework, the present investigation addresses the capability of a commercial multiphysics code (ANSYS CFX) to correctly predict the wall heat load and the core flow temperature field in a scaled power generation combustion chamber with a simplified ceramic liner. Comparison are made with the experimental results from the ITS test rig at the University of Karlsruhe [1] and with a previous numerical campaign from [2]. In addition the effect of flow unsteadyness on the wall heat load is discussed showing some limitations of the traditional steady state flow thermal design.

  5. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    PubMed

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.

  7. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  8. Testing of aircraft passenger seat cushion materials. Full scale, test description and results, volume 1

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1981-01-01

    Eight different seat cushion configurations were subjected to full-scale burn tests. Each cushion configuration was tested twice for a total of sixteen tests. Two different fire sources were used. They consisted of one liter of Jet A fuel for eight tests and a radiant energy source with propane flame for eight tests. Both fire sources were ignited by a propane flame. During each test, data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and for the type and content of gas within the cabin atmosphere. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance.

  9. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.

  10. Effects of combustion temperature on PCDD/Fs formation in laboratory-scale fluidized-bed incineration.

    PubMed

    Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M

    2001-12-15

    Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.

  11. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  12. EMISSIONS OF TRACE PRODUCTS OF INCOMPLETE COMBUSTION FROM A PILOT-SCALE INCINERATOR SECONDARY COMBUSTION CHAMBER

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CCl4) and dichlorometh...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, P.

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueledmore » operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.« less

  14. Testing of aircraft passenger seat cushion material, full scale. Data, volume 2

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1980-01-01

    Burn characteristics of presently used and proposed seat cushion materials and types of constructions were determined. Eight different seat cushion configurations were subjected to full scale burn tests. Each cushion configuration was tested twice for a total of 16 tests. Two different fire sources were used: Jet A-fuel for eight tests, and a radiant energy source with propane flame for eight tests. Data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and type and content of gas within the cabin. When compared to existing seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance. Flammability comparison tests were conducted upon one fire blocking configuration and one polyimide configuration.

  15. Shock Tunnel Studies of Scramjet Phenomena

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.

    1996-01-01

    Work focussed on a large number of preliminary studies of supersonic combustion in a simple combustion duct - thrust nozzle combination, investigating effects of Mach number, equivalence ratio, combustor divergence, fuel injecting angle and other parameters with an influence on the combustion process. This phase lasted for some three or four years, during which strongest emphasis was placed on responding to the request for preliminary experimental information on high enthalpy effects, to support the technology maturation activities of the NASP program. As the need for preliminary data became less urgent, it was possible to conduct more systematic studies of high enthalpy combustion phenomena, and to initiate other projects aimed at improving the facilities and instrumentation used for studying scramjet phenomena at high enthalpies. The combustion studies were particularly directed towards hypersonic combustion, and to the effects of injecting fuel along the combustion chamber wall. A substantial effort was directed towards a study of the effect of scale on the supersonic combustion process. The influence of wave phenomena (both compression waves and expansion waves) on the realization of thrust from a supersonic combustion process was also investigated. The effect of chemical kinetics was looked into, particularly as it affected the composition of the test flow provided by a ground facility. The effect of injection of the fuel through wall orifices was compared with injection from a strut spanning the stream, and the effect of heating the fuel prior to injection was investigated. Studies of fuel-air mixing by shock impingement were also done, as well as mass spectrometer surveys of a combustion wake. The use of hypersonic nozzles with an expansion tube was investigated. A new method was developed for measuring the forces acting of a model in less than one millisecond. Also included in this report are listings of published journal papers and conference presentations.

  16. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  17. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  18. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  19. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  20. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  1. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  2. Graphite fiber surface treatment to improve char retention and increase fiber clumping

    NASA Technical Reports Server (NTRS)

    Paul, J. T., Jr.; Weldy, W. E.

    1980-01-01

    Composites containing carbon and graphite fibers can release fibers into the atmosphere during a fire. This release can potentially cause failure in some types of electrical equipment. Reduced fiber dispersion during and after combustion will reduce risks. Epoxidized char forming systems were synthesized which will react with commercially available surface treated carbon fiber. Fibers modified with these char formers retained adhesion in a specific epoxy matrix resin. Small scale combustion testing indicates that using these char former modified fibers in laminates will help to reduce the dispersement of fibers resulting from exposure to fire without sacrificing resin to fiber adhesion.

  3. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.

  4. The combustion behavior of large scale lithium titanate battery

    PubMed Central

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-01

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112–121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference. PMID:25586064

  5. The scaling of performance and losses in miniature internal combustion engines

    NASA Astrophysics Data System (ADS)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate mostly in the 'wrinkled laminar flame sheet' regime. Taken together, the results show that the combustion process is the key obstacle to realizing the potential of small IC engines. Overcoming this obstacle will require new diagnostic techniques, measurements, combustion models, and high temperature materials.

  6. Turbulence modeling and combustion simulation in porous media under high Peclet number

    NASA Astrophysics Data System (ADS)

    Moiseev, Andrey A.; Savin, Andrey V.

    2018-05-01

    Turbulence modelling in porous flows and burning still remains not completely clear until now. Undoubtedly, conventional turbulence models must work well under high Peclet numbers when porous channels shape is implemented in details. Nevertheless, the true turbulent mixing takes place at micro-scales only, and the dispersion mixing works at macro-scales almost independent from true turbulence. The dispersion mechanism is characterized by the definite space scale (scale of the porous structure) and definite velocity scale (filtration velocity). The porous structure is stochastic one usually, and this circumstance allows applying the analogy between space-time-stochastic true turbulence and the dispersion flow which is stochastic in space only, when porous flow is simulated at the macro-scale level. Additionally, the mentioned analogy allows applying well-known turbulent combustion models in simulations of porous combustion under high Peclet numbers.

  7. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more thanmore » 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.« less

  8. Composition Independent Thermometry in Gaseous Combustion Using Spectral Lineshape Information

    NASA Astrophysics Data System (ADS)

    Zelenak, Dominic

    2016-11-01

    Temperature is an important thermochemical property that holds the key to revealing several combustion phenomena such as pollutant formation, flame extinction, and heat release. In a practical combusting environment, the local composition is unknown, hindering the effectiveness of established non-intrusive thermometry techniques. This study aims to offset this limitation by developing laser thermometry techniques that do not require prior knowledge of the local composition. Multiple methods for obtaining temperature are demonstrated, which make use of the spectral line broadening of an absorbing species (Kr) seeded into the flow. These techniques involve extracting the Doppler broadening from the Voight profile and utilizing compositional scaling of collisional broadening and shift to determine temperature. Doppler broadening-temperature scaling of two photon Kr-PLIF is provided. Lean-premixed and diffusion jet flames of CH4 will serve as the test bed for experimentation, and validation of the two methods will be made using the corresponding temperature determined from Rayleigh scattering imaging with adiabatic mixing and unity Lewis number assumptions. A ratiometric dual lineshape thermometry method for turbulent flames will also be introduced. AFOSR Grant FA9550-16-1-0190 with Dr. Chiping Li as Program Manager.

  9. Model of large pool fires.

    PubMed

    Fay, J A

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  10. Rapid Design and Testing of Novel Gas/liquid Contacting Devices for Post-Combustion CO 2 Capture via 3D Printing - Phase II Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaccione, Charles; Staab, Greg; Meuleman, Erik

    ION has developed a mathematically driven model for a contacting device incorporating mass transfer, heat transfer, and computational fluid dynamics. This model is based upon a parametric structure for purposes of future commercialization. The most promising design from modeling was 3D printed and tested in a bench scale CO 2 capture unit and compared to commercially available structured packing tested in the same unit.

  11. Carbon deposition model for oxygen-hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Bossard, John A.

    1988-01-01

    The objectives are to use existing hardware to verify and extend the database generated on the original test programs. The data to be obtained are the carbon deposition characteristics when methane is used at injection densities comparable to full scale values. The database will be extended to include liquid natural gas (LNG) testing at low injection densities for gas generator/preburner conditions. The testing will be performed at mixture ratios between 0.25 and 0.60, and at chamber pressures between 750 and 1500 psi.

  12. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.

  13. Comparative assessment of three in vitro exposure methods for combustion toxicity.

    PubMed

    Lestari, Fatma; Markovic, Boban; Green, Anthony R; Chattopadhyay, Gautam; Hayes, Amanda J

    2006-01-01

    A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity. Copyright 2005 John Wiley & Sons, Ltd.

  14. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less

  15. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison between Jet- A fuel and a hydrotreated biofuel is made to determine viability of the technology for use with alternative fuels. Finally, the operability of the array and associated nozzles proved to be very stable without requiring additional active or passive control systems. A number of publications have been publish

  16. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  17. Comparison of δ18O measurements in nitrate by different combustion techniques

    USGS Publications Warehouse

    Revesz, Kinga; Böhlke, John Karl

    2002-01-01

    Three different KNO3 salts with δ18O values ranging from about −31 to +54‰ relative to VSMOW were used to compare three off-line, sealed glass tube combustion methods (widely used for isotope studies) with a more recently developed on-line carbon combustion technique. All methods yielded roughly similar isotope ratios for KNO3 samples with δ18O values in the midpoint of the δ18O scale near that of the nitrate reference material IAEA-NO-3 (around +21 to +25‰). This reference material has been used previously for one-point interlaboratory and intertechnique calibrations. However, the isotope ratio scale factors by all of the off-line combustion techniques are compressed such that they are between 0.3 and 0.7 times that of the on-line combustion technique. The contraction of the δ18O scale in the off-line preparations apparently is caused by O isotope exchange between the sample and the glass combustion tubes. These results reinforce the need for nitrate reference materials with δ18O values far from that of atmospheric O2, to improve interlaboratory comparability.

  18. NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

  19. Fire Hazards from Combustible Ammunition, Methodology Development. Phase I

    DTIC Science & Technology

    1980-06-01

    5.3 Flame Length , Flame Diameter and Mass Burning Rate 37 5.4 Flame Emissive Power 41 5.5 Fire Plume Axial Gas Velocity 41 5.6 Flame Temperature...B.2 Exit Velocity 93 B.3 Rate of Energy Flow 93 B.4 Chamber Characteristics 94 B.5 Flame Length 95 B.6 Flame Lift Angle 95 B.7 Summary 97...Viewing Flame in Test Series 5 17. Flame Length Scaling 18. Scaling Trends for Mass Burning Rate 19. Effective Flame Emissive Power versus Flame

  20. Characterization of coals for circulating fluidized bed combustion by pilot scale tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de

    1995-12-31

    The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less

  1. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    EPA Science Inventory

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  2. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be the first opportunity to examine microgravity flame behavior at scales approximating a spacecraft fire.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Valenti, J.C.; Tabor, D.G.

    The use of waste wood as fuel for producing energy is a promising supplement to fossil fuels for many regions of the country. In addition to recovering energy and conserving landfill space, burning waste wood fuels also mitigates global warming created by fossil fuel combustion. However, the environmental consequences resulting from emissions generated by combustion of waste wood which contains paints, resins, or preservatives are not well understood. The combustion of waste wood treated with chemicals may produce potentially hazardous products of incomplete combustion (PIC) emissions such as dioxins. Characterization of PIC emissions from the combustion of waste wood previouslymore » treated with pentachlorophenol is reported in this study. Utility poles and crossbars are typically treated with a preservative such as pentachlorophenol in order to prolong their service life. They are disposed of by landfilling after being taken out of service. Burning such wood waste in boilers for steam generation becomes an increasingly attractive waste management alternative as it contains substantial energy value and reduces landfilling costs. Pilot-scale combustion tests were conducted under well controlled conditions in a 0.58 MW (2 million Btu/hr) combustor to compare PIC emissions from burning untreated wood and pentachlorophenol-treated wood. Sampling and analyses for a wide variety of PICs, including volatile organic compounds (VOCs), semivolatile organic compounds, and dioxins and furans, were performed to assess the effect of pentachlorophenol preservative present in wood on PIC emissions.« less

  4. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  5. Symposium on Combustion /International/, 16th, Massachusetts Institute of Technology, Cambridge, Mass., August 15-20, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.

  6. Analysis of the laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber

    NASA Astrophysics Data System (ADS)

    Wohlhüter, Michael; Zhukov, Victor P.; Sender, Joachim; Schlechtriem, Stefan

    2017-06-01

    The laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber has been investigated numerically and experimentally. The ignition test case used in the present paper was generated during the In-Space Propulsion project (ISP-1), a project focused on the operation of propulsion systems in space, the handling of long idle periods between operations, and multiple reignitions under space conditions. Regarding the definition of the numerical simulation and the suitable domain for the current model, 2D and 3D simulations have been performed. Analysis shows that the usage of a 2D geometry is not suitable for this type of simulation, as the reduction of the geometry to a 2D domain significantly changes the conditions at the time of ignition and subsequently the flame development. The comparison of the numerical and experimental results shows a strong discrepancy in the pressure evolution and the combustion chamber pressure peak following the laser spark. The detailed analysis of the optical Schlieren and OH data leads to the conclusion that the pressure measurement system was not able to capture the strong pressure increase and the peak value in the combustion chamber during ignition. Although the timing in flame development following the laser spark is not captured appropriately, the 3D simulations reproduce the general ignition phenomena observed in the optical measurement systems, such as pressure evolution and injector flow characteristics.

  7. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

  8. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    PubMed

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-01-01

    The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  10. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-12-31

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  11. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels.

    PubMed

    Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma

    2014-11-18

    The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.

  12. Faecal-wood biomass co-combustion and ash composition analysis.

    PubMed

    Somorin, Tosin Onabanjo; Kolios, Athanasios J; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2017-09-01

    Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.

  13. CHARACTERIZATION OF AIR EMISSIONS FROM THE SIMULATED OPEN COMBUSTION OF FIBERGLASS MATERIALS

    EPA Science Inventory

    The report identifies and quantifies a broad range of pollutants that are discharged during small-scale, simulated, open combustion of fiberglass, and reports these emissions relative to the mass of fiberglass material combusted. Two types of fiberglass materials (representing t...

  14. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  15. Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Kinsman, L.; Torero, J. L.

    2015-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition points and two treatment (air distribution and vapor collection / treatment) systems to remediate an approximately 14-acre footprint of contaminated soils within the project timelines (i.e., by mid-2016). Field activities began in 2014 and progress is currently on-schedule.

  16. Design, Development and Hotfire Testing of Monolithic Copper and Bimetallic Additively Manufactured Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Barnett, Greg; Brandsmeier, Will; Greene, Sandy Elam; Protz, Chris

    2016-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM) otherwise commonly referred to as additive manufacturing. The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for the GRCop-84 copper-alloy commensurate with powder bed additive manufacturing, evaluate bimetallic deposition and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. As a direct spin off of this program, NASA is working with industry partners to further develop the printing process for the GRCop-84 material in addition to the C-18150 (CuCrZr) material. To advance the process further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic additively manufactured chambers. A 1.2k sized thrust-chamber was designed and developed to compare the printing process of the GRCop-84 and C-18150 SLM materials. A series of similar MCC liners also completed development with an Inconel 625 jacket bonded to the GRcop-84 liner evaluating direct metal deposition (DMD) laser and arc-based techniques. This paper describes the design, development, manufacturing and testing of these combustion chambers and associated lessons learned throughout the design and development process.

  17. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.

  18. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results

    Treesearch

    M. M. Clark; T. H. Fletcher; R. R. Linn

    2010-01-01

    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic...

  19. Subscale testing of prompt agent defeat formulations

    NASA Astrophysics Data System (ADS)

    Knott, A.; Stamatis, D.; Svingala, F.; Lightstone, J.; Miller, K.; Bensman, M.; Bohmke, M.

    2017-01-01

    There is a need to improve the current bioagent defeat systems with formulations that produce lower peak pressure and impulse, sustained high temperatures, and release of biocidal species for prompt defeat applications. In this work, explosive charge configurations similar to fuel-air explosives were detonated in a semi-enclosed chamber configuration. Binder type and fuel-to-oxidizer ratios were varied to observe the effects on combustion performance. Thermocouple measurements and high-speed video were used to monitor the combustion of the dispersed formulation. The down-selected formulations were then tested in a sub-scale vented agent defeat system developed to evaluate performance of formulations against aerosolized Bacillus thuringiensis (Bt) spores. Diagnostics including thermocouples and piezoelectric pressure gauges were utilized to characterize the detonation event. Biological sampling with surface coupons, liquid impingement, and filters of the post detonation environment were utilized to determine spore survivability and to rank the relative effectiveness of each formulation.

  20. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, R. Craig; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    SiC and Si3N4 materials were tested under various turbine engine combustion environments, chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high speed aircraft. Representative CVD, sintered, and composite materials were evaluated in both furnace and high pressure burner rig exposure. While protective SiO2 scales form in all cases, evidence is presented to support paralinear growth kinetics, i.e. parabolic growth moderated simultaneously by linear volatilization. The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were used to map SiO2 volatility (and SiC recession) over a range of temperature, pressure, and velocity. The functional dependency of material recession (volatility) that emerged followed the form: exp(-QIRT) * P(exp x) * v(exp y). These empirical relations were compared to rates predicted from the thermodynamics of volatile SiO and SiO(sub x)H(sub Y) reaction products and a kinetic model of diffusion through a moving, boundary layer. For typical combustion conditions, recession of 0.2 to 2 micron/h is predicted at 1200- 1400C, far in excess of acceptable long term limits.

  1. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  2. Multi scale modeling of ignition and combustion of micro and nano aluminum particles

    NASA Astrophysics Data System (ADS)

    Puri, Puneesh

    With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a phenomenological theory for ignition and combustion of aluminum particles was proposed. The whole time history from ignition till particle burnout was divided into five stages. An attempt was made to explore different modes of ignition based on the effect of pressure, temperature, oxidizer, oxide thickness and particle diameter and was investigated using length and time scales involved during ignition and combustion.

  3. Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimetry

    USDA-ARS?s Scientific Manuscript database

    Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...

  4. The oxycoal process with cryogenic oxygen supply.

    PubMed

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  5. The oxycoal process with cryogenic oxygen supply

    NASA Astrophysics Data System (ADS)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  6. Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    2018-03-01

    High temperature oxidation of alumina-forming MAX phases, Ti2AlC and Cr2AlC, were examined under turbine engine environments and coating configurations. Thermogravimetric furnace tests of Ti2AlC showed a rapid initial transient due to non-protective TiO2 growth. Subsequent well-behaved cubic kinetics for alumina scale growth were shown from 1273 K to 1673 K (1000 °C to 1400 °C). These possessed an activation energy of 335 kJ/mol, consistent with estimates of grain boundary diffusivity of oxygen ( 375 kJ/mol). The durability of Ti2AlC under combustion conditions was demonstrated by high pressure burner rig testing at 1373 K to 1573 K (1100 °C to 1300 °C). Here good stability and cubic kinetics also applied, but produced lower weight gains due to volatile TiO(OH)2 formation in water vapor combustion gas. Excellent thermal stability was also shown for yttria-stabilized zirconia thermal barrier coatings deposited on Ti2AlC substrates in 2500-hour furnace tests at 1373 K to 1573 K (1100 °C to 1300 °C). These sustained a record 35 µm of scale as compared to 7 μm observed at failure for typical superalloy systems. In contrast, scale and TBC spallation became prevalent on Cr2AlC substrates above 1423 K (1150 °C). Cr2AlC diffusion couples with superalloys exhibited good long-term mechanical/oxidative stability at 1073 K (800 °C), as would be needed for corrosion-resistant coatings. However, diffusion zones containing a NiAl-Cr7C3 matrix with MC and M3B2 particulates were commonly formed and became extensive at 1423 K (1150 °C).

  7. Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses.

    PubMed

    Brassard, Patrick; Palacios, Joahnn H; Godbout, Stéphane; Bussières, Denis; Lagacé, Robert; Larouche, Jean-Pierre; Pelletier, Frédéric

    2014-03-01

    The aim of this study was to compare gaseous and particulate matter (PM) emissions from the combustion of agricultural (switchgrass, fast-growing willow and the dried solid fraction of pig manure) and forest (wood mixture of Black Spruce and Jack Pine) biomasses in a small-scale unit (17.58kW). Concentrations of CO2, CO, CH4, NO2, NH3, N2O, SO2, HCl, and H2O were measured by Fourier transform infrared spectroscopy and converted into emission rates. Opacity was also evaluated and particulates were sampled. Results showed significantly higher emissions of SO2, NO2 and PM with the combustion of agricultural biomass compared to the forest biomass. However, further studies should be carried out so regulations can be adapted in order to permit the combustion of agricultural biomass in small-scale combustion units. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Incineration of a Commercial Coating with Nano CeO2

    NASA Astrophysics Data System (ADS)

    Le Bihan, Olivier; Ounoughene, Ghania; Meunier, Laurent; Debray, Bruno; Aguerre-Chariol, Olivier

    2017-06-01

    The potential environmental risk arising from the incineration of waste containing nanomaterials is a new field which deserves further attention. Some recent studies have begun to focus on this topic but the data are incomplete. In addition, there is a need to consider real life waste. The present study gives some insight into the fate and behavior of a commercial coating containing a commercial additive (7% w/w) based on nano-CeO2 (aggregates of 10 to 40 nm, with elemental particles of 2-3 nm). The tests have been conducted with a system developed in the frame of the NanoFlueGas project. The test protocol was designed to respect the regulatory criteria of a good combustion in incineration plants (temperature around 850°C, highly ventilated combustion, at least 2 s residence time for the combustion gas in a post-combustion chamber at 850°C, and high oxygen/fuel contact). Time tracking by electric low pressure impaction (ELPI) shows that the incineration produces aerosol with number concentration dominated by sub-100 nm particles. Cerium is observed by TEM and EDS analysis but as a minor compound of a sub-group of particles. No nanoCeO2 particles have been observed in the aerosol. ICP-MS analysis indicates that the residual material consists mainly of CeO2 (60% of the mass). Observation by TEM establishes that this material is in the form of aggregates with individual particle of 40-200 nm and suggests that sintering occurred during incineration. As a conclusion, the lab scale incineration study led mainly to the release of nano-CeO2 in the residual material, as the major component. Its size distribution is different than the one of the nano-CeO2 observed in the initial sample before incineration. Additional research is needed to improve the understanding of nanoCeO2 behavior, and to integrate experiments at lab and real scale.

  9. Acoustic cavity technology for high performance injectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.

  10. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  11. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  12. Fire containment tests of aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Leon, H. A.; Williamson, R. B.; Hasegawa, H.; Fisher, F.; Draemel, R.; Marcussen, W. H.; Hilado, C. J.

    1976-01-01

    The paper describes an experimental program carried out to evaluate a possible method for testing the fire-containment qualities of aircraft interior panels. The experimental apparatus consisted of a burner that simulates various fire loads under different ventilation conditions in an enclosure of approximately the same size as an aircraft lavatory module. Two fire-containment tests are discussed in which two adjoining walls of the enclosure were made from state-of-the-art composite panels; rats were exposed to the combustion products in order to evaluate the toxic threat posed by those products. The results show that the burner can be employed to represent various fire-load conditions and that the methodology developed for fire containment can be useful in evaluating the fire resistance of composite panels before conducting large-scale tests. It is concluded that elements of the fire-containment criteria include the temperature rise on the backface of the panels as a function of time, the flame burn-through by either decomposition or severe distortion of the material, and the toxicity of the combustion gases evolved.

  13. Promoted Combustion Test Propagation Rate Data

    NASA Technical Reports Server (NTRS)

    Borstorff, J.; Jones, P.; Lowery, F.

    2002-01-01

    Combustion propagation rate data were examined for potential use in benchmarking a thermal model of the Promoted Combustion Test (PCT), and also for potential use in measuring the repeatability of PCT results.

  14. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    PubMed

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of <40 μm. Using this spacing, it was possible to have a flame path length of >0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  15. Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane air flames

    NASA Astrophysics Data System (ADS)

    Furukawa, Junichi; Noguchi, Yoshiki; Hirano, Toshisuke; Williams, Forman A.

    2002-07-01

    The density change across premixed flames propagating in turbulent flows modifies the turbulence. The nature of that modification depends on the regime of turbulent combustion, the burner design, the orientation of the turbulent flame and the position within the flame. The present study addresses statistically stationary turbulent combustion in the flame-sheet regime, in which the laminar-flame thickness is less than the Kolmogorov scale, for flames stabilized on a vertically oriented cylindrical burner having fully developed upward turbulent pipe flow upstream from the exit. Under these conditions, rapidly moving wrinkled laminar flamelets form the axisymmetric turbulent flame brush that is attached to the burner exit. Predictions have been made of changes in turbulence properties across laminar flamelets in such situations, but very few measurements have been performed to test the predictions. The present work measures individual velocity changes and changes in turbulence across flamelets at different positions in the turbulent flame brush for three different equivalence ratios, for comparison with theory.

  16. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  17. Combustion modeling and performance evaluation in a full-scale rotary kiln incinerator.

    PubMed

    Chen, K S; Hsu, W T; Lin, Y C; Ho, Y T; Wu, C H

    2001-06-01

    This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.

  18. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  19. Coaxial Dump Ramjet Combustor Combustion Instabilities. Part I. Parametric Test Data.

    DTIC Science & Technology

    1981-07-01

    AD-AIII 355 COAXIAL DUP RA8.? COMBUSTOR COMBUSTION INSTABILITIES I/~ PART I PARAUER1C. 1111 AIR FORCE WRIONT AERONUTICAL LAOS WRIOIII-PATTERSOll...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANOAROS - 193- A AFWAL-TR-81 -2047 Part 1 COAXIAL DUMP RAMJET COMBUSTOR COMBUSTION INSTABILITIES PART...COMBUSTOR Interim Report for Period COMBUSTION INSTABILITIES February 1979 - March 1980 Part I - Parametric Test Data S. PERFORMING ORG. REPORT NUMBER 7

  20. An experimental investigation of the combustion performance of human faeces.

    PubMed

    Onabanjo, Tosin; Kolios, Athanasios J; Patchigolla, Kumar; Wagland, Stuart T; Fidalgo, Beatriz; Jurado, Nelia; Hanak, Dawid P; Manovic, Vasilije; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-11-15

    Poor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.

  1. Characterization of gaseous emissions and ashes from the combustion of furniture waste.

    PubMed

    Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A

    2016-12-01

    Gaseous emissions and ash obtained in the combustion of furniture waste have been studied, with particular emphasis on the emissions of hazardous pollutants, such as PCDD/Fs and dl-PCBS. Two different combustion procedures were carried out, one of them in a conventional residential stove (without an automatic control of combustion air and bad mixing of combustion gases with air), and the other in a laboratory-scale reactor (operating under substoichiometric conditions). Three different experiments were carried out in the residential stove, in which the gaseous emissions and ashes obtained were analysed. The fuel burnt out in two of the experiments was furniture wood waste and in one of the experiments, the fuel burnt out was briquettes composed of a mixture of furniture wood with 10wt.% of polyurethane foam. One of the purposes of these experiments was the evaluation of the possible inhibition effect of the higher nitrogen content on the formation of PCDD/Fs. Slight inhibition of the PCDD/F formation was found although, it is noteworthy that the lowest yield of PAHs, volatile and semi-volatile compounds were obtained in the combustion of these briquettes. In all experiments, the emission factors of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls (PCDD/Fs and dl-PCBs) were between 29 and 74ng WHO-TEQ/kg sample burnt, lower than that obtained by other authors in the burning of pine needles and cones. PCDD/Fs and dl-PCBs emissions from furniture wood waste combustion were also analysed in the laboratory scale reactor at 850°C and the results were compared with the values obtained from the combustion of solid wood (untreated wood). The total equivalent toxicity obtained was 21.1ng WHO-TEQ/kg sample for combustion of furniture wood waste, which is low in comparison with those obtained for other waste combustion in similar conditions. In the laboratory scale reactor, PCDFs were the dominant compounds in the profiles of PCDD/Fs, by contrast, in the combustion in the residential stove, the majority compounds were PCDDs, due to the different operation conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Science Support for Space-Based Droplet Combustion: Drop Tower Experiments and Detailed Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Frederick L.

    1997-01-01

    This program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies. Experimental emphasis is on the study of simple alcohols (methanol, ethanol) and alkanes (n-heptane, n-decane) as fuels with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Experiments have included bench-scale studies at Princeton, studies in the 2.2 and 5.18 drop towers at NASA-LeRC, and both the Fiber Supported Droplet Combustion (FSDC-1, FSDC-2) and the free Droplet Combustion Experiment (DCE) studies aboard the shuttle. Test matrix and data interpretation are performed through spherically-symmetric, time-dependent numerical computations which embody detailed sub-models for physical and chemical processes. The computed burning rate, flame stand-off, and extinction diameter are compared with the respective measurements for each individual experiment. In particular, the data from FSDC-1 and subsequent space-based experiments provide the opportunity to compare all three types of data simultaneously with the computed parameters. Recent numerical efforts are extending the computational tools to consider time dependent, axisymmetric 2-dimensional reactive flow situations.

  3. Steam torrefaction of Eucalyptus globulus for producing black pellets: A pilot-scale experience.

    PubMed

    Arteaga-Pérez, Luis E; Grandón, Héctor; Flores, Mauricio; Segura, Cristina; Kelley, Stephen S

    2017-08-01

    Steam torrefaction of Eucalyptus globulus was performed at temperatures between 245°C and 265°C in a 100kg/h pilot plant. Torrefied biomass was then pelletized in a 300kg/h unit and the pellets were subject to durability, density and combustion tests. The structural changes measured with FTIR were studied along with the combustion behavior of the materials. Compositional analysis showed that increasing the torrefaction temperature reduced both hemicellulose fraction and overall mass yield (MY). Furthermore, there was a linear relationship between the energy yield (EY) and mass yield (EY=[1.04-0.9(1-MY)]) for these samples. The ignition and comprehensive indexes confirmed that the stability of the torrefied biomass in a combustion environment was higher than for untreated biomass. Finally, pellets showed high durability (98%), and had an energy density (13-14GJ/m 3 ), which is comparable to low-rank coals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Device Scale Modeling of Solvent Absorption using MFIX-TFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, Janine E.; Finn, Justin R.

    Recent climate change is largely attributed to greenhouse gases (e.g., carbon dioxide, methane) and fossil fuels account for a large majority of global CO 2 emissions. That said, fossil fuels will continue to play a significant role in the generation of power for the foreseeable future. The extent to which CO 2 is emitted needs to be reduced, however, carbon capture and sequestration are also necessary actions to tackle climate change. Different approaches exist for CO 2 capture including both post-combustion and pre-combustion technologies, oxy-fuel combustion and/or chemical looping combustion. The focus of this effort is on post-combustion solvent-absorption technology.more » To apply CO 2 technologies at commercial scale, the availability and maturity and the potential for scalability of that technology need to be considered. Solvent absorption is a proven technology but not at the scale needed by typical power plant. The scale up and down and design of laboratory and commercial packed bed reactors depends heavily on the specific knowledge of two-phase pressure drop, liquid holdup, the wetting efficiency and mass transfer efficiency as a function of operating conditions. Simple scaling rules often fail to provide proper design. Conventional reactor design modeling approaches will generally characterize complex non-ideal flow and mixing patterns using simplified and/or mechanistic flow assumptions. While there are varying levels of complexity used within these approaches, none of these models resolve the local velocity fields. Consequently, they are unable to account for important design factors such as flow maldistribution and channeling from a fundamental perspective. Ideally design would be aided by development of predictive models based on truer representation of the physical and chemical processes that occur at different scales. Computational fluid dynamic (CFD) models are based on multidimensional flow equations with first principle foundations. CFD models can include a more accurate physical description of flow processes and be modified to include more complex behavior. Wetting performance and spatial liquid distribution inside the absorber are recognized as weak areas of knowledge requiring further investigation. CFD tools offer a possible method to investigating such topics and gaining a better understanding of their influence on reactor performance. This report focuses first on describing a hydrodynamic model for countercurrent gas-liquid flow through a packed column and then on the chemistry, heat and mass transfer specific to CO 2 absorption using monoethanolamine (MEA). The indicated model is implemented in MFIX, a CFD open source software package. The user defined functions needed to build this model are described in detail along with the keywords for the corresponding input file. A test case is outlined along with a few results. The example serves to briefly illustrate the developed CFD tool and its potential capability to investigate solvent absorption.« less

  5. Evaluation of Innovative Volatile Organic Compound and Hazardous Air Pollutant Control Technologies for U.S. Air Force Paint Spray Booths

    DTIC Science & Technology

    1990-10-01

    adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration

  6. Scaling Study of Wave Rotor Turbo-normalization of a Small Internal Combustion Engine

    DTIC Science & Technology

    2012-09-01

    14 Figure 6: Acceleration response of turbocharger versus Comprex...for increased engine performance. Turbo-normalization can be accomplished through the addition of a turbocharger , supercharger, or a pressure wave... turbocharger over the same test regime (12). The Comprex® was first used on a passenger car in 1978 on an Opel 2.1 liter diesel engine (13). In 1987

  7. Fire Suppression Properties of Very Fine Water Mist

    DTIC Science & Technology

    2005-01-01

    with the University of Heidelberg, developed an in situ oxygen sensor based on tunable diode laser absorption spectroscopy ( TDLAS ) to provide absolute... oxygen number densities in the presence of mist.3 Th e TDLAS oxygen sensor provides real-time, calibra- tion-free, quantitative oxygen ...Determination of Molecular Oxygen Concentrations in Full-Scale Fire Suppression Tests Using TDLAS ,” Proc. Combust. Inst. 29, 353-360 (2002).

  8. Technical Feasibility Study of an Effective Low-Toxicity Obscurant Material

    DTIC Science & Technology

    2012-08-01

    2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 04/2011 – 07/2012 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER W912HQ-11-C-0034 Technical...6 4 Work Package 3 – Laboratory-scale tests...chemistry to sea-salt aerosol. 4 The major component of sea-salt is sodium chloride. Sodium chloride can be very simply generated by the combustion

  9. Combustion Integration Rack (CIR) Testing

    NASA Image and Video Library

    2015-02-18

    Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.

  10. Prediction of fire growth on furniture using CFD

    NASA Astrophysics Data System (ADS)

    Pehrson, Richard David

    A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.

  11. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  12. LOX/Hydrocarbon Combustion Instability Investigation

    NASA Technical Reports Server (NTRS)

    Jensen, R. J.; Dodson, H. C.; Claflin, S. E.

    1989-01-01

    The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed.

  13. Testing fireproof materials in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel

    This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  14. Distribution of radionuclides between atmosphere and ash during combustion of contaminated vegetation.

    PubMed

    Zhou, Liufang Jenny; Rao, Raghu; Corcoran, Emily; Kelly, David

    2016-12-01

    A series of laboratory-scale combustion tests were conducted under well-controlled conditions to measure the release of 90 Sr and 137 Cs nuclides to the atmosphere (air) from combustion of vegetation and organic soil samples contaminated with radioactivity. These vegetation and soil samples were collected from a controlled contaminated forest area within the Canadian Nuclear Laboratories - Chalk River site. The combustion products including ash and smoke particulates, along with gaseous emissions, were collected and then analyzed for 137 Cs and 90 Sr concentrations by radiometric techniques. The experimental results reveal that the releases of 90 Sr to the atmosphere (air) from combustion of vegetation are very low with most of the 90 Sr activity remaining in ash residues, even at a temperature of 800 °C. The detailed combustion experiments with surface litter and twigs, alder twigs, alder leaves, and organic soil indicate that 0.5 ± 0.1%, 0.3 ± 0.1%, 0.9 ± 0.1%, and 0.3 ± 0.1% of 90 Sr is released to the atmosphere (air), respectively. On the other hand, the releases of 137 Cs are found to be highly dependent on the combustion temperature as well as the nature of vegetation. The releases of 137 Cs obtained at 800 °C are 45 ± 7%, 77 ± 9%, 92 ± 5%, and 2.4 ± 0.5% for surface litter and twigs, alder twigs, alder leaves, and organic soil, respectively. The mechanism associated with the high release of 137 Cs at a high temperature of 800 °C was explored. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Treesearch

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  16. EFFECTS OF COMBUSTION PARAMETERS ON POLYCHLORINATED DIBENZODIOXIN AND DIBENZOFURAN HOMOLOGUE PROFILES FROM MUNICIPAL WASTE AND COAL CO-COMBUSTION

    EPA Science Inventory

    Variation in polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD and PCDF) homologue profiles from a pilot scale (0.6 MWt, 2x106 Btu/hr), co-fired-fuel [densified refuse derived fuel (dRDF) and high-sulfur Illinois coal] combustion system was used to provide i...

  17. Atomic-Scale Principles of Combustion Nanocatalysis

    DTIC Science & Technology

    2014-05-19

    of Combustion Nanocatalysts: Structures, Electronic Characteristics and Catalytic Pathways MURI FINAL REPORT Reporting Period: June 1, 2008 to...properties of nanoscale materials to be employed for catalytic combustion of fuels and propellants. Furthermore the research program seeks to establish... catalytic cycle. Both the carbon– hydrogen bond activation and the subsequent desorption of the ethylene product molecule require cooperative action

  18. Mercury (Hg) emissions from domestic biomass combustion for space heating.

    PubMed

    Huang, Jiaoyan; Hopke, Philip K; Choi, Hyun-Deok; Laing, James R; Cui, Huailue; Zananski, Tiffany J; Chandrasekaran, Sriraam Ramanathan; Rattigan, Oliver V; Holsen, Thomas M

    2011-09-01

    Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM(2.5))) were measured in the stack of a small scale wood combustion chamber at 400°C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM(2.5) concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Environmental research program. 1995 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore themore » nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.« less

  20. Technical Proposal for Loading 3000 Gallon Crude Oil Samples from Field Terminal to Sandia Pressurized Tanker to Support US DOE/DOT Crude Oil Characterization Research Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, David L.; Allen, Raymond

    Sandia National Laboratories is seeking access to crude oil samples for a research project evaluating crude oil combustion properties in large-scale tests at Sandia National Laboratories in Albuquerque, NM. Samples must be collected from a source location and transported to Albuquerque in a tanker that complies with all applicable regulations for transportation of crude oil over public roadways. Moreover, the samples must not gain or lose any components, to include dissolved gases, from the point of loading through the time of combustion at the Sandia testing facility. In order to achieve this, Sandia designed and is currently procuring a custommore » tanker that utilizes water displacement in order to achieve these performance requirements. The water displacement procedure is modeled after the GPA 2174 standard “Obtaining Liquid Hydrocarbons Samples for Analysis by Gas Chromatography” (GPA 2014) that is used routinely by crude oil analytical laboratories for capturing and testing condensates and “live” crude oils, though it is practiced at the liter scale in most applications. The Sandia testing requires 3,000 gallons of crude. As such, the water displacement method will be upscaled and implemented in a custom tanker. This report describes the loading process for acquiring a ~3,000 gallon crude oil sample from commercial process piping containing single phase liquid crude oil at nominally 50-100 psig. This document contains a general description of the process (Section 2), detailed loading procedure (Section 3) and associated oil testing protocols (Section 4).« less

  1. Characterization of flame stabilization technologies

    NASA Astrophysics Data System (ADS)

    Bush, Scott Matthew

    To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.

  2. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  3. Demonstration of An Integrated Approach to Mercury Control at Lee Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitali Lissianski; Pete Maly

    2007-12-31

    General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercurymore » control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners after the transition. Modeling also demonstrated that the flow was severely biased from the South side to the North side due to the bend of the duct. Results of CFD modeling were used to design lances for better sorbent distribution across the ESP inlet duct. Modeling of water injection demonstrated that because of flue gas temperature biasing, the droplet evaporation rate was slower on the North side than that on the South side of the duct. Modeling suggested that an improvement of water droplet evaporation could be achieved by closing the lance on the North side where flue gas temperatures were lower. Preliminary evaluation of the effect of carbon-based sorbents on mercury reduction took place in a 1 MBtu/hr (300 kW) Boiler Simulator Facility using the same coal as fired at Lee Station.« less

  4. Fuel Regression Characteristics of Cascaded Multistage Impinging-Jet (CAMUI) Type Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    Itoh, Mitsunori; Maeda, Takenori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Nakashima, Takuji; Wakita, Masashi; Uematsu, Tsutomu; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori

    A series of lab-scale firing tests was conducted to investigate the fuel regression characteristics of Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket. The alternative fuel grain used in this rocket consists of a number of cylindrical fuel blocks with two ports, which were aligned along the axis of the combustion chamber with a small gap. The ports are aligned staggered with respect to ones of neighboring blocks so that the combustion gas flow impinges on the forward-end surface of each block. In this fuel grain, forward-end surfaces, back-end surfaces and ports of fuel blocks contribute as burning surfaces. Polyethylene and LOX were used as a propellant, and the tests were conducted at the chamber pressure of 0.5 2MPa and the mass flux of 50 200kg/m2s. Main results obtained in this study are in the followings: The regression rate of each surface was obtained as a function of the propellant mass flux and local equivalent ratio of the combustion gas. At back-end surfaces the regression rate has a high sensitivity on the gap height of neighboring fuel blocks. These fuel regression characteristics will contribute as fundamental data to improve the optimum design of the fuel grain.

  5. Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.

    A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.

  6. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    EPA Science Inventory

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  7. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.

    PubMed

    Arenillas, Ana; Rubiera, Fernando; Pis, José J

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (<800 degrees C), NO heterogeneous reduction seems to be controlled by the evolution of surface complexes. In the high-temperature range (>800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.

  8. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, Raymond C.; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    Silicon carbide (SiC) and Si3N4 materials were tested in various turbine engine combustion environments chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high-speed aircraft. Representative chemical vapor-deposited (CVD), sintered, and composite materials were evaluated by furnace and high-pressure burner rig exposures. Although protective SiO2 scales formed in all cases, the evidence presented supports a model based on paralinear growth kinetics (i.e., parabolic growth moderated simultaneously by linear volatilization). The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were thus used to map SiO2 volatility (and SiC recession) over a range of temperatures, pressures, and velocities. The functional dependency of material recession (volatility) that emerged followed the form A[exp(-Q / RT)](P(sup x)v(sup y). These empirical relations were compared with rates predicted from the thermodynamics of volatile SiO and SiOxHy reaction products and a kinetic model of diffusion through a moving boundary layer. For typical combustion conditions, recession of 0.2 to 2 micrometers/hr is predicted at 1200 to 1400 C, far in excess of acceptable long-term limits.

  9. Spray-dry desulfurization of flue gas from heavy oil combustion.

    PubMed

    Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro

    2005-01-01

    An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.

  10. Thermal Model of the Promoted Combustion Test

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1996-01-01

    Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test results more directly to detailed combustion mechanics, leading to improved data analysis, and improved understanding of heterogeneous combustion phenomena.

  11. Pressure Rise, Gas Vibrations and Combustion Noises During the Explosion of Fuels

    NASA Technical Reports Server (NTRS)

    Wawrziniok,

    1933-01-01

    In the use of piezo-quartz indicators for high-speed automobile engines, the interpretation of pressure-time diagrams made by an oscillograph offers certain difficulties. On the one hand, the scale of the pressure amplitudes is not always the same under all conditions, while, on the other hand, the atmospheric zero line may be shifted from its correct position in the oscillogram. These facts make necessary to verify the readings of the quartz indicators by direct calibration before and after each series of tests and, on the basis of the results, to determine the scale for the oscillograms.

  12. Simultaneous Measurements of Temperature and Major Species Concentration in a Hydrocarbon-Fueled Dual Mode Scramjet Using WIDECARS

    NASA Astrophysics Data System (ADS)

    Gallo, Emanuela Carolina Angela

    Width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements were conducted in a McKenna air-ethylene premixed burner, at nominal equivalence ratio range between 0.55 and 2.50 to provide quantitative measurements of six major combustion species (C2H 4, N2, O2, H2, CO, CO2) concentration and temperature simultaneously. The purpose of this test was to investigate the uncertainties in the experimental and spectral modeling methods in preparation for an subsequent scramjet C2H4/air combustion test at the University of Virginia-Aerospace Research Laboratory. A broadband Pyrromethene (PM) PM597 and PM650 dye laser mixture and optical cavity were studied and optimized to excite the Raman shift of all the target species. Two hundred single shot recorded spectra were processed, theoretically fitted and then compared to computational models, to verify where chemical equilibrium or adiabatic condition occurred, providing experimental flame location and formation, species concentrations, temperature, and heat losses inputs to computational kinetic models. The Stark effect, temperature, and concentration errors are discussed. Subsequently, WIDECARS measurements of a premixed air-ethylene flame were successfully acquired in a direct connect small-scale dual-mode scramjet combustor, at University of Virginia Supersonic Combustion Facility (UVaSCF). A nominal Mach 5 flight condition was simulated (stagnation pressure p0 = 300 kPa, temperature T0 = 1200 K, equivalence ratio range ER = 0.3 -- 0.4). The purpose of this test was to provide quantitative measurements of the six major combustion species concentration and temperature. Point-wise measurements were taken by mapping four two-dimensional orthogonal planes (before, within, and two planes after the cavity flame holder) with respect to the combustor freestream direction. Two hundred single shot recorded spectra were processed and theoretically fitted. Mean flow and standard deviation are provided for each investigated case. Within the flame limits tested, WIDECARS data were analyzed and compared with CFD simulations and OH-PLIF measurements.

  13. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  14. Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1997-01-01

    Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.

  15. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

  16. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Norman

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWthmore » model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The results observed in the lab-scale system were employed to develop a 1-MW scaled prototype. Scaling methods were based on critical design criteria found in similar systems, aimed at replicating combustion flow fields and reducing possible instabilities. A numerical simulation of the combustor wall was developed for a combined thermal steady model and static structural model. This combined model was developed predict combined stress parameters within the wall during testing conditions. Both models were developed within ANSYS FEA software package. The relative accuracy presented as well major performance parameters are discussed to assess the design's validity and ensure safety. The scaled prototype was manufactured through selective laser melting (SLM)-based additive manufacturing to reduce lead times and increase geometrical complexity. Additional CFD models were developed to optimize coolant manifold system parameters and perform a parametric study on channel geometry. An investigation on coolant manifold geometry demonstrated improvements in channel flow distribution when enlarging manifold lengths and increasing the number of tubes feeding into the flow. A three-dimensional model based on a single channel was developed to capture the effect of variable properties and thermal stratification. All cases in the simulation exhibited higher wall temperatures and lower convective coefficients than those determined through 1-D analytical equations. This implies that pressure and velocity safety factors must be implemented during system operation. Overall, the findings made in this investigation are thought to be of value to researchers and industrial practitioners when designing oxy-fuel direct power extraction systems operating at temperatures exceeding 3000 K. In addition to this, the implementation of the developed technology at pilot and commercial scales could result in a significant improvement in the efficiencies of heritage and next-generation power cycles.« less

  17. A multi-scalar PDF approach for LES of turbulent spray combustion

    NASA Astrophysics Data System (ADS)

    Raman, Venkat; Heye, Colin

    2011-11-01

    A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.

  18. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    NASA Astrophysics Data System (ADS)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry resulted in more acoustic energy into higher frequency modes, while the flat-face geometry excited modes closer to the fundamental longitudinal mode frequency and its harmonics. Multi-scale analysis techniques were used to investigate intermittency and the range of physical scales present in measured signals. Flame light emission measurements confirmed the presence of flame holding in the injector recess in both configurations. Analysis of dynamics in light emission signals showed flame response at the chamber acoustic resonance frequency in addition to non-acoustic modes associated with mixing shear layer dynamics in the injector recess. The first known benchmark quality data sets of such injector dynamics were recorded in each configuration to enable pressure-based validation of high fidelity models of gas-centered swirl coaxial injectors. This work presents a critical contribution to development of validated combustion dynamics predictive tools and to the understanding of gas-centered swirl coaxial injector elements.

  19. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    PubMed

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  20. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    PubMed

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  2. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  3. Estimation of the vortex length scale and intensity from two-dimensional samples

    NASA Technical Reports Server (NTRS)

    Reuss, D. L.; Cheng, W. P.

    1992-01-01

    A method is proposed for estimating flow features that influence flame wrinkling in reciprocating internal combustion engines, where traditional statistical measures of turbulence are suspect. Candidate methods were tested in a computed channel flow where traditional turbulence measures are valid and performance can be rationally evaluated. Two concepts are tested. First, spatial filtering is applied to the two-dimensional velocity distribution and found to reveal structures corresponding to the vorticity field. Decreasing the spatial-frequency cutoff of the filter locally changes the character and size of the flow structures that are revealed by the filter. Second, vortex length scale and intensity is estimated by computing the ensemble-average velocity distribution conditionally sampled on the vorticity peaks. The resulting conditionally sampled 'average vortex' has a peak velocity less than half the rms velocity and a size approximately equal to the two-point-correlation integral-length scale.

  4. Effect of silane concentration on the supersonic combustion of a silane/methane mixture

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Mclain, A. G.; Pellett, G. L.; Diskin, G. S.

    1986-01-01

    A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. This autoignition temperature can be contrasted with 2330 R for hydrogen and 1350 R for a 20 percent silane/hydrogen mixture in similar hardware. Methane without the silane additive did not autoignite in this configuration at total temperatures as high as 3900 R, the maximum temperature at which tests were conducted. Supersonic combustion tests with the silane concentration reduced to 10 percent indicated little improvement in combustion performance over pure methane. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

  5. Evaluation of FSK models for radiative heat transfer under oxyfuel conditions

    NASA Astrophysics Data System (ADS)

    Clements, Alastair G.; Porter, Rachael; Pranzitelli, Alessandro; Pourkashanian, Mohamed

    2015-01-01

    Oxyfuel is a promising technology for carbon capture and storage (CCS) applied to combustion processes. It would be highly advantageous in the deployment of CCS to be able to model and optimise oxyfuel combustion, however the increased concentrations of CO2 and H2O under oxyfuel conditions modify several fundamental processes of combustion, including radiative heat transfer. This study uses benchmark narrow band radiation models to evaluate the influence of assumptions in global full-spectrum k-distribution (FSK) models, and whether they are suitable for modelling radiation in computational fluid dynamics (CFD) calculations of oxyfuel combustion. The statistical narrow band (SNB) and correlated-k (CK) models are used to calculate benchmark data for the radiative source term and heat flux, which are then compared to the results calculated from FSK models. Both the full-spectrum correlated k (FSCK) and the full-spectrum scaled k (FSSK) models are applied using up-to-date spectral data. The results show that the FSCK and FSSK methods achieve good agreement in the test cases. The FSCK method using a five-point Gauss quadrature scheme is recommended for CFD calculations in oxyfuel conditions, however there are still potential inaccuracies in cases with very wide variations in the ratio between CO2 and H2O concentrations.

  6. Lean Blow-out Studies in a Swirl Stabilized Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil

    2015-05-01

    Lean blow out characteristics in a swirl stabilized aero gas turbine combustor have been studied using computational fluid dynamics. For CFD analysis, a 22.5° sector of an annular combustor is modeled using unstructured tetrahedral meshes comprising 1.2 × 106 elements. The governing equations are solved using the eddy dissipation combustion model in CFX. The primary combustion zone is analyzed by considering it as a well stirred reactor. The analysis has been carried out for different operating conditions of the reactants entering into the control volume. The results are treated as the base-line or reference values. Combustion lean blow-out limits are further characterized studying the behavior of combustion zone during transient engine operation. The validity of the computational study has been established by experimental study on a full-scale annular combustor in an air flow test facility that is capable of simulating different conditions at combustor inlet. The experimental result is in a good agreement with the analytical predictions. Upon increasing the combustor mass flow, the lean blow out limit increases, i.e., the blow out occurs at higher fuel-air ratios. In addition, when the operating pressure decreases, the lean blow out limit increases, i.e., blow out occurs at higher fuel-air ratios.

  7. Test results of low NO(x) catalytic combustors for gas turbines

    NASA Astrophysics Data System (ADS)

    Ozawa, Y.; Hirano, J.; Sato, M.; Saiga, M.; Watanabe, S.

    1994-07-01

    Catalytic combustion is an ultralow NO(x) combustion method, so it is expected that this method will be applied to a gas turbine combustor. However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, we designed a catalytic combust gas at a combustion temperature of 1300 C while keeping the catalytic temperature below 1000 C. After performing preliminary tests using LPG, we designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NO(x) and high combustion efficiency in the range from 1000 C to 1300 C of the combustor exit gas temperature.

  8. Heat production in depth up to 2500m via in situ combustion of methane using a counter-current heat-exchange reactor

    NASA Astrophysics Data System (ADS)

    Schicks, Judith Maria; Spangenberg, Erik; Giese, Ronny; Heeschen, Katja; Priegnitz, Mike; Luzi-Helbing, Manja; Thaler, Jan; Abendroth, Sven; Klump, Jens

    2014-05-01

    In situ combustion is a well-known method used for exploitation of unconventional oil deposits such as heavy oil/bitumen reservoirs where the required heat is produced directly within the oil reservoir by combustion of a small percentage of the oil. A new application of in situ combustion for the production of methane from hydrate-bearing sediments was tested at pilot plant scale within the first phase of the German national gas hydrate project SUGAR. The applied method of in situ combustion was a flameless, catalytic oxidation of CH4 in a counter-current heat-exchange reactor with no direct contact between the catalytic reaction zone and the reservoir. The catalyst permitted a flameless combustion of CH4 with air to CO2 and H2O below the auto-ignition temperature of CH4 in air (868 K) and outside the flammability limits. This led to a double secured application of the reactor. The relatively low reaction temperature allowed the use of cost-effective standard materials for the reactor and prevented NOx formation. Preliminary results were promising and showed that only 15% of the produced CH4 was needed to be catalytically burned to provide enough heat to dissociate the hydrates in the environment and release CH4. The location of the heat source right within the hydrate-bearing sediment is a major advantage for the gas production from natural gas hydrates as the heat is generated where it is needed without loss of energy due to transportation. As part of the second period of the SUGAR project the reactor prototype of the first project phase was developed further to a borehole tool. The dimensions of this counter-current heat-exchange reactor are about 540 cm in length and 9 cm in diameter. It is designed for applications up to depths of 2500 m. A functionality test and a pressure test of the reactor were successfully carried out in October 2013 at the continental deep drilling site (KTB) in Windischeschenbach, Germany, in 600 m depth and 2000 m depth, respectively. In this study we present technical details of the reactor, the catalyst and potential fields of application beside the production of natural gas from hydrate bearing sediments.

  9. A Preliminary Study on Rock Bed Heat Storage from Biomass Combustion for Rice Drying

    NASA Astrophysics Data System (ADS)

    Nelwan, L. O.; Wulandani, D.; Subrata, I. D. M.

    2018-05-01

    One of the main constraints of biomass fuel utilization in a small scale rice drying system is the operating difficulties related to the adjustment of combustion/feeding rate. Use of thermal storage may reduce the problem since combustion operation can be accomplished in a much shorter time and then the use of heat can be regulated by simply adjusting the air flow. An integrated biomass furnace-rock bed thermal storage with a storage volume of 540 L was designed and tested. There were four experiments conducted in this study. Charging was performed within 1-2 hours with a combustion rate of 11.5-15.5 kg/h. In discharging process, the mixing of air passing through the rock bed and ambient air were regulated by valves. Without adjusting the valve during the discharging process, air temperature increased up to 80°C, which is not suitable for rice batch drying process. Charging with sufficiently high combustion rate (14 kg/h) within 1 hour continued by adjusting the valve during discharging process below 60°C increased the discharge-charge time ratio (DCTR) up to 5.33 at average air temperature of 49°C and ambient temperature of 33°C.The efficiency of heat discharging was ranged from 34.5 to 45.8%. From the simulation, as much as 156.8-268.8 kg of rice was able to be dried by the discharging conditions.

  10. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    PubMed

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    NASA Astrophysics Data System (ADS)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  12. Visualization and Analysis of a Hydrocarbon Premixed Flame a in Small Scale Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Cantu, Luca Maria Luigi

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight enthalpy. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature. In the same facility, OH PLIF measurements were also performed; OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulations. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical predictions and measurements using other techniques. Finally, a comparison between NO PLIF non-combustion cases and OH PLIF combustion cases is provided. The comparison reveals that the dominant effect of flame propagation is freestream turbulence rather than heat release and concentration gradients.

  13. Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    An experimental study is conducted to investigate pulsed combustion in a lab-scale bipropellant rocket engine using hypergolic propellants. The propellant combination is high concentration hydrogen peroxide and a catalyst-laced triglyme fuel. A total of 50 short duration firings have been conducted; the vast majority in an open-chamber configuration. High amplitude pulsations were evident in nearly all cases and have been assessed with high frequency pressure measurements. Both pintle and unlike impinging quadlet injector types have been evaluated although the bulk of the testing was with the latter configuration. Several firings were conducted with a transparent chamber in an attempt to gain understanding using a high-speed camera in the visible spectrum. Peak chamber pressures in excess of 5000 psi have been recorded with surface mounted high frequency gages with pulsation frequencies exceeding 600 Hz. A characterization of time-averaged performance is made for the unsteady system, where time-resolved thrust and pressure measurements were attempted. While prior literature describes this system as a pulse detonation rocket engine, the combustion appears to be more "constant volume" in nature.

  14. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuhal Gogebakan; Nevin Selcuk

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnutmore » shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.« less

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  16. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  17. A Study of Fire Hazards from Combustible Ammunition: Effects of Scale and Confinement

    DTIC Science & Technology

    1984-12-01

    2268 171 02 Solna, Sweden Major Vincente Garcia Estado Major del Ejercito Division de Logistica Calle Prim. Madrid, Spain ...distance standards and classification test procedures for munition items in storage and transport with particular emphasis on items that present mainly...Operations 3 National Defence Headquarters 191 Colonel By Drive Ottawa, Ontario, Canada K1A 0K2 Cdt. P. Denecker Centre Logistique de la Force Terrestre

  18. Recovery. Oxygen Transport Membrane-Based OxyCombustion for CO 2 Capture from Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean; Geary, Joan; Chakravrti, Shrikar

    2015-12-22

    This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-07NT43088 during the period from April 2007 - June 2012. This report outlines accomplishments for the following tasks: Task 1 – Process and Systems Engineering, Task 2 – OTM Performance Improvement, Task 3 – OTM Manufacturing Development, Task 4 - Laboratory Scale Testing and Task 5 – Project Management.

  19. Determining the relative toxicity and smoke obscuration of combustion products of mine combustibles. Report of Investigations/1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rosa, M.I.; Litton, C.D.

    1990-01-01

    Combustible materials, when burned, produce toxic gases and smoke, which may vary dramatically from one material to another, with resultant different total toxicity and smoke obscuration levels. The U.S. Bureau of Mines report presents smoke property data acquired for a variety of mine combustibles and shows that there exists a correlation between the smoke properties, the relative toxicity, and the smoke obscuration levels of those combustibles tested. These correlations can be used to devise simple, standard tests for determining the toxic and smoke obscuration hazards of mine materials during fire.

  20. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Merkel; Karl Amo; Richard Baker

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plantmore » energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.« less

  1. Operating condition and geometry effects on low-frequency afterburner combustion instability in a turbofan at altitude

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnsen, R. L.

    1979-01-01

    Three afterburner configurations were tested in a low-bypass-ratio turbofan engine to determine the effect of various fuel distributions, inlet conditions, flameholder geometry, and fuel injection location on combustion instability. Tests were conducted at simulated flight conditions of Mach 0.75 and 1.3 at altitudes from 11,580 to 14,020 m (38,000 to 46,000 ft). In these tests combustion instability with frequency from 28 to 90 Hz and peak-to-peak pressure amplitude up to 46.5 percent of the afterburner inlet total pressure level was encountered. Combustion instability was suppressed in these tests by varying the fuel distribution in the afterburner.

  2. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leadingmore » to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.« less

  3. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. E.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1975-01-01

    Large-scale aircraft lavatory and cargo compartment fire tests are described. Tests were conducted to evaluate the effectiveness of these compartments to contain fire and smoke. Two tests were conducted and are detailed. Test 1 involved a production Boeing 747 lavatory of the latest design installed in an enclosure outside the aircraft, to collect gases and expose animals to these gases. Results indicate that the interior of the lavatory was completely burned, evolving smoke and combustion products in the enclosure. Test 2 involved a simulated Douglas DC-10 cargo compartment retro-fitted with standard fiberglass liner. The fire caused excessive damage to the liner and burned through the ceiling in two areas. Test objectives, methods, materials, and results are presented and discussed.

  4. Technology evaluation report: SITE (Superfund Innovative Technology Evaluation) program demonstration test. The American Combustion Pyretron Thermal Destruction System at the US EPA's (Environmental Protection Agency's) combustion research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterland, L.; Lee, J.W.

    1989-04-01

    A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. Themore » Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.« less

  5. Combustion Science

    NASA Image and Video Library

    2003-04-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, "self-cooled", vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  6. NASA's Hypersonic Research Engine Project: A review

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1994-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.

  7. 40 CFR 75.53 - Monitoring plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are pre-combustion, post-combustion, or integral to the combustion process; control equipment code... fuel flow-to-load test in section 2.1.7 of appendix D to this part is used: (A) The upper and lower... and applied to the hourly flow rate data: (A) Stack or duct width at the test location, ft; (B) Stack...

  8. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  9. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  10. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  11. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    PubMed Central

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  12. The NACA Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    This report describes the apparatus as designed and constructed at the Langley Memorial Aeronautical Laboratory, for studying the formation and combustion of fuel sprays under conditions closely simulating those occurring in a high-speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel-injection system so designed that a single charge of fuel can be injected into the combustion chamber of the engine, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical-disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2,000 per second are taken of the spray formation by means of spark discharges. When combustion takes place the light of the combustion is recorded on the same photographic film as the spray photographs. The report includes the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation.

  13. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  14. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, J.; Bohac, D.

    2014-04-01

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofitsmore » including tightening and changes to distribution and ventilation systems to proceed.« less

  15. An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels

    NASA Technical Reports Server (NTRS)

    Jachimowski, Casimir J.

    1992-01-01

    The effect of initial nonequilibrium dissociated air constituents on the combustion of hydrogen in high-speed flows for a simulated Mach 17 flight condition was investigated by analyzing the results of comparative combustion experiments performed in a reflected shock tunnel test gas and in a shock expansion tunnel test gas. The results were analyzed and interpreted with a one-dimensional quasi-three-stream combustor code that includes finite rate combustion chemistry. The results of this study indicate that the combustion process is kinetically controlled in the experiments in both tunnels and the presence of the nonequilibrium partially dissociated oxygen in the reflected shock tunnel enhances the combustion. Methods of compensating for the effect of dissociated oxygen are discussed.

  16. Fuel combustion adds to anxiety over CO/sub 2/ buildup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleeper, D.

    1979-08-01

    In the past 20 y, the annual rate of increase of atmosphreic carbon dioxide has grown sharply because of increased fossil fuel combustion. Most scientists agree that CO/sub 2/ buildup in the atmosphere is causing a greenhouse effect, slowly warming the earth's climate. Large-scale production of synthetic fuels that could be combusted without releasing CO/sub 2/ is examined as a possible solution. 31 references, 1 figure.

  17. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    PubMed Central

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-01-01

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  18. Triggered instabilities in rocket motors and active combustion control for an incinerator afterburner

    NASA Astrophysics Data System (ADS)

    Wicker, Josef M.

    1999-11-01

    Two branches of research are conducted in this thesis. The first deals with nonlinear combustion response as a mechanism for triggering combustion instabilities in solid rocket motors. A nonlinear wave equation is developed to study a wide class of combustion response functions to second-order in fluctuation amplitude. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be how the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse. Also, dependence of nonlinear stability upon system parameters is considered. The second part of this thesis presents research for a controller to improve the emissions of an incinerator afterburner. The developed controller was experimentally tested at the Naval Air Warfare Center (NAWC), on a 50kW-scale model of an afterburner for Naval shipboard incinerator applications. Acoustic forcing of the combustor's reacting shear layer is used to control the formation of coherent vortical structures, within which favorable fuel-air mixing and efficient combustion can occur. Laser-based measurements of CO emissions are used as the performance indicator for the combustor. The controller algorithm is based on the downhill simplex method and adjusts the shear layer forcing parameters in order to minimize the CO emissions. The downhill simplex method was analyzed with respect to its behavior in the face of time-variation of the plant and noise in the sensor signal, and was modified to account for these difficulties. The control system has experimentally demonstrated the ability (1) to find optimal control action for single- and multi-variable control, (2) to maintain optimal control for time-varying operating states, and (3) to automatically adjust auxiliary fuel in response to changing stoichiometry of the incoming waste pyrolysis gas. Also presented but not tested in the experiments are an expert-type model-guidance feature to aid convergence of the controller to optimum control, and methodology for maintaining flammability.

  19. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  20. Installation Restoration General Environmental Technology Development. Task 2. Incineration Test of Explosives Contaminated Soils at Savanna Army Depot Activity, Savanna, Illinois.

    DTIC Science & Technology

    1984-04-01

    800OF and afterburner temperatures below 112000F. Explosives were detected in the combustion gases leaving the primary chamber for one test burn (i.e... combustion chamber. (c) Temperature in the secondary combustion chamber. l These key parameters were selected since they directly re- late to the...4523A 5.4 Heat exchanger (waste heat boiler) . The f lue gases discharged from the secondary combustion chamber were directed, via refractory-lined duct

  1. Emission and control of N2O and composition of ash derived from cattle manure combustion using a pilot-scale fluidized bed incinerator.

    PubMed

    Oshita, Kazuyuki; Kawaguchi, Koji; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujimori, Takashi; Fujiwara, Taku

    2015-10-06

    This study investigates the emission of nitrous oxide (N 2 O) and discusses the reduction of N 2 O emissions during the 24-h combustion of cattle manure using a pilot-scale fluidized bed incinerator under various experimental conditions. The results of these experiments were then validated against previously reported data. In addition, the characteristics of cattle manure incineration ash and their changes under different combustion conditions were estimated. In incineration experiments with composted cattle manure, N 2 O concentrations using multi-stage combustion were 75% lower than the concentrations resulting from normal combustion without additional auxiliary fuel, since N 2 O could be decomposed in the high-temperature zone formed by the inlet of the secondary combustion air. The N 2 O emission factor under normal combustion conditions (800°C) was 6.0% g-N 2 O-N/g-N. This result is similar to the values found in previous studies at the same temperature. The N 2 O emission factor was decreased to 1.6% g-N 2 O-N/g-N using a multi-stage combustion procedure. The current Japanese N 2 O emission factor of 0.1% g-N 2 O-N/g-N is an underestimate for some conditions and should be uniquely specified for each condition. Finally, cattle manure ash contains ample fertilizer elements, little Fe, Al and Zn, but abundant Cl. Therefore if Cl could be removed by some kind of pretreatment, cattle manure ash could be used as a favourable fertilizer.

  2. Review of biosolids management options and co-incineration of a biosolid-derived fuel.

    PubMed

    Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas

    2011-11-01

    This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    PubMed

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  4. Combustion of interacting droplet arrays in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.

    1995-01-01

    This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.

  5. The influence of fuel type to combustion characteristic in diffusion flame drying by computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2017-05-01

    Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.

  6. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.

    2016-01-01

    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  7. PM10 emissions and PAHs: The importance of biomass type and combustion conditions.

    PubMed

    Zosima, Angela T; Tzimou-Tsitouridou, Roxani D; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Ochsenkühn-Petropoulou, Maria Th

    2016-01-01

    The aim of the present work was to investigate the impact of biomass combustion with respect to conditions and fuel types on particle emissions (PM10) and their PAHs content. Special concern was on sampling, quantification and characterization of PM using different appliances, fuels and operating procedures. For this purpose different lab-scale burning conditions, two pellets stoves (8.5 and 10 kW) and one open fireplace were tested by using eight fuel types of biomass. An analytical method is described for the quantitative determination of 16 PAHs using liquid-liquid extraction and subsequent measurement by gas chromatography coupled to a mass spectrometer (GC-MS). Average PM10 emissions ranged from about 65 to 170 mg/m(3) at lab-scale combustions with flow oxygen at 13% in the exhaust gas, 85-220 mg/m(3) at 20% O2, 47-83 mg/m(3) at pellet stove of 10 kW, 34-69 mg/m(3) at pellet stove of 8.5 kW and 106-194 mg/m(3) at the open fireplace. The maximum permitted particle emission limit is 150 mg/m(3). Pellets originated from olive trees and from nonmixture trees were found to emit the lowest particulate matter in relation to the others, so they are considered healthiest and suitable for domestic heating reasons. In general, the results show that biomass open burning is an important PM10 and PAHs emission source.

  8. Effects of aluminum and iron nanoparticle additives on composite AP/HTPB solid propellant regression rate

    NASA Astrophysics Data System (ADS)

    Styborski, Jeremy A.

    This project was started in the interest of supplementing existing data on additives to composite solid propellants. The study on the addition of iron and aluminum nanoparticles to composite AP/HTPB propellants was conducted at the Combustion and Energy Systems Laboratory at RPI in the new strand-burner experiment setup. For this study, a large literature review was conducted on history of solid propellant combustion modeling and the empirical results of tests on binders, plasticizers, AP particle size, and additives. The study focused on the addition of nano-scale aluminum and iron in small concentrations to AP/HTPB solid propellants with an average AP particle size of 200 microns. Replacing 1% of the propellant's AP with 40-60 nm aluminum particles produced no change in combustive behavior. The addition of 1% 60-80 nm iron particles produced a significant increase in burn rate, although the increase was lesser at higher pressures. These results are summarized in Table 2. The increase in the burn rate at all pressures due to the addition of iron nanoparticles warranted further study on the effect of concentration of iron. Tests conducted at 10 atm showed that the mean regression rate varied with iron concentration, peaking at 1% and 3%. Regardless of the iron concentration, the regression rate was higher than the baseline AP/HTPB propellants. These results are summarized in Table 3.

  9. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  10. Experiments in a Combustion-Driven Shock Tube with an Area Change

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.

    Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.

  11. Observation of Flame Stabilized at a Hydrogen-Turbojet-Engine Injector Installed into a Lab-Scale Combustion Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi

    A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.

  12. Supersonic Combustion Ramjet Research

    DTIC Science & Technology

    2012-08-01

    was in collaboration with Prof. R. Bowersox (Texas A&M University) and Dr. K. Kobayashi ( Japanese Aerospace Exploration Agency, JAXA). 4.2 Ignition... cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” Paper B13, 5th US Combustion

  13. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songgeng Li; Shuang Deng; Andy Wu

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6more » figs., 5 tabs.« less

  14. Final report: Prototyping a combustion corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.; Leach, Joshua

    2001-12-15

    The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real worldmore » research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.« less

  15. X-33 Combustion-Wave Ignition System Tested

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1999-01-01

    The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.

  16. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is formore » inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.« less

  17. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-05-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is formore » inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.« less

  18. Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, H.J.; Steinberg, M.

    1985-04-01

    Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less

  19. EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES

    PubMed Central

    Perera, Inoka Eranda; Litton, Charles D.

    2015-01-01

    Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m−1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters’ Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety. PMID:26229418

  20. EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES.

    PubMed

    Perera, Inoka Eranda; Litton, Charles D

    Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m -1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters' Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety.

  1. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    NASA Astrophysics Data System (ADS)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.

  2. Particle Streak Velocimetry of Supersonic Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  3. Cross-scale controls on carbon emissions from boreal forest megafires.

    PubMed

    Walker, Xanthe J; Rogers, Brendan M; Baltzer, Jennifer L; Cumming, Steven G; Day, Nicola J; Goetz, Scott J; Johnstone, Jill F; Schuur, Edward A G; Turetsky, Merritt R; Mack, Michelle C

    2018-04-26

    Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m -2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale. © 2018 John Wiley & Sons Ltd.

  4. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor

    2017-11-01

    A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.

  5. BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...

  6. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF LAND-CLEARING DEBRIS

    EPA Science Inventory

    The report identifies and quantifies a broad range of pollutants that are discharged during small-scale, simulated, open combustion of land-clearing debris and reports these emissions relative to the mass of material combusted. Two types of land-clearing debris (representing the ...

  7. CHARACTERIZATION OF EMISSIONS FROM THE SIMULATED OPEN BURNING OF SCRAP TIRES

    EPA Science Inventory

    The report gives results of a small-scale combustion study, designed to collect, identify, and quantify products emitted during the simulated open burning of scrap tires. Fixed combustion gas, volatile and semi-volatile organic, particulate, and airborne metals data were collecte...

  8. Design and evaluation of a low nitrogen oxides natural gas-fired conical wire-mesh duct burner for a micro-cogeneration unit

    NASA Astrophysics Data System (ADS)

    Ramadan, Omar Barka Ab

    A novel low NOx conical wire-mesh duct burner was designed, built and tested in the present research. This thesis documents the design process and the in-depth evaluation of this novel duct burner for the development of a more efficient micro-cogeneration unit. This duct burner provides the thermal energy necessary to raise the microturbine exhaust gases temperature to increase the heat recovery capability. The duct burner implements both lean-premixed and surface combustion techniques to achieve low NOx and CO emissions. The design of the duct burner was supported by a qualitative flow visualization study for the duct burner premixer to provide insight into the premixer flow field (mixing process). Different premixer geometries were used to control the homogeneity of the fuel-oxidant mixture at the exit of the duct burner premixer. Laser sheet illumination (LSI) technique was used to capture images of the mixing process, for each configuration studied. A quasi-quantitative analysis technique was developed to rank the different premixer geometries in terms of mixing effectiveness. The premixer geometries that provided better mixing were selected and used for the combustion tests. The full-scale gas-fired duct burner was installed in the exhaust duct of a micro-cogeneration unit for the evaluation. Three wire-mesh burners with different pressure drops were used. Each burner has a conical shape made from FeCrAL alloy mat and was designed based on a heat release per unit area of 2500 kW/m2 and a total heat release of 240kW at 100 percent excess air. The local momentum of the gaseous mixture introduced through the wire-mesh was adjusted so that the flame stabilized outside the burner mesh (surface combustion). Cold flow tests (i.e., the duct burner was off, but the microturbine was running) were conducted to measure the effect of different duct burner geometrical parameters on flow split between the combustion zone and the bypass channel, and on pressure drop across the duct burner. A considerable amount of detailed parametric experimental data was collected to investigate the performance characteristics of the duct burner. The variables studied (firing rate, mass flow ratio, conical burner pressure drop, blockage ratio, conical burner shield length, premixer geometry and inlet conditions) were all found to play an important role on emissions (NOx and CO), overall duct burner pressure drop and flame stability. The range of firing rates at which surface combustion was maintained for the duct burner was defined by direct observation of the burner surface and monitoring of the temperature in the combustion zone. Flame images were captured for qualitative assessment. The combustion tests results presented in this thesis proved that the design procedures that were implemented to design this novel microturbine conical wire-mesh duct burner were successful. During the course of the combustion tests, the duct burner displayed stable, low emissions operation throughout the surface firing rate range of 148 kW to 328 kW (1574 kW/m 2 to 3489 kW/m2). Emissions of less than 5 ppm (corrected to 15 percent 02) for NOx and CO emissions were recorded, while the duct burner successfully raised the microturbine exhaust gases temperature from about 227°C to as high as 700°C. The overall duct burner pressure drop throughout was consistently below the design limit of 249 Pa.

  9. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto

    2016-02-01

    Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.

  11. Combustion and Performance Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods

  12. Metals combustion in normal gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.

    1993-01-01

    The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.

  13. Experimental, theoretical, and numerical studies of small scale combustion

    NASA Astrophysics Data System (ADS)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number to describe the competition between the mass transport in gas phase and the heat conduction in gas and solid phases was defined. Experimental observation and theoretical analysis suggested that the flame-wall coupling significantly increased the effective Lewis number and led to a new mechanism to promote the thermal diffusion instability. Due to the short flow residence time in small scale combustion, reactants, and oxidizers may not be able to be fully premixed before combustion. As such, non-premixed combustion plays an important role. Non-premixed mixing layer combustion within a constrained mesoscale channel was studied. Depending on the flow rate, it was found that there were two different flame regimes, an unsteady bimodal flame regime and a flame street regime with multiple stable triple flamelets. This multiple triple flame structure was identified experimentally for the first time. A scaling analytical model was developed to qualitatively explain the mechanism of flame streets. The effects of flow velocity, wall temperature, and Lewis number on the distance between flamelets and the diffusion flame length were also investigated. The results showed that the occurrence of flame street regimes was a combined effect of heat loss, curvature, diffusion, and dilution. To complete this thesis, experiments were conducted to measure the OH concentration using Planar Laser Induced Fluorescence (PLIF) in a confined mesoscale combustor. Some preliminary results have been obtained for the OH concentration of flamelets in a flame street. When the scale of the micro reactor is further reduced, the rarefied gas effect may become significant. In this thesis, a new concentration slip model to describe the rarefied gas effect on the species transport in microscale chemical reactors was obtained. The present model is general and recovers the existing models in the limiting cases. The analytical results showed the concentration slip was dominated by two different mechanisms, the surface reaction induced concentration slip (RIC) and the temperature slip induced concentration slip (TIC). It is found that the magnitude of RIC slip was proportional to the product of the Damkohler number and Knudsen number. The results showed the impact of reaction induced concentration slip (RIC slip) effects on catalytic reactions strongly depended on the Damkohler number, the Knudsen number, and the surface accommodation coefficient.

  14. LeRC in-house experimental research

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    1992-01-01

    The topics covered include the following: LeRC in-house experimental research; combustion concepts; schedule for in-house experiments; lean premixed prevaporized combustion; comparisons of low NO(x) lean premixed/prevaporized data; rich burn/quick quench/lean burn (RQL); RQL combustion; fuel rich catalytic combustion; advanced diagnostics; and ceramic matrix liner test rig.

  15. Combustion-chamber Performance Characteristics of a Python Turbine-propeller Engine Investigated in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, Carl E

    1951-01-01

    Combustion-chamber performance characteristics of a Python turbine-propeller engine were determined from investigation of a complete engine over a range of engine speeds and shaft horsepowers at simulated altitudes. Results indicated the effect of engine operating conditions and altitude on combustion efficiency and combustion-chamber total pressure losses. Performance of this vaporizing type combustion chamber was also compared with several atomizing type combustion chambers. Over the range of test conditions investigated, combustion efficiency varied from approximately 0.95 to 0.99.

  16. Effect of flame-tube head structure on combustion chamber performance

    NASA Technical Reports Server (NTRS)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  17. The influence of micro-scale dimples and nano-sized grains on the fretting characteristics generated by laser pulses.

    PubMed

    Amanov, Auezhan; Watabe, Tsukasa; Sasaki, Shinya

    2013-12-01

    The tribological characteristics of micro-scale dimpled Cu-based alloy specimen generated using a laser surface texturing (LST) were assessed and compared with that of the untextured specimen. The objective of this study is to improve the tribological characteristics of internal combustion engine (ICE) bearings and bushings made of Cu-based alloy by generating micro-scale dimples using an LST. Fretting wear tests were performed by sliding a hardened SAE52100 steel ball against the untextured and LSTed specimens at a normal load of 5 N under oil-lubricated conditions. The friction force and relative movement between the specimens were measured simultaneously during the fretting tests. The test results showed that the LSTed specimens showed a reduction in friction coefficient and an enhancement in fretting wear resistance compared to that of the untextured specimen. The friction coefficient and fretting wear volume increased with increasing frequency for both untextured and LSTed specimens. The improved tribological properties of the LSTed specimen may be attributed to the micro-scale dimples, refined grain size and high lattice strain. In addition, a model for the nanocrystallization mechanism of the LSTed specimen was proposed.

  18. Parallel Simulation of Unsteady Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.

  19. Research on ignition and flame spread of solid materials in Japan

    NASA Technical Reports Server (NTRS)

    Ito, Kenichi; Fujita, Osamu

    1995-01-01

    Fire safety is one of the main concerns for crewed missions such as the space station. Materials used in spacecraft may burn even if metalic. There are severe restrictions on the materials used in spacecraft from the view of fire safety. However, such restrictions or safety standards are usually determined based on experimental results under normal gravity, despite large differences between the phenomena under normal and microgravity. To evaluate the appropriateness of materials for use in space, large amount of microgravity fire-safety combustion data is urgently needed. Solid material combustion under microgravity, such as ignition and flame spread, is a relatively new research field in Japan. As the other reports in this workshop describe, most of microgravity combustion research in Japan is droplet combustion as well as some research on gas phase combustion. Since JAMIC, the Japan Microgravity Center, (which offers 10 seconds microgravity time) opened in 1992, microgravity combustion research is robust, and many drop tests relating to solid combustion (paper combustion, cotton string combustion, metal combustion with Aluminium or Magnesium) have been performed. These tests proved that the 10 seconds of microgravity time at JAMIC is useful for solid combustion research. Some experiments were performed before JAMIC opened. For example, latticed paper was burned under microgravity by using a 50 m drop tower to simulate porous material combustion under microgravity. A 50 m tower provides only 2 seconds microgravity time however, and it was not long enough to investigate the solid combustion phenomena.

  20. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    NASA Technical Reports Server (NTRS)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  1. Method and device for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)

    1988-01-01

    A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.

  2. An Overview of Atmospheric Fluidized Bed Combustion Systems as Applied to Army Scale Central Heat Plants

    DTIC Science & Technology

    1992-11-01

    heat transfer surfaces located in the path of the exiting combustion gases generate additional steam. Flue gas particulates entrained in the combustion...anid the overall heat transfer surface anid boiler volume can be reduced. After the hot flue gas exits thie bed, it enters the external COnv.ctfion...rates, underfeed stoker fired combustors emit little smoke, and only a low concentration of particulates entrained in the flue gas . Under these

  3. Rate of hexabromocyclododecane decomposition and production of brominated polycyclic aromatic hydrocarbons during combustion in a pilot-scale incinerator.

    PubMed

    Miyake, Yuichi; Tokumura, Masahiro; Wang, Qi; Amagai, Takashi; Horii, Yuichi

    2017-11-01

    Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence time<2sec), followed a pseudo-first-order kinetics model. An Arrhenius plot revealed that the activation energy and frequency factor of the decomposition of HBCD by combustion were 14.2kJ/mol and 1.69sec -1 , respectively. During combustion, 11 brominated polycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m 3 ) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion. Copyright © 2017. Published by Elsevier B.V.

  4. ENHANCED FORMATION OF DIOXINS AND FURANS FROM COMBUSTION DEVICES BY ADDITION OF TRACE QUANTITIES OF BROMINE

    EPA Science Inventory

    Past pilot-scale experimental studies have shown a dramatic increase in the formation of certain chlorinated products of incomplete combustion (PICs) caused by the addition of trace amounts of bromine (Br). Emissions of trichloroethylene and tetrachloorethylene, generated as PICs...

  5. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesnor, J.D.

    1993-10-26

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessmentmore » of Toxic By-Product Control Technologies; and Test Protocol Definition.« less

  6. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests. The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation.

  7. Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun

    2017-10-01

    Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.

  8. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  9. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Douglas; Bayham, Samuel; Weber, Justin

    The proposed Clean Power Plan requires CO 2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, themore » National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO 2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was completed using NETL’s 50kW th circulating Chemical Looping Reactor (CLR) test facility.« less

  10. Modeling of Nonacoustic Combustion Instability in Simulations of Hybrid Motor Tests

    NASA Technical Reports Server (NTRS)

    Rocker, M.

    2000-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of nonacoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne, and Martin Marietta at NASA Marshall Space Flight Center (MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5-Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5-Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in elimination of combustion instability with the installation of an orifice immediately upstream of the injector. Formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom. and Claflin. The previous model simulated an unstable independent research and development (IR&D) hybrid motor test performed by Thiokol. There was very good agreement between the model and test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, tests performed at MSFC under the HPTLVB program were actually simulated. ln the current model, the hybrid motor, consisting of the liquid oxygen (lox) injector, the multiport solid fuel grain, and nozzle, was simulated. The lox feedsystem, consisting of the tank, venturi. valve, and feed lines, was also simulated in the model. All components of the hybrid motor and lox feedsystem are treated by a lumped-parameter approach. Agreement between the results of the transient model and actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes: 1. a lox feed system of insufficient stiffness, and 2. a lox injector with an impedance (it pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.

  11. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  12. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A. (Inventor)

    1971-01-01

    An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture.

  13. Discussion of and reply to ``The search for an accurate and practical means for testing residue from combustion of municipal solid waste for percent combustibles and energy content``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, J.D.; Hecklinger, R.S.

    1995-11-01

    This paper by Roger S. Hecklinger is a good contribution to the understanding of municipal solid waste combustion. The traditional test methods used on residue testing were summarized in a clear manner. Mr. Hecklinger describes sampling problems using coal and coke ash testing methods, which are similar to those experienced in testing the solid waste itself for its fuel content. The author gives several comments regarding the importance of the sampling program. This article also contains the original author`s reply to the comments and questions.

  14. High speed spectral measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos; Spidell, Matthew T.; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Several homemade explosives (HMEs) were manufactured and detonated at a desert test facility. Visible and infrared signatures were collected using two Fourier transformspectrometers, two thermal imaging cameras, a radiometer, and a commercial digital video camera. Spectral emissions from the post-detonation combustion fireball were dominated by continuum radiation. The events were short-lived, decaying in total intensity by an order of magnitude within approximately 300ms after detonation. The HME detonation produced a dust cloud in the immediate area that surrounded and attenuated the emitted radiation from the fireball. Visible imagery revealed a dark particulate (soot) cloud within the larger surrounding dust cloud. The ejected dust clouds attenuated much of the radiation from the post-detonation combustion fireballs, thereby reducing the signal-to-noise ratio. The poor SNR at later times made it difficult to detect selective radiation from by-product gases on the time scale (~500ms) in which they have been observed in other HME detonations.

  15. Rapid Conditioning for the Next Generation Melting System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rue, David M.

    This report describes work on Rapid Conditioning for the Next Generation Melting System under US Department of Energy Contract DE-FC36-06GO16010. The project lead was the Gas Technology Institute (GTI). Partners included Owens Corning and Johns Manville. Cost share for this project was provided by NYSERDA (the New York State Energy Research and Development Authority), Owens Corning, Johns Manville, Owens Illinois, and the US natural gas industry through GTI’s SMP and UTD programs. The overreaching focus of this project was to study and develop rapid refining approaches for segmented glass manufacturing processes using high-intensity melters such as the submerged combustion melter.more » The objectives of this project were to 1) test and evaluate the most promising approaches to rapidly condition the homogeneous glass produced from the submerged combustion melter, and 2) to design a pilot-scale NGMS system for fiberglass recycle.« less

  16. Upscaling Self-Sustaining Treatment for Active Remediation (STAR): Experimental Study of Scaling Relationships for Smouldering Combustion to Remediate Soil

    NASA Astrophysics Data System (ADS)

    Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.

    2013-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large scale experiments, including: peak temperatures, velocities and thicknesses of the smouldering front, rates of mass destruction of the contaminant, and rates of gaseous emissions during combustion. Additionally, upward and downward smouldering experiments were compared at the column scale to assess the significance of buoyant flow effects. An understanding of these scaling relationships will provide important information to aid in the design of field-scale applications of STAR.

  17. Results of the NASP Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test Program

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George S.

    1995-01-01

    This paper describes the test techniques and results from the National Aerospace Plane Government Work Package 53, the Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test program conducted in the NASA Ames 16-Inch Combustion Driven Shock Tunnel. This was a series of near full-scale scramjet combustor tests with the objective to obtain high speed combustor and nozzle data from an engine with injector configurations similar to the NASP E21 and E22a designs. The experimental test approach was to use a large combustor model (80-100% throat height) designed and fabricated for testing in the semi-free jet mode. The conditions tested were similar to the "blue book" conditions at Mach 12, 14, and 16. GWP 53 validated use of large, long test time impulse facilities, specifically the Ames 16-Inch Shock Tunnel, for high Mach number scramjet propulsion testing an integrated test rig (inlet, combustor, and nozzle). Discussion of key features of the test program will include: effects of the 2-D combustor inlet pressure profile; performance of large injectors' fueling system that included nozzlettes, base injection, and film cooling; and heat transfer measurements to the combustor. Significant instrumentation development and application efforts include the following: combustor force balance application for measurement of combustor drag for comparison with integrated point measurements of skin friction; nozzle metric strip for measuring thrust with comparison to integrated pressure measurements; and nonintrusive optical fiber-based diode laser absorption measurements of combustion products for determination of combustor performance. Direct measurements will be reported for specific test article configurations and compared with CFD solutions.

  18. NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

    NASA Image and Video Library

    2016-12-08

    A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)

  19. Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    1999-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of non-acoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne and Martin Marietta at NASA/Marshall Space Flight Center (NASAIMSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5 Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5 Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in the elimination of combustion instability with the installation of an orifice immediately upstream of the injector. The formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom, and Claflin. The previous model simulated an unstable IR&D hybrid motor test performed by Thiokol. There was very good agreement between the model and the test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, the tests performed at NASA/MSFC under the HPTLVB program were actually simulated. In the current model, the hybrid motor consisting of the liquid oxygen (LOX) injector, the multi-port solid fuel grain and the nozzle was simulated. Also, simulated in the model was the LOX feed system consisting of the tank, venturi, valve and feed lines. All components of the hybrid motor and LOX feed system are treated by a lumped-parameter approach. Agreement between the results of the transient model and the actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes. The first cause was a LOX feed system of insufficient stiffness. The second cause was a LOX injector with an impedance or pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.

  20. Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    1999-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of non-acoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne and Martin Marietta at NASA/Marshall Space Flight Center (NASA/MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5 Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5 Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in the elimination of combustion instability with the installation of an orifice immediately upstream of the injector. The formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom, and Claflin. The previous model simulated an unstable IR&D hybrid motor test performed by Thiokol. There was very good agreement between the model and the test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, the tests performed at NASA/MSFC under the HPTLVB program were actually simulated. In the current model, the hybrid motor consisting of the liquid oxygen (LOX) injector, the multi-port solid fuel grain and the nozzle was simulated. Also, simulated in the model was the LOX feed system consisting of the tank, venturi, valve and feed lines. All components of the hybrid motor and LOX feed system are treated by a lumped-parameter approach. Agreement between the results of the transient model and the actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes. The first cause was a LOX feed system of insufficient stiffness. The second cause was a LOX injector with an impedance or pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.

  1. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  2. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Astrophysics Data System (ADS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-09-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  3. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  4. Coal desulfurization in a rotary kiln combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, J.T. Jr.

    1991-04-22

    The focus of our work during the first quarter of 1991 was on combustion tests at the PEDCO rotary kiln reactor at North American Rayon (NARCO) plant in Elizabethton, TN. The tests had essentially tow related objectives: (a) to obtain basic data on the combustion of anthracite culm in a rotary kiln reactor, and (b) upon the test results, determine how best to proceed with our own planned program at the Humphrey Charcoal kiln in Brookville, PA. The rationale for the tests at PEDCO arose from process analysis which posted red flags on the feasibility of burning low-grade, hard-to-burn fuelsmore » like anthracite culms, in the rotary kiln. The PEDCO unit afforded a unique opportunity to obtain some quick answers at low cost. Two different anthracite culm fuels were tested: a so-called Jeddo culm with an average heating value of 7000 Btu/lb, and a relatively poorer culm, and Emerald'' culm, with an average heating value of 5000 Btu/lb. An attempt was also made to burn a blend of the Emerald culm with bituminous coal in 75/25 percent proportions. This report describes the tests, their chronology, and preliminary results. As it turned out, the PEDCO unit is not configured properly for the combustion of anthracite culm. As a result, it proved difficult to achieve a sustained period of steady-state combustion operation, and combustion efficiencies were low even when supplemental fuel was used to aid combustion of the culm. 1 fig., 2 tabs.« less

  5. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    EPA Science Inventory

    Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental ...

  6. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  7. In situ visualization for large-scale combustion simulations.

    PubMed

    Yu, Hongfeng; Wang, Chaoli; Grout, Ray W; Chen, Jacqueline H; Ma, Kwan-Liu

    2010-01-01

    As scientific supercomputing moves toward petascale and exascale levels, in situ visualization stands out as a scalable way for scientists to view the data their simulations generate. This full picture is crucial particularly for capturing and understanding highly intermittent transient phenomena, such as ignition and extinction events in turbulent combustion.

  8. FORMATION OF FINE PARTICLES FROM RESIDUAL OIL COMBUSTION: REDUCING ULTRAFINE NUCLEI THROUGH THE ADDITION OF INORGANIC SORBENT

    EPA Science Inventory

    The paper gives results of an investigation, using an 82-kW-rated laboratory-scale refractory-lined combustor, of the characteristics of particulate matter emitted from residual oil combustion and the reduction of ultrafine nuclei by postflame sorbent injection. Without sorbent a...

  9. MUTAGENICITY OF EMISSIONS FROM THE SIMULATED OPEN BURNING OF SCRAP RUBBER TIRES

    EPA Science Inventory

    The report describes a follow-up to a small-scale combustion study to collect, identify, and quantify products emitted during the simulated open combustion of scrap tires. The initial study found that total estimated emissions of semi-volatile organics ranged from 10 to 50 g/kg o...

  10. GREENOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, PHASE IIA. HOUSEHOLD STOVES IN INDIA

    EPA Science Inventory

    The report contains a systematic set of measurements of carbon dioxide (CO2), carbon monoxide, methane, total non-methane organic compounds, nitrous oxide, sulfur dioxide, nitrogen dioxide, and total suspended particulate emissions from the commonest combustion devices in the wor...

  11. Chemical Pollution from Combustion of Modern Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  12. Understanding Combustion Processes Through Microgravity Research

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  13. New type of microengine using internal combustion of hydrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-03-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  14. Coated oxidizers for combustion stability in solid-propellant rockets

    NASA Technical Reports Server (NTRS)

    Helmy, A. M.; Ramohalli, K. N. R.

    1985-01-01

    Experiments are conducted in a laboratory-scale (6.25-cm diameter) end-burning rocket motor with state-of-the-art, ammonium perchlorate hydroxy-terminated polybutadiene (HTPB), nonmetallized propellants. The concept of tailoring the stability characteristics with a small amount (less than 1 percent by weight) of COATING on the oxidizer is explored. The thermal degradation characteristics of the coat chemical are deduced through theoretical arguments on thermal diffusivity of the composite material (propellant). Several candidate coats are selected and propellants are cast. These propellants (with coated oxidizers) are fired in a laboratory-scale end-burning rocket motor, and real-time pressure histories are recorded. The control propellant (with no coating) is also tested for comparison. The uniformity of the coating, confirmed by SEM pictures and BET adsorption measurements, is thought to be an advance in technology. The frequency of bulk mode instability (BMI), the pressure fluctuation amplitudes, and stability boundaries are correlated with parameters related to the characteristic length (L-asterisk) of the rocket motor. The coated oxidizer propellants, in general, display greater combustion stability than the control (state-of-the-art). The correlations of the various parameters are thought to be new to a field filled with much uncertainty.

  15. Advanced, Low/Zero Emission Boiler Design and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babcock /Wilcox; Illinois State Geological; Worley Parsons

    2007-06-30

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers.more » This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.« less

  16. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  17. Combustion of liquid fuels in a flowing combustion gas environment at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1975-01-01

    The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

  18. Compression-ignition engine tests of several fuels

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1932-01-01

    The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.

  19. Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Kenny, R. L.; Casiano, M. J.

    2013-01-01

    Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional combustion stability analyses of the configurations.

  20. Heavy hydrocarbon main injector technology program

    NASA Technical Reports Server (NTRS)

    Arbit, H. A.; Tuegel, L. M.; Dodd, F. E.

    1991-01-01

    The Heavy Hydrocarbon Main Injector Program was an analytical, design, and test program to demonstrate an injection concept applicable to an Isolated Combustion Compartment of a full-scale, high pressure, LOX/RP-1 engine. Several injector patterns were tested in a 3.4-in. combustor. Based on these results, features of the most promising injector design were incorporated into a 5.7-in. injector which was then hot-fire tested. In turn, a preliminary design of a 5-compartment 2D combustor was based on this pattern. Also the additional subscale injector testing and analysis was performed with an emphasis on improving analytical techniques and acoustic cavity design methodology. Several of the existing 3.5-in. diameter injectors were hot-fire tested with and without acoustic cavities for spontaneous and dynamic stability characteristics.

  1. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  2. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  3. Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizeq, George; West, Janice; Frydman, Arnaldo

    Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21more » power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.« less

  4. Technology for Sustained Supersonic Combustion Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions

    DTIC Science & Technology

    2013-01-01

    flight vehicle . Many facilities are not large enough to perform free-jet testing of scramjet engines which include an inlet. Rather, testing is often...AFRL-RQ-WP-TR-2013-0029 TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow...TITLE AND SUBTITLE TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions 5a

  5. Co-combustion of E+E waste plastics in the TAMARA test plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Wanke, T.; Bergfeldt, B.

    1997-12-01

    The co-combustion of different amounts of various plastic fractions of electrical and electronic (E+E) waste together with municipal solid waste has been tested in the Karlsruhe test incinerator TAMARA. The tests revealed no negative influences upon the combustion process. In general the increased heating value of the fuel causes an improved burnout in all residue streams. The halogens Cl and Br added with the plastics are mainly transferred as HCl or HBr into the flue gas. An influence upon the formation of chlorinated dioxins and furans could not be observed. With increasing Br feed bromine containing homologues were detected inmore » the raw gas. The furans formed easier than the dioxins and those homologues carrying one Br atom were by far prevailing. Even at high Br input the total amount of mixed halogenated species was limited to approximately 30% of the total load of such compounds which did not leave the typical operation window for PCDD/PCDF in TAMARA. The co-combustion tests demonstrated that MSW combustion is an ecologically acceptable and economically sound disposal route for limited amounts of specific E+E waste.« less

  6. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  7. The simulation of influence of different coals on the circulating fluidized bed Boiler's combustion performance

    NASA Astrophysics Data System (ADS)

    Yong, Yumei; Lu, Qinggang

    2003-05-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  8. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-00, Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter, or ASTM D4809-00, Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb...

  9. 40 CFR 98.254 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methods. (1) ASTM D4809-06 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb...) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (incorporated...

  10. Combustion toxicology of epoxy/carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.

    1981-01-01

    A combustion toxicology test was developed to screen materials for aerospace applications. The system is called the radiant panel test facility. A description of the facility and some preliminary results from tests on a Navy 3501-6AS composite, a typical composite for fighter aircraft, are presented.

  11. Evaluation of the Uncertainty in JP-7 Kinetics Models Applied to Scramjets

    NASA Technical Reports Server (NTRS)

    Norris, A. T.

    2017-01-01

    One of the challenges of designing and flying a scramjet-powered vehicle is the difficulty of preflight testing. Ground tests at realistic flight conditions introduce several sources of uncertainty to the flow that must be addressed. For example, the scales of the available facilities limit the size of vehicles that can be tested and so performance metrics for larger flight vehicles must be extrapolated from ground tests at smaller scales. To create the correct flow enthalpy for higher Mach number flows, most tunnels use a heater that introduces vitiates into the flow. At these conditions, the effects of the vitiates on the combustion process is of particular interest to the engine designer, where the ground test results must be extrapolated to flight conditions. In this paper, the uncertainty of the cracked JP-7 chemical kinetics used in the modeling of a hydrocarbon-fueled scramjet was investigated. The factors that were identified as contributing to uncertainty in the combustion process were the level of flow vitiation, the uncertainty of the kinetic model coefficients and the variation of flow properties between ground testing and flight. The method employed was to run simulations of small, unit problems and identify which variables were the principal sources of uncertainty for the mixture temperature. Then using this resulting subset of all the variables, the effects of the uncertainty caused by the chemical kinetics on a representative scramjet flow-path for both vitiated (ground) and nonvitiated (flight) flows were investigated. The simulations showed that only a few of the kinetic rate equations contribute to the uncertainty in the unit problem results, and when applied to the representative scramjet flowpath, the resulting temperature variability was on the order of 100 K. Both the vitiated and clean air results showed very similar levels of uncertainty, and the difference between the mean properties were generally within the range of uncertainty predicted.

  12. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nehdi, M.; Duquette, J.; El Damatty, A

    2003-08-01

    This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, andmore » particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete.« less

  13. Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)

    2001-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.

  14. Using the PORS Problems to Examine Evolutionary Optimization of Multiscale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhart, Zachary; Molian, Vaelan; Bryden, Kenneth

    2013-01-01

    Nearly all systems of practical interest are composed of parts assembled across multiple scales. For example, an agrodynamic system is composed of flora and fauna on one scale; soil types, slope, and water runoff on another scale; and management practice and yield on another scale. Or consider an advanced coal-fired power plant: combustion and pollutant formation occurs on one scale, the plant components on another scale, and the overall performance of the power system is measured on another. In spite of this, there are few practical tools for the optimization of multiscale systems. This paper examines multiscale optimization of systemsmore » composed of discrete elements using the plus-one-recall-store (PORS) problem as a test case or study problem for multiscale systems. From this study, it is found that by recognizing the constraints and patterns present in discrete multiscale systems, the solution time can be significantly reduced and much more complex problems can be optimized.« less

  15. National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests

    DOT National Transportation Integrated Search

    2017-12-31

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...

  16. 40 CFR 63.6120 - What performance tests and other procedures must I use?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parameters associated with operation of the stationary combustion turbine and any emission control device... Turbines Testing and Initial Compliance Requirements § 63.6120 What performance tests and other procedures.... (e) If your stationary combustion turbine is not equipped with an oxidation catalyst, you must...

  17. 40 CFR 63.6120 - What performance tests and other procedures must I use?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameters associated with operation of the stationary combustion turbine and any emission control device... Turbines Testing and Initial Compliance Requirements § 63.6120 What performance tests and other procedures.... (e) If your stationary combustion turbine is not equipped with an oxidation catalyst, you must...

  18. 40 CFR 63.6120 - What performance tests and other procedures must I use?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameters associated with operation of the stationary combustion turbine and any emission control device... Turbines Testing and Initial Compliance Requirements § 63.6120 What performance tests and other procedures.... (e) If your stationary combustion turbine is not equipped with an oxidation catalyst, you must...

  19. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  20. Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion

    DTIC Science & Technology

    2009-02-25

    and Plasma Chemistry (Russian), 6(1), 1-6 (2008). M.R.H. Sheikhi, P. Givi and S.B. Pope, "Joint Velocity-Scalar Filtered Mass Density Function for...4th International Symposium on Combustion and Plasma Chemistry , pp. 18-20, Almaty, Kazakhstan, September 12-14, 2007. M.R.H. Sheikhi, P. Givi and

  1. The nature of combustion noise: Stochastic or chaotic?

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Lee, Min Chul; Li, Larry K. B.

    2016-11-01

    Combustion noise, which refers to irregular low-amplitude pressure oscillations, is conventionally thought to be stochastic. It has therefore been modeled using a stochastic term in the analysis of thermoacoustic systems. Recently, however, there has been a renewed interest in the validity of that stochastic assumption, with tests based on nonlinear dynamical theory giving seemingly contradictory results: some show combustion noise to be stochastic while others show it to be chaotic. In this study, we show that this contradiction arises because those tests cannot distinguish between noise amplification and chaos. We further show that although there are many similarities between noise amplification and chaos, there are also some subtle differences. It is these subtle differences, not the results of those tests, that should be the focus of analyses aimed at determining the true nature of combustion noise. Recognizing this is an important step towards improved understanding and modeling of combustion noise for the study of thermoacoustic instabilities. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  2. Combustion Mechanisms of Solids

    DTIC Science & Technology

    1992-02-24

    ELEMENT NO. NO NO ACCESSION NO Arlington, VA 22217-5000 11 TITLE (include Security Classification) COMBUSTION MECHANISMS OF SOLIDS 12. PERSONAL AUTHOR(S...FIELD GROUP I SUB-GROUP COMBUSTION , SOLID PROPELLANT 19 ABSTRACT (Continue on reverse if necessary and identify by block number) This report...ingredients tested (AP, AN, PBAN, NMMO and BAMO-THF). Ingredient combustion behavior was studied by the edge burning sandwich method using sandwiches

  3. Fundamental Combustion Characteristics of Sewage Sludge in Fluidized Bed Incinerator with Turbocharger

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi

    An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.

  4. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Interim report, October 1978-November 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooher, J. P.

    1979-11-15

    The rheological and combustion properties of coal/water/oil mixtures have been investigated. In addition the use of alkaline additives to remove the sulfur oxide gases has been studied. Results on stability and pumpability indicate that mixtures of 50% by weight of coal and stoichiometric concentrations of alkaline absorbents are pumpable. Correlation between viscometer data and pumping data follows a power law behavior for these mixtures. Thermal efficiencies are about the same as for pure oil. Combustion efficiencies are approximately 97%. It is possible to remove in a small scale combustion from 50 to 80% of the sulfur dioxide gases.

  5. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  6. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.

    PubMed

    Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Hastings, Thomas W; Stevens, Frank M

    2004-12-01

    Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.

  7. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    NASA Technical Reports Server (NTRS)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.

  8. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.

  9. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  10. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of test configuration on the combustion characteristics of polymers as ignition sources

    NASA Technical Reports Server (NTRS)

    Julien, Howard L.

    1993-01-01

    The experimental evaluation of polymers as ignition sources for metals was accomplished at the NASA White Sands Test Facility (WSTF) using a standard promoted combustion test. These tests involve the transient burning of materials in high-pressure oxygen environments. They have provided data from which design decisions can be made; data include video recordings of ignition and non-ignition for specific combinations of metals and polymers. Other tests provide the measured compositions of combustion products for polymers at select burn times and an empirical basis for estimating burn rates. With the current test configuration, the detailed analysis of test results requires modeling a three-dimensional, transient convection process involving fluid motion, thermal conduction and convection, the diffusion of chemical species, and the erosion of sample surface. At the high pressure extremes, it even requires the analysis of turbulent, transient convection where the physics of the problem are not well known and the computation requirements are not practical at this time. An alternative test configuration that can be analyzed with a relatively-simple convection model was developed during the summer period. The principal change constitutes replacing a large-diameter polymer disk at the end of the metal test rod with coaxial polymer cylinders that have a diameter nearer to that of the metal rod. The experimental objective is to assess the importance of test geometries on the promotion of metal ignition by testing with different lengths of the polymer and, with an extended effort, to analyze the surface combustion in the redesigned promoted combustion tests through analytical modeling of the process. The analysis shall use the results of cone-calorimeter tests of the polymer material to model primary chemical reactions and, with proper design of the promoted combustion test, modeling of the convection process could be conveniently limited to a quasi-steady boundary layer analysis where the economical solution of parabolic equations is involved. The products for the summer period are: (1) a conceptual-level redesign of the test apparatus, and (2) the development and use of an approximate integral boundary layer analysis to demonstrate the influence of geometry changes prior to testing. A computer code STAN5, an accurate numerical boundary layer model whose earlier versions were developed for the NASA Lewis Research Center by the Fellow, also was installed and validated on the WSTF and New Mexico State University computer systems as a starting point in the development of a more detailed fluid mechanics and combustion model.

  12. Direct numerical simulations and spectral modeling of premixed turbulent combustion in the flamelet regime

    NASA Astrophysics Data System (ADS)

    Ulitsky, Mark

    1997-11-01

    A model for premixed turbulent combustion in the so called 'flamelet regime' has been developed. This regime, often referred to as the fast chemistry or high Damkohler number regime, is characterized by turbulent length and time scales that are much larger and slower than the flame thickness and reaction time scales respectively. There is currently great interest in trying to better understand flamelet combustion, as many practical devices (i.e., spark ignition engines, gas turbines, etc.) have been found to operate in this regime. Before a model could be developed however, it was first necessary to ascertain which part of the turbulence (either the nearly Gaussian background turbulence or the tube-like coherent vortical structures) was responsible for the multi-scale wrinkling of the flame surface. This question motivated a DNS study of flames passing through both structure containing the structure free isotropic turbulence. After it was determined that the presence of the coherent structures was merely ancillary in terms of increasing the surface area of the flame, a spectral model based on the EDQNM (Eddy Damped Quasi Normal Markovian) theory of turbulence was developed. This theory implicitly assumes that joint distributions of the fluctuating velocity components are nearly Gaussian, and as only spectra are transported in this model, there is no direct information about any of the coherent structures which might be embedded within the flow field. One of the advantages of this model is that both the Reynolds number and the ratio of the rms fluctuating velocity to the laminar flame speed can be varied independently. To test the model's ability to capture the nonlinear dynamics of the governing field equation a DNS study was performed and both steady-state and transient single- and two-point statistics were compared. Finally, the model was compared to two-point experimental measurements taken from a lean premixed methane-air flame.

  13. Climate Change Impacts of US Reactive Nitrogen Emissions

    NASA Astrophysics Data System (ADS)

    Pinder, R. W.; Davidson, E. A.; Goodale, C. L.; Greaver, T.; Herrick, J.; Liu, L.

    2011-12-01

    By fossil fuel combustion and fertilizer application, the US has substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here, we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions. We use the global temperature potential (GTP) as a common metric, and we calculate the GTP at 20 and 100 years in units of CO2 equivalents. At both time-scales, nitrogen enhancement of CO2 uptake has the largest impact, because in the eastern US, areas of high nitrogen deposition are co-located with forests. In the short-term, the effect due to NOx altering ozone and methane concentrations is also substantial, but are not important on the 100 year time scale. Finally, the GTP of N2O emissions is substantial at both time scales. We have also attributed these impacts to combustion and agricultural sources, and quantified the uncertainty. Reactive nitrogen from combustion sources contribute more to cooling than warming. The impacts of agricultural sources tend to cancel each other out, and the net effect is uncertain. Recent trends show decreasing reactive nitrogen from US combustion sources, while agricultural sources are increasing. Fortunately, there are many mitigation strategies currently available to reduce the climate change impacts of US agricultural sources.

  14. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Method of Testing for Sustained Combustibility H Appendix H to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. H Appendix H to Part 173—Method of Testing...

  15. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  16. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  17. Research on combustion instability and application to solid propellant rocket motors. II.

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  18. Laser Schlieren and ultraviolet diagnostics of rocket combustion

    NASA Technical Reports Server (NTRS)

    Fisher, S. C.

    1985-01-01

    A low pressure oxygen/hydrogen turbine drive combustor hot-fire test series was conducted on the Turbine Drive Combustor Technology Program. The first objective was to gather data on an axisymmetric combustion system to support anchoring of a new combustion/fluid dynamics computer code under development on the same contract. The second objective was to gain insight into low mixture ratio combustion characteristics of coaxial injector elements.

  19. Group Combustion Module (GCM) Installation

    NASA Image and Video Library

    2016-09-27

    ISS049e011638 (09/27/2016) --- Expedition 49 crewmember Takuya Onishi of JAXA works on the setup of the Group Combustion Module (GCM) inside the Japanese Experiment Module. The GCM will be used to house the Group Combustion experiment from the Japan Aerospace Exploration Agency (JAXA) to test a theory that fuel sprays change from partial to group combustion as flames spread across a cloud of droplets.

  20. Urban air quality in a mid-size city - PM2.5 composition, sources and identification of impact areas: From local to long range contributions

    NASA Astrophysics Data System (ADS)

    Squizzato, Stefania; Cazzaro, Marta; Innocente, Elena; Visin, Flavia; Hopke, Philip K.; Rampazzo, Giancarlo

    2017-04-01

    Urban air quality represents a major public health burden and is a long-standing concern to European citizens. Combustion processes and traffic-related emissions represent the main primary particulate matter (PM) sources in urban areas. Other sources can also affect air quality (e.g., secondary aerosol, industrial) depending on the characteristics of the study area. Thus, the identification and the apportionment of all sources is of crucial importance to make effective corrective decisions within environmental policies. The aim of this study is to evaluate the impacts of different emissions sources on PM2.5 concentrations and compositions in a mid-size city in the Po Valley (Treviso, Italy). Data have been analyzed to highlight compositional differences (elements and major inorganic ions), to determine PM2.5 sources and their contributions, and to evaluate the influence of air mass movements. Non-parametric tests, positive matrix factorization (PMF), conditional bivariate probability function (CBPF), and concentration weighted trajectory (CWT) have been used in a multi-chemometrics approach to understand the areal-scale (proximate, local, long-range) where different sources act on PM2.5 levels and composition. Results identified three levels of scale from which the pollution arose: (i) a proximate local scale (close to the sampling site) for traffic non-exhaust and resuspended dust sources; (ii) a local urban scale (including both sampling site and areas close to them) for combustion and industrial; and (iii) a regional scale characterized by ammonium nitrate and ammonium sulfate. This approach and results can help to develop and adopt better air quality policy action.

  1. An experimental investigation of reacting and nonreacting coaxial jet mixing in a laboratory rocket engine

    NASA Astrophysics Data System (ADS)

    Schumaker, Stephen Alexander

    Coaxial jets are commonly used as injectors in propulsion and combustion devices due to both the simplicity of their geometry and the rapid mixing they provide. In liquid rocket engines it is common to use coaxial jets in the context of airblast atomization. However, interest exists in developing rocket engines using a full flow staged combustion cycle. In such a configuration both propellants are injected in the gaseous phase. In addition, gaseous coaxial jets have been identified as an ideal test case for the validation of the next generation of injector modeling tools. For these reasons an understanding of the fundamental phenomena which govern mixing in gaseous coaxial jets and the effect of combustion on these phenomena in coaxial jet diffusion flames is needed. A study was performed to better understand the scaling of the stoichiometric mixing length in reacting and nonreacting coaxial jets with velocity ratios greater than one and density ratios less than one. A facility was developed that incorporates a single shear coaxial injector in a laboratory rocket engine capable of ten atmospheres. Optical access allows the use of flame luminosity and laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF). Stoichiometric mixing lengths (LS), which are defined as the distance along the centerline where the stoichiometric condition occurs, were measured using PLIF. Acetone was seeded into the center jet to provide direct PLIF measurement of the average and instantaneous mixture fraction fields for a range of momentum flux ratios for the nonreacting cases. For the coaxial jet diffusion flames, LS was measured from OH radical contours. For nonreacting cases the use of a nondimensional momentum flux ratio was found to collapse the mixing length data. The flame lengths of coaxial jet diffusion flames were also found to scale with the momentum flux ratio but different scaling constants are required which depended on the chemistry of the reaction. The effective density ratio was measured which allowed the flame lengths to be collapsed to the nonreacting scaling relation. The equivalence principle of Tacina and Dahm was utilized to compare the theoretical and measured effective density ratios.

  2. Effects of weathering on performance of intumescent coatings for structure fire protection in the wildland-urban interface

    NASA Astrophysics Data System (ADS)

    Bahrani, Babak

    The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known as SDT). For each coating type and weathering period, three different radiative heat flux levels were used in the combustibility tests. Data obtained from the tests, including flammability and thermal properties, were gathered, analyzed, and compared to non-weathered specimens. The results revealed visible effects of weathering on pre (and up to)-ignition flammability and intumescent properties, especially decreases in Time-to-Ignition (TTI), Time-to-Intumescence (tintu.), and (maximum) Intumescence Height (Hintu.) values in weathered specimens. These results showed that the ignition resistance of the coating layers decreased after weathering exposure. On the other hand, the obtained results from weathered specimens for the post-ignition flammability properties, especially Peak Heat Release Rate (PHRR) and Effective Heat of Combustion (EHC) did not show a significant difference in comparison to the non-weathered samples. These results demonstrated that the weathered coating layer would not likely to act as an additional combustible fuel to increase fire spread.

  3. Robust control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Hong, Boe-Shong

    Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.

  4. AIR EMISSIONS FROM COMBUSTION OF SOLVENT REFINED COAL

    EPA Science Inventory

    The report gives details of a Solvent Refined Coal (SRC) combustion test at Georgia Power Company's Plant Mitchell, March, May, and June 1977. Flue gas samples were collected for modified EPA Level 1 analysis; analytical results are reported. Air emissions from the combustion of ...

  5. MERCURY CAPTURE ON COAL COMBUSTION FLY ASH. (R827649)

    EPA Science Inventory

    A study was performed at the Energy and Environmental Research Center (EERC) to test the hypotheses that (1) different carbon types contained in coal combustion fly ash have variable sorption capabilities relative to mercury and (2) the inorganic fraction of coal combustion fl...

  6. Thermal analysis and kinetics of coal during oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  7. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  8. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard

    2007-01-01

    A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.

  9. Combustion Stability Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion stability analyses of several of the configurations. This paper presents test data and analyses of combustion stability from the recent PCAD-funded test programs at the NASA MSFC. These test programs used swirl coaxial element injectors with liquid oxygen and liquid methane propellants. Oxygen was injected conventionally in the center of the coaxial element, and swirl was provided by tangential entry slots. Injectors with 28-element and 40-element patterns were tested with several configurations of combustion chambers, including ablative and calorimeter spool sections, and several configurations of fuel injection design. Low frequency combustion instability (chug) occurred with both injectors, and high-frequency combustion instability occurred at the first tangential (1T) transverse mode with the 40-element injector. In most tests, a transition between high-amplitude chug with gaseous methane flow and low-amplitude chug with liquid methane flow was readily observed. Chug analyses of both conditions were conducted using techniques from Wenzel and Szuch and from the Rocket Combustor Interactive Design and Analysis (ROCCID) code. The 1T mode instability occurred in several tests and was apparent by high-frequency pressure measurements as well as dramatic increases in calorimeter-measured heat flux throughout the chamber. Analyses of the transverse mode were conducted with ROCCID and empirical methods such as Hewitt d/V. This paper describes the test hardware configurations, test data, analysis methods, and presents results of the various analyses.

  10. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnacemore » (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.« less

  11. Flex Fuel Optimized SI and HCCI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less

  12. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark

    2011-01-01

    A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.

  13. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  14. THREE-STAGE COMBUSTION (REBURNING) ON A FULL SCALE OPERATING BOILER IN THE U.S.S.R.

    EPA Science Inventory

    The report gives results of a program to complete preliminary design of a three- stage combustion (reburn) system for nitrogen oxide (NOx) emissions control on an operating boiler in the U. S.S. R. he program to design the reburn system consisted of five tasks: visiting the Ladyz...

  15. Investigation of "6X" Scramjet Inlet Configurations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2012-01-01

    This work represents an initial attempt to determine what, if any, issues arise from scaling demonstration supersonic combustion scramjets to a flight scale making the engine a viable candidate for both military weapon and civilian access to space applications. The original vehicle sizes tested and flown to date, were designed to prove a concept. With the proven designs, use of the technology for applications as weapon systems or space flight are only possible at six to ten times the original scale. To determine effects of scaling, computations were performed with hypersonic inlets designed to operate a nominal Mach 4 and Mach 5 conditions that are possible within the eight foot high temperature tunnel at NASA Langley Research Center. The total pressure recovery for these inlets is about 70%, while maintaining self start conditions, and providing operable inflow to combustors. Based on this study, the primary scaling effect detected is the strength of a vortex created along the cowl edge causing adverse boundary layer growth in the inlet.

  16. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  17. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less

  18. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, JP

    2001-08-16

    To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less

  19. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO 2) Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecke, Joan F; Degnan, Jr, Thomas Francis; McCready, Mark J.

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 µm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO 2-permeable polymer shells. Here wemore » report on the encapsulation of the IL and PCIL materials, thermodynamic testing of the encapsulated materials, mass transfer measurements in both a fluidized bed and a packed bed, determination of the effect of impurities (SO 2, NO x and water) on the free and encapsulated IL and PCIL, recyclability of the CO 2 uptake, selection and synthesis of kg quantities of the IL and PCIL, identification of scale-up methods for encapsulation and production of a kg quantity of the PCIL, construction and shakedown of the laboratory scale unit to test the encapsulated particles for CO 2 capture ability and efficiency, use of our mass transfer model to predict mass transfer and identify optimal properties of the encapsulated particles, and initial testing of the encapsulated particles in the laboratory scale unit. We also show our attempts at developing shell materials that are resistant to water permeation. Overall, we have shown that the selected IL and PCIL can be successfully encapsulated in polymer shells and the methods scaled up to production levels. The IL/PCIL and encapsulated IL/PCIL react irreversibly with SO 2 and NO x so the CO 2 capture unit would need to be placed after the flue gas desulfurization and NO x reduction units. However, the reaction with CO 2 in the presence of water is completely reversible. Therefore, it is not necessary to exclude water from the capsules. Mass transfer in the fluidized and packed beds confirm that the fluidized bed arrangement is preferred and that the mass transfer can be predicted accurately by the rate based model that we have developed. Absorption and desorption experiments in the laboratory scale unit show good uptake and recyclability.« less

  20. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design minimum and average temperature in the combustion zone and the combustion zone residence time. (B... establish the design minimum and average flame zone temperatures and combustion zone residence time, and... carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life...

  1. 40 CFR 63.6120 - What performance tests and other procedures must I use?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... parameters associated with operation of the stationary combustion turbine and any emission control device... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Stationary Combustion Turbines... your stationary combustion turbine is not equipped with an oxidation catalyst, you must petition the...

  2. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alexander; Jernigan, Dann A.; Dodd, Amanda B.

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites whichmore » exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.« less

  4. Construction of the Propulsion Systems Laboratory No. 1 and 2

    NASA Image and Video Library

    1951-01-21

    Construction of the Propulsion Systems Laboratory No. 1 and 2 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. When it began operation in late 1952, the Propulsion Systems Laboratory was the NACA’s most powerful facility for testing full-scale engines at simulated flight altitudes. The facility contained two altitude simulating test chambers which were a technological combination of the static sea-level test stands and the complex Altitude Wind Tunnel, which recreated actual flight conditions on a larger scale. NACA Lewis began designing the new facility in 1947 as part of a comprehensive plan to improve the altitude testing capabilities across the lab. The exhaust, refrigeration, and combustion air systems from all the major test facilities were linked. In this way, different facilities could be used to complement the capabilities of one another. Propulsion Systems Laboratory construction began in late summer 1949 with the installation of an overhead exhaust pipe connecting the facility to the Altitude Wind Tunnel and Engine Research Building. The large test section pieces arriving in early 1951, when this photograph was taken. The two primary coolers for the altitude exhaust are in place within the framework near the center of the photograph.

  5. Development of high performance hybrid rocket fuels

    NASA Astrophysics Data System (ADS)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression. In order to examine paraffin/additive combustion in a motor environment, I conducted experiments on well characterized aluminum based additives. In particular, I investigate the influence of aluminum, unpassivated aluminum, milled aluminum/polytetrafluoroethylene (PTFE), and aluminum hydride on the performance of paraffin fuels for hybrid rocket propulsion. I use an optically accessible combustor to examine the performance of the fuel mixtures in terms of characteristic velocity efficiency and regression rate. Each combustor test consumes a 12.7 cm long, 1.9 cm diameter fuel strand under 160 kg/m 2s of oxygen at up to 1.4 MPa. The experimental results indicate that the addition of 5 wt.% 30 mum or 80 nm aluminum to paraffin increases the regression rate by approximately 15% compared to neat paraffin grains. At higher aluminum concentrations and nano-scale particles sizes, the increased melt layer viscosity causes slower regression. Alane and Al/PTFE at 12.5 wt.% increase the regression of paraffin by 21% and 32% respectively. Finally, an aging study indicates that paraffin can protect air and moisture sensitive particles from oxidation. The opposed burner and aluminum/paraffin hybrid rocket experiments show that additives can alter bulk fuel properties, such as viscosity, that regulate entrainment. The general effect of melt layer properties on the entrainment and regression rate of paraffin is not well understood. Improved understanding of how solid additives affect the properties and regression of paraffin is essential to maximize performance. In this document I investigate the effect of melt layer properties on paraffin regression using inert additives. Tests are performed in the optical cylindrical combustor at ˜1 MPa under a gaseous oxygen mass flux of ˜160 kg/m2s. The experiments indicate that the regression rate is proportional to mu0.08rho 0.38kappa0.82. In addition, I explore how to predict fuel viscosity, thermal conductivity, and density prior to testing. Mechanically activated Ti-C and Al/PTFE are examined in the optical combustor. I examine the effect of the reactivity by altering the mill time for the Ti-C and Al/PTFE particles. Mechanical activation of both Ti-C and Al/PTFE improve the regression rate of paraffin more than the unmilled additives. At 12.5 wt.% Al/PTFE milled for 40 minutes regresses 12% faster than the unmilled fuel. Similarly, at 12.5 wt.% 7.5 minute milled Ti C regresses 7% faster than unmilled Ti-C. The reactive particles increase heat transfer to the fuel surface and improve regression. The composition of the combustion products are examined using a particle catcher system in conjunction with visible light and electron microscopy. The exhaust products indicate that the mechanical activation of the Al/PTFE particles cause microexplosions that reduce exhaust particle size. However, the composition of the mechanically activated Al/PTFE products do not indicate more complete combustion. In addition, the mechanically activated and unmilled Ti-C showed no difference in exhaust products.

  6. Smoldering News From STS-77 Endeavour

    NASA Technical Reports Server (NTRS)

    Koudelka, John M.; Fernandez-Pello, A. Carlos

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour for its second flight in May 1996, as part of the STS-77 mission. This experiment is part of a series of studies focused on the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of this study is to provide a better understanding of the controlling mechanisms of smoldering in microgravity and normal Earth gravity (1g). As with other forms of combustion, gravity affects the availability of air and transport of heat, and therefore, the rate of combustion. The results of the microgravity experiments will be compared with identical ones carried out in 1g. In addition, they will be used to verify present theories of smolder combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvements in fire safety practices. Two smoldering combustion tests with polyurethane foam were successfully accomplished during the STS-77 mission. The tests investigated smoldering combustion in a quiescent (no-flow) enriched oxygen environment, and in an air environment with a 2-mm/sec airflow through the fuel sample. The primary data from the tests are the ignition characteristics, spread rate, smolder reaction temperature, and products of combustion (solid and gas). On both the first mission on STS-69 and the second mission on STS-77, a smolder front propagated the length of the forced-flow samples, with the spread rate between the corresponding upward and downward 1g smolder rates. Neither of the quiescent cases propagated combustion (the first case was due in part to a problem with the experiment electronics). These results show a dramatic difference from the normal gravity results, where smolder propagation is very rapid and complete for both of these conditions. The experiment was conceived by Prof. A. Carlos Fernandez-Pello at the University of California-Berkeley. The MSC hardware was designed and built at the NASA Lewis Research Center by a team of civil servants and contractors from NYMA, Inc., and Aerospace Design & Fabrication, Inc. (ADF). The hardware consists of two sealed aluminum combustion chambers (each being a half a cylinder). The chambers hold the MSC test section, data acquisition electronics, power distribution electronics, and instrumentation. The hardware is fitted into a 5-ft(sup 3) Get-Away-Special (GAS) canister that is mounted in the shuttle cargo bay. The test section consists of a quartz cylinder that contains the polyurethane foam sample and an igniter. This igniter, which is an electrically heated wire sandwiched between two porous ceramic disks, is mounted in contact with the end of the foam sample. An array of 12 thermocouples placed axially and radially along the foam sample provide temperature histories, which are used to determine the rate of smolder propagation, and the characteristics of the reaction.

  7. Research in Supercritical Fuel Properties and Combustion Modeling

    DTIC Science & Technology

    2015-09-18

    AFRL-AFOSR-VA-TR-2015-0296 RESEARCH IN SUPERCRITICAL FUEL PROPERTIES AND COMBUSTION MODELING Gregory Faris SRI INTERNATIONAL MENLO PARK CA Final...Properties and Combustion Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0177 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory W...carbon atom species for combustion modeling and optimization. On the stimulated scattering task, we have tested new methods for rapidly scanning

  8. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  9. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches

    PubMed Central

    Joseph, Paul; Tretsiakova-McNally, Svetlana

    2015-01-01

    Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions. PMID:28793746

  10. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches.

    PubMed

    Joseph, Paul; Tretsiakova-McNally, Svetlana

    2015-12-15

    Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

  11. The heat exchanger of small pellet boiler for phytomass

    NASA Astrophysics Data System (ADS)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  12. On-line measurement of heat of combustion

    NASA Technical Reports Server (NTRS)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  13. Advanced Booster Liquid Engine Combustion Stability

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; Gentz, Steve; Nettles, Mindy

    2015-01-01

    Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.

  14. Powdered Magnesium-Carbon Dioxide Rocket Combustion Technology for In Situ Mars Propulsion

    NASA Technical Reports Server (NTRS)

    Foote, J. P.; Litchford, R. J.

    2007-01-01

    Powdered magnesium (Mg) carbon dioxide (CO2) combustion is examined as a potential in situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bipropellants, it remains attractive as a potential basis for future martian mobility systems, since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from Earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multiphase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  15. "Powdered Magnesium: Carbon Dioxide Combustion for Mars Propulsion"

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ron J.

    2005-01-01

    Powdered magnesium - carbon dioxide combustion is examined as a potential in-situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bi-propellants, it remains attractive as a potential basis for future Martian mobility systems since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in-situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multi-phase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  16. Promoted Metals Combustion at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    Promoted combustion testing of materials, Test 17 of NASA STD-6001, has been used to assess metal propensity to burn in oxygen rich environments. An igniter is used at the bottom end of a rod to promote ignition, and if combustion is sustained, the burning progresses from the bottom to the top of the rod. The physical mechanisms are very similar to the upward flammability test, Test 1 of NASA STD-6001. The differences are in the normal environmental range of pressures, oxygen content, and sample geometry. Upward flammability testing of organic materials can exhibit a significant transitional region between no burning to complete quasi-state burning. In this transitional region, the burn process exhibits a probabilistic nature. This transitional region has been identified for metals using the promoted combustion testing method at ambient initial temperatures. The work given here is focused on examining the transitional region and the quasi-steady burning region both at conventional ambient testing conditions and at elevated temperatures. A new heated promoted combustion facility and equipment at Marshall Space Flight Center have just been completed to provide the basic data regarding the metals operating temperature limits in contact with oxygen rich atmospheres at high pressures. Initial data have been obtained for Stainless Steel 304L, Stainless Steel 321, Haynes 214, and Inconel 718 at elevated temperatures in 100-percent oxygen atmospheres. These data along with an extended data set at ambient initial temperature test conditions are examined. The pressure boundaries of acceptable, non-burning usage is found to be lowered at elevated temperature.

  17. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  18. Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao

    2017-03-01

    In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.

  19. Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Beheim, Glenn M.; Okojie, Robert S.; Chang, Carl W.; Meredith, Roger D.; Ferrier, Terry L.; Evans, Laura J.; Krasowski, Michael J.; hide

    2008-01-01

    The fabrication and testing of the first semiconductor transistors and small-scale integrated circuits (ICs) to achieve up to 3000 h of stable electrical operation at 500 C in air ambient is reported. These devices are based on an epitaxial 6H-SiC junction field-effect transistor process that successfully integrated high temperature ohmic contacts, dielectric passivation, and ceramic packaging. Important device and circuit parameters exhibited less than 10% of change over the course of the 500 C operational testing. These results establish a new technology foundation for realizing durable 500 C ICs for combustion-engine sensing and control, deep-well drilling, and other harsh-environment applications.

  20. RELATIONSHIPS BETWEEN COMPOSITION AND PULMONARY TOXICITY OF PROTOTYPE PARTICLES FROM COAL COMBUSTION AND PYROLYSIS (MONTREAL, CANADA)

    EPA Science Inventory

    The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...

  1. 40 CFR 63.6090 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary combustion turbine which burns landfill gas or digester gas equivalent to 10 percent or more of... turbine in the same category would require an initial notification. (5) Combustion turbine engine test... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Stationary Combustion Turbines What...

  2. Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis

    EPA Science Inventory

    The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...

  3. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.; Larson, E.M.; Holt, J.B.

    Real-time synchrotron diffraction has been used to monitor the phase transformations of highly exothermic, fast self-propagating solid combustion reactions on a subsecond time scale down to 100 milliseconds and in some instances to 10 milliseconds. Three systems were investigated: Ti + C {yields} TiC; Ti + C + xNi {yields} TiC + Ni-Ti alloy; and Al + Ni {yields} AlNi. In all three reactions, the first step was the melting of the metal reactants. Formation of TiC in the first two reactions was completed within 400 milliseconds of the melting of the Ti metal, indicating that the formation of TiCmore » took place during the passage of the combustion wave front. In the Al + Ni reaction, however, passage of the wave front was followed by the appearance and disappearance of at least one intermediate in the afterburn region. The final AlNi was formed some 5 seconds later and exhibited a delayed appearance of the (210) reflection, which tends to support a phase transformation from a disordered AlNi phase at high temperature to an ordered CsCl structure some 20 seconds later. This new experimental approach can be used to study the chemical dynamics of high-temperature solid-state phenomena and to provide the needed database to test various models for solid combustion. 28 refs., 4 figs.« less

  5. An Experimental Investigation of Self-Excited Combustion Dynamics in a Single Element Lean Direct Injection (LDI) Combustor

    NASA Astrophysics Data System (ADS)

    Gejji, Rohan M.

    The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability for combustion instabilities through high-fidelity models. The overarching goal of this project is to assess the capability of high-fidelity simulation to predict combustion dynamics in low-emissions gas turbine combustors. A prototypical lean-direct-inject combustor was designed in a modular configuration so that a suitable geometry could be found by test. The combustor comprised a variable length air plenum and combustion chamber, air swirler, and fuel nozzle located inside a subsonic venturi. The venturi cross section and the fuel nozzle were consistent with previous studies. Test pressure was 1 MPa and variables included geometry and acoustic resonance, inlet temperatures, equivalence ratio, and type of liquid fuel. High-frequency pressure measurements in a well-instrumented metal chamber yielded frequencies and mode shapes as a function of inlet air temperature, equivalence ratio, fuel nozzle placement, and combustor acoustic resonances. The parametric survey was a significant effort, with over 105 tests on eight geometric configurations. A good dataset was obtained that could be used for both operating-point-dependent quantitative comparisons, and testing the ability of the simulation to predict more global trends. Results showed a very strong dependence of instability amplitude on the geometric configuration of the combustor, i.e., its acoustic resonance characteristics, with measured pressure fluctuation amplitudes ranged from 5 kPa (0.5% of mean pressure) to 200 kPa ( 20% of mean pressure) depending on combustor geometry. The stability behavior also showed a consistent and pronounced dependence on equivalence ratio and inlet air temperature. Instability amplitude increased with higher equivalence ratio and with lower inlet air temperature. A pronounced effect of fuel nozzle location on the combustion dynamics was also observed. Combustion instabilities with the fuel nozzle at the throat of the venturi throat were stronger than in the configuration with fuel nozzle 2.6 mm upstream of the nozzle. A second set of dynamics data was based on high-response-rate laser-based combustion diagnostics using an optically accessible combustor section. High-frequency measurements of OH*-chemiluminescence and OH-PLIF and velocity fields using PIV were obtained at a relatively stable, low equivalence ratio case and a less stable case at higher equivalence ratio. PIV measurements were performed at 5 kHz for non-reacting flow but glare from the cylindrical quartz chamber limited the field of view to a small region in the combustor. Quantitative and qualitative comparisons were made for five different combinations of geometry and operating condition that yielded discriminating stability behavior in the experiment with simulations that were carried out concurrently. Comparisons were made on the basis of trends and pressure mode data as well as with OH-PLIF measurements for the baseline geometry at equivalence ratios of 0.44 and 0.6. Overall, the ability of the simulation to match experimental data and trends was encouraging. Dynamic Mode Decomposition (DMD) analysis was performed on two sets of computations - a global 2-step chemistry mechanism and an 18-step chemistry mechanism - and the OH-PLIF images to allow comparison of dynamic patterns of heat release and OH distribution in the combustion zone. The DMD analysis was able to identify similar dominant unstable modes in the combustor. Recommendations for future work are based on the continued requirement for quantitative and spatio-temporally resolved data for direct comparison with computational efforts to develop predictive capabilities for combustion instabilities at relevant operating conditions. Discriminating instability behavior for the prototypical combustor demonstrated in this study is critical for any robust validation effort Unit physics based scaling of the current effort to multi-element combustors along with improvement in diagnostic techniques and analysis efforts are recommended for advancement in understanding of the complex physics in the multi-phase, three dimensional and turbulent combustion processes in the LDI combustor.

  6. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  7. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because ofmore » the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.« less

  8. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  9. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    Existing NASA/Honeywell EVNERT full-scale static engine test data is analyzed by using source-separation techniques in order to determine the turbine transfer of the currently sub-dominant combustor noise. The results are used to assess the combustor-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). Time-series data from three sensors internal to the Honeywell TECH977 research engine is used in the analysis. The true combustor-noise turbine-transfer function is educed by utilizing a new three-signal approach. The resulting narrowband gain factors are compared with the corresponding constant values obtained from two empirical acoustic-turbine-loss formulas. It is found that a simplified Pratt & Whitney formula agrees better with the experimental results for frequencies of practical importance. The 130 deg downstream-direction far-field 1/3-octave sound-pressure levels (SPL) results of Hultgren & Miles are reexamined using a post-correction of their ANOPP predictions for both the total noise signature and the combustion-noise component. It is found that replacing the standard ANOPP turbine-attenuation function for combustion noise with the simplified Pratt & Whitney formula clearly improves the predictions. It is recommended that the GECOR combustion-noise module in ANOPP be updated to allow for a user-selectable switch between the current transmission-loss model and the simplified Pratt & Whitney formula. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  10. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies.

    PubMed

    Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto

    2013-08-01

    Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.

  11. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  12. Influence of different propellant systems on ablation of EPDM insulators in overload state

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  13. A pilot study of mercury liberation and capture from coal-fired power plant fly ash.

    PubMed

    Li, Jin; Gao, Xiaobing; Goeckner, Bryna; Kollakowsky, Dave; Ramme, Bruce

    2005-03-01

    The coal-fired electric utility generation industry has been identified as the largest anthropogenic source of mercury (Hg) emissions in the United States. One of the promising techniques for Hg removal from flue gas is activated carbon injection (ACI). The aim of this project was to liberate Hg bound to fly ash and activated carbon after ACI and provide high-quality coal combustion products for use in construction materials. Both bench- and pilot-scale tests were conducted to liberate Hg using a thermal desorption process. The results indicated that up to 90% of the Hg could be liberated from the fly ash or fly-ash-and-activated-carbon mixture using a pilot-scale apparatus (air slide) at 538 degrees C with a very short retention time (less than 1 min). Scanning electron microscope (SEM) evaluation indicated no significant change in fly ash carbon particle morphology following the thermal treatment. Fly ash particles collected in the baghouse of the pilot-scale apparatus were smaller in size than those collected at the exit of the air slide. A similar trend was observed in carbon particles separated from the fly ash using froth flotation. The results of this study suggest a means for power plants to reduce the level of Hg in coal-combustion products and potentially recycle activated carbon while maintaining the resale value of fly ash. This technology is in the process of being patented.

  14. Asymptotic expressions for turbulent burning velocity at the leading edge of a premixed flame brush and their validation by published measurement data

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseo; Lee, Gwang G.; Huh, Kang Y.

    2014-12-01

    This paper presents validation of new analytical expressions for the turbulent burning velocity, ST, based on asymptotic behavior at the leading edge (LE) in turbulent premixed combustion. Reaction and density variation are assumed to be negligible at the LE to avoid the cold boundary difficulty in the statistically steady state. Good agreement is shown for the slopes, dST/du', with respect to Lc/δf at low turbulence, with both normalized by those of the reference cases. δf is the inverse of the maximum gradient of reaction progress variable through an unstretched laminar flame, and Lc is the characteristic length scale given as burner diameter or measured integral length scale. Comparison is made for thirty-five datasets involving different fuels, equivalence ratios, H2 fractions in fuel, pressures, and integral length scales from eight references [R. C. Aldredge et al., "Premixed-flame propagation in turbulent Taylor-Couette flow," Combust. Flame 115, 395 (1998); M. Lawes et al., "The turbulent burning velocity of iso-octane/air mixtures," Combust. Flame 159, 1949 (2012); H. Kido et al., "Influence of local flame displacement velocity on turbulent burning velocity," Proc. Combust. Inst. 29, 1855 (2002); J. Wang et al., "Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa," Exp. Therm. Fluid Sci. 50, 90 (2013); H. Kobayashi et al., "Experimental study on general correlation of turbulent burning velocity at high pressure," Proc. Combust. Inst. 27, 941 (1998); C. W. Chiu et al., "High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers," Int. J. Hydrogen Energy 37, 10935 (2012); P. Venkateswaran et al., "Pressure and fuel effects on turbulent consumption speeds of H2/CO blends," Proc. Combust. Inst. 34, 1527 (2013); M. Fairweather et al., "Turbulent burning rates of methane and methane-hydrogen mixtures," Combust. Flame 156, 780 (2009)]. The turbulent burning velocity is shown to increase as the flamelet thickness, δf, decreases at a high pressure, for an equivalence ratio slightly rich or close to stoichiometric and for mixture of a high H2 fraction. Two constants involved are C to scale turbulent diffusivity as a product of turbulent intensity and characteristic length scale and Cs to relate δf with the mean effective Lm. L m = (D m u / SL u 0) is the scale of exponential decay at the LE of an unstretched laminar flame. The combined constant, KC/Cs, is adjusted to match measured turbulent burning velocities at low turbulence in each of the eight different experimental setups. All measured S T / SL u 0 values follow the line, KDtu/Dmu + 1, at low turbulent intensities and show bending below the line due to positive mean curvature and broadened flamelet thickness at high turbulent intensities. Further work is required to determine the constants, Cs and K, and the factor, (L m / Lm * - L m (∇ ṡ n) f), that is responsible for bending in different conditions of laminar flamelet and incoming turbulence.

  15. Thermite combustion enhancement resulting from biomodal luminum distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less

  16. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    PubMed

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p < 0.05), raising a concern about applicability of the N95 filters performance obtained with the NaCl aerosol challenge to protection against combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p < 0.05) factors affecting the performance of the N95 FFR filter. In contrast to N95 filters, the penetration of combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles. The findings of this study suggest that the efficiency of N95 respirator filters obtained with the NaCl aerosol challenge may not accurately predict (and rather overestimate) the filter efficiency against combustion particles.

  17. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  18. Hybrid fuel formulation and technology development

    NASA Technical Reports Server (NTRS)

    Dean, D. L.

    1995-01-01

    The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.

  19. Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Morgan, C. J.; Casiano, M. J.

    2015-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start transient. The implications of these results on previous analyses and understanding of the combustion instability observed during steady-state conditions, especially the effects of injector influences, is discussed.

  20. 76 FR 2056 - Incorporation of Revised ASTM Standards That Provide Flexibility in the Use of Alternatives to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Sulfur in Petroleum Products (General Bomb Method); ASTM D2622-98, Standard Test Method for Sulfur in...; ASTM D240-00, Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb... Liquid Hydrocarbon Fuels by Bomb Calorimeter, ASTM D4809-00, Standard Test Method for Heat of Combustion...

  1. Numerical studies of nonspherical carbon combustion models

    NASA Astrophysics Data System (ADS)

    Mueller, E.; Arnett, W. D.

    1982-10-01

    First results of axisymmetric numerical studies of the final evolution of degenerate C + O cores are reported. The two-dimensional convective flow is treated without a phenomenological theory of convection. The computations show that, in the beginning, the nuclear burning propagates slowly outward from the center of the star in a spherical combustion front. Small-scale eddies form, giving rise to bumps in the front. The bumps grow into blobs and eventually into fingers, which steadily elongate relative to the rest of the combustion front. This behavior is not well described by either the detonation or deflagration models, being more complex than either.

  2. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yiguang Ju; Frederick Dryer

    2009-02-07

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  3. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examiningmore » specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.« less

  4. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  5. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.

  6. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  7. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    NASA Astrophysics Data System (ADS)

    Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława

    2017-10-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  8. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.

    1972-01-01

    Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.

  9. 16 CFR § 1631.4 - Test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... source. A methenamine tablet, flat, with a nominal heat of combustion value of 7180 calories/gram, a mass... combustion following each test. The front or sides of the hood should be transparent to permit observation of... available for inspection at the National Archives and Records Administration (NARA). For information on the...

  10. 16 CFR 1631.4 - Test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... source. A methenamine tablet, flat, with a nominal heat of combustion value of 7180 calories/gram, a mass... combustion following each test. The front or sides of the hood should be transparent to permit observation of... available for inspection at the National Archives and Records Administration (NARA). For information on the...

  11. 16 CFR 1630.4 - Test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., flat, with a nominal heat of combustion value of 7180 calories/gram, a mass of 150 mg ±5 mg and a... draft turned off during each test and capable of rapidly removing the products of combustion following... available for inspection at the National Archives and Records Administration (NARA). For information on the...

  12. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  13. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  14. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  15. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  16. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  17. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  18. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    NASA Astrophysics Data System (ADS)

    Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.

  19. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  20. Biogas utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, M.A.

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, theremore » should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.« less

Top