Sample records for scale dependent feedbacks

  1. Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local.

    PubMed

    Mack, Keenan M L; Bever, James D

    2014-09-01

    1. Negative plant-soil feedback occurs when the presence of an individual of a particular species at a particular site decreases the relative success of individuals of the same species compared to those other species at that site. This effect favors heterospecifics thereby facilitating coexistence and maintaining diversity. Empirical work has demonstrated that the average strengths of these feedbacks correlate with the relative abundance of species within a community, suggesting that feedbacks are an important driver of plant community composition. Understanding what factors contribute to the generation of this relationship is necessary for diagnosing the dynamic forces that maintain diversity in plant communities. 2. We used a spatially explicit, individual-based computer simulation to test the effects of dispersal distance, the size of feedback neighbourhoods, the strength of pairwise feedbacks and community wide variation of feedbacks, community richness, as well as life-history differences on the dependence of relative abundance on strength of feedback. 3. We found a positive dependence of relative abundance of a species on its average feedback for local scale dispersal and feedback. However, we found that the strength of this dependence decreased as either the spatial scale of dispersal and/or the spatial scale of feedback increased. We also found that for spatially local (i.e. relatively small) scale interaction and dispersal, as the mean strength of feedbacks in the community becomes less negative, the greater the increase in abundance produced by a comparable increase in species-specific average feedback. We found that life-history differences such as mortality rate did not generate a pattern with abundance, nor did they affect the relationship between abundance and average feedback. 4. Synthesis . Our results support the claim that empirical observations of a positive correlation between relative abundance and strength of average feedback serves as evidence that local scale negative feedbacks play a prominent role in structuring plant communities. We also identify that this relationship depends upon local scale plant dispersal and feedback which generates clumping and magnifies the negative feedbacks.

  2. Category Rating Is Based on Prototypes and Not Instances: Evidence from Feedback-Dependent Context Effects

    ERIC Educational Resources Information Center

    Petrov, Alexander A.

    2011-01-01

    Context effects in category rating on a 7-point scale are shown to reverse direction depending on feedback. Context (skewed stimulus frequencies) was manipulated between and feedback within subjects in two experiments. The diverging predictions of prototype- and exemplar-based scaling theories were tested using two representative models: ANCHOR…

  3. Scale-dependent feedbacks between patch size and plant reproduction in desert grassland

    USGS Publications Warehouse

    Svejcar, Lauren N.; Bestelmeyer, Brandon T.; Duniway, Michael C.; James, Darren K.

    2015-01-01

    Theoretical models suggest that scale-dependent feedbacks between plant reproductive success and plant patch size govern transitions from highly to sparsely vegetated states in drylands, yet there is scant empirical evidence for these mechanisms. Scale-dependent feedback models suggest that an optimal patch size exists for growth and reproduction of plants and that a threshold patch organization exists below which positive feedbacks between vegetation and resources can break down, leading to critical transitions. We examined the relationship between patch size and plant reproduction using an experiment in a Chihuahuan Desert grassland. We tested the hypothesis that reproductive effort and success of a dominant grass (Bouteloua eriopoda) would vary predictably with patch size. We found that focal plants in medium-sized patches featured higher rates of grass reproductive success than when plants occupied either large patch interiors or small patches. These patterns support the existence of scale-dependent feedbacks in Chihuahuan Desert grasslands and indicate an optimal patch size for reproductive effort and success in B. eriopoda. We discuss the implications of these results for detecting ecological thresholds in desert grasslands.

  4. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    PubMed

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  5. Effects of reward context on feedback processing as indexed by time-frequency analysis.

    PubMed

    Watts, Adreanna T M; Bernat, Edward M

    2018-05-11

    The role of reward context has been investigated as an important factor in feedback processing. Previous work has demonstrated that the amplitude of the feedback negativity (FN) depends on the value of the outcome relative to the range of possible outcomes in a given context, not the objective value of the outcome. However, some research has shown that the FN does not scale with loss magnitude in loss-only contexts, suggesting that some contexts do not show a pattern of context dependence. Methodologically, time-frequency decomposition techniques have proven useful for isolating time-domain ERP activity as separable processes indexed in delta (< 3 Hz) and theta (3-7 Hz). Thus, the current study assessed the role of context in a modified gambling feedback task using time-frequency analysis to better isolate the underlying processes. Results revealed that theta was more context dependent and reflected a binary evaluation of bad versus good outcomes in the gain and even contexts. Delta was more context independent: good outcomes scaled linearly with reward magnitude and good-bad differences scaled with context valence. Our findings reveal that theta and delta are differentially sensitive to context and that context valence may play a critical role in determining how the brain processes feedback. © 2018 Society for Psychophysiological Research.

  6. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex.

    PubMed

    Mejias, Jorge F; Murray, John D; Kennedy, Henry; Wang, Xiao-Jing

    2016-11-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.

  7. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

    PubMed Central

    Mejias, Jorge F.; Murray, John D.; Kennedy, Henry; Wang, Xiao-Jing

    2016-01-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions. PMID:28138530

  8. Energy Feedback at the City-Wide Scale A comparison to building scale studies

    NASA Astrophysics Data System (ADS)

    Carter, Richard Allan

    Climate change is a growing concern throughout the world. In the United States, leadership has so far failed to establish targeted reductions and agreement on mitigation strategies. Despite this, many large cities are taking on the challenge of measuring their emissions, establishing targeted reductions, and defining strategies for mitigation in the form of Climate Action Plans. Reporting of greenhouse gas (GHG) emissions by these cities is usually based on a one-time, annual calculation. Many studies have been conducted on the impact of providing energy use data or feedback to households, and in some cases, institutional or commercial businesses. In most of those studies, the act of providing feedback has resulted in a reduction of energy use, ranging from 2% to 15%, depending upon the features of the feedback. Many of these studies included only electric use. Studies where all energy use was reported are more accurate representations of GHG emissions. GHG emissions and energy use are not the same, depending on the fuel source and in the case of this paper, the focus is on reducing energy use. This research documents the characteristics of the feedback provided in those studies in order to determine which are most effective and should be considered for application to the community-wide scale. Eleven studies, including five primary and six secondary research papers, were reviewed and analyzed for the features of the feedback. Trends were established and evaluated with respect to their effectiveness and potential for use at the community-wide scale. This paper concludes that additional research is required to determine if the use of energy feedback at the city scale could result in savings similar to those observed at the household scale. This additional research could take advantage of the features assessed here in order to be more effective and to implement the features that are best able to scale up. Further research is needed to determine whether combining city-wide feedback with feedback for individual energy users within the city, both residential and commercial, has an even greater impact on reducing energy use and lowering GHG emissions.

  9. Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2018-01-01

    Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.

  10. Cross-scale feedbacks and scale mismatches as influences on cultural services and the resilience of protected areas.

    PubMed

    Maciejewski, Kristine; De Vos, Alta; Cumming, Graeme S; Moore, Christine; Biggs, Duan

    2015-01-01

    Protected areas are a central strategy for achieving global conservation goals, but their continued existence depends heavily on maintaining sufficient social and political support to outweigh economic interests or other motives for land conversion. Thus, the resilience of protected areas can be considered a function of their perceived benefits to society. Nature-based tourism (NBT), a cultural ecosystem service, provides a key source of income to protected areas, facilitating a sustainable solution to conservation. The ability of tourism to generate income depends, however, on both the scales at which this cultural service is provided and the scales at which tourists respond to services on offer. This observation raises a set of location-, context-, and scale-related questions that need to be confronted before we can understand and value cultural service provision appropriately. We combine elements of resilience analysis with a systems ecology framework and apply this to NBT in protected areas to investigate cross-scale interactions and scale mismatches. We postulate that cross-scale effects can either have a positive effect on protected area resilience or lead to scale mismatches, depending on their interactions with cross-scale feedbacks. To demonstrate this, we compare spatial scales and nested levels of institutions to develop a typology of scale mismatches for common scenarios in NBT. In our new typology, the severity of a scale mismatch is expressed as the ratio of spatial scale to institutional level, producing 25 possible outcomes with differing consequences for system resilience. We predict that greater differences between interacting scales and levels, and greater magnitudes of cross-scale interactions, will lead to greater magnitudes of scale mismatch. Achieving a better understanding of feedbacks and mismatches, and finding ways of aligning spatial and institutional scales, will be critical for strengthening the resilience of protected areas that depend on NBT.

  11. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  12. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  13. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.

  14. Do radiative feedbacks depend on the structure and type of climate forcing, or only on the spatial pattern of surface temperature change?

    NASA Astrophysics Data System (ADS)

    Haugstad, A.; Battisti, D. S.; Armour, K.

    2016-12-01

    Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.

  15. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

  16. Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao

    2017-10-01

    This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.

  17. Relaxation oscillations and hierarchy of feedbacks in MAPK signaling

    NASA Astrophysics Data System (ADS)

    Kochańczyk, Marek; Kocieniewski, Paweł; Kozłowska, Emilia; Jaruszewicz-Błońska, Joanna; Sparta, Breanne; Pargett, Michael; Albeck, John G.; Hlavacek, William S.; Lipniacki, Tomasz

    2017-01-01

    We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.

  18. Methane Feedback on Atmospheric Chemistry: Methods, Models, and Mechanisms

    NASA Astrophysics Data System (ADS)

    Holmes, Christopher D.

    2018-04-01

    The atmospheric methane (CH4) chemical feedback is a key process for understanding the behavior of atmospheric CH4 and its environmental impact. This work reviews how the feedback is defined and used, then examines the meteorological, chemical, and emission factors that control the feedback strength. Geographical and temporal variations in the feedback are described and explained by HOx (HOx = OH + HO2) production and partitioning. Different CH4 boundary conditions used by models, however, make no meaningful difference to the feedback calculation. The strength of the CH4 feedback depends on atmospheric composition, particularly the atmospheric CH4 burden, and is therefore not constant. Sensitivity tests show that the feedback depends very weakly on temperature, insolation, water vapor, and emissions of NO. While the feedback strength has likely remained within 10% of its present value over the industrial era and likely will over the twenty-first century, neglecting these changes biases our understanding of CH4 impacts. Most environmental consequences per kg of CH4 emissions, including its global warming potential (GWP), scale with the perturbation time, which may have grown as much as 40% over the industrial era and continues to rise.

  19. What FIREs Up Star Formation: the Emergence of the Kennicutt-Schmidt Law from Feedback

    NASA Astrophysics Data System (ADS)

    Orr, Matthew E.; Hayward, Christopher C.; Hopkins, Philip F.; Chan, T. K.; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Murray, Norman; Quataert, Eliot

    2018-05-01

    We present an analysis of the global and spatially-resolved Kennicutt-Schmidt (KS) star formation relation in the FIRE (Feedback In Realistic Environments) suite of cosmological simulations, including halos with z = 0 masses ranging from 1010 - 1013 M⊙. We show that the KS relation emerges and is robustly maintained due to the effects of feedback on local scales regulating star-forming gas, independent of the particular small-scale star formation prescriptions employed. We demonstrate that the time-averaged KS relation is relatively independent of redshift and spatial averaging scale, and that the star formation rate surface density is weakly dependent on metallicity and inversely dependent on orbital dynamical time. At constant star formation rate surface density, the `Cold & Dense' gas surface density (gas with T < 300 K and n > 10 cm-3, used as a proxy for the molecular gas surface density) of the simulated galaxies is ˜0.5 dex less than observed at ˜kpc scales. This discrepancy may arise from underestimates of the local column density at the particle-scale for the purposes of shielding in the simulations. Finally, we show that on scales larger than individual giant molecular clouds, the primary condition that determines whether star formation occurs is whether a patch of the galactic disk is thermally Toomre-unstable (not whether it is self-shielding): once a patch can no longer be thermally stabilized against fragmentation, it collapses, becomes self-shielding, cools, and forms stars, regardless of epoch or environment.

  20. An Integrative, Multi-Scale Computational Model of a Swimming Lamprey Fully Coupled to Its Fluid Environment and Incorporating Proprioceptive Feedback

    NASA Astrophysics Data System (ADS)

    Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.

    2016-02-01

    The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.

  1. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  2. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard

    2008-06-01

    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.

  3. A multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry.

    PubMed

    Hortobágyi, Borbála; Corenblit, Dov; Vautier, Franck; Steiger, Johannes; Roussel, Erwan; Burkart, Andreas; Peiry, Jean-Luc

    2017-11-01

    Over the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  5. Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics

    PubMed Central

    Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan

    2014-01-01

    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704

  6. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  7. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves inmore » the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.« less

  8. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    PubMed

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    PubMed Central

    Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei

    2018-01-01

    Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331

  10. Development of negative feedback during successive growth cycles of black cherry.

    PubMed Central

    Packer, Alissa; Clay, Keith

    2004-01-01

    Negative feedback between plant and soil microbial communities can be a key determinant of vegetation structure and dynamics. Previous research has shown that negative feedback between black cherry (Prunus serotina) and soil pathogens is strongly distance dependent. Here, we investigate the temporal dynamics of negative feedback. To examine short-term changes, we planted successive cycles of seedlings in the same soil. We found that seedling mortality increased steadily with growth cycle when sterile background soil was inoculated with living field soil but not in controls inoculated with sterilized field soil. To examine long-term changes, we quantified negative feedback across successive growth cycles in soil inoculated with living field soil from a mature forest system (more than 70 years old) versus a younger successional site (ca. 25 years old). In both cases negative feedback developed similarly. Our results suggest that negative feedback can develop very quickly in forest systems, at the spatial scale of a single seedling. PMID:15058444

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boybeyi, Zafer

    The Department of Energy (DOE) awarded George Mason University (GMU) with a research project. This project started on June, 2009 and ended July 2014. Main objectives of this research project are; a) to assess the indirect and semi-direct aerosol effects on microphysical structure and radiative properties of Arctic clouds, b) to assess the impact of feedback between the aerosol-cloud interactions and atmospheric boundary layer (ABL) processes on the surface energy balance, c) to better understand and characterize the important unresolved microphysical processes, aerosol effects, and ABL processes and feedbacks, over meso-γ spatial (~1-2 km) and temporal scales (a few minutesmore » to days), and d) to investigate the scale dependency of microphysical parameterizations and its effect on simulations.« less

  12. Interpreting the rich-get-richer effect in precipitation change under global warming: issues at monsoon scales

    NASA Astrophysics Data System (ADS)

    Neelin, J.; Langenbrunner, B.; Meyerson, J. E.

    2012-12-01

    Precipitation changes under global warming are often discussed in terms of wet areas receiving more precipitation and dry areas receiving less, sometimes termed the "rich-get-richer" effect. Since the first use of this term, it has been known that contributions can be broken diagnostically into a relatively straightforward tendency associated with moisture increases acted on by the climatological circulation and dynamical feedbacks associated with changes in circulation. A number of studies indicate the latter to be prone to yield scatter in model projections of precipitation change. At the spatial scales of the major monsoon regions, substantial contributions from dynamical feedbacks tend to occur. Factors affecting this dependence will be reviewed with an eye to asking how the community can make succinct statements without oversimplifying the challenges at the regional scale.

  13. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.

  14. The dependence of cosmic ray-driven galactic winds on halo mass

    NASA Astrophysics Data System (ADS)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  15. Feedbacks Between Bioclogging and Infiltration in Losing River Systems

    NASA Astrophysics Data System (ADS)

    Newcomer, M. E.; Hubbard, S. S.; Fleckenstein, J. H.; Schmidt, C.; Maier, U.; Thullner, M.; Ulrich, C.; Rubin, Y.

    2014-12-01

    Reduction in riverbed permeability due to biomass growth is a well-recognized yet poorly understood process associated with losing connected and disconnected rivers. Although several studies have focused on riverbed bioclogging processes at the pore-scale, few studies have quantified bioclogging feedback cycles at the scale relevant for water resources management, or at the meander-scale. At this scale, often competing hydrological-biological processes influence biomass dynamics and infiltration. Disconnection begins when declines in the water table form an unsaturated zone beneath the river maximizing seepage. Simultaneously, bioclogging reduces the point-scale infiltration flux and can either limit the nutrient flux and reduce bioclogging, or preferentially focus infiltration elsewhere and enhance bioclogging. These feedbacks are highly dependent on geomorphology and seasonal patterns of discharge and water temperature. To assess the mutual influences of disconnection, biomass growth, and temperature changes on infiltration in a geomorphologically complex river system, we built a 3D numerical model, conditioned on field data, using the reactive-transport simulator MIN3P. Results show that in disconnected regions of the river, biomass growth reduced vertical seepage downward and extended the unsaturated zone length; however these changes were contingent upon disconnection. Mid-way through the seasonal cycle, biomass declined in these same regions due to limited nutrient flux. Seepage and biomass continued to oscillate with a lag correlation of 1 month. Connected regions, however, showed the largest infiltration rates, nutrient fluxes, and concentrations of biomass. Despite the reduction in conductivity from biomass, flow remains high in connected regions because the feedback between bioclogging and infiltration is not as pronounced due to the sharpening hydraulic gradient. Bioclogging ultimately shapes the pattern of flow, however geomorphology dominates the strength of connection. Recognition of the feedbacks between geomorphological patterns and heterogeneous biomass on meander scale hydrological processes can lead to better estimates of local water volumes and capacities, especially when these systems are used as municipal and public water supply sources.

  16. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  17. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  18. Using Feedback to Promote Physical Activity: The Role of the Feedback Sign

    PubMed Central

    Kramer, Jan-Niklas

    2017-01-01

    Background Providing feedback is a technique to promote health behavior that is emphasized by behavior change theories. However, these theories make contradicting predictions regarding the effect of the feedback sign—that is, whether the feedback signals success or failure. Thus, it is unclear whether positive or negative feedback leads to more favorable behavior change in a health behavior intervention. Objective The aim of this study was to examine the effect of the feedback sign in a health behavior change intervention. Methods Data from participants (N=1623) of a 6-month physical activity intervention was used. Participants received a feedback email at the beginning of each month. Feedback was either positive or negative depending on the participants’ physical activity in the previous month. In an exploratory analysis, change in monthly step count averages was used to evaluate the feedback effect. Results The feedback sign did not predict the change in monthly step count averages over the course of the intervention (b=−84.28, P=.28). Descriptive differences between positive and negative feedback can be explained by regression to the mean. Conclusions The feedback sign might not influence the effect of monthly feedback emails sent out to participants of a large-scale physical activity intervention. However, randomized studies are needed to further support this conclusion. Limitations as well as opportunities for future research are discussed. PMID:28576757

  19. A conceptual framework for regional feedbacks in a changing climate

    NASA Astrophysics Data System (ADS)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.

    2012-04-01

    Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added in the ecosystems-climate system since they play an essential role in human decisions on land use and land cover change (LULCC).

  20. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  1. Interactions between finite amplitude small and medium-scale waves in the MLT region.

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.

    2016-12-01

    Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.

  2. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  3. Characterizing gravitational instability in turbulent multicomponent galactic discs

    NASA Astrophysics Data System (ADS)

    Agertz, Oscar; Romeo, Alessandro B.; Grisdale, Kearn

    2015-05-01

    Gravitational instabilities play an important role in galaxy evolution and in shaping the interstellar medium (ISM). The ISM is observed to be highly turbulent, meaning that observables like the gas surface density and velocity dispersion depend on the size of the region over which they are measured. In this work, we investigate, using simulations of Milky Way-like disc galaxies with a resolution of ˜ 9 pc, the nature of turbulence in the ISM and how this affects the gravitational stability of galaxies. By accounting for the measured average turbulent scalings of the density and velocity fields in the stability analysis, we can more robustly characterize the average level of stability of the galaxies as a function of scale, and in a straightforward manner identify scales prone to fragmentation. Furthermore, we find that the stability of a disc with feedback-driven turbulence can be well described by a `Toomre-like' Q stability criterion on all scales, whereas the classical Q can formally lose its meaning on small scales if violent disc instabilities occur in models lacking pressure support from stellar feedback.

  4. The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure

    NASA Astrophysics Data System (ADS)

    Mummery, Benjamin O.; McCarthy, Ian G.; Bird, Simeon; Schaye, Joop

    2017-10-01

    We use the cosmo-OWLS and bahamas suites of cosmological hydrodynamical simulations to explore the separate and combined effects of baryon physics (particularly feedback from active galactic nuclei, AGN) and free streaming of massive neutrinos on large-scale structure. We focus on five diagnostics: (I) the halo mass function, (II) halo mass density profiles, (III) the halo mass-concentration relation, (IV) the clustering of haloes and (v) the clustering of matter, and we explore the extent to which the effects of baryon physics and neutrino free streaming can be treated independently. Consistent with previous studies, we find that both AGN feedback and neutrino free streaming suppress the total matter power spectrum, although their scale and redshift dependences differ significantly. The inclusion of AGN feedback can significantly reduce the masses of groups and clusters, and increase their scale radii. These effects lead to a decrease in the amplitude of the mass-concentration relation and an increase in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of groups and clusters while having no significant effect on the shape of their density profiles (thus also affecting the mass-concentration relation and halo clustering in a qualitatively similar way to feedback). We show that, with only a small number of exceptions, the combined effects of baryon physics and neutrino free streaming on all five diagnostics can be estimated to typically better than a few per cent accuracy by treating these processes independently (I.e. by multiplying their separate effects).

  5. Hurricane feedback research may improve intensity forecasts

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  6. On the Feedback Phenomenon of an Impinging Jet

    DTIC Science & Technology

    1979-09-01

    the double-structured nature of turbulent flows: time dependent quasi- ordered large scale structures, and fine-scale random structures. Numerous ...downstream and upstream waves d Nozzle diameter f Frequency (Hz) Gf Normalized power si.c ,ur’ of i G ,(f) Normalized cr,- tr bee -en i(t) and J(t) I ,j xiv...1975) suggested that these quasi- ordered structures are deterministic, in the sense that they have a characteristic shape, size and convection motion

  7. Scaling the metabolic balance of the oceans.

    PubMed

    López-Urrutia, Angel; San Martin, Elena; Harris, Roger P; Irigoien, Xabier

    2006-06-06

    Oceanic communities are sources or sinks of CO2, depending on the balance between primary production and community respiration. The prediction of how global climate change will modify this metabolic balance of the oceans is limited by the lack of a comprehensive underlying theory. Here, we show that the balance between production and respiration is profoundly affected by environmental temperature. We extend the general metabolic theory of ecology to the production and respiration of oceanic communities and show that ecosystem rates can be reliably scaled from theoretical knowledge of organism physiology and measurement of population abundance. Our theory predicts that the differential temperature-dependence of respiration and photosynthesis at the organism level determines the response of the metabolic balance of the epipelagic ocean to changes in ambient temperature, a prediction that we support with empirical data over the global ocean. Furthermore, our model predicts that there will be a negative feedback of ocean communities to climate warming because they will capture less CO2 with a future increase in ocean temperature. This feedback of marine biota will further aggravate the anthropogenic effects on global warming.

  8. Star-formation and stellar feedback recipes in galaxy evolution models

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Recchi, Simone; Ploeckinger, Sylvia; Kuehtreiber, Matthias; Steyrleithner, Patrick; Liu, Lei

    2015-08-01

    Modeling galaxy formation and evolution is critically depending on star formation (SF). Since cosmological and galaxy-scale simulations cannot resolve the spatial and density scales on which SF acts, a large variety of methods are developed and applied over the last decades. Nonetheless, we are still in the test phase how the choice of parameters affects the models and how they agree with observations.As a simple ansatz, recipes are based on power-law SF dependences on gas density as justified by gas cooling and collapse timescales. In order to prevent SF spread throughout the gas, temperature and density thresholds are also used, although gas dynamical effects, like e.g. gas infall, seem to trigger SF significantly.The formed stars influence their environment immediately by energetic and materialistic feedback. It has been experienced in numerical models that supernova typeII explosions act with a too long time delay to regulate the SF, but that winds and ionizing radiation by massive stars must be included. The implementation of feedback processes, their efficiencies and timescales, is still in an experimental state, because they depend also on the physical state of the surrounding interstellar medium (ISM).Combining a SF-gas density relation with stellar heating vs. gas cooling and taking the temperature dependence into account, we have derived an analytical expression of self-regulated SF which is free of arbitrary parameters. We have performed numerical models to study this recipe and different widely used SF criteria in both, particle and grid codes. Moreover, we compare the SF behavior between single-gas phase and multi-phase treatments of the ISM.Since dwarf galaxies (DGs) are most sensitive to environmental influences and contain only low SF rates, we explore two main affects on their models: 1. For external effects we compare SF rates of isolated and ram-pressure suffering DGs. Moreover, we find a SF enhancement in tidal-tail DGs by the compressive tidal field. 2. Because of locally low SF rates we compare the stellar feedback of a mostly assumed but only fractionally occupied stellar initial mass function with a bottom-heavy one.

  9. Simulating radiative feedback and star cluster formation in GMCs - II. Mass dependence of cloud destruction and cluster properties

    NASA Astrophysics Data System (ADS)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.

    2017-09-01

    The process of radiative feedback in giant molecular clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects early (≲5 Myr) cluster formation in GMCs having masses that range from 104 to 106 M⊙ using the flash code. The inclusion of radiative feedback lowers the efficiency of cluster formation by 20-50 per cent relative to hydrodynamic simulations. Two models in particular - 5 × 104 and 105 M⊙ - show the largest suppression of the cluster formation efficiency, corresponding to a factor of ˜2. For these clouds only, the internal energy, a measure of the energy injected by radiative feedback, exceeds the gravitational potential for a significant amount of time. We find a clear relation between the maximum cluster mass, Mc,max, formed in a GMC and the mass of the GMC itself, MGMC: Mc,max ∝ M_{GMC}^{0.81}. This scaling result suggests that young globular clusters at the necessary scale of 106 M⊙ form within host GMCs of masses near ˜5 × 107 M⊙. We compare simulated cluster mass distributions to the observed embedded cluster mass function [d log (N)/dlog (M) ∝ Mβ where β = -1] and find good agreement (β = -0.99 ± 0.14) only for simulations including radiative feedback, indicating this process is important in controlling the growth of young clusters. However, the high star formation efficiencies, which range from 16 to 21 per cent, and high star formation rates compared to locally observed regions suggest other feedback mechanisms are also important during the formation and growth of stellar clusters.

  10. Scale Dependence of Land Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and Southeast US

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo

    2016-01-01

    Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.

  11. Might the Rorschach be a projective test after all? Social projection of an undesired trait alters Rorschach Oral Dependency scores.

    PubMed

    Bornstein, Robert F

    2007-06-01

    The degree to which projection plays a role in Rorschach (Rorschach, 1921/1942) responding remains controversial, in part because extant data have yielded inconclusive results. In this investigation, I examined the impact of social projection on Rorschach Oral Dependency (ROD) scores using methods adapted from social cognition research. In Study 1, I prescreened 85 college students (40 women and 45 men) with the ROD scale and a widely used self-report measure of dependency, the Interpersonal Dependency Inventory (IDI; Hirschfeld et al., 1977). Results show that informing participants who scored low on the IDI that they were in fact highly dependent led to significant increases in ROD scores; I did not obtain parallel ROD increases for participants who scored high on the IDI or for participants who received low-dependent feedback. In Study 2, I examined a separate sample of 80 prescreened college students (40 women and 40 men) and showed that providing low self-report participants an opportunity to attribute dependency to a fictional target person prior to Rorschach responding attenuated the impact of high-dependent feedback on ROD scores. These results suggest that projection played a role in at least one domain of Rorschach responding. I discuss theoretical, clinical, and empirical implications of these results.

  12. Improvement of time-delayed feedback control by periodic modulation: analytical theory of Floquet mode control scheme.

    PubMed

    Just, Wolfram; Popovich, Svitlana; Amann, Andreas; Baba, Nilüfer; Schöll, Eckehard

    2003-02-01

    We investigate time-delayed feedback control schemes which are based on the unstable modes of the target state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external time scale in the control process. Phase shifts that develop between these modes and the controlled periodic orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear reaction diffusion system with global coupling and give a detailed investigation for the Rössler model. In addition we provide the analytical explanation for the observed control features.

  13. Direct Observation of Clinical Skills Feedback Scale: Development and Validity Evidence.

    PubMed

    Halman, Samantha; Dudek, Nancy; Wood, Timothy; Pugh, Debra; Touchie, Claire; McAleer, Sean; Humphrey-Murto, Susan

    2016-01-01

    Construct: This article describes the development and validity evidence behind a new rating scale to assess feedback quality in the clinical workplace. Competency-based medical education has mandated a shift to learner-centeredness, authentic observation, and frequent formative assessments with a focus on the delivery of effective feedback. Because feedback has been shown to be of variable quality and effectiveness, an assessment of feedback quality in the workplace is important to ensure we are providing trainees with optimal learning opportunities. The purposes of this project were to develop a rating scale for the quality of verbal feedback in the workplace (the Direct Observation of Clinical Skills Feedback Scale [DOCS-FBS]) and to gather validity evidence for its use. Two panels of experts (local and national) took part in a nominal group technique to identify features of high-quality feedback. Through multiple iterations and review, 9 features were developed into the DOCS-FBS. Four rater types (residents n = 21, medical students n = 8, faculty n = 12, and educators n = 12) used the DOCS-FBS to rate videotaped feedback encounters of variable quality. The psychometric properties of the scale were determined using a generalizability analysis. Participants also completed a survey to gather data on a 5-point Likert scale to inform the ease of use, clarity, knowledge acquisition, and acceptability of the scale. Mean video ratings ranged from 1.38 to 2.96 out of 3 and followed the intended pattern suggesting that the tool allowed raters to distinguish between examples of higher and lower quality feedback. There were no significant differences between rater type (range = 2.36-2.49), suggesting that all groups of raters used the tool in the same way. The generalizability coefficients for the scale ranged from 0.97 to 0.99. Item-total correlations were all above 0.80, suggesting some redundancy in items. Participants found the scale easy to use (M = 4.31/5) and clear (M = 4.23/5), and most would recommend its use (M = 4.15/5). Use of DOCS-FBS was acceptable to both trainees (M = 4.34/5) and supervisors (M = 4.22/5). The DOCS-FBS can reliably differentiate between feedback encounters of higher and lower quality. The scale has been shown to have excellent internal consistency. We foresee the DOCS-FBS being used as a means to provide objective evidence that faculty development efforts aimed at improving feedback skills can yield results through formal assessment of feedback quality.

  14. Multiple electrokinetic actuators for feedback control of colloidal crystal size.

    PubMed

    Juárez, Jaime J; Mathai, Pramod P; Liddle, J Alexander; Bevan, Michael A

    2012-10-21

    We report a feedback control method to precisely target the number of colloidal particles in quasi-2D ensembles and their subsequent assembly into crystals in a quadrupole electrode. Our approach relies on tracking the number of particles within a quadrupole electrode, which is used in a real-time feedback control algorithm to dynamically actuate competing electrokinetic transport mechanisms. Particles are removed from the quadrupole using DC-field mediated electrophoretic-electroosmotic transport, while high-frequency AC-field mediated dielectrophoretic transport is used to concentrate and assemble colloidal crystals. Our results show successful control of the size of crystals containing 20 to 250 colloidal particles with less than 10% error. Assembled crystals are characterized by their radius of gyration, crystallinity, and number of edge particles, and demonstrate the expected size-dependent properties. Our findings demonstrate successful ensemble feedback control of the assembly of different sized colloidal crystals using multiple actuators, which has broad implications for control over nano- and micro- scale assembly processes involving colloidal components.

  15. Catastrophic desert formation in Daisyworld.

    PubMed

    Ackland, Graeme J; Clark, Michael A; Lenton, Timothy M

    2003-07-07

    Feedback between life and its environment is ubiquitous but the strength of coupling and its global implications remain hotly debated. Abrupt changes in the abundance of life for small changes in forcing provide one indicator of regulation, for example, when vegetation-climate feedback collapses in the formation of a desert. Here we use a two-dimensional "Daisyworld" model with curvature to show that catastrophic collapse of life under gradual forcing provides a testable indicator of environmental feedback. When solar luminosity increases to a critical value, a desert forms across a wide band of the planet. The scale of collapse depends on the strength of feedback. The efficiency of temperature regulation is limited by mutation rate in an analogous manner to the limitation of adaptive fitness in evolutionary theories. The final state of the system emerging from single-site rules can be described by two global quantities: optimization of temperature regulation and maximization of diversity, which are mathematically analogous to energy and entropy in thermodynamics.

  16. Disturbance maintains alternative biome states.

    PubMed

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  17. Calculating the spontaneous magnetization and defining the Curie temperature using a positive-feedback model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, R. G., E-mail: rgh@doe.carleton.ca

    2014-01-21

    A positive-feedback mean-field modification of the classical Brillouin magnetization theory provides an explanation of the apparent persistence of the spontaneous magnetization beyond the conventional Curie temperature—the little understood “tail” phenomenon that occurs in many ferromagnetic materials. The classical theory is unable to resolve this apparent anomaly. The modified theory incorporates the temperature-dependent quantum-scale hysteretic and mesoscopic domain-scale anhysteretic magnetization processes and includes the effects of demagnetizing and exchange fields. It is found that the thermal behavior of the reversible and irreversible segments of the hysteresis loops, as predicted by the theory, is a key to the presence or absence ofmore » the “tails.” The theory, which permits arbitrary values of the quantum spin number J, generally provides a quantitative agreement with the thermal variations of both the spontaneous magnetization and the shape of the hysteresis loop.« less

  18. Does a web-based feedback training program result in improved reliability in clinicians' ratings of the Global Assessment of Functioning (GAF) Scale?

    PubMed

    Støre-Valen, Jakob; Ryum, Truls; Pedersen, Geir A F; Pripp, Are H; Jose, Paul E; Karterud, Sigmund

    2015-09-01

    The Global Assessment of Functioning (GAF) Scale is used in routine clinical practice and research to estimate symptom and functional severity and longitudinal change. Concerns about poor interrater reliability have been raised, and the present study evaluated the effect of a Web-based GAF training program designed to improve interrater reliability in routine clinical practice. Clinicians rated up to 20 vignettes online, and received deviation scores as immediate feedback (i.e., own scores compared with expert raters) after each rating. Growth curves of absolute SD scores across the vignettes were modeled. A linear mixed effects model, using the clinician's deviation scores from expert raters as the dependent variable, indicated an improvement in reliability during training. Moderation by content of scale (symptoms; functioning), scale range (average; extreme), previous experience with GAF rating, profession, and postgraduate training were assessed. Training reduced deviation scores for inexperienced GAF raters, for individuals in clinical professions other than nursing and medicine, and for individuals with no postgraduate specialization. In addition, training was most beneficial for cases with average severity of symptoms compared with cases with extreme severity. The results support the use of Web-based training with feedback routines as a means to improve the reliability of GAF ratings performed by clinicians in mental health practice. These results especially pertain to clinicians in mental health practice who do not have a masters or doctoral degree. (c) 2015 APA, all rights reserved.

  19. How to model AGN feedback in cosmological simulations?

    NASA Astrophysics Data System (ADS)

    Sijacki, Debora

    2015-08-01

    Hydrodynamical cosmological simulations are one of the most powerful tools to study the formation and evolution of galaxies in the fully non-linear regime. Despite several recent successes in simulating Milky Way look-alikes, self-consistent, ab-initio models are still a long way off. In this talk I will review numerical and physical uncertainties plaguing current state-of-the-art cosmological simulations of galaxy formation. I will then discuss which feedback mechanisms are needed to reproduce realistic stellar masses and galaxy morphologies in the present day Universe and argue that the black hole feedback is necessary for the quenching of massive galaxies. I will then demonstrate how black hole - host galaxy scaling relations depend on galaxy morphology and colour, highlighting the implications for the co-evolutionary picture between galaxies and their central black holes. In the second part of the talk I will present a novel method that permits to resolve gas flows around black holes all the way from large cosmological scales to the Bondi radii of black holes themselves. I will demonstrate that with this new numerical technique it is possible to estimate much more accurately gas properties in the vicinity of black holes than has been feasible before in galaxy and cosmological simulations, allowing to track reliably gas angular momentum transport from Mpc to pc scales. Finally, I will also discuss if AGN-driven outflows are more likely to be energy- or momentum-driven and what implications this has for the redshift evolution of black hole - host galaxy scaling relations.

  20. A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Barrineau, C. P.

    2014-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.

  1. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony; hide

    2013-01-01

    1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations

  2. Tokamak power reactor ignition and time dependent fractional power operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transportmore » power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.« less

  3. Biogeomorphic feedbacks in the Southwestern USA: exploring the mechanisms of geomorphic change and the effectiveness of mitigation measures

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Diehl, R. M.; Topping, D. J.

    2017-12-01

    Water development and the proliferation of riparian plants have resulted in extensive geomorphic change to rivers worldwide. In many dryland rivers of the Southwestern U.S., these phenomena have contributed to conditions of sediment accumulation leading to channel narrowing, floodplain aggradation, and loss of fluvial habitat. Using a series of field and laboratory measurements, we demonstrate how biogeomorphic feedbacks have promoted channel contraction. Experimental evidence shows that vegetation can have a substantial effect on local hydraulics and sediment-transport fields, depending on plant morphology, but that the impact of plants on physical processes is mediated by flow and sediment supply. In the Little Colorado River in Arizona, water management practices, variations in climate/hydrology, and the resultant expansion of riparian vegetation have resulted in channel narrowing, increases in sinuosity and drag, and decreases in channel slope. These changes have created a biogeomorphic feedback by disrupting downstream flood conveyance; flood travel time has increased resulting in flow attenuation, declines in peak discharge, and continued sediment accumulation at large scales. In the Rio Grande in Big Bend National Park, channel narrowing and floodplain aggradation has led to the loss of channel capacity and an increase in overbank flooding even though discharges have declined. Vegetation expansion into channel environments has exacerbated this condition by reducing channel-margin flow velocities, increasing sediment deposition, and reducing bank erosion thereby creating a biogeomorphic feedback leading to additional narrowing. An understanding of the mechanisms that have driven geomorphic changes in river channels may help to formulate effective mitigation measures. Vegetation removal can have local and reach-scale effects on channel morphology; however, the effectiveness of these actions is dependent upon many variables including the flow regime and upstream sediment supply. At larger scales, the construction of continuous mass-balance sediment budgets, such as on the Rio Grande and the Yampa and Green rivers in Dinosaur National Monument, can help managers tailor upstream water releases required to maintain sufficient channel complexity or to maximize sediment export.

  4. Ultra-Parameterized CAM: Progress Towards Low-Cloud Permitting Superparameterization

    NASA Astrophysics Data System (ADS)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Khairoutdinov, M.; Wyant, M. C.; Singh, B.

    2016-12-01

    A leading source of uncertainty in climate feedback arises from the representation of low clouds, which are not resolved but depend on small-scale physical processes (e.g. entrainment, boundary layer turbulence) that are heavily parameterized. We show results from recent attempts to achieve an explicit representation of low clouds by pushing the computational limits of cloud superparameterization to resolve boundary-layer eddy scales relevant to marine stratocumulus (250m horizontal and 20m vertical length scales). This extreme configuration is called "ultraparameterization". Effects of varying horizontal vs. vertical resolution are analyzed in the context of altered constraints on the turbulent kinetic energy statistics of the marine boundary layer. We show that 250m embedded horizontal resolution leads to a more realistic boundary layer vertical structure, but also to an unrealistic cloud pulsation that cannibalizes time mean LWP. We explore the hypothesis that feedbacks involving horizontal advection (not typically encountered in offline LES that neglect this degree of freedom) may conspire to produce such effects and present strategies to compensate. The results are relevant to understanding the emergent behavior of quasi-resolved low cloud decks in a multi-scale modeling framework within a previously unencountered grey zone of better resolved boundary-layer turbulence.

  5. A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Yokohata, T.; Abe-Ouchi, A.

    2008-12-01

    Studies of past climate potentially provide a constraint on the uncertainty of climate sensitivity, but previous studies warn against a simple scaling to the future. The climate sensitivity is determined by various feedback processes and they may vary with climate states and forcings. In this study, we investigate similarities and differences of feedbacks for a CO2 doubling, a last glacial maximum (LGM), and LGM greenhouse gas (GHG) forcing experiments, using an atmospheric general circulation model coupled to a slab ocean model. After computing the radiative forcing, the individual feedback strengths: water vapor, lapse rate, albedo, and cloud feedbacks, are evaluated explicitly. For this particular model, the difference in the climate sensitivity among experiments is attributed to the shortwave cloud feedback in which there is a tendency that it becomes weaker or even negative in the cooling experiments. No significant difference is found in the water vapor feedback between warming and cooling experiments by GHGs despite the nonlinear dependence of the Clausius-Clapeyron relation on temperature. The weaker water vapor feedback in the LGM experiment due to a relatively weaker tropical forcing is compensated by the stronger lapse rate feedback due to a relatively stronger extratropical forcing. A hypothesis is proposed which explains the asymmetric cloud response between warming and cooling experiments associated with a displacement of the region of mixed- phase clouds. The difference in the total feedback strength between experiments is, however, relatively small compared to the current intermodel spread, and does not necessarily preclude the use of LGM climate as a future constraint.

  6. The biomass burning contribution to climate-carbon-cycle feedback

    NASA Astrophysics Data System (ADS)

    Harrison, Sandy P.; Bartlein, Patrick J.; Brovkin, Victor; Houweling, Sander; Kloster, Silvia; Prentice, I. Colin

    2018-05-01

    Temperature exerts strong controls on the incidence and severity of fire. All else equal, warming is expected to increase fire-related carbon emissions, and thereby atmospheric CO2. But the magnitude of this feedback is very poorly known. We use a single-box model of the land biosphere to quantify this positive feedback from satellite-based estimates of biomass burning emissions for 2000-2014 CE and from sedimentary charcoal records for the millennium before the industrial period. We derive an estimate of the centennial-scale feedback strength of 6.5 ± 3.4 ppm CO2 per degree of land temperature increase, based on the satellite data. However, this estimate is poorly constrained, and is largely driven by the well-documented dependence of tropical deforestation and peat fires (primarily anthropogenic) on climate variability patterns linked to the El Niño-Southern Oscillation. Palaeo-data from pre-industrial times provide the opportunity to assess the fire-related climate-carbon-cycle feedback over a longer period, with less pervasive human impacts. Past biomass burning can be quantified based on variations in either the concentration and isotopic composition of methane in ice cores (with assumptions about the isotopic signatures of different methane sources) or the abundances of charcoal preserved in sediments, which reflect landscape-scale changes in burnt biomass. These two data sources are shown here to be coherent with one another. The more numerous data from sedimentary charcoal, expressed as normalized anomalies (fractional deviations from the long-term mean), are then used - together with an estimate of mean biomass burning derived from methane isotope data - to infer a feedback strength of 5.6 ± 3.2 ppm CO2 per degree of land temperature and (for a climate sensitivity of 2.8 K) a gain of 0.09 ± 0.05. This finding indicates that the positive carbon cycle feedback from increased fire provides a substantial contribution to the overall climate-carbon-cycle feedback on centennial timescales. Although the feedback estimates from palaeo- and satellite-era data are in agreement, this is likely fortuitous because of the pervasive influence of human activities on fire regimes during recent decades.

  7. Robust control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Hong, Boe-Shong

    Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.

  8. High-Precision Tests of Stochastic Thermodynamics in a Feedback Trap

    NASA Astrophysics Data System (ADS)

    Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

    2015-03-01

    Feedback traps can trap and manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. Feedback traps allow one to choose an arbitrary virtual potential, do any time-dependent transformation of the potential, and measure various thermodynamic quantities such as stochastic work, heat, or entropy. In feedback-trap experiments, the dynamics of a trapped object is determined by the imposed potential but is also affected by drifts due to electrochemical reactions and by temperature variations in the electronic amplifier. Although such drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. In this talk, we present a recursive algorithm that allows real-time estimations of drifts and other particle properties. These estimates let us do a real-time calibration of the feedback trap. Having eliminated systematic errors, we were able to show that erasing a one-bit memory requires at least kT ln 2 of work, in accordance with Landauer's principle. This work was supported by NSERC (Canada).

  9. Forest recovery patterns in response to divergent disturbance regimes in the Border Lakes region of Minnesota (USA) and Ontario (Canada)

    Treesearch

    Brian R. Sturtevant; Brian R. Miranda; Peter T. Wolter; Patrick M.A. James; Marie-Josée Fortin; Philip A. Townsend

    2014-01-01

    The persistence of landscape-scale disturbance legacies in forested ecosystems depends in part on the nature and strength of feedback among disturbances, their effects, and subsequent recovery processes such as tree regeneration and canopy closure. We investigated factors affecting forest recovery rates over a 25-year time period in a large (6 million ha) landscape...

  10. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    PubMed Central

    Junod Perron, Noëlle; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Introduction Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Results Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational goal. PMID:27834170

  11. Feedback in formative OSCEs: comparison between direct observation and video-based formats.

    PubMed

    Junod Perron, Noëlle; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p= 0.002 and 3.71 vs. 2.04, p= 0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p= 0.007; active problem-solving: 3.92 vs. 3.42, p= 0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational goal.

  12. Two time scale output feedback regulation for ill-conditioned systems

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Moerder, D. D.

    1986-01-01

    Issues pertaining to the well-posedness of a two time scale approach to the output feedback regulator design problem are examined. An approximate quadratic performance index which reflects a two time scale decomposition of the system dynamics is developed. It is shown that, under mild assumptions, minimization of this cost leads to feedback gains providing a second-order approximation of optimal full system performance. A simplified approach to two time scale feedback design is also developed, in which gains are separately calculated to stabilize the slow and fast subsystem models. By exploiting the notion of combined control and observation spillover suppression, conditions are derived assuring that these gains will stabilize the full-order system. A sequential numerical algorithm is described which obtains output feedback gains minimizing a broad class of performance indices, including the standard LQ case. It is shown that the algorithm converges to a local minimum under nonrestrictive assumptions. This procedure is adapted to and demonstrated for the two time scale design formulations.

  13. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.

  14. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    NASA Astrophysics Data System (ADS)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.

  15. The importance of spatial fishing behavior for coral reef resilience

    NASA Astrophysics Data System (ADS)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  16. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  17. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review.

    PubMed

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-01-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.

  18. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    NASA Astrophysics Data System (ADS)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-11-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.

  19. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    NASA Astrophysics Data System (ADS)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and highresolution modeling on large domains are discussed.

  20. Feedbacks of Density and Viscosity Nonlinearities on Convective Mixing: Experiments and High-resolution Simulations

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. J.; MacMinn, C. W.; Cueto-Felgueroso, L.; Fe, J.

    2011-12-01

    Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. The free-phase CO2 tends to rise due to buoyancy, accumulate beneath the caprock and dissolve into the brine, initially by diffusion. The CO2-brine mixture, however, is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. Here, we perform high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol) to explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture. We find that the convective flux depends strongly on the value of the concentration for which the density of the mixture is maximum, and on the viscosity contrast between the fluids. From the experimental and simulation results we elucidate the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks in the interpretation of the analogue-fluid experiments.

  1. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  2. Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback.

    PubMed

    Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime

    2016-12-01

    We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.

  3. The up-scaling of ecosystem functions in a heterogeneous world

    NASA Astrophysics Data System (ADS)

    Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Kraan, Casper

    2015-05-01

    Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning. Positive effects of key consumers (burrowing urchins, Echinocardium cordatum) on seafloor net primary productivity (NPP) elucidated by short-term, single-site experiments persisted across multiple sites and years. Additional experimentation illustrated how these effects amplified over time, resulting in greater primary producer biomass sediment chlorophyll a content (Chla) in the longer term, depending on climatic context and habitat factors affecting the strengths of mutually reinforcing feedbacks. The remarkable coherence of results from small and large scales is evidence of real-world ecosystem function scalability and ecological self-organisation. This discovery provides greater insights into the range of responses to broad-scale anthropogenic stressors in naturally heterogeneous environmental settings.

  4. The up-scaling of ecosystem functions in a heterogeneous world

    PubMed Central

    Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Kraan, Casper

    2015-01-01

    Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning. Positive effects of key consumers (burrowing urchins, Echinocardium cordatum) on seafloor net primary productivity (NPP) elucidated by short-term, single-site experiments persisted across multiple sites and years. Additional experimentation illustrated how these effects amplified over time, resulting in greater primary producer biomass sediment chlorophyll a content (Chla) in the longer term, depending on climatic context and habitat factors affecting the strengths of mutually reinforcing feedbacks. The remarkable coherence of results from small and large scales is evidence of real-world ecosystem function scalability and ecological self-organisation. This discovery provides greater insights into the range of responses to broad-scale anthropogenic stressors in naturally heterogeneous environmental settings. PMID:25993477

  5. Characterizing Feedback Control Mechanisms in Nonlinear Microbial Models of Soil Organic Matter Decomposition by Stability Analysis

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.

    2014-12-01

    Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.

  6. Speech Compensation for Time-Scale-Modified Auditory Feedback

    ERIC Educational Resources Information Center

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  7. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  8. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  9. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

    DOE PAGES

    MacCrann, N.; Aleksić, J.; Amara, A.; ...

    2016-11-05

    Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model tomore » account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.« less

  10. How will wind and water erosion change in drylands in the future?

    NASA Astrophysics Data System (ADS)

    Okin, G. S.; Sala, O.; Vivoni, E. R.

    2017-12-01

    Drylands are characterized as much by high spatial and temporal variability as they are by low precipitation. Cover that is patchy at multiple scales allows connectivity for wind and water transport. Vegetation dynamics at interannual scales occurs in the context of community change (including woody encroachment) at decadal scales. Periods of drought alternate with relatively wet periods. Future predictions for the world's drylands are that many will become more arid, but near all will experience greater climate variability. This work explores how future variability will affect transport by wind and water, both of which are crucial elements of biotic-abiotic feedbacks that control community change in drylands. This work is based on long-term observations from the Jornada Long Term Ecological Research (LTER), but with lessons that are applicable elsewhere. We find strong relationships between vegetation community, precipitation and aeolian transport related to changes in connectivity. We further identify strong, scale-dependent relationships between precipitation and runoff. Thus, aeolian transport decreases with increasing annual precipitation and transport by water increases with annual precipitation, with the combined effect that increased variability in annual precipitation is likely to increase both water and wind transport. The consequence of this is that feedbacks associated with community change are likely to strengthen in the future.

  11. Assessing Technology in the Absence of Proof: Trust Based on the Interplay of Others' Opinions and the Interaction Process.

    PubMed

    de Vries, Peter W; van den Berg, Stéphanie M; Midden, Cees

    2015-12-01

    The present research addresses the question of how trust in systems is formed when unequivocal information about system accuracy and reliability is absent, and focuses on the interaction of indirect information (others' evaluations) and direct (experiential) information stemming from the interaction process. Trust in decision-supporting technology, such as route planners, is important for satisfactory user interactions. Little is known, however, about trust formation in the absence of outcome feedback, that is, when users have not yet had opportunity to verify actual outcomes. Three experiments manipulated others' evaluations ("endorsement cues") and various forms of experience-based information ("process feedback") in interactions with a route planner and measured resulting trust using rating scales and credits staked on the outcome. Subsequently, an overall analysis was conducted. Study 1 showed that effectiveness of endorsement cues on trust is moderated by mere process feedback. In Study 2, consistent (i.e., nonrandom) process feedback overruled the effect of endorsement cues on trust, whereas inconsistent process feedback did not. Study 3 showed that although the effects of consistent and inconsistent process feedback largely remained regardless of face validity, high face validity in process feedback caused higher trust than those with low face validity. An overall analysis confirmed these findings. Experiential information impacts trust even if outcome feedback is not available, and, moreover, overrules indirect trust cues-depending on the nature of the former. Designing systems so that they allow novice users to make inferences about their inner workings may foster initial trust. © 2015, Human Factors and Ergonomics Society.

  12. Galaxy formation in the Planck cosmology - IV. Mass and environmental quenching, conformity and clustering

    NASA Astrophysics Data System (ADS)

    Henriques, Bruno M. B.; White, Simon D. M.; Thomas, Peter A.; Angulo, Raul E.; Guo, Qi; Lemson, Gerard; Wang, Wenting

    2017-08-01

    We study the quenching of star formation as a function of redshift, environment and stellar mass in the galaxy formation simulations of Henriques et al. (2015), which implement an updated version of the Munich semi-analytic model (L-GALAXIES) on the two Millennium Simulations after scaling to a Planck cosmology. In this model, massive galaxies are quenched by active galactic nucleus (AGN) feedback depending on both black hole and hot gas mass, and hence indirectly on stellar mass. In addition, satellite galaxies of any mass can be quenched by ram-pressure or tidal stripping of gas and through the suppression of gaseous infall. This combination of processes produces quenching efficiencies which depend on stellar mass, host halo mass, environment density, distance to group centre and group central galaxy properties in ways which agree qualitatively with observation. Some discrepancies remain in dense regions and close to group centres, where quenching still seems too efficient. In addition, although the mean stellar age of massive galaxies agrees with observation, the assumed AGN feedback model allows too much ongoing star formation at late times. The fact that both AGN feedback and environmental effects are stronger in higher density environments leads to a correlation between the quenching of central and satellite galaxies which roughly reproduces observed conformity trends inside haloes.

  13. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    NASA Astrophysics Data System (ADS)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  14. The impact of stellar feedback on the density and velocity structure of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn; Agertz, Oscar; Romeo, Alessandro B.; Renaud, Florent; Read, Justin I.

    2017-04-01

    We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (H I) in disc galaxies. For our analysis, we carry out ˜4.6 pc resolution N-body+adaptive mesh refinement hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way and a Large and Small Magellanic Cloud. We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed H I in local spiral galaxies from THINGS (The H I Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS H I density power spectra. We find that kinetic energy power spectra in feedback-regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with supersonic turbulence (E(k) ∝ k-2) on scales below the thickness of the H I layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large-scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.

  15. Accuracy requirements. [for monitoring of climate changes

    NASA Technical Reports Server (NTRS)

    Delgenio, Anthony

    1993-01-01

    Satellite and surface measurements, if they are to serve as a climate monitoring system, must be accurate enough to permit detection of changes of climate parameters on decadal time scales. The accuracy requirements are difficult to define a priori since they depend on unknown future changes of climate forcings and feedbacks. As a framework for evaluation of candidate Climsat instruments and orbits, we estimate the accuracies that would be needed to measure changes expected over two decades based on theoretical considerations including GCM simulations and on observational evidence in cases where data are available for rates of change. One major climate forcing known with reasonable accuracy is that caused by the anthropogenic homogeneously mixed greenhouse gases (CO2, CFC's, CH4 and N2O). Their net forcing since the industrial revolution began is about 2 W/sq m and it is presently increasing at a rate of about 1 W/sq m per 20 years. Thus for a competing forcing or feedback to be important, it needs to be of the order of 0.25 W/sq m or larger on this time scale. The significance of most climate feedbacks depends on their sensitivity to temperature change. Therefore we begin with an estimate of decadal temperature change. Presented are the transient temperature trends simulated by the GISS GCM when subjected to various scenarios of trace gas concentration increases. Scenario B, which represents the most plausible near-term emission rates and includes intermittent forcing by volcanic aerosols, yields a global mean surface air temperature increase Delta Ts = 0.7 degrees C over the time period 1995-2015. This is consistent with the IPCC projection of about 0.3 degrees C/decade global warming (IPCC, 1990). Several of our estimates below are based on this assumed rate of warming.

  16. Toward Making the Invisible Visible Using a Scale: Prospective Teachers' Thoughts and Affective Reactions to Feedback

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2014-01-01

    This paper presents the development and initial validation of a feedback scale which measures the thoughts and affective reactions of prospective teachers concerning feedback on their teaching experiences. To reach this goal, data from 512 prospective teachers were used to test the internal consistency, exploratory and confirmative factor…

  17. Linking biogeomorphic feedbacks from ecosystem engineer to landscape scale: a panarchy approach

    NASA Astrophysics Data System (ADS)

    Eichel, Jana

    2017-04-01

    Scale is a fundamental concept in both ecology and geomorphology. Therefore, scale-based approaches are a valuable tool to bridge the disciplines and improve the understanding of feedbacks between geomorphic processes, landforms, material and organisms and ecological processes in biogeomorphology. Yet, linkages between biogeomorphic feedbacks on different scales, e.g. between ecosystem engineering and landscape scale patterns and dynamics, are not well understood. A panarchy approach sensu Holling et al. (2002) can help to close this research gap and explain how structure and function are created in biogeomorphic ecosystems. Based on results from previous biogeomorphic research in Turtmann glacier foreland (Switzerland; Eichel, 2017; Eichel et al. 2013, 2016), a panarchy concept is presented for lateral moraine slope biogeomorphic ecosystems. It depicts biogeomorphic feedbacks on different spatiotemporal scales as a set of nested adaptive cycles and links them by 'remember' and 'revolt' connections. On a small scale (cm2 - m2; seconds to years), the life cycle of the ecosystem engineer Dryas octopetala L. is considered as an adaptive cycle. Biogeomorphic succession within patches created by geomorphic processes represents an intermediate scale adaptive cycle (m2 - ha, years to decades), while geomorphic and ecologic pattern development at a landscape scale (ha - km2, decades to centuries) can be illustrated by an adaptive cycle of ‚biogeomorphic patch dynamics' (Eichel, 2017). In the panarchy, revolt connections link the smaller scale adaptive cycles to larger scale cycles: on lateral moraine slopes, the development of ecosystem engineer biomass and cover controls the engineering threshold of the biogeomorphic feedback window (Eichel et al., 2016) and therefore the onset of the biogeomorphic phase during biogeomorphic succession. In this phase, engineer patches and biogeomorphic structures can be created in the patch mosaic of the landscape. Remember connections link larger scale adaptive cycles to smaller scale cycles: configuration and properties of the lateral moraine slope patch mosaic control patch recolonization during biogeomorphic succession, while the patch-internal disturbance regime determines when the engineer can establish (establishment threshold of the biogeomorphic feedback window). Jointly, biogeomorphic feedback adaptive cycles and their connections in the panarchy create structure and function in the lateral moraine slope biogeomorphic ecosystem. Thus, by linking feedbacks on different spatiotemporal scales in biogeomorphic ecosystems and explaining the creation of ecosystem structure and function, the panarchy concept represents a useful tool for future biogeomorphic research. Eichel, J. 2017. Biogeomorphic dynamics in the Turtmann glacier forefield, Switzerland. PhD thesis, University of Bonn. Eichel J, Corenblit D, Dikau R. 2016. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surface Processes and Landforms 41: 406-419. DOI: 10.1002/esp.3859 Eichel J, Krautblatter M, Schmidtlein S, Dikau R. 2013. Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201 : 98-110. DOI: 10.1016/j.geomorph.2013.06.012 Holling CS, Gunderson LH, Peterson GD. 2002. Sustainability and Panarchies. In Panarchy: Understanding Transformations in Human and Natural Systems , . Island Press: Washington, D.C.; 63-102.

  18. Psychometric properties of the feedback orientation scale among South African salespersons.

    PubMed

    Lilford, Neil; Caruana, Albert; Pitt, Leyland

    2014-02-01

    Feedback to employees is an important management tool, and the literature demonstrates that it has a positive effect on learning, motivation, and job performance. This study investigates in a non-U.S. context the psychometric properties of the Feedback Orientation Scale. Data were gathered from a sample of 202 salespersons from a large South African firm within the industrial fuels and lubricants sector. Confirmatory Factor Analysis provided evidence for the intended dimensionality, reliability, and convergent and discriminant validity of the scale.

  19. Identifying thresholds in pattern-process relationships: a new cross-scale interactions experiment at the Jornada Basin LTER

    USDA-ARS?s Scientific Manuscript database

    Interactions among ecological patterns and processes at multiple scales play a significant role in threshold behaviors in arid systems. Black grama grasslands and mesquite shrublands are hypothesized to operate under unique sets of feedbacks: grasslands are maintained by fine-scale biotic feedbacks ...

  20. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.

    PubMed

    Yuan, Haidong; Fung, Chi-Hang Fred

    2015-09-11

    Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.

  1. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  2. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  3. Using a Large Scale Computational Model to Study the Effect of Longitudinal and Radial Electrical Coupling in the Cochlea

    NASA Astrophysics Data System (ADS)

    Mistrík, Pavel; Ashmore, Jonathan

    2009-02-01

    We describe a large scale computational model of electrical current flow in the cochlea which is constructed by a flexible Modified Nodal Analysis algorithm to incorporate electrical components representing hair cells and the intercellular radial and longitudinal current flow. The model is used as a laboratory to study the effects of changing longitudinal gap junctional coupling, and shows the way in which cochlear microphonic spreads and tuning is affected. The process for incorporating mechanical longitudinal coupling and feedback is described. We find a difference in tuning and attenuation depending on whether longitudinal or radial couplings are altered.

  4. Modeling for Stellar Feedback in Galaxy Formation Simulations

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena

    2017-02-01

    Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.

  5. Scaled vibratory feedback can bias muscle use in children with dystonia during a redundant, one-dimensional myocontrol task

    PubMed Central

    Liyanagamage, Shanie A.; Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.

    2016-01-01

    Vibratory feedback can be a useful tool for rehabilitation. We examined its use in children with dystonia to understand how it affects muscle activity in a population that does not respond well to standard rehabilitation. We predicted scaled vibration (i.e. vibration that was directly or inversely proportional to muscle activity) would increase use of the vibrated muscle because of task-relevant sensory information, while non-scaled vibration would not change muscle use. The study was conducted on 11 subjects with dystonia and 14 controls. Each subject underwent 4 different types of vibration on the more dystonic biceps muscle (or non-dominant arm in controls) in a one-dimensional, bimanual myocontrol task. Our results showed that only scaled vibratory feedback could bias muscle use without changing overall performance in children with dystonia. We believe there may be a role in rehabilitation for scaled vibratory feedback to retrain abnormal muscle patterns. PMID:27798370

  6. Satellite orbit and data sampling requirements

    NASA Technical Reports Server (NTRS)

    Rossow, William

    1993-01-01

    Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.

  7. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    PubMed

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  8. Understanding Feedback: A Learning Theory Perspective

    ERIC Educational Resources Information Center

    Thurlings, Marieke; Vermeulen, Marjan; Bastiaens, Theo; Stijnen, Sjef

    2013-01-01

    This article aims to review literature on feedback to teachers. Because research has hardly focused on feedback among teachers, the review's scope also includes feedback in classrooms. The review proposes that the effectiveness of feedback and feedback processes depend on the learning theory adhered to. Findings show that regardless of the…

  9. The basis for cosmic ray feedback: Written on the wind

    PubMed Central

    Zweibel, Ellen G.

    2017-01-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734

  10. The basis for cosmic ray feedback: Written on the wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  11. The basis for cosmic ray feedback: Written on the wind.

    PubMed

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  12. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity

    NASA Astrophysics Data System (ADS)

    Leiser, Randolph J.; Rotstein, Horacio G.

    2017-08-01

    Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.

  13. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.

  14. Coincident scales of forest feedback on climate and conservation in a diversity hot spot

    PubMed Central

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2005-01-01

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697

  15. Coincident scales of forest feedback on climate and conservation in a diversity hot spot.

    PubMed

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2006-03-22

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.

  16. Task-dependent vestibular feedback responses in reaching.

    PubMed

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  17. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. I. The Case of Pure Self-gravity

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2015-12-01

    The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches ˜ 1 {M}⊙ yr-1 for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our models, and use the comparison between the two cases to understand which galaxy properties depend sensitively on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.

  18. Improving the efficiency of cognitive-behavioural therapy by using formal client feedback.

    PubMed

    Janse, Pauline D; De Jong, Kim; Van Dijk, Maarten K; Hutschemaekers, Giel J M; Verbraak, Marc J P M

    2017-09-01

    Feedback from clients on their view of progress and the therapeutic relationship can improve effectiveness and efficiency of psychological treatments in general. However, what the added value is of client feedback specifically within cognitive-behavioural therapy (CBT), is not known. Therefore, the extent to which the outcome of CBT can be improved is investigated by providing feedback from clients to therapists using the Outcome Rating Scale (ORS) and Session Rating Scale (SRS). Outpatients (n = 1006) of a Dutch mental health organization either participated in the "treatment as usual" (TAU) condition, or in Feedback condition of the study. Clients were invited to fill in the ORS and SRS and in the Feedback condition therapists were asked to frequently discuss client feedback. Outcome on the SCL-90 was only improved specifically with mood disorders in the Feedback condition. Also, in the Feedback condition, in terms of process, the total number of required treatment sessions was on average two sessions fewer. Frequently asking feedback from clients using the ORS/SRS does not necessarily result in a better treatment outcome in CBT. However, for an equal treatment outcome significantly fewer sessions are needed within the Feedback condition, thus improving efficiency of CBT.

  19. Giving Feedback: Development of Scales for the Mum Effect, Discomfort Giving Feedback, and Feedback Medium Preference

    ERIC Educational Resources Information Center

    Cox, Susie S.; Marler, Laura E.; Simmering, Marcia J.; Totten, Jeff W.

    2011-01-01

    Research in organizational behavior and human resources promotes the view that it is critical for managers to provide accurate feedback to employees, yet little research addresses rater tendencies (i.e., the "mum effect") and attitudes that influence how performance feedback is given. Because technology has changed the nature of…

  20. Introducing Subrid-scale Cloud Feedbacks to Radiation for Regional Meteorological and Cllimate Modeling

    EPA Science Inventory

    Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...

  1. Local feedback mechanisms of the shallow water region around the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun

    2014-10-01

    The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.

  2. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.

    PubMed

    Whitwell, Robert L; Ganel, Tzvi; Byrne, Caitlin M; Goodale, Melvyn A

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. "Natural" prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object ("haptics-based object information") once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets ("grip scaling") when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF's grip scaling slopes. In the second experiment, we examined an "unnatural" grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the past. Compared to natural grasps, removing tactile feedback increased RT, slowed the velocity of the reach, reduced in-flight grip aperture, increased the slopes relating grip aperture to target width, and reduced the final grip aperture (FGA). All of these effects were also observed in the real time-pantomime grasping task. These effects seem to be independent of those that arise from using the mirror in general as we also compared grasps directed towards virtual targets to those directed at real ones viewed directly through a pane of glass. These comparisons showed that the grasps directed at virtual targets increased grip aperture, slowed the velocity of the reach, and reduced the slopes relating grip aperture to the widths of the target. Thus, using the mirror has real consequences on grasp kinematics, reflecting the importance of task-relevant sources of online visual information for the programming and updating of natural prehensile movements. Taken together, these results provide compelling support for the view that removing terminal tactile feedback, even when the grasps are target-directed, induces a switch from real-time visual control towards one that depends more on visual perception and cognitive supervision. Providing terminal tactile feedback and real-time visual information can evidently keep the dorsal visuomotor system operating normally for prehensile acts.

  3. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman

    2013-04-01

    We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence.

  4. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  5. Coevolution of nonlinear trends in vegetation, soils, and topography with elevation and slope aspect: A case study in the sky islands of southern Arizona

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Durcik, Matej; Harman, Ciaran J.; Huxman, Travis E.; Lohse, Kathleen A.; Lybrand, Rebecca; Meixner, Tom; McIntosh, Jennifer C.; Papuga, Shirley A.; Rasmussen, Craig; Schaap, Marcel; Swetnam, Tyson L.; Troch, Peter A.

    2013-06-01

    among vegetation dynamics, pedogenesis, and topographic development affect the "critical zone"—the living filter for Earth's hydrologic, biogeochemical, and rock/sediment cycles. Assessing the importance of such feedbacks, which may be particularly pronounced in water-limited systems, remains a fundamental interdisciplinary challenge. The sky islands of southern Arizona offer an unusually well-defined natural experiment involving such feedbacks because mean annual precipitation varies by a factor of five over distances of approximately 10 km in areas of similar rock type (granite) and tectonic history. Here we compile high-resolution, spatially distributed data for Effective Energy and Mass Transfer (EEMT: the energy available to drive bedrock weathering), above-ground biomass, soil thickness, hillslope-scale topographic relief, and drainage density in two such mountain ranges (Santa Catalina: SCM; Pinaleño: PM). Strong correlations exist among vegetation-soil-topography variables, which vary nonlinearly with elevation, such that warm, dry, low-elevation portions of these ranges are characterized by relatively low above-ground biomass, thin soils, minimal soil organic matter, steep slopes, and high drainage densities; conversely, cooler, wetter, higher elevations have systematically higher biomass, thicker organic-rich soils, gentler slopes, and lower drainage densities. To test if eco-pedo-geomorphic feedbacks drive this pattern, we developed a landscape evolution model that couples pedogenesis and topographic development over geologic time scales, with rates explicitly dependent on vegetation density. The model self-organizes into states similar to those observed in SCM and PM. Our results highlight the potential importance of eco-pedo-geomorphic feedbacks, mediated by soil thickness, in water-limited systems.

  6. Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion

    NASA Astrophysics Data System (ADS)

    Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike

    2013-04-01

    While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).

  7. Tracing Galactic Outflows to the Source: Spatially Resolved Feedback in M83 with COS

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2016-10-01

    Star-formation (SF) feedback plays a vital role in shaping galaxy properties, but there are many open questions about how this feedback is created, propagated, and felt by galaxies. SF-driven feedback can be observationally constrained with rest-frame UV absorption-line spectroscopy that accesses a range of powerful gas density and kinematic diagnostics. Studies at both high and low redshift show clear evidence for large-scale outflows in star-forming galaxies that scale with galaxy SF rate. However, by sampling one sightline or the galaxy as a whole, these studies are not tailored to reveal how the large-scale outflows develop from their ultimate sources at the scale of individual SF regions. We propose the first spatially-resolved COS G130M/G160M (1130-1800 A) study of the ISM in the nearby (4.6 Mpc) face-on spiral starburst M83 using individual young star clusters as background sources. This is the first down-the-barrel study where blueshifted absorptions can be identified directly with outflowing gas in a spatially resolved fashion. The kpc-scale flows sampled by the COS pointings will be anchored to the properties of the large-scale (10-100 kpc) flows thanks to the wealth of multi-wavelength observations of M83 from X-ray to radio. A comparison of COS data with mock spectra from constrained simulations of spiral galaxies with FIRE (Feedback In Realistic Environments; a code with unprecedented 1-100 pc spatial resolution and self-consistent treatments of stellar feedback) will provide an important validation of these simulations and will supply the community with a powerful and well-tested tool for galaxy formation predictions applicable to all redshifts.

  8. Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback

    PubMed Central

    Young, Todd R.; Fernandez, Bastien; Buckalew, Richard; Moses, Gregory; Boczko, Erik M.

    2011-01-01

    Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as “uniform” solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments. PMID:22001733

  9. Analysis of the WRF-Chem simulations contributing to the AQMEII-Phase II exercise with respect to aerosol impact on precipitation

    NASA Astrophysics Data System (ADS)

    Werhahn, Johannes; Balzarini, Allessandra; Baró, Roccio; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Langer, Matthias; Lorenz, Christof; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Žabkar, Rahela

    2014-05-01

    Simulated feedback effects between aerosol concentrations and meteorological variables and on pollutant distributions are expected to depend on model configuration and the meteorological situation. In order to quantity these effects the second phase of the AQMEII (Air Quality Model Evaluation International Initiative; http://aqmeii.jrc.ec.europa.eu/) model inter-comparison exercise focused on online coupled meteorology-chemistry models. Among others, seven of the participating groups contributed simulations with WRF-Chem (Grell et al., 2005) for Europe. According to the common simulation strategy for AQMEII phase 2, the entire year 2010 was simulated as a sequence of 2-day time slices. For better comparability, the seven groups using WRF-Chem applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. The simulations differ by the chosen chemistry option, aerosol module, cloud microphysics, and by the degree of aerosol-meteorology feedback that was considered. Results from this small ensemble are analyzed with respect to the effect of the different degrees of aerosol-meteorology feedback, i.e. no aerosol feedback, direct aerosol effect, and direct plus indirect aerosol effect, on large scale precipitation. Simulated precipitation fields were compared against daily precipitation observations as given by E-OBS 25 km resolution gridded dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). As expected, a first analysis confirms that the average impact of aerosol feedback is only very small on the considered spatial and temporal scale, i.e. due to the fact that initial meteorological conditions were taken every 3rd day from a one day non-feedback spin-up run. However, the analysis of the correlations between simulation and observations for the first and the second day indicates for some particular situations and regions a slightly better correlation when the aerosol indirect effect is accounted for.

  10. Comparison of brief versus extended personalised feedback in an online intervention for cannabis users: Short-term findings of a randomised trial.

    PubMed

    Copeland, Jan; Rooke, Sally; Rodriquez, Dan; Norberg, Melissa M; Gibson, Lisa

    2017-05-01

    Previous studies have shown brief online self-help interventions to be a useful method of treating cannabis use and related problems; however, no studies have compared the effects of brief versus extended feedback for online brief intervention programs. The current study was a two arm randomised trial aimed at testing the short term effectiveness of a brief and extended feedback version of Grassessment, a brief online intervention for cannabis users that provides individualised feedback regarding use, motives, and harms. Participants (n=287) reporting at least one symptom of DSM IV cannabis abuse or dependence were recruited using online and offline advertising methods. Participants were randomised to receive either a brief or extended feedback version of the Grassessment program and were required to complete a one month follow up questionnaire. One hundred and ninety four participants completed the one month follow up. Wilcoxon analyses showed a significant decrease in past month quantity and frequency of cannabis use (ps<0.001; r=-0.41 and -0.40 respectively) and lower severity of dependence scores (p=0.002; r=-0.31) among those in the brief feedback condition. Participants in the extended feedback group also demonstrated significant decreases in patterns of use (ps<0.002; r=-0.39 and -0.33) but not severity of dependence (p=0.09; r=0.18). A Generalized Estimating Equation (GEE) analysis showed no significant interaction between length of feedback received and past month cannabis use frequency (p=0.78), quantity (p=0.73), or severity of dependence (p=0.47). This study adds support for the use of brief online self-complete interventions to reduce cannabis use and related problems in the short term. The findings suggest that in the case of the brief online screening and feedback program Grassessment, extended feedback does not lead to superior outcomes over brief feedback. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Benjamin L.; King, Anthony W.; Ernst, Kathleen M.

    Human agency is an essential determinant of the dynamics of agroecosystems. However, the manner in which agency is represented within different approaches to agroecosystem modeling is largely contingent on the scales of analysis and the conceptualization of the system of interest. While appropriate at times, narrow conceptualizations of agroecosystems can preclude consideration for how agency manifests at different scales, thereby marginalizing processes, feedbacks, and constraints that would otherwise affect model results. Modifications to the existing modeling toolkit may therefore enable more holistic representations of human agency. Model integration can assist with the development of multi-scale agroecosystem modeling frameworks that capturemore » different aspects of agency. In addition, expanding the use of socioeconomic scenarios and stakeholder participation can assist in explicitly defining context-dependent elements of scale and agency. Finally, such approaches, however, should be accompanied by greater recognition of the meta agency of model users and the need for more critical evaluation of model selection and application.« less

  12. The development and validation of the core competencies scale (CCS) for the college and university students.

    PubMed

    Ruan, Bin; Mok, Magdalena Mo Ching; Edginton, Christopher R; Chin, Ming Kai

    2012-01-01

    This article describes the development and validation of the Core Competencies Scale (CCS) using Bok's (2006) competency framework for undergraduate education. The framework included: communication, critical thinking, character development, citizenship, diversity, global understanding, widening of interest, and career and vocational development. The sample comprised 70 college and university students. Results of analysis using Rasch rating scale modelling showed that there was strong empirical evidence on the validity of the measures in contents, structure, interpretation, generalizability, and response options of the CCS scale. The implication of having developed Rasch-based valid and dependable measures in this study for gauging the value added of college and university education to their students is that the feedback generated from CCS will enable evidence-based decision and policy making to be implemented and strategized. Further, program effectiveness can be measured and thus accountability on the achievement of the program objectives.

  13. Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA

    PubMed Central

    Reinhart, Kurt O.; Johnson, Daniel; Clay, Keith

    2012-01-01

    Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable. PMID:22808231

  14. Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA.

    PubMed

    Reinhart, Kurt O; Johnson, Daniel; Clay, Keith

    2012-01-01

    Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable.

  15. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands.

    PubMed

    Teste, François P; Kardol, Paul; Turner, Benjamin L; Wardle, David A; Zemunik, Graham; Renton, Michael; Laliberté, Etienne

    2017-01-13

    Soil biota influence plant performance through plant-soil feedback, but it is unclear whether the strength of such feedback depends on plant traits and whether plant-soil feedback drives local plant diversity. We grew 16 co-occurring plant species with contrasting nutrient-acquisition strategies from hyperdiverse Australian shrublands and exposed them to soil biota from under their own or other plant species. Plant responses to soil biota varied according to their nutrient-acquisition strategy, including positive feedback for ectomycorrhizal plants and negative feedback for nitrogen-fixing and nonmycorrhizal plants. Simulations revealed that such strategy-dependent feedback is sufficient to maintain the high taxonomic and functional diversity characterizing these Mediterranean-climate shrublands. Our study identifies nutrient-acquisition strategy as a key trait explaining how different plant responses to soil biota promote local plant diversity. Copyright © 2017, American Association for the Advancement of Science.

  16. fire in the field: simulating the threshold of galaxy formation

    NASA Astrophysics Data System (ADS)

    Fitts, Alex; Boylan-Kolchin, Michael; Elbert, Oliver D.; Bullock, James S.; Hopkins, Philip F.; Oñorbe, Jose; Wetzel, Andrew; Wheeler, Coral; Faucher-Giguère, Claude-André; Kereš, Dušan; Skillman, Evan D.; Weisz, Daniel R.

    2017-11-01

    We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of Mhalo ≈ 1010 M⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (fire) project and are performed at extremely high resolution (mbaryon = 500 M⊙, mdm = 2500 M⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M*/M⊙ ≈ 105 - 107). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax, both of which are tightly linked to halo formation time. Much of this dependence of M* on a second parameter (beyond Mhalo) is a direct consequence of the Mhalo ˜ 1010 M⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M⋆ ≳ 2 × 106 M⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r1/2. Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M⋆ ≈ 2 × 106 - 2 × 10- 4 Mhalo is broadly consistent with previous work and provides a testable prediction of fire feedback models in Λcold dark matter.

  17. Video-augmented feedback for procedural performance.

    PubMed

    Wittler, Mary; Hartman, Nicholas; Manthey, David; Hiestand, Brian; Askew, Kim

    2016-06-01

    Resident programs must assess residents' achievement of core competencies for clinical and procedural skills. Video-augmented feedback may facilitate procedural skill acquisition and promote more accurate self-assessment. A randomized controlled study to investigate whether video-augmented verbal feedback leads to increased procedural skill and improved accuracy of self-assessment compared to verbal only feedback. Participants were evaluated during procedural training for ultrasound guided internal jugular central venous catheter (US IJ CVC) placement. All participants received feedback based on a validated 30-point checklist for US IJ CVC placement and validated 6-point procedural global rating scale. Scores in both groups improved by a mean of 9.6 points (95% CI: 7.8-11.4) on the 30-point checklist, with no difference between groups in mean score improvement on the global rating scale. In regards to self-assessment, participant self-rating diverged from faculty scoring, increasingly so after receiving feedback. Residents rated highly by faculty underestimated their skill, while those rated more poorly demonstrated increasing overestimation. Accuracy of self-assessment was not improved by addition of video. While feedback advanced the skill of the resident, video-augmented feedback did not enhance skill acquisition or improve accuracy of resident self-assessment compared to standard feedback.

  18. Resource-driven changes to host population stability alter the evolution of virulence and transmission.

    PubMed

    Hite, Jessica L; Cressler, Clayton E

    2018-05-05

    What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  19. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.

  20. Seismicity in a model governed by competing frictional weakening and healing mechanisms

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Carlson, J. M.; Archuleta, R. J.

    2009-09-01

    Observations from laboratory, field and numerical work spanning a wide range of space and time scales suggest a strain dependent progressive evolution of material properties that control the stability of earthquake faults. The associated weakening mechanisms are counterbalanced by a variety of restrengthening mechanisms. The efficiency of the healing processes depends on local material properties and on rheologic, temperature, and hydraulic conditions. We investigate the relative effects of these competing non-linear feedbacks on seismogenesis in the context of evolving frictional properties, using a mechanical earthquake model that is governed by slip weakening friction. Weakening and strengthening mechanisms are parametrized by the evolution of the frictional control variable-the slip weakening rate R-using empirical relationships obtained from laboratory experiments. In our model, weakening depends on the slip of an earthquake and tends to increase R, following the behaviour of real and simulated frictional interfaces. Healing causes R to decrease and depends on the time passed since the last slip. Results from models with these competing feedbacks are compared with simulations using non-evolving friction. Compared to fixed R conditions, evolving properties result in a significantly increased variability in the system dynamics. We find that for a given set of weakening parameters the resulting seismicity patterns are sensitive to details of the restrengthening process, such as the healing rate b and a lower cutoff time, tc, up to which no significant change in the friction parameter is observed. For relatively large and small cutoff times, the statistics are typical of fixed large and small R values, respectively. However, a wide range of intermediate values leads to significant fluctuations in the internal energy levels. The frequency-size statistics of earthquake occurrence show corresponding non-stationary characteristics on time scales over which negligible fluctuations are observed in the fixed-R case. The progressive evolution implies that-except for extreme weakening and healing rates-faults and fault networks possibly are not well characterized by steady states on typical catalogue time scales, thus highlighting the essential role of memory and history dependence in seismogenesis. The results suggest that an extrapolation to future seismicity occurrence based on temporally limited data may be misleading due to variability in seismicity patterns associated with competing mechanisms that affect fault stability.

  1. Mathematical modelling of fluid transport and its regulation at multiple scales.

    PubMed

    Chara, Osvaldo; Brusch, Lutz

    2015-04-01

    Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The Impact of Text versus Video Communication on Instructor Feedback in Blended Courses

    ERIC Educational Resources Information Center

    Borup, Jered; West, Richard E.; Thomas, Rebecca

    2015-01-01

    In this study we examined student and instructor perceptions of text and video feedback in technology integration courses that combined face-to-face with online instruction for teacher candidates. Items from the Feedback Environment Scale (Steelman et al. 2004) were used to measure student perceptions of feedback quality and delivery. Independent…

  3. Severity of climate change dictates the direction of biophysical feedbacks of vegetation change to Arctic climate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick

    2014-05-01

    Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the albedo feedback dominates simulated warming in spring in all three scenarios, while in summer, evapotranspiration feedback, governing the partitioning of the return energy flux from the surface to the atmosphere into latent and sensible heat, exerts evaporative cooling effects, the magnitude of which depends on the severity of climate change, in turn driven by the underlying GHG emissions pathway, resulting in shift in the sign of net biophysical at higher levels of warming. Spatially, western Siberia is identified as the most susceptible location, experiencing the potential to reverse biophysical feedbacks in all seasons. We further analyze how the pattern of vegetation shifts triggers different signs of net effects of biophysical feedbacks.

  4. Power Law Patch Scaling and Lack of Characteristic Wavelength Suggest "Scale-Free" Processes Drive Pattern Formation in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Casey, S. T.; Cohen, M. J.; Acharya, S.; Jawitz, J. W.

    2016-12-01

    A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the Everglades (Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is a priority, but requires an understanding of pattern genesis and degradation mechanisms. Physical experiments to evaluate alternative pattern formation mechanisms are limited by the long time scales of peat accumulation and loss, necessitating model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning and trajectories of degradation. However, multiple mechanisms yield patch elongation in the direction of historical flow (a central feature of ridge-slough patterning), limiting the utility of that characteristic for discriminating among alternatives. Using data from vegetation maps, we investigated the statistical features of ridge-slough spatial patterning (ridge density, patch perimeter, elongation, patch-size distributions, and spatial periodicity) to establish more rigorous criteria for evaluating model performance and to inform controls on pattern variation across the contemporary system. Two independent analyses (2-D periodograms and patch size distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local facilitation and a global negative feedback operating uniformly at the landscape-scale. This finding challenges widespread invocation of scale-dependent negative feedbacks for explaining ridge-slough pattern origins. These results help discern among genesis mechanisms and provide an improved statistical description of the landscape that can be used to compare among model outputs, as well as to assess the success of future restoration projects.

  5. Understanding feedback report uptake: process evaluation findings from a 13-month feedback intervention in long-term care settings.

    PubMed

    Sales, Anne E; Fraser, Kimberly; Baylon, Melba Andrea B; O'Rourke, Hannah M; Gao, Gloria; Bucknall, Tracey; Maisey, Suzanne

    2015-02-12

    Long-term care settings provide care to a large proportion of predominantly older, highly disabled adults across the United States and Canada. Managing and improving quality of care is challenging, in part because staffing is highly dependent on relatively non-professional health care aides and resources are limited. Feedback interventions in these settings are relatively rare, and there has been little published information about the process of feedback intervention. Our objectives were to describe the key components of uptake of the feedback reports, as well as other indicators of participant response to the intervention. We conducted this project in nine long-term care units in four facilities in Edmonton, Canada. We used mixed methods, including observations during a 13-month feedback report intervention with nine post-feedback survey cycles, to conduct a process evaluation of a feedback report intervention in these units. We included all facility-based direct care providers (staff) in the feedback report distribution and survey administration. We conducted descriptive analyses of the data from observations and surveys, presenting this in tabular and graphic form. We constructed a short scale to measure uptake of the feedback reports. Our analysis evaluated feedback report uptake by provider type over the 13 months of the intervention. We received a total of 1,080 survey responses over the period of the intervention, which varied by type of provider, facility, and survey month. Total number of reports distributed ranged from 103 in cycle 12 to 229 in cycle 3, although the method of delivery varied widely across the period, from 12% to 65% delivered directly to individuals and 15% to 84% left for later distribution. The key elements of feedback uptake, including receiving, reading, understanding, discussing, and reporting a perception that the reports were useful, varied by survey cycle and provider type, as well as by facility. Uptake, as we measured it, was consistently high overall, but varied widely by provider type and time period. We report detailed process data describing the aspects of uptake of a feedback report during an intensive, longitudinal feedback intervention in long-term care facilities. Uptake is a complex process for which we used multiple measures. We demonstrate the feasibility of conducting a complex longitudinal feedback intervention in relatively resource-poor long-term care facilities to a wider range of provider types than have been included in prior feedback interventions.

  6. Scale and the representation of human agency in the modeling of agroecosystems

    DOE PAGES

    Preston, Benjamin L.; King, Anthony W.; Ernst, Kathleen M.; ...

    2015-07-17

    Human agency is an essential determinant of the dynamics of agroecosystems. However, the manner in which agency is represented within different approaches to agroecosystem modeling is largely contingent on the scales of analysis and the conceptualization of the system of interest. While appropriate at times, narrow conceptualizations of agroecosystems can preclude consideration for how agency manifests at different scales, thereby marginalizing processes, feedbacks, and constraints that would otherwise affect model results. Modifications to the existing modeling toolkit may therefore enable more holistic representations of human agency. Model integration can assist with the development of multi-scale agroecosystem modeling frameworks that capturemore » different aspects of agency. In addition, expanding the use of socioeconomic scenarios and stakeholder participation can assist in explicitly defining context-dependent elements of scale and agency. Finally, such approaches, however, should be accompanied by greater recognition of the meta agency of model users and the need for more critical evaluation of model selection and application.« less

  7. Autonomous benthic algal cultivator under feedback control of ecosystem metabolism

    USDA-ARS?s Scientific Manuscript database

    An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...

  8. The Interaction of Cognitive Styles with Varying Levels of Feedback in Multimedia Presentation.

    ERIC Educational Resources Information Center

    Khine, Myint Swe

    1996-01-01

    Study of 105 Brunei secondary school students investigating interactive effects of feedback levels using aptitude treatment interaction (ATI) approach and cognitive styles (field dependent-independent (FDI) in multimedia presentations found differences between no feedback (NF) and knowledge of results (KOR), NF and elaborated feedback (EF), none…

  9. Performance Appraisal Interview: A Review of Research.

    DTIC Science & Technology

    1987-01-01

    and valued outcomes than did supervisory feedback. Ivancevich and McMahon (1982) * . found that self-generated feedback on goal accomplishment was... Ivancevich (1980) found that engineers rated with behavior expectation scales perceived their interviews as providing more clarity, more meaningful feedback...accurate than evaluative, emotionally-tone feedback. In addition, the previously-discussed studies by Ivancevich (1980) and Hom et al. (1982) suggest

  10. Two-D results on human operator perception

    NASA Technical Reports Server (NTRS)

    Siapkara, A. A.; Sheridan, T. B.

    1981-01-01

    The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.

  11. Nonlinear dynamic theory for photorefractive phase hologram formation

    NASA Technical Reports Server (NTRS)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  12. Water and the Earth System in the Anthropocene: Evolution of Socio-Hydrology

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Bloeschl, G.

    2014-12-01

    Over the past century, hydrological science has evolved through distinct eras as judged by ideas, information sources, technological advances and societal influences: Empirical Era which was data based with little theory, Systems Era that focused on input-output relationships, Process Era with a focus on processes, and the Geosciences Era where hydrology was considered an Earth System science. We argue that as the human footprint on earth becomes increasingly dominant, we are moving into a Co-evolution Era. Co-evolution implies that the components of the Earth system are intimately intertwined at many time scales - fast scales of immediate feedbacks that translate into slow scale interdependencies and trends. These involve feedbacks between the atmosphere, biota, soils and landforms, mediated by water flow and transport processes. The human factor is becoming a key component of this coupled system. While there is a long tradition of considering effects of water on humans, and vice versa, the new thrust on socio-hydrology has a number of defining characteristics that sets it apart from traditional approaches: - Capturing feedbacks of human-natural water system in a dynamic way (slow and fast processes) to go beyond prescribing human factors as mere boundary conditions. These feedbacks will be essential to understand how the system may evolve in the future into new, perhaps previously unobserved, states. - Quantifying system dynamics in a generalizable way. So far, water resources assessment has been context dependent, tied to local conditions. While for immediate decision making this is undoubtedly essential, for more scientific inquiry, a more uniform knowledge base is indispensable. - Not necessarily predictive. The coupled human-nature system is inherently non-linear, which may prohibit predictability in the traditional sense. The socio-hydrologic approach may still be predictive in a statistical sense and, perhaps even more importantly, it may yet reveal possible futures not predicted by traditional forecasts, yet essential for long-term decision making. Guided by these overarching arguments, and a review of recent progress, we will present a structured overview of socio-hydrology, framing the theoretical, observational and methodological challenges that lie ahead and ways to address them.

  13. Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study.

    PubMed

    Yang, Yea-Ru; Chen, Yi-Hua; Chang, Heng-Chih; Chan, Rai-Chi; Wei, Shun-Hwa; Wang, Ray-Yau

    2015-10-01

    We investigated the effects of a computer-generated interactive visual feedback training program on the recovery from pusher syndrome in stroke patients. Assessor-blinded, pilot randomized controlled study. A total of 12 stroke patients with pusher syndrome were randomly assigned to either the experimental group (N = 7, computer-generated interactive visual feedback training) or control group (N = 5, mirror visual feedback training). The scale for contraversive pushing for severity of pusher syndrome, the Berg Balance Scale for balance performance, and the Fugl-Meyer assessment scale for motor control were the outcome measures. Patients were assessed pre- and posttraining. A comparison of pre- and posttraining assessment results revealed that both training programs led to the following significant changes: decreased severity of pusher syndrome scores (decreases of 4.0 ± 1.1 and 1.4 ± 1.0 in the experimental and control groups, respectively); improved balance scores (increases of 14.7 ± 4.3 and 7.2 ± 1.6 in the experimental and control groups, respectively); and higher scores for lower extremity motor control (increases of 8.4 ± 2.2 and 5.6 ± 3.3 in the experimental and control groups, respectively). Furthermore, the computer-generated interactive visual feedback training program produced significantly better outcomes in the improvement of pusher syndrome (p < 0.01) and balance (p < 0.05) compared with the mirror visual feedback training program. Although both training programs were beneficial, the computer-generated interactive visual feedback training program more effectively aided recovery from pusher syndrome compared with mirror visual feedback training. © The Author(s) 2014.

  14. Reflection as a component of formative assessment appears to be instrumental in promoting the use of feedback; an observational study.

    PubMed

    Pelgrim, E A M; Kramer, A W M; Mokkink, H G A; van der Vleuten, C P M

    2013-09-01

    Although the literature suggests that reflection has a positive impact on learning, there is a paucity of evidence to support this notion. We investigated feedback and reflection in relation to the likelihood that feedback will be used to inform action plans. We hypothesised that feedback and reflection present a cumulative sequence (i.e. trainers only pay attention to trainees' reflections when they provided specific feedback) and we hypothesised a supplementary effect of reflection. We analysed copies of assessment forms containing trainees' reflections and trainers' feedback on observed clinical performance. We determined whether the response patterns revealed cumulative sequences in line with the Guttman scale. We further examined the relationship between reflection, feedback and the mean number of specific comments related to an action plan (ANOVA) and we calculated two effect sizes. Both hypotheses were confirmed by the results. The response pattern found showed an almost perfect fit with the Guttman scale (0.99) and reflection seems to have supplementary effect on the variable action plan. Reflection only occurs when a trainer has provided specific feedback; trainees who reflect on their performance are more likely to make use of feedback. These results confirm findings and suggestions reported in the literature.

  15. Effect of inhibitory feedback on correlated firing of spiking neural network.

    PubMed

    Xie, Jinli; Wang, Zhijie

    2013-08-01

    Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.

  16. Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2017-11-01

    This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Badry, Kareem; Geha, Marla; Wetzel, Andrew

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the globalmore » potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.« less

  18. A review and update of the Health of the Nation Outcome Scales (HoNOS).

    PubMed

    James, Mick; Painter, Jon; Buckingham, Bill; Stewart, Malcolm W

    2018-04-01

    Aims and method The Health of the Nation Outcome Scales (HoNOS) and its older adults' version (HoNOS 65+) have been used widely for 20 years, but their glossaries have not been revised to reflect clinicians' experiences or changes in service delivery. The Royal College of Psychiatrists convened an international advisory board, with UK, Australian and New Zealand expertise, to identify desirable amendments. The aim was to improve rater experience by removing ambiguity and inconsistency in the glossary rather than more radical revision. Changes proposed to the HoNOS are reported. HoNOS 65+ changes will be reported separately. Based on the views and experience of the countries involved, a series of amendments were identified. Clinical implications While effective clinician training remains critically important, these revisions aim to improve intra- and interrater reliability and improve validity. Next steps will depend on feedback from HoNOS users. Reliability and validity testing will depend on funding. Declaration of interest None.

  19. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    PubMed

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The Impact of the Feedback Source on Developing Oral Presentation Competence

    ERIC Educational Resources Information Center

    van Ginkel, Stan; Gulikers, Judith; Biemans, Harm; Mulder, Martin

    2017-01-01

    While previous research in higher education emphasized the essence of feedback by the teacher, the peer or the self, it remains unclear whether the acquisition of students' oral presentation competence differs depending on the feedback source. This quasi-experimental study examines the effectiveness of the feedback source on 144 first-year…

  1. Feedbacks Between Shallow Groundwater Dynamics and Surface Topography on Runoff Generation in Flat Fields

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.

    2017-12-01

    In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.

  2. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  3. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  4. Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.

    2015-12-01

    Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.

  5. Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre

    2015-01-01

    Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.

  6. Review and synthesis: Changing permafrost in a warming world and feedbacks to the Earth System

    USGS Publications Warehouse

    Grosse, Guido; Goetz, Scott; McGuire, A. David; Romanovsky, Vladimir E.; Schuur, Edward A.G.

    2016-01-01

    The permafrost component of the cryosphere is changing dramatically, but the permafrost region is not well monitored and the consequences of change are not well understood. Changing permafrost interacts with ecosystems and climate on various spatial and temporal scales. The feedbacks resulting from these interactions range from local impacts on topography, hydrology, and biology to complex influences on global scale biogeochemical cycling. This review contributes to this focus issue by synthesizing its 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales. We synthesize study results from a diverse range of permafrost landscapes and ecosystems by reporting key observations and modeling outcomes for permafrost thaw dynamics, identifying feedbacks between permafrost and ecosystem processes, and highlighting biogeochemical feedbacks from permafrost thaw. We complete our synthesis by discussing the progress made, stressing remaining challenges and knowledge gaps, and providing an outlook on future needs and research opportunities in the study of permafrost–ecosystem–climate interactions.

  7. A Case Study on Audio Feedback with Geography Undergraduates

    ERIC Educational Resources Information Center

    Rodway-Dyer, Sue; Knight, Jasper; Dunne, Elizabeth

    2011-01-01

    Several small-scale studies have suggested that audio feedback can help students to reflect on their learning and to develop deep learning approaches that are associated with higher attainment in assessments. For this case study, Geography undergraduates were given audio feedback on a written essay assignment, alongside traditional written…

  8. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics

    USDA-ARS?s Scientific Manuscript database

    Feedback with soil biota is a major driver of diversity within terrestrial plant communities. However, little is known about the factors regulating plant-soil feedback, which can vary from positive to negative among plant species. In a large-scale observational and experimental study involving 55 sp...

  9. Active Learning of Classification Models with Likert-Scale Feedback.

    PubMed

    Xue, Yanbing; Hauskrecht, Milos

    2017-01-01

    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.

  10. Active Learning of Classification Models with Likert-Scale Feedback

    PubMed Central

    Xue, Yanbing; Hauskrecht, Milos

    2017-01-01

    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone. PMID:28979827

  11. Applications of Nonlinear Control Using the State-Dependent Riccati Equation.

    DTIC Science & Technology

    1995-12-01

    method, and do not address noise rejection or robustness issues. xi Applications of Nonlinear Control Using the State-Dependent Riccati Equation I...construct a stabilizing nonlinear feedback controller. This method will be referred to as nonlinear quadratic regulation (NQR). The original intention...involves nding a state-dependent coe- cient (SDC) linear structure for which a stabilizing nonlinear feedback controller can be constructed. The

  12. Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    PubMed Central

    Balaguer-Ballester, Emili; Clark, Nicholas R.; Coath, Martin; Krumbholz, Katrin; Denham, Susan L.

    2009-01-01

    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing. PMID:19266015

  13. The Effect of Computerized System Feedback Availability during Executive Function Training

    ERIC Educational Resources Information Center

    Yuviler-Gavish, Nirit; Krisher, Hagit

    2016-01-01

    Computerized training systems offer a promising new direction in the training of executive functions, in part because they can easily be designed to offer feedback to learners. Yet, feedback is a double-edged sword, serving a positive motivational role while at the same time carrying the risk that learners may become dependent on the feedback they…

  14. Discovery of fairy circles in Australia supports self-organization theory

    PubMed Central

    Getzin, Stephan; Yizhaq, Hezi; Bell, Bronwyn; Erickson, Todd E.; Postle, Anthony C.; Katra, Itzhak; Tzuk, Omer; Zelnik, Yuval R.; Wiegand, Kerstin; Wiegand, Thorsten; Meron, Ehud

    2016-01-01

    Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. PMID:26976567

  15. Scaling of number, size, and metabolic rate of cells with body size in mammals.

    PubMed

    Savage, Van M; Allen, Andrew P; Brown, James H; Gillooly, James F; Herman, Alexander B; Woodruff, William H; West, Geoffrey B

    2007-03-13

    The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and average cellular metabolic rate cannot both remain constant with changes in body size because of the well known body-size dependence of whole-organism metabolic rate. Based on empirical data compiled for 18 cell types in mammals, we find that many cell types, including erythrocytes, hepatocytes, fibroblasts, and epithelial cells, follow a strategy in which cellular metabolic rate is body size dependent and cell volume is body size invariant. We suggest that this scaling holds for all quickly dividing cells, and conversely, that slowly dividing cells are expected to follow a strategy in which cell volume is body size dependent and cellular metabolic rate is roughly invariant with body size. Data for slowly dividing neurons and adipocytes show that cell volume does indeed scale with body size. From these results, we argue that the particular strategy followed depends on the structural and functional properties of the cell type. We also discuss consequences of these two strategies for cell number and capillary densities. Our results and conceptual framework emphasize fundamental constraints that link the structure and function of cells to that of whole organisms.

  16. Providing Test Performance Feedback That Bridges Assessment and Instruction: The Case of Two Standardized English Language Tests in Japan

    ERIC Educational Resources Information Center

    Sawaki, Yasuyo; Koizumi, Rie

    2017-01-01

    This small-scale qualitative study considers feedback and results reported for two major large-scale English language tests administered in Japan: the Global Test of English Communication for Students (GTECfS) and the Eiken Test in Practical English Proficiency (Eiken). Specifically, it examines current score-reporting practices in student and…

  17. Inverse size scaling of the nucleolus by a concentration-dependent phase transition.

    PubMed

    Weber, Stephanie C; Brangwynne, Clifford P

    2015-03-02

    Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface temperatures and sea-ice trends. This reduction of persistent high-latitude model biases suggests that the current unrealistic representation of surface emissivity in model component radiation routines may be an important contributing factor to cold-pole biases.

  19. New Insights on Hydro-Climate Feedback Processes over the Tropical Ocean from TRMM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Li, Xiaofan; Sui, C. H.

    2002-01-01

    In this paper, we study hydro-climate feedback processes over the tropical oceans, by examining the relationships among large scale circulation and Tropical Rainfall Measuring Mission Microwave Imager-Sea Surface Temperature (TMI-SST), and a range of TRMM rain products including rain rate, cloud liquid water, precipitable water, cloud types and areal coverage, and precipitation efficiency. Results show that for a warm event (1998), the 28C threshold of convective precipitation is quite well defined over the tropical oceans. However, for a cold event (1999), the SST threshold is less well defined, especially over the central and eastern Pacific cold tongue, where stratiform rain occurs at much lower than 28 C. Precipitation rates and cloud liquid water are found to be more closely related to the large scale vertical motion than to the underlying SST. While total columnar water vapor is more strongly dependent on SST. For a large domain, over the eastern Pacific, we find that the areal extent of the cloudy region tends to shrink as the SST increases. Examination of the relationship between cloud liquid water and rain rate suggests that the residence time of cloud liquid water tends to be shorter, associated with higher precipitation efficiency in a warmer climate. It is hypothesized that the reduction in cloudy area may be influenced both by the shift in large scale cloud patterns in response to changes in large scale forcings, and possible increase in the cloud liquid water conversion to rain water in a warmer environment. Results of numerical experiments with the Goddard cloud resolving model to test the hypothesis will be discussed.

  20. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a “natural” grasping task induces pantomime-like grasps

    PubMed Central

    Whitwell, Robert L.; Ganel, Tzvi; Byrne, Caitlin M.; Goodale, Melvyn A.

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the past. Compared to natural grasps, removing tactile feedback increased RT, slowed the velocity of the reach, reduced in-flight grip aperture, increased the slopes relating grip aperture to target width, and reduced the final grip aperture (FGA). All of these effects were also observed in the real time-pantomime grasping task. These effects seem to be independent of those that arise from using the mirror in general as we also compared grasps directed towards virtual targets to those directed at real ones viewed directly through a pane of glass. These comparisons showed that the grasps directed at virtual targets increased grip aperture, slowed the velocity of the reach, and reduced the slopes relating grip aperture to the widths of the target. Thus, using the mirror has real consequences on grasp kinematics, reflecting the importance of task-relevant sources of online visual information for the programming and updating of natural prehensile movements. Taken together, these results provide compelling support for the view that removing terminal tactile feedback, even when the grasps are target-directed, induces a switch from real-time visual control towards one that depends more on visual perception and cognitive supervision. Providing terminal tactile feedback and real-time visual information can evidently keep the dorsal visuomotor system operating normally for prehensile acts. PMID:25999834

  1. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.

    PubMed

    Markovic, Marko; Schweisfurth, Meike A; Engels, Leonard F; Bentz, Tashina; Wüstefeld, Daniela; Farina, Dario; Dosen, Strahinja

    2018-03-27

    To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed-loop control does not improve the performance, it could be beneficial as it seems to improve the subjective experience. Therefore, in this study we demonstrate, for the first time, the relevance of an advanced, multi-variable feedback interface for dexterous, multi-functional prosthesis control in a clinically relevant setting.

  2. Nonlinear Feedback Controllers and Compensators: A State-Dependent Riccati Equation Approach

    DTIC Science & Technology

    2003-01-01

    Nonlinear Feedback Controllers and Compensators: A State-Dependent Riccati Equation Approach H. T. Banks∗ B. M. Lewis † H. T. Tran‡ Department of...Mathematics Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695 Abstract State-dependent Riccati equation ...estimating the solution of the Hamilton- Jacobi-Bellman (HJB) equation can be found in a comprehensive review article [5]. Each of these ∗htbanks

  3. Type and Amount of Input-Based Practice in CALI: The Revelations of a Triangulated Research Design

    ERIC Educational Resources Information Center

    Cerezo, Luis

    2016-01-01

    Research shows that computer-generated corrective feedback can promote second language development, but there is no consensus about which type is the most effective. The scale is tipped in favor of more explicit feedback that provides metalinguistic explanations, but counterevidence indicates that minimally explicit feedback of the…

  4. Drought and Heat Waves: The Role of SST and Land Surface Feedbacks

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.

  5. The Time-Dependent Structure of the Electron Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2009-01-01

    Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.

  6. Collective irrationality and positive feedback.

    PubMed

    Nicolis, Stamatios C; Zabzina, Natalia; Latty, Tanya; Sumpter, David J T

    2011-04-26

    Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  7. Facilitation of Learning by Social-Emotional Feedback in Humans Is Beta-Noradrenergic-Dependent

    ERIC Educational Resources Information Center

    Mihov, Yoan; Mayer, Simon; Musshoff, Frank; Maier, Wolfgang; Kendrick, Keith M.; Hurlemann, Rene

    2010-01-01

    Adaptive behavior in dynamic environments critically depends on the ability to learn rapidly and flexibly from the outcomes of prior choices. In social environments, facial expressions of emotion often serve as performance feedback and thereby guide declarative learning. Abundant evidence implicates beta-noradrenergic signaling in the modulatory…

  8. Investigating three types of continuous auditory feedback in visuo-manual tracking.

    PubMed

    Boyer, Éric O; Bevilacqua, Frédéric; Susini, Patrick; Hanneton, Sylvain

    2017-03-01

    The use of continuous auditory feedback for motor control and learning is still understudied and deserves more attention regarding fundamental mechanisms and applications. This paper presents the results of three experiments studying the contribution of task-, error-, and user-related sonification to visuo-manual tracking and assessing its benefits on sensorimotor learning. First results show that sonification can help decreasing the tracking error, as well as increasing the energy in participant's movement. In the second experiment, when alternating feedback presence, the user-related sonification did not show feedback dependency effects, contrary to the error and task-related feedback. In the third experiment, a reduced exposure of 50% diminished the positive effect of sonification on performance, whereas the increase of the average energy with sound was still significant. In a retention test performed on the next day without auditory feedback, movement energy was still superior for the groups previously trained with the feedback. Although performance was not affected by sound, a learning effect was measurable in both sessions and the user-related group improved its performance also in the retention test. These results confirm that a continuous auditory feedback can be beneficial for movement training and also show an interesting effect of sonification on movement energy. User-related sonification can prevent feedback dependency and increase retention. Consequently, sonification of the user's own motion appears as a promising solution to support movement learning with interactive feedback.

  9. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power

    PubMed Central

    Banis, Stella; Geerligs, Linda; Lorist, Monicque M.

    2014-01-01

    Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943

  10. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the saccade-related premotor centers in the brainstem. PMID:27351741

  11. Structured output-feedback controller synthesis with design specifications

    NASA Astrophysics Data System (ADS)

    Hao, Yuqing; Duan, Zhisheng

    2017-03-01

    This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.

  12. Experiments and High-resolution Simulations of Density and Viscosity Feedbacks on Convective Mixing

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Fe, Jaime; MacMinn, Christopher W.; Cueto-Felgueroso, Luis; Juanes, Ruben

    2011-11-01

    Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. Initially, the buoyant CO2 dissolves into the underlying brine by diffusion. The CO2-brine mixture is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. We explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture by means of high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol). We find that the value of the concentration for which the density of the mixture is maximum, and the viscosity contrast between the fluids, both exert a powerful control on the convective flux. From the experimental and simulation results, we obtain the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks. JJH acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the CO2-MATE project (PIOF-GA-2009-253678).

  13. Assessing the Importance of the Evaporation-Wind Feedback Mechanism in the Modulation of Simulated Madden-Julian Oscillations

    NASA Technical Reports Server (NTRS)

    Colon, Edward; Lindesay, James; Suarez, Max J.

    1998-01-01

    An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.

  14. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

    PubMed Central

    Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten

    2012-01-01

    In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca2+-dependent Cl− channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl− channels that are gated by GABA released from HCs. Similar to activation of ICl(Ca), opening of these GABA-gated Cl− channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABAA and GABAC receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca2+-dependent Cl− currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl− current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl− current shunts the current flow in the synaptic cleft. The Ca2+-dependent Cl− current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca2+. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the cone output. PMID:22890705

  15. Seismic cycle feedbacks in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  16. Feedbacks in Human-Landscape Systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne; Florsheim, Joan L.; Wohl, Ellen; Collins, Brian D.

    2014-01-01

    This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human-landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human-natural systems emphasizing ecological phenomena in producing emerging concepts for social-ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change.

  17. Neural cryptography with feedback.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  18. When theory and biology differ: The relationship between reward prediction errors and expectancy.

    PubMed

    Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E

    2017-10-01

    Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer-term climate feedbacks due to global warming, for example. Nevertheless, one should take more confidence of greenhouse warming predictions of those GCMs that reproduce the (high quality observations-based) shorter-term feedback-relationships the best.

  20. Climate simulation of the twenty-first century with interactive land-use changes

    NASA Astrophysics Data System (ADS)

    Voldoire, Aurore; Eickhout, Bas; Schaeffer, Michiel; Royer, Jean-François; Chauvin, Fabrice

    2007-08-01

    To include land-use dynamics in a general circulation model (GCM), the physical system has to be linked to a system that represents socio-economy. This issue is addressed by coupling an integrated assessment model, IMAGE2.2, to an ocean atmosphere GCM, CNRM-CM3. In the new system, IMAGE2.2 provides CNRM-CM3 with all the external forcings that are scenario dependent: greenhouse gas (GHGs) concentrations, sulfate aerosols charge and land cover. Conversely, the GCM gives IMAGE changes in mean temperature and precipitation. With this new system, we have run an adapted scenario of the IPCC SRES scenario family. We have chosen a single scenario with maximum land-use changes (SRES A2), to illustrate some important feedback issues. Even in this two-way coupled model set-up, land use in this scenario is mainly driven by demographic and agricultural practices, which overpowers a potential influence of climate feedbacks on land-use patterns. This suggests that for scenarios in which socio-economically driven land-use change is very large, land-use changes can be incorporated in GCM simulations as a one-way driving force, without taking into account climate feedbacks. The dynamics of natural vegetation is more closely linked to climate but the time-scale of changes is of the order of a century. Thus, the coupling between natural vegetation and climate could generate important feedbacks but these effects are relevant mainly for multi-centennial simulations.

  1. Distributed Wireless Power Transfer With Energy Feedback

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  2. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less

  3. Complexity in built environment, health, and destination walking: a neighborhood-scale analysis.

    PubMed

    Carlson, Cynthia; Aytur, Semra; Gardner, Kevin; Rogers, Shannon

    2012-04-01

    This study investigates the relationships between the built environment, the physical attributes of the neighborhood, and the residents' perceptions of those attributes. It focuses on destination walking and self-reported health, and does so at the neighborhood scale. The built environment, in particular sidewalks, road connectivity, and proximity of local destinations, correlates with destination walking, and similarly destination walking correlates with physical health. It was found, however, that the built environment and health metrics may not be simply, directly correlated but rather may be correlated through a series of feedback loops that may regulate risk in different ways in different contexts. In particular, evidence for a feedback loop between physical health and destination walking is observed, as well as separate feedback loops between destination walking and objective metrics of the built environment, and destination walking and perception of the built environment. These feedback loops affect the ability to observe how the built environment correlates with residents' physical health. Previous studies have investigated pieces of these associations, but are potentially missing the more complex relationships present. This study proposes a conceptual model describing complex feedback relationships between destination walking and public health, with the built environment expected to increase or decrease the strength of the feedback loop. Evidence supporting these feedback relationships is presented.

  4. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  5. Analysis of bidirectional pattern synchrony of concentration-secretion pairs: implementation in the human testicular and adrenal axes.

    PubMed

    Liu, Peter Y; Pincus, Steven M; Keenan, Daniel M; Roelfsema, Ferdinand; Veldhuis, Johannes D

    2005-02-01

    The hypothalamo-pituitary-testicular and hypothalamo-pituitary-adrenal axes are prototypical coupled neuroendocrine systems. In the present study, we contrasted in vivo linkages within and between these two axes using methods without linearity assumptions. We examined 11 young (21-31 yr) and 8 older (62-74 yr) men who underwent frequent (every 2.5 min) blood sampling overnight for paired measurement of LH and testosterone and 35 adults (17 women and 18 men; 26-77 yr old) who underwent adrenocorticotropic hormone (ACTH) and cortisol measurements every 10 min for 24 h. To mirror physiological interactions, hormone secretion was first deconvolved from serial concentrations with a waveform-independent biexponential elimination model. Feedforward synchrony, feedback synchrony, and the difference in feedforward-feedback synchrony were quantified by the cross-approximate entropy (X-ApEn) statistic. These were applied in a forward (LH concentration template, examining pattern recurrence in testosterone secretion), reverse (testosterone concentration template, examining pattern recurrence in LH secretion), and differential (forward minus reverse) manner, respectively. Analogous concentration-secretion X-ApEn estimates were calculated from ACTH-cortisol pairs. X-ApEn, a scale- and model-independent measure of pattern reproducibility, disclosed 1) greater testosterone-LH feedback coordination than LH-testosterone feedforward synchrony in healthy men and significant and symmetric erosion of both feedforward and feedback linkages with aging; 2) more synchronous ACTH concentration-dependent feedforward than feedback drive of cortisol secretion, independent of gender and age; and 3) enhanced detection of bidirectional physiological regulation by in vivo pairwise concentration-secretion compared with concentration-concentration analyses. The linking of relevant biological input to output signals and vice versa should be useful in the dissection of the reciprocal control of neuroendocrine systems or even in the analysis of other nonendocrine networks.

  6. Perceptions of teachers' general and informational feedback and intrinsic motivation in physical education: two-year effects.

    PubMed

    Koka, Andre; Hein, Vello

    2006-10-01

    Relative change or stability of perceived positive general feedback and perceived informational feedback and their influence on students' intrinsic motivation in physical education over two years were examined. 302 students, ages 11 to 15 years, responded to the Perception of Teacher's Feedback questionnaire. Two years later, these students filled out the questionnaire again, along with a modified version of the Sport Motivation Scale. Analysis showed that both types of perceived feedback exhibited moderate stability over the two years. Perceived positive general feedback demonstrated a significant direct effect on students' intrinsic motivation measured concurrently in physical education. Further, fixing to zero the effect of perceived positive general feedback on intrinsic motivation measured concurrently, an effect emerged over the two years.

  7. The Context Matters: Outcome Probability and Expectation Mismatch Modulate the Feedback Negativity When Self-Evaluation of Response Correctness Is Possible

    PubMed Central

    Leue, Anja; Cano Rodilla, Carmen; Beauducel, André

    2015-01-01

    Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated. PMID:26783525

  8. The Context Matters: Outcome Probability and Expectation Mismatch Modulate the Feedback Negativity When Self-Evaluation of Response Correctness Is Possible.

    PubMed

    Leue, Anja; Cano Rodilla, Carmen; Beauducel, André

    2015-01-01

    Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated.

  9. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  10. A Social Learning Management System Supporting Feedback for Incorrect Answers Based on Social Network Services

    ERIC Educational Resources Information Center

    Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon

    2016-01-01

    In this research, we propose a Social Learning Management System (SLMS) enabling real-time and reliable feedback for incorrect answers by learners using a social network service (SNS). The proposed system increases the accuracy of learners' assessment results by using a confidence scale and a variety of social feedback that is created and shared…

  11. Mechanisms of elevation-dependent warming over complex terrain in high-resolution simulations of regional climate change

    NASA Astrophysics Data System (ADS)

    Minder, J. R.; Letcher, T.; Liu, C.

    2016-12-01

    Numerous observational and modeling studies have suggested that over mountainous terrain certain elevations can experience systematically enhanced rates of near-surface climate warming relative to the surrounding region, a phenomenon referred to as elevation-dependent warming (EDW). In many of these studies high-elevation locations were found to experience the fastest warming rates. A variety of physical mechanisms for EDW have been proposed but there is no consensus as to the dominant cause. We examine EDW in regional climate model (RCM) simulations with very high horizontal resolution (4-km horizontal grid). The simulation domain centers on the Rocky Mountains and intermountain west of the United States. Climate change simulations are conducted using the "pseudo global warming" framework to focus on the regional response to large-scale thermodynamic and radiative climate changes representative of mid-century anthropogenic global climate change. Substantial EDW is found in these simulations. Warming varies with elevation by up to 1°C depending on the season considered. The structure of EDW is only weakly sensitive to variations in horizontal grid spacing ranging from 4 to 36 km. The snow-albedo feedback (SAF) plays a major role in causing the simulated EDW. The elevation band of maximum warming varies seasonally, mostly following the margin of the seasonal snowpack where snow cover and albedo reductions are maximized under climate warming. Additional simulations where the SAF is artificially suppressed demonstrate that EDW variations of up to 0.6°C can be attributed to the SAF. Simulations with a suppressed SAF still exhibit EDW variations up to 0.8°C that must be explained by other mechanisms. This remaining EDW shows a near linear increase in warming with elevation in most months and does not appear to be inherited from the profile of large-scale free-tropospheric warming. Simple theoretical calculations suggest that the non-linear dependence of surface emission on temperature offers one promising mechanism. The role of water vapor and cloud feedbacks are also considered as alternative mechanisms.

  12. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  13. Black hole feeding and feedback: the physics inside the `sub-grid'

    NASA Astrophysics Data System (ADS)

    Negri, A.; Volonteri, M.

    2017-05-01

    Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parametrized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and active galactic nuclei feedback (radiation pressure, Compton heating/cooling) where mass, momentum and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and underestimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.

  14. Supporting Greenhouse Gas Management Strategies with Observations and Analysis - Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tarasova, O. A.

    2014-12-01

    Climate-change challenges facing society in the 21st century require an improved understanding of the global carbon-cycle and of the impacts and feedbacks of past, present, and future emissions of carbon-cycle gases. Global society faces a major challenge of reducing greenhouse gas emissions to virtually zero, most notably those of CO2, while at the same time facing variable and potentially overwhelming Earth System feedbacks. How it goes about this will depend upon the nature of impending international agreements, national laws, regional strategies, and social and economic forces. The challenge to those making observations to support, inform, or verify these reduction efforts, or to address potential Earth System feedbacks, lies in harmonizing a diverse array of observations and observing systems. Doing so is not trivial. Providing coherent, regional-scale information from these observations also requires improved modelling and ensemble reanalysis, but in the end such information must be relevant and reasonably certain. The challenge to us is to ensure a globally coherent observing and analysis system to supply the information that society will need to succeed. Policy-makers, scientists, government agencies, and businesses will need the best information available for decision-making and any observing and analysis system ultimately must be able to provide a coherent story over decades.

  15. Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation

    PubMed Central

    Krauskopf, Bernd; Sieber, Jan

    2014-01-01

    Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO. PMID:25197254

  16. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records

    NASA Astrophysics Data System (ADS)

    Martínez-Botí, M. A.; Foster, G. L.; Chalk, T. B.; Rohling, E. J.; Sexton, P. F.; Lunt, D. J.; Pancost, R. D.; Badger, M. P. S.; Schmidt, D. N.

    2015-02-01

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  17. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  18. Time-dependent Mechanisms in Beta-cell Glucose Sensing

    PubMed Central

    Vagn Korsgaard, Thomas

    2006-01-01

    The relation between plasma glucose and insulin release from pancreatic beta-cells is not stationary in the sense that a given glucose concentration leads to a specific rate of insulin secretion. A number of time-dependent mechanisms appear to exist that modify insulin release both on a short and a longer time scale. Typically, two phases are described. The first phase, lasting up to 10 min, is a pulse of insulin release in response to fast changes in glucose concentration. The second phase is a more steady increase of insulin release over minutes to hours, if the elevated glucose concentration is sustained. The paper describes the glucose sensing mechanism via the complex dynamics of the key enzyme glucokinase, which controls the first step in glucose metabolism: phosphorylation of glucose to glucose-6-phosphate. Three time-dependent phenomena (mechanisms) are described. The fastest, corresponding to the first phase, is a delayed negative feedback regulating the glucokinase activity. Due to the delay, a rapid glucose increase will cause a burst of activity in the glucose sensing system, before the glucokinase is down-regulated. The second mechanism corresponds to the translocation of glucokinase from an inactive to an active form. As the translocation is controlled by the product(s) of the glucokinase reaction rather than by the substrate glucose, this mechanism gives a positive, but saturable, feedback. Finally, the release of the insulin granules is assumed to be enhanced by previous glucose exposure, giving a so-called glucose memory to the beta-cells. The effect depends on the insulin release of the cells, and this mechanism constitutes a second positive, saturable feedback system. Taken together, the three phenomena describe most of the glucose sensing behaviour of the beta-cells. The results indicate that the insulin release is not a precise function of the plasma glucose concentration. It rather looks as if the beta-cells just increase the insulin production, until the plasma glucose has returned to normal. This type of integral control has the advantage that the precise glucose sensitivity of the beta-cells is not important for normal glucose homeostasis. PMID:19669468

  19. Comparing models for IMF variation across cosmological time in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.; Ma, Xiangcheng

    2017-12-01

    One of the key observations regarding the stellar initial mass function (IMF) is its near-universality in the Milky Way (MW), which provides a powerful way to constrain different star formation models that predict the IMF. However, those models are almost universally 'cloud-scale' or smaller - they take as input or simulate single molecular clouds (GMCs), clumps or cores, and predict the resulting IMF as a function of the cloud properties. Without a model for the progenitor properties of all clouds that formed the stars at different locations in the MW (including ancient stellar populations formed in high redshift, likely gas-rich dwarf progenitor galaxies that looked little like the Galaxy today), the predictions cannot be fully explored nor safely applied to 'live' cosmological calculations of the IMF in different galaxies at different cosmological times. We therefore combine a suite of high-resolution cosmological simulations (from the Feedback In Realistic Environments project), which form MW-like galaxies with reasonable star formation properties and explicitly resolve massive GMCs, with various proposed cloud-scale IMF models. We apply the models independently to every star particle formed in the simulations to synthesize the predicted IMF in the present-day galaxy. We explore models where the IMF depends on Jeans mass, sonic or 'turbulent Bonnor-Ebert' mass, fragmentation with a polytropic equation of state, or where it is self-regulated by protostellar feedback. We show that all of these models, except the feedback-regulated ones, predict far more variation (∼0.6-1 dex 1σ scatter in the IMF turnover mass) in the simulations than is observed in the MW.

  20. A new method to quantify the effects of baryons on the matter power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch

    2015-12-01

    Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less

  1. Content Analysis of Standardized-Patients' Descriptive Feedback on Student Performance on the CPX.

    PubMed

    Lee, Young Hee; Lee, Young-Mee; Kim, Byung Soo

    2010-12-01

    The goal of this study was to explore what kind of additional information is provided by the descriptive comments other than the rating scales, on the physician-patient interaction (PPI) in the clinical performance examination (CPX) and its feedback role in identifying students' strengths and weaknesses in communication skills. The data were collected from 18 medical schools in Seoul and Gyeonggi region, which participated in the CPX for fourth-year medical students in 2006 and 2007. In total 12,650 examination cases in 2006 and 12,814 cases in 2007 were analyzed. Descriptive comments from the standardized patients (SPs) were analyzed by content analysis, which includes a 4-step process: coding, conceptualizing, categorizing and explanation. Ten categories (41 concepts) for 'strength' and 11 for 'weakness' (40 concepts) in the PPI were extracted. Among them, 10 categories were the same in both strength and weakness: providing adequate interview atmosphere, attentive listening, providing emotional support, non-verbal behaviors, professional attitude, questioning, explanation, reaching agreement, counseling & education and conducting adequate physical examination. For the 'structured and organized interview', only weakness was described. In 'providing emotional support' and 'adequate interview atmosphere', comments on strengths were more frequently mentioned than weaknesses. However, communication skills that were related to non-verbal behaviors were more frequently considered weaknesses rather than strengths. The numbers and content of the SP's comments on students' strengths and weaknesses in the PPI varied depending on the case specificities. The results suggest that the SPs' descriptive comments on student' performance on the CPX can provide additional information versus structured quantitative assessment tools such as performance checklists and rating scales. In particular, this information can be used as valuable feedback to identify the advantages and dicadvantages of the PPI and to enhance students' communication skills.

  2. Observed increase in local cooling effect of deforestation at higher latitudes.

    PubMed

    Lee, Xuhui; Goulden, Michael L; Hollinger, David Y; Barr, Alan; Black, T Andrew; Bohrer, Gil; Bracho, Rosvel; Drake, Bert; Goldstein, Allen; Gu, Lianhong; Katul, Gabriel; Kolb, Thomas; Law, Beverly E; Margolis, Hank; Meyers, Tilden; Monson, Russell; Munger, William; Oren, Ram; Paw U, Kyaw Tha; Richardson, Andrew D; Schmid, Hans Peter; Staebler, Ralf; Wofsy, Steven; Zhao, Lei

    2011-11-16

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models. © 2011 Macmillan Publishers Limited. All rights reserved

  3. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions

    PubMed Central

    Zeebe, Richard E.

    2013-01-01

    Climate sensitivity measures the response of Earth’s surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth’s climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000–165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene–Eocene Thermal Maximum. PMID:23918402

  4. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    PubMed

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  5. Dark-matter haloes and the M-σ relation for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Larkin, Adam C.; McLaughlin, Dean E.

    2016-10-01

    We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.

  6. Spatial climate patterns explain negligible variation in strength of compensatory density feedbacks in birds and mammals.

    PubMed

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Cassey, Phillip; Bradshaw, Corey J A

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate--at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate.

  7. Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

    PubMed Central

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate. PMID:24618822

  8. Walking Flexibility after Hemispherectomy: Split-Belt Treadmill Adaptation and Feedback Control

    ERIC Educational Resources Information Center

    Choi, Julia T.; Vining, Eileen P. G.; Reisman, Darcy S.; Bastian, Amy J.

    2009-01-01

    Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill…

  9. Self-Other Agreement in Multisource Feedback: The Influence of Doctor and Rater Group Characteristics

    ERIC Educational Resources Information Center

    Roberts, Martin J.; Campbell, John L.; Richards, Suzanne H.; Wright, Christine

    2013-01-01

    Introduction: Multisource feedback (MSF) ratings provided by patients and colleagues are often poorly correlated with doctors' self-assessments. Doctors' reactions to feedback depend on its agreement with their own perceptions, but factors influencing self-other agreement in doctors' MSF ratings have received little attention. We aimed to identify…

  10. Feedback Dependence Among Low Confidence Preadolescent Boys and Girls.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Corbin, Charles B.

    1988-01-01

    Investigation of differences between male and female students' reactions to receiving or not receiving performance feedback indicated that both sexes showed lower self-confidence when they did not receive feedback and that lack of self-confidence impaired the performance of males more than females. Participants were 111 fifth- and sixth-grade…

  11. The Moral Self-Image Scale: Measuring and Understanding the Malleability of the Moral Self.

    PubMed

    Jordan, Jennifer; Leliveld, Marijke C; Tenbrunsel, Ann E

    2015-01-01

    Recent ethical decision-making models suggest that individuals' own view of their morality is malleable rather than static, responding to their (im)moral actions and reflections about the world around them. Yet no construct currently exists to represent the malleable state of a person's moral self-image (MSI). In this investigation, we define this construct, as well as develop a scale to measure it. Across five studies, we show that feedback about the moral self alters an individual's MSI as measured by our scale. We also find that the MSI is related to, but distinct from, related constructs, including moral identity, self-esteem, and moral disengagement. In Study 1, we administered the MSI scale and several other relevant scales to demonstrate convergent and discriminant validity. In Study 2, we examine the relationship between the MSI and one's ought versus ideal self. In Studies 3 and 4, we find that one's MSI is affected in the predicted directions by manipulated feedback about the moral self, including feedback related to social comparisons of moral behavior (Study 3) and feedback relative to one's own moral ideal (Study 4). Lastly, Study 5 provides evidence that the recall of one's moral or immoral behavior alters people's MSI in the predicted directions. Taken together, these studies suggest that the MSI is malleable and responds to individuals' moral and immoral actions in the outside world. As such, the MSI is an important variable to consider in the study of moral and immoral behavior.

  12. The Moral Self-Image Scale: Measuring and Understanding the Malleability of the Moral Self

    PubMed Central

    Jordan, Jennifer; Leliveld, Marijke C.; Tenbrunsel, Ann E.

    2015-01-01

    Recent ethical decision-making models suggest that individuals' own view of their morality is malleable rather than static, responding to their (im)moral actions and reflections about the world around them. Yet no construct currently exists to represent the malleable state of a person's moral self-image (MSI). In this investigation, we define this construct, as well as develop a scale to measure it. Across five studies, we show that feedback about the moral self alters an individual's MSI as measured by our scale. We also find that the MSI is related to, but distinct from, related constructs, including moral identity, self-esteem, and moral disengagement. In Study 1, we administered the MSI scale and several other relevant scales to demonstrate convergent and discriminant validity. In Study 2, we examine the relationship between the MSI and one's ought versus ideal self. In Studies 3 and 4, we find that one's MSI is affected in the predicted directions by manipulated feedback about the moral self, including feedback related to social comparisons of moral behavior (Study 3) and feedback relative to one's own moral ideal (Study 4). Lastly, Study 5 provides evidence that the recall of one's moral or immoral behavior alters people's MSI in the predicted directions. Taken together, these studies suggest that the MSI is malleable and responds to individuals' moral and immoral actions in the outside world. As such, the MSI is an important variable to consider in the study of moral and immoral behavior. PMID:26696941

  13. Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM

    NASA Astrophysics Data System (ADS)

    Yoshimori, Masakazu; Watanabe, Masahiro; Abe-Ouchi, Ayako; Shiogama, Hideo; Ogura, Tomoo

    2013-04-01

    The finding that surface warming over the Arctic exceeds that over the rest of the world under global warming is a robust feature among general circulation models (GCMs). While various mechanisms have been proposed, quantifying their relative contributions is an important task in order to understand model behavior and operating mechanisms. Here we apply a recently proposed feedback analysis technique to a GCM under different external forcings including elevated and lowered CO2 concentrations, and increased solar irradiance. First, the contribution of feedbacks to Arctic temperature change is investigated. Surface air temperature response in the Arctic is amplified by albedo, water vapor, and large-scale condensation feedbacks from that without a feedback although a part of it is suppressed by evaporative cooling feedback. Second, the contribution of feedbacks to Arctic amplification (AA) relative to global average is investigated. Under the positive radiative forcings, the albedo feedback contributes to AA predominantly through warming the Arctic more than the low latitudes while the evaporative cooling feedback contributes to AA predominantly by cooling the low latitudes more than the Arctic. Their relative effects vary with the applied forcing, however, and the latter dominates over the former in the increased solar irradiance and lowered CO2 experiments. The large-scale condensation plus evaporative cooling feedback and the dynamical feedback contribute positively and negatively to AA, respectively. These results are consistent with an increase and a decrease of latent heat and dry-static energy transport, respectively, into the Arctic under the positive radiative forcings. An important contribution is thus made via changes in hydrological cycle and not via the 'dry' heat transport process. A larger response near the surface than aloft in the Arctic is maintained by the albedo, water vapor, and dynamical feedbacks, in which the albedo and water vapor feedbacks contribute through warming the surface more than aloft, and the dynamical feedback contributes by cooling aloft more than the surface. In our experiments, ocean and sea ice dynamics play a secondary role. It is shown that a different magnitude of CO2 increase introduces a latitudinal and seasonal difference into the feedbacks.

  14. State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Cox, David E. (Technical Monitor)

    2004-01-01

    The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.

  15. A model of depressional wetland formation in low-relief karst landscapes

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Bianchi, T. S.; Watts, A.

    2014-12-01

    Karst landscapes are formed by the self-reinforcing dissolution of limestone and other soluble rocks, and these positive feedbacks can create a variety of landforms depending on initial topography, climate, bedrock characteristics, and potentially, the activity of biota. In Big Cypress National Preserve (BICY), a low-relief karst landscape in southwestern FL (USA), depressional wetlands, are interspersed within an upland matrix in a regular pattern. This landscape is characterized by over-dispersion of wetland patches, periodic variation in bedrock depth and soil thickness, and distinct bi-modality of these and other soil properties. We hypothesize that the structure of the BICY landscape reflects the concurrent effects of local positive feedbacks among hydroperiod, vegetation productivity and bedrock dissolution; these local processes may ultimately be constrained by landscape scale limitations of water volume. We further hypothesize that low relief and shallow water tables are essential boundary conditions for the emergence of regular patterning of wetlands. To explore these hypotheses, we have developed a quasi-spatial model of a single nascent wetland and its catchment, where the expansion of the wetland basin is driven by acidity associated with belowground root production and aquatic metabolism and their effects on carbonate mineral dissolution, and by the lateral and vertical discharge of water between wetlands and bedrock porosity. This model can, depending on boundary conditions, recreate a range of karst features, including vertical dissolution holes, extensive wetlands that overtake the entire basin, or smaller wetlands whose size equilibrates at a small proportion of the catchment area. This last endpoint, a landform similar to those observed in BICY, occurs only in response to relatively shallow water tables, limited hydrologic inputs, and strong positive feedbacks of biotic activity on dissolution.

  16. Strong species-environment feedback shapes plant community assembly along environmental gradients.

    PubMed

    Jiang, Jiang; Deangelis, Donald L

    2013-10-01

    An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.

  17. Strong species-environment feedback shapes plant community assembly along environmental gradients

    USGS Publications Warehouse

    Jiang, Jiang; DeAngelis, Donald L.

    2013-01-01

    An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.

  18. Probing the Gaps: A Synthesis of Well-known and Lesser-known Hydrological Feedbacks Influencing Vegetation Patterning and Long-term Geomorphic Change in Low-gradient Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.

    2017-12-01

    Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation canopies in determining fine sediment deposition rates and influence nitrogen and carbon biogeochemistry. Emerging tools and data streams, such as information flow analysis of lidar-derived vegetation biovolume and topography, can help identify the relative roles of autogenic vs. external forcing in these landscapes.

  19. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External economic forcings were applied to the human system, resulting in greatly-reduced streamflow due to a large percentage of the watershed planted with the new crops. The anthropogenic response to this environmental feedback was an imposed minimum flow requirement in the integrated model, which resulted in a new optimized land use that improved environmental conditions, but not to the previous state. Further refinement of this experiment will provide thresholds, both where crop types change, and where environmental damage becomes evident. Preliminary results revealed added complexity, as tributary and mainstem subcatchments do not respond equally, even in this homogenous region; thus the spatial context also becomes important.

  20. Research Matters

    ERIC Educational Resources Information Center

    VanDeWeghe, Rick

    2005-01-01

    The critical role played by the teacher feedback on the students' drafts is discussed. The standards-based scales measuring content, organization, and mechanics was used to determine the quality of students' writing and the teachers' feedback commentaries were considered either content level or surface level.

  1. Practice and transfer of the frequency structures of continuous isometric force.

    PubMed

    King, Adam C; Newell, Karl M

    2014-04-01

    The present study examined the learning, retention and transfer of task outcome and the frequency-dependent properties of isometric force output dynamics. During practice participants produced isometric force to a moderately irregular target pattern either under a constant or variable presentation. Immediate and delayed retention tests examined the persistence of practice-induced changes of force output dynamics and transfer tests investigated performance to novel (low and high) irregular target patterns. The results showed that both constant and variable practice conditions exhibited similar reductions in task error but that the frequency-dependent properties were differentially modified across the entire bandwidth (0-12Hz) of force output dynamics as a function of practice. Task outcome exhibited persistent properties on the delayed retention test whereas the retention of faster time scales processes (i.e., 4-12Hz) of force output was mediated as a function of frequency structure. The structure of the force frequency components during early practice and following a rest interval was characterized by an enhanced emphasis on the slow time scales related to perceptual-motor feedback. The findings support the proposition that there are different time scales of learning at the levels of task outcome and the adaptive frequency bandwidths of force output dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

    PubMed Central

    Yoon, Han U.; Anil Kumar, Namita; Hur, Pilwon

    2017-01-01

    Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities. PMID:28690514

  3. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance.

    PubMed

    O'Brien, Katherine R; Waycott, Michelle; Maxwell, Paul; Kendrick, Gary A; Udy, James W; Ferguson, Angus J P; Kilminster, Kieryn; Scanes, Peter; McKenzie, Len J; McMahon, Kathryn; Adams, Matthew P; Samper-Villarreal, Jimena; Collier, Catherine; Lyons, Mitchell; Mumby, Peter J; Radke, Lynda; Christianen, Marjolijn J A; Dennison, William C

    2017-09-18

    Seagrass ecosystems are inherently dynamic, responding to environmental change across a range of scales. Habitat requirements of seagrass are well defined, but less is known about their ability to resist disturbance. Specific means of recovery after loss are particularly difficult to quantify. Here we assess the resistance and recovery capacity of 12 seagrass genera. We document four classic trajectories of degradation and recovery for seagrass ecosystems, illustrated with examples from around the world. Recovery can be rapid once conditions improve, but seagrass absence at landscape scales may persist for many decades, perpetuated by feedbacks and/or lack of seed or plant propagules to initiate recovery. It can be difficult to distinguish between slow recovery, recalcitrant degradation, and the need for a window of opportunity to trigger recovery. We propose a framework synthesizing how the spatial and temporal scales of both disturbance and seagrass response affect ecosystem trajectory and hence resilience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Resilience of Coral Reefs Across a Hierarchy of Spatial and Temporal scales

    NASA Astrophysics Data System (ADS)

    Mumby, P. J.

    2016-02-01

    Resilience is a dynamical property of ecosystems that integrates processes of recovery, disturbance and internal dynamics, including reinforcing feedbacks. As such, resilience is a useful framework to consider how ecosystems respond to multiple drivers occurring over multiple scales. Many insights have emerged recently including the way in which stressors can combine synergistically to deplete resilience. However, while recent advances have mapped resilience across seascapes, most studies have not captured emergent spatial dependencies and dynamics across the seascape (e.g., independent box models are run across the seascape in isolation). Here, we explore the dynamics that emerge when the seascape is `wired up' using data on larval dispersal, thereby giving a fully spatially-realistic model. We then consider how dynamics change across even larger, biogeographic scales, posing the question, `are there robust and global "rules of thumb" for the resilience of a single ecosystem?'. Answers to this question will help managers tailor their interventions and research needs for their own jurisdiction.

  5. The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans

    2016-07-01

    Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured, which increases the tension with observations. When classified as non-relaxed or relaxed according to their w and P3/P0 values, we find that there are no relaxed clusters in the simulations with the AGN feedback. This suggests that not only global cluster properties, like LX and T, and radial profiles should be used to compare and to calibrate simulations with observations, but also substructure measures like centre shifts and power ratios. Finally, we discuss what changes in the simulations might ease the tension with observational constraints on these quantities.

  6. Context-sensitivity of the feedback-related negativity for zero-value feedback outcomes.

    PubMed

    Pfabigan, Daniela M; Seidel, Eva-Maria; Paul, Katharina; Grahl, Arvina; Sailer, Uta; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus

    2015-01-01

    The present study investigated whether the same visual stimulus indicating zero-value feedback (€0) elicits feedback-related negativity (FRN) variation, depending on whether the outcomes correspond with expectations or not. Thirty-one volunteers performed a monetary incentive delay (MID) task while EEG was recorded. FRN amplitudes were comparable and more negative when zero-value outcome deviated from expectations than with expected gain or loss, supporting theories emphasising the impact of unexpectedness and salience on FRN amplitudes. Surprisingly, expected zero-value outcomes elicited the most negative FRNs. However, source localisation showed that such outcomes evoked less activation in cingulate areas than unexpected zero-value outcomes. Our study illustrates the context dependency of identical zero-value feedback stimuli. Moreover, the results indicate that the incentive cues in the MID task evoke different reward prediction error signals. These prediction signals differ in FRN amplitude and neuronal sources, and have to be considered in the design and interpretation of future studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    PubMed

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-05

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

  8. Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes

    PubMed Central

    Chau, Rosanna Man Wah

    2017-01-01

    ABSTRACT Environmental cues can stimulate a variety of single-cell responses, as well as collective behaviors that emerge within a bacterial community. These responses require signal integration and transduction, which can occur on a variety of time scales and often involve feedback between processes, for example, between growth and motility. Here, we investigate the dynamics of responses of the phototactic, unicellular cyanobacterium Synechocystis sp. PCC6803 to complex light inputs that simulate the natural environments that cells typically encounter. We quantified single-cell motility characteristics in response to light of different wavelengths and intensities. We found that red and green light primarily affected motility bias rather than speed, while blue light inhibited motility altogether. When light signals were simultaneously presented from different directions, cells exhibited phototaxis along the vector sum of the light directions, indicating that cells can sense and combine multiple signals into an integrated motility response. Under a combination of antagonistic light signal regimes (phototaxis-promoting green light and phototaxis-inhibiting blue light), the ensuing bias was continuously tuned by competition between the wavelengths, and the community response was dependent on both bias and cell growth. The phototactic dynamics upon a rapid light shift revealed a wavelength dependence on the time scales of photoreceptor activation/deactivation. Thus, Synechocystis cells achieve exquisite integration of light inputs at the cellular scale through continuous tuning of motility, and the pattern of collective behavior depends on single-cell motility and population growth. PMID:28270586

  9. An Autoethnographic Exploration of the Use of Goal Oriented Feedback to Enhance Brief Clinical Teaching Encounters

    ERIC Educational Resources Information Center

    Farrell, Laura; Bourgeois-Law, Gisele; Ajjawi, Rola; Regehr, Glenn

    2017-01-01

    Supervision in the outpatient context is increasingly in the form of single day interactions between students and preceptors. This creates difficulties for effective feedback, which often depends on a strong relationship of trust between preceptor and student. Building on feedback theories focusing on the relational and dialogic aspects of…

  10. Activation of PI3K/AKT and MAPK Pathway through a PDGFRβ-Dependent Feedback Loop Is Involved in Rapamycin Resistance in Hepatocellular Carcinoma

    PubMed Central

    Yao, Li-Qing; Tan, Chang-Jun; Huang, Xiao-Yong; Ke, Ai-Wu; Dai, Zhi; Fan, Jia; Zhou, Jian

    2012-01-01

    Background Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest, supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and studies on rapamycin resistance in HCC are extremely limited. Methodology/Principal Findings The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRβ in a time and dose-dependent manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRβ, we confirmed that subsequent activation of AKT and ERK was PDGFRβ-dependent and compromised the anti-tumor activity of rapamycin. Then, blockade of this PDGFRβ-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in vitro and in an immunocompetent orthotopic rat model of HCC. Conclusions Activation of PI3K/AKT and MAPK pathway through a PDGFRβ-dependent feedback loop compromises the anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach to improve the anti-tumor effect of rapamycin, particularly in preventing or treating HCC recurrence after liver transplantation. PMID:22428038

  11. Understanding protected area resilience: a multi-scale, social-ecological approach.

    PubMed

    Cumming, Graeme S; Allen, Craig R; Ban, Natalie C; Biggs, Duan; Biggs, Harry C; Cumming, David H M; De Vos, Alta; Epstein, Graham; Etienne, Michel; Maciejewski, Kristine; Mathevet, Raphaël; Moore, Christine; Nenadovic, Mateja; Schoon, Michael

    2015-03-01

    Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important cross-scale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale social-ecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.

  12. Understanding protected area resilience: a multi-scale, social-ecological approach

    USGS Publications Warehouse

    Cumming, Graeme S.; Allen, Craig R.; Ban, Natalie C.; Biggs, Duan; Biggs, Harry C.; Cumming, David H.M; De Vos, Alta; Epstein, Graham; Etienne, Michel; Maciejewski, Kristine; Mathevet, Raphael; Moore, Christine; Nenadovic, Mateja; Schoon, Michael

    2015-01-01

    Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important cross-scale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale social-ecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.

  13. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  14. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  15. When feedback fails: the scaling and saturation of star formation efficiency

    NASA Astrophysics Data System (ADS)

    Grudić, Michael Y.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman; Kereš, Dušan

    2018-04-01

    We present a suite of 3D multiphysics MHD simulations following star formation in isolated turbulent molecular gas discs ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way giant molecular clouds (GMCs) ({˜ } 10^2 {M_{\\odot } pc^{-2}}) and extreme ultraluminous infrared galaxy environments ({˜ } 10^4 {M_{\\odot } pc^{-2}}) so as to map out the scaling of the cloud-scale star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous per-freefall (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas discs form stars until a critical stellar surface density has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is a good predictor of ɛint, as suggested by analytic force balance arguments from previous works. SFE eventually saturates to ˜1 at high surface density. We also find a proportional relationship between ɛff and ɛint, implying that star formation is feedback-moderated even over very short time-scales in isolated clouds. These results have implications for star formation in galactic discs, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff with surface density is not consistent with the notion that ɛff is always ˜ 1 per cent on the scale of GMCs, but our predictions recover the ˜ 1 per cent value for GMC parameters similar to those found in spiral galaxies, including our own.

  16. Feedback control in planarian stem cell systems.

    PubMed

    Mangel, Marc; Bonsall, Michael B; Aboobaker, Aziz

    2016-02-13

    In planarian flatworms, the mechanisms underlying the activity of collectively pluripotent adult stem cells (neoblasts) and their descendants can now be studied from the level of the individual gene to the entire animal. Flatworms maintain startling developmental plasticity and regenerative capacity in response to variable nutrient conditions or injury. We develop a model for cell dynamics in such animals, assuming that fully differentiated cells exert feedback control on neoblast activity. Our model predicts a number of whole organism level and general cell biological and behaviours, some of which have been empirically observed or inferred in planarians and others that have not. As previously observed empirically we find: 1) a curvilinear relationship between external food and planarian steady state size; 2) the fraction of neoblasts in the steady state is constant regardless of planarian size; 3) a burst of controlled apoptosis during regeneration after amputation as the number of differentiated cells are adjusted towards their homeostatic/steady state level. In addition our model describes the following properties that can inform and be tested by future experiments: 4) the strength of feedback control from differentiated cells to neoblasts (i.e. the activity of the signalling system) and from neoblasts on themselves in relation to absolute number depends upon the level of food in the environment; 5) planarians adjust size when food level reduces initially through increased apoptosis and then through a reduction in neoblast self-renewal activity; 6) following wounding or excision of differentiated cells, different time scales characterize both recovery of size and the two feedback functions; 7) the temporal pattern of feedback controls differs noticeably during recovery from a removal or neoblasts or a removal of differentiated cells; 8) the signaling strength for apoptosis of differentiated cells depends upon both the absolute and relative deviations of the number of differentiated cells from their homeostatic level; and 9) planaria prioritize resource use for cell divisions. We offer the first analytical framework for organizing experiments on planarian flatworm stem cell dynamics in a form that allows models to be compared with quantitative cell data based on underlying molecular mechanisms and thus facilitate the interplay between empirical studies and modeling. This framework is the foundation for studying cell migration during wound repair, the determination of homeostatic levels of differentiated cells by natural selection, and stochastic effects.

  17. Effect of soil moisture on diurnal convection and precipitation in Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Cioni, Guido; Hohenegger, Cathy

    2017-04-01

    Soil moisture and convective precipitation are generally thought to be strongly coupled, although limitations in the modeling set-up of past studies due to coarse resolutions, and thus poorly resolved convective processes, have prevented a trustful determination of the strength and sign of this coupling. In this work the soil moisture-precipitation feedback is investigated by means of high-resolution simulations where convection is explicitly resolved. To that aim we use the LES (Large Eddy Simulation) version of the ICON model with a grid spacing of 250 m, coupled to the TERRA-ML soil model. We use homogeneous initial soil moisture conditions and focus on the precipitation response to increase/decrease of the initial soil moisture for various atmospheric profiles. The experimental framework proposed by Findell and Eltahir (2003) is revisited by using the same atmospheric soundings as initial condition but allowing a full interaction of the atmosphere with the land-surface over a complete diurnal cycle. In agreement with Findell and Eltahir (2003) the triggering of convection can be favoured over dry soils or over wet soils depending on the initial atmospheric sounding. However, total accumulated precipitation is found to always decrease over dry soils regardless of the employed sounding, thus highlighting a positive soil moisture-precipitation feedback (more rain over wetter soils) for the considered cases. To understand these differences and to infer under which conditions a negative feedback may occur, the total accumulated precipitation is split into its magnitude and duration component. While the latter can exhibit a dry soil advantage, the precipitation magnitude strongly correlates with the surface latent heat flux and thus always exhibits a wet soil advantage. The dependency is so strong that changes in duration cannot offset it. This simple argument shows that, in our idealised setup, a negative feedback is unlikely to be observed. The effects of other factors on the soil moisture-precipitation coupling, namely cloud radiative effects, large-scale forcing, winds, and plants are investigated by conducting further sensitivity experiments. All the experiments support a positive soil moisture-precipitation feedback. References: -Findell, K. L., and E. A. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. part I: Framework development. Journal of Hydrometeorology, 4 (3), 552-569.

  18. Arctic Sea Ice: Trends, Stability and Variability

    NASA Astrophysics Data System (ADS)

    Moon, Woosok

    A stochastic Arctic sea-ice model is derived and analyzed in detail to interpret the recent decay and associated variability of Arctic sea-ice under changes in greenhouse gas forcing widely referred to as global warming. The approach begins from a deterministic model of the heat flux balance through the air/sea/ice system, which uses observed monthly-averaged heat fluxes to drive a time evolution of sea-ice thickness. This model reproduces the observed seasonal cycle of the ice cover and it is to this that stochastic noise---representing high frequency variability---is introduced. The model takes the form of a single periodic non-autonomous stochastic ordinary differential equation. Following an introductory chapter, the two that follow focus principally on the properties of the deterministic model in order to identify the main properties governing the stability of the ice cover. In chapter 2 the underlying time-dependent solutions to the deterministic model are analyzed for their stability. It is found that the response time-scale of the system to perturbations is dominated by the destabilizing sea-ice albedo feedback, which is operative in the summer, and the stabilizing long wave radiative cooling of the ice surface, which is operative in the winter. This basic competition is found throughout the thesis to define the governing dynamics of the system. In particular, as greenhouse gas forcing increases, the sea-ice albedo feedback becomes more effective at destabilizing the system. Thus, any projections of the future state of Arctic sea-ice will depend sensitively on the treatment of the ice-albedo feedback. This in turn implies that the treatment a fractional ice cover as the ice areal extent changes rapidly, must be handled with the utmost care. In chapter 3, the idea of a two-season model, with just winter and summer, is revisited. By breaking the seasonal cycle up in this manner one can simplify the interpretation of the basic dynamics. Whereas in the fully time-dependent seasonal model one finds stable seasonal ice cover (vanishing in the summer but reappearing in the winter), in previous two-season models such a state could not be found. In this chapter the sufficient conditions are found for a stable seasonal ice cover, which reside in including a time variation in the shortwave radiance during summer. This provides a qualitative interpretation of the continuous and reversible shift from perennial to seasonally-varying states in the more complex deterministic model. In order to put the stochastic model into a realistic observational framework, in chapter 4, the analysis of daily satellite retrievals of ice albedo and ice extent is described. Both the basic statistics are examined and a new method, called multi-fractal temporally weighted detrended fluctuation analysis, is applied. Because the basic data are taken on daily time scales, the full fidelity of the retrieved data is accessed and we find time scales from days and weeks to seasonal and decadal. Importantly, the data show a white-noise structure on annual to biannual time scales and this provides the basis for using a Wiener process for the noise in the stochastic Arctic sea-ice model. In chapter 5 a generalized perturbation analysis of a non-autonomous stochastic differential equation is developed and then applied to interpreting the variability of Arctic sea-ice as greenhouse gas forcing increases. The resulting analytic expressions of the statistical moments provide insight into the transient and memory-delay effects associated with the basic competition in the system: the ice-albedo feedback and long wave radiative stabilization along with the asymmetry in the nonlinearity of the deterministic contributions to the model and the magnitude and structure of the stochastic noise. A systematic study of the impact of the noise structure, from additive to multiplicative, is undertaken in chapters 6 and 7. Finally, in chapter 8 the matter of including a fractional ice cover into a deterministic model is addressed. It is found that a simple but crucial mistake is made in one of the most widely used model schemes and this has a major impact given the important role of areal fraction in the ice-albedo feedback in such a model. The thesis is summarized in chapter 9.

  19. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE PAGES

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.; ...

    2017-10-24

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  20. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  1. Fast, high sensitivity dewpoint hygrometer

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    1998-01-01

    A dewpoint/frostpoint hygrometer that uses a surface moisture-sensitive sensor as part of an RF oscillator circuit with feedback control of the sensor temperature to maintain equilibrium at the sensor surface between ambient water vapor and condensed water/ice. The invention is preferably implemented using a surface acoustic wave (SAW) device in an RF oscillator circuit configured to generate a condensation-dependent output signal, a temperature sensor to measure the temperature of the SAW device and to distinguish between condensation-dependent and temperature-dependent signals, a temperature regulating device to control the temperature of the SAW device, and a feedback control system configured to keep the condensation-dependent signal nearly constant over time in the presence of time-varying humidity, corrected for temperature. The effect of this response is to heat or cool the surface moisture-sensitive device, which shifts the equilibrium with respect to evaporation and condensation at the surface of the device. The equilibrium temperature under feedback control is a measure of dewpoint or frostpoint.

  2. A test of the hierarchical model of litter decomposition.

    PubMed

    Bradford, Mark A; Veen, G F Ciska; Bonis, Anne; Bradford, Ella M; Classen, Aimee T; Cornelissen, J Hans C; Crowther, Thomas W; De Long, Jonathan R; Freschet, Gregoire T; Kardol, Paul; Manrubia-Freixa, Marta; Maynard, Daniel S; Newman, Gregory S; Logtestijn, Richard S P; Viketoft, Maria; Wardle, David A; Wieder, William R; Wood, Stephen A; van der Putten, Wim H

    2017-12-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2 . Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

  3. Verbal communication improves laparoscopic team performance.

    PubMed

    Shiliang Chang; Waid, Erin; Martinec, Danny V; Bin Zheng; Swanstrom, Lee L

    2008-06-01

    The impact of verbal communication on laparoscopic team performance was examined. A total of 24 dyad teams, comprised of residents, medical students, and office staff, underwent 2 team tasks using a previously validated bench model. Twelve teams (feedback groups) received instant verbal instruction and feedback on their performance from an instructor which was compared with 12 teams (control groups) with minimal or no verbal feedback. Their performances were both video and audio taped for analysis. Surgical backgrounds were similar between feedback and control groups. Teams with more verbal feedback achieved significantly better task performance (P = .002) compared with the control group with less feedback. Impact of verbal feedback was more pronounced for tasks requiring team cooperation (aiming and navigation) than tasks depending on individual skills (knotting). Verbal communication, especially the instructions and feedback from an experienced instructor, improved team efficiency and performance.

  4. A Multi-Scale Integrated Approach to Representing Watershed Systems: Significance and Challenges

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2013-12-01

    A range of processes associated with supplying services and goods to human society originate at the watershed level. Predicting watershed response to forcing conditions has been of high interest to many practical societal problems, however, remains challenging due to two significant properties of the watershed systems, i.e., connectivity and non-linearity. Connectivity implies that disturbances arising at any larger scale will necessarily propagate and affect local-scale processes; their local effects consequently influence other processes, and often convey nonlinear relationships. Physically-based, process-scale modeling is needed to approach the understanding and proper assessment of non-linear effects between the watershed processes. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion and sediment transport, tRIBS-OFM-HRM (Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model-Hairsine and Rose Model). This coupled model offers the advantage of exploring the hydrological effects of watershed physical factors such as topography, vegetation, and soil, as well as their feedback mechanisms. Several examples investigating the effects of vegetation on flow movement, the role of soil's substrate on sediment dynamics, and the driving role of topography on morphological processes are illustrated. We show how this comprehensive modeling tool can help understand interconnections and nonlinearities of the physical system, e.g., how vegetation affects hydraulic resistance depending on slope, vegetation cover fraction, discharge, and bed roughness condition; how the soil's substrate condition impacts erosion processes with an non-unique characteristic at the scale of a zero-order catchment; and how topographic changes affect spatial variations of morphologic variables. Due to feedback and compensatory nature of mechanisms operating in different watershed compartments, our conclusion is that a key to representing watershed systems lies in an integrated, interdisciplinary approach, whereby a physically-based model is used for assessments/evaluations associated with future changes in landuse, climate, and ecosystems.

  5. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming

    NASA Astrophysics Data System (ADS)

    Betts, R. A.; Cox, P. M.; Collins, M.; Harris, P. P.; Huntingford, C.; Jones, C. D.

    A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.

  6. Fundamental population-productivity relationships can be modified through density-dependent feedbacks of life-history evolution.

    PubMed

    Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A

    2014-12-01

    The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.

  7. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    PubMed

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.

  8. Developing an Assessment Method of Active Aging: University of Jyvaskyla Active Aging Scale.

    PubMed

    Rantanen, Taina; Portegijs, Erja; Kokko, Katja; Rantakokko, Merja; Törmäkangas, Timo; Saajanaho, Milla

    2018-01-01

    To develop an assessment method of active aging for research on older people. A multiphase process that included drafting by an expert panel, a pilot study for item analysis and scale validity, a feedback study with focus groups and questionnaire respondents, and a test-retest study. Altogether 235 people aged 60 to 94 years provided responses and/or feedback. We developed a 17-item University of Jyvaskyla Active Aging Scale with four aspects in each item (goals, ability, opportunity, and activity; range 0-272). The psychometric and item properties are good and the scale assesses a unidimensional latent construct of active aging. Our scale assesses older people's striving for well-being through activities pertaining to their goals, abilities, and opportunities. The University of Jyvaskyla Active Aging Scale provides a quantifiable measure of active aging that may be used in postal questionnaires or interviews in research and practice.

  9. Response of the Vegetation-Climate System to High Temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Berry, J. A.

    2009-12-01

    High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.

  10. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  11. Climate sensitivity, sea level and atmospheric carbon dioxide

    PubMed Central

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1°C for a 4 W m−2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3–4°C for a 4 W m−2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change. PMID:24043864

  12. Climate sensitivity, sea level and atmospheric carbon dioxide.

    PubMed

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-10-28

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1(°)C for a 4 W m(-2) CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4(°)C for a 4 W m(-2) CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  13. Linear feedback stabilization of a dispersively monitored qubit

    NASA Astrophysics Data System (ADS)

    Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin

    2017-08-01

    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.

  14. Vibration suppression for large scale adaptive truss structures using direct output feedback control

    NASA Technical Reports Server (NTRS)

    Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.

  15. Opposing and following responses in sensorimotor speech control: Why responses go both ways.

    PubMed

    Franken, Matthias K; Acheson, Daniel J; McQueen, James M; Hagoort, Peter; Eisner, Frank

    2018-06-04

    When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some responses follow the perturbation. In the present study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is made. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: The system initially responds by doing the opposite of what it was doing. This effect and the nontrivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production system's state at the time of perturbation.

  16. Structure Learning in Bayesian Sensorimotor Integration

    PubMed Central

    Genewein, Tim; Hez, Eduard; Razzaghpanah, Zeynab; Braun, Daniel A.

    2015-01-01

    Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration. PMID:26305797

  17. Cardiac and electro-cortical concomitants of social feedback processing in women

    PubMed Central

    van der Molen, Melle J. W.; Gunther Moor, Bregtje; van der Veen, Frederik M.; van der Molen, Maurits W.

    2015-01-01

    This study provides a joint analysis of the cardiac and electro-cortical—early and late P3 and feedback-related negativity (FRN)—responses to social acceptance and rejection feedback. Twenty-five female participants performed on a social- and age-judgment control task, in which they received feedback with respect to their liking and age judgments, respectively. Consistent with previous reports, results revealed transient cardiac slowing to be selectively prolonged to unexpected social rejection feedback. Late P3 amplitude was more pronounced to unexpected relative to expected feedback. Both early and late P3 amplitudes were shown to be context dependent, in that they were more pronounced to social as compared with non-social feedback. FRN amplitudes were more pronounced to unexpected relative to expected feedback, irrespective of context and feedback valence. This pattern of findings indicates that social acceptance and rejection feedback have widespread effects on bodily state and brain function, which are modulated by prior expectancies. PMID:25870439

  18. The effects of feedback self-consistency, therapist status, and attitude toward therapy on reaction to personality feedback.

    PubMed

    Collins, David R; Stukas, Arthur A

    2006-08-01

    Individuals' reactions to interpersonal feedback may depend on characteristics of the feedback and the feedback source. The present authors examined the effects of experimentally manipulated personality feedback that they--in the guise of therapists--e-mailed to participants on the degree of their acceptance of the feedback. Consistent with Self-Verification Theory (W. B. Swann Jr., 1987), participants accepted feedback that was consistent with their self-views more readily than they did feedback that was inconsistent with their self-views. Furthermore, the authors found main effects for therapist's status and participant's attitude toward therapy. Significant interactions showed effects in which high-status therapists and positive client attitudes increased acceptance of self-inconsistent feedback, effects that were only partially mediated by clients' perceptions of therapist competence. The present results indicate the possibility that participants may be susceptible to self-concept change or to self-fulfilling prophecy effects in therapy when they have a positive attitude toward therapy or are working with a high-status therapist.

  19. Sensory feedback add-on for upper-limb prostheses.

    PubMed

    Fallahian, Nader; Saeedi, Hassan; Mokhtarinia, Hamidreza; Tabatabai Ghomshe, Farhad

    2017-06-01

    Sensory feedback systems have been of great interest in upper-limb prosthetics. Despite tremendous research, there are no commercial modality-matched feedback systems. This article aims to introduce the first detachable and feedback add-on option that can be attached to in-use prostheses. A sensory feedback system was tested on a below-elbow myoelectric prosthesis. The aim was to have the amputee grasp fragile objects without crushing while other accidental feedback sources were blocked. A total of 8 successful trials (out of 10) showed that sensory feedback system decreased the amputee's visual dependency by improving awareness of his prosthesis. Sensory feedback system can be used either as post-fabrication (prosthetic add-on option) or para-fabrication (incorporated into prosthetic design). The use of these direct feedback systems can be explored with a current prosthesis before ordering new high-tech prosthesis. Clinical relevance This technical note introduces the first attach/detach-able sensory feedback system that can simply be added to in-use (myo)electric prosthesis, with no obligation to change prosthesis design or components.

  20. CSI Feedback Reduction for MIMO Interference Alignment

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Ruan, Liangzhong; Lau, Vincent K. N.

    2013-09-01

    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.

  1. Novel synthetic monoketone transmute radiation-triggered NFκB-dependent TNFα cross-signaling feedback maintained NFκB and favors neuroblastoma regression.

    PubMed

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.

  2. Novel Synthetic Monoketone Transmute Radiation-Triggered NFκB-Dependent TNFα Cross-Signaling Feedback Maintained NFκB and Favors Neuroblastoma Regression

    PubMed Central

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S.; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion. PMID:23967300

  3. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback.

    PubMed

    Mensh, B D; Aksay, E; Lee, D D; Seung, H S; Tank, D W

    2004-03-01

    To quantify performance of the goldfish oculomotor neural integrator and determine its dependence on visual feedback, we measured the relationship between eye drift-velocity and position during spontaneous gaze fixations in the light and in the dark. In the light, drift-velocities were typically less than 1 deg/s, similar to those observed in humans. During brief periods in darkness, drift-velocities were only slightly larger, but showed greater variance. One hour in darkness degraded fixation-holding performance. These findings suggest that while visual feedback is not essential for online fixation stability, it may be used to tune the mechanism of persistent neural activity in the oculomotor integrator.

  4. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records.

    PubMed

    Martínez-Botí, M A; Foster, G L; Chalk, T B; Rohling, E J; Sexton, P F; Lunt, D J; Pancost, R D; Badger, M P S; Schmidt, D N

    2015-02-05

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  5. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    PubMed

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  6. Gregarious Convection and Radiative Feedbacks in Idealized Worlds

    DTIC Science & Technology

    2016-08-29

    exist neither on the globe nor within the cloud model. Since mesoscales impose great computational costs on atmosphere models, as well as inconven...Atmospheric Science, University of Miami, Miami, Florida, USA Abstract What role does convection play in cloud feedbacks? What role does convective... cloud fields depends systematically on global temperature, then convective organization could be a climate system feedback. How reconcilable and how

  7. Factors Influencing Oral Corrective Feedback Provision in the Spanish Foreign Language Classroom: Investigating Instructor Native/Nonnative Speaker Status, SLA Education, & Teaching Experience

    ERIC Educational Resources Information Center

    Gurzynski-Weiss, Laura

    2010-01-01

    The role of interactional feedback has been a critical area of second language acquisition (SLA) research for decades and while findings suggest interactional feedback can facilitate SLA, the extent of its influence can vary depending on a number of factors, including the native language of those involved in communication. Although studies have…

  8. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  9. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  10. Memory is relevant in the symmetric phase of the minority game

    NASA Astrophysics Data System (ADS)

    Ho, K. H.; Man, W. C.; Chow, F. K.; Chau, H. F.

    2005-06-01

    Minority game is a simple-mined econophysical model capturing the cooperative behavior among selfish players. Previous investigations, which were based on numerical simulations up to about 100 players for a certain parameter α in the range 0.1≲α≲1 , suggested that memory is irrelevant to the cooperative behavior of the minority game in the so-called symmetric phase. Here using a large scale numerical simulation up to about 3000 players in the parameter range 0.01≲α≲1 , we show that the mean variance of the attendance in the minority game actually depends on the memory in the symmetric phase. We explain such dependence in the framework of crowd-anticrowd theory. Our findings conclude that one should not overlook the feedback mechanism buried under the correlation in the history time series in the study of minority game.

  11. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    PubMed Central

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  12. Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; Alcatel Thales III-V Lab, Campus de Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau; Carras, M.

    2014-09-29

    External optical feedback is studied experimentally in mid-infrared quantum cascade lasers. These structures exhibit a dynamical response close to that observed in interband lasers, with threshold reduction and optical power enhancement when increasing the feedback ratio. The study of the optical spectrum proves that the laser undergoes five distinct regimes depending on the phase and amplitude of the reinjected field. These regimes are mapped in the plane of external cavity length and feedback strength, revealing unstable behavior only for a very narrow range of operation, making quantum cascade lasers much more stable than their interband counterparts.

  13. Cross scale interactions, nonlinearities, and forecasting catastrophic events

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, Roger A.; Bestelmeyer, Brandon T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, Kris M.

    2004-01-01

    Catastrophic events share characteristic nonlinear behaviors that are often generated by cross-scale interactions and feedbacks among system elements. These events result in surprises that cannot easily be predicted based on information obtained at a single scale. Progress on catastrophic events has focused on one of the following two areas: nonlinear dynamics through time without an explicit consideration of spatial connectivity [Holling, C. S. (1992) Ecol. Monogr. 62, 447–502] or spatial connectivity and the spread of contagious processes without a consideration of cross-scale interactions and feedbacks [Zeng, N., Neeling, J. D., Lau, L. M. & Tucker, C. J. (1999) Science 286, 1537–1540]. These approaches rarely have ventured beyond traditional disciplinary boundaries. We provide an interdisciplinary, conceptual, and general mathematical framework for understanding and forecasting nonlinear dynamics through time and across space. We illustrate the generality and usefulness of our approach by using new data and recasting published data from ecology (wildfires and desertification), epidemiology (infectious diseases), and engineering (structural failures). We show that decisions that minimize the likelihood of catastrophic events must be based on cross-scale interactions, and such decisions will often be counterintuitive. Given the continuing challenges associated with global change, approaches that cross disciplinary boundaries to include interactions and feedbacks at multiple scales are needed to increase our ability to predict catastrophic events and develop strategies for minimizing their occurrence and impacts. Our framework is an important step in developing predictive tools and designing experiments to examine cross-scale interactions.

  14. Multiscale System for Environmentally-Driven Infectious Disease with Threshold Control Strategy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodan; Xiao, Yanni

    A multiscale system for environmentally-driven infectious disease is proposed, in which control measures at three different scales are implemented when the number of infected hosts exceeds a certain threshold. Our coupled model successfully describes the feedback mechanisms of between-host dynamics on within-host dynamics by employing one-scale variable guided enhancement of interventions on other scales. The modeling approach provides a novel idea of how to link the large-scale dynamics to small-scale dynamics. The dynamic behaviors of the multiscale system on two time-scales, i.e. fast system and slow system, are investigated. The slow system is further simplified to a two-dimensional Filippov system. For the Filippov system, we study the dynamics of its two subsystems (i.e. free-system and control-system), the sliding mode dynamics, the boundary equilibrium bifurcations, as well as the global behaviors. We prove that both subsystems may undergo backward bifurcations and the sliding domain exists. Meanwhile, it is possible that the pseudo-equilibrium exists and is globally stable, or the pseudo-equilibrium, the disease-free equilibrium and the real equilibrium are tri-stable, or the pseudo-equilibrium and the real equilibrium are bi-stable, or the pseudo-equilibrium and disease-free equilibrium are bi-stable, which depends on the threshold value and other parameter values. The global stability of the pseudo-equilibrium reveals that we may maintain the number of infected hosts at a previously given value. Moreover, the bi-stability and tri-stability indicate that whether the number of infected individuals tends to zero or a previously given value or other positive values depends on the parameter values and the initial states of the system. These results highlight the challenges in the control of environmentally-driven infectious disease.

  15. Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala

    PubMed Central

    Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind

    2011-01-01

    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories. PMID:21437238

  16. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

    PubMed

    Gold, Nicholas D; Gowen, Christopher M; Lussier, Francois-Xavier; Cautha, Sarat C; Mahadevan, Radhakrishnan; Martin, Vincent J J

    2015-05-28

    L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.

  17. Physical properties and scaling relations of molecular clouds: the effect of stellar feedback

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn; Agertz, Oscar; Renaud, Florent; Romeo, Alessandro B.

    2018-06-01

    Using hydrodynamical simulations of entire galactic discs similar to the Milky Way, reaching 4.6{ pc} resolution, we study the origins of observed physical properties of giant molecular clouds (GMCs). We find that efficient stellar feedback is a necessary ingredient in order to develop a realistic interstellar medium (ISM), leading to molecular cloud masses, sizes, velocity dispersions and virial parameters in excellent agreement with Milky Way observations. GMC scaling relations observed in the Milky Way, such as the mass-size (M-R), velocity dispersion-size (σ-R), and the σ-RΣ relations, are reproduced in a feedback driven ISM when observed in projection, with M∝R2.3 and σ∝R0.56. When analysed in 3D, GMC scaling relations steepen significantly, indicating potential limitations of our understanding of molecular cloud 3D structure from observations. Furthermore, we demonstrate how a GMC population's underlying distribution of virial parameters can strongly influence the scatter in derived scaling relations. Finally, we show that GMCs with nearly identical global properties exist in different evolutionary stages, where a majority of clouds being either gravitationally bound or expanding, but with a significant fraction being compressed by external ISM pressure, at all times.

  18. Modifying patch-scale connectivity to initiate landscape change: An experimental approach to link scale

    USDA-ARS?s Scientific Manuscript database

    Nonlinear interactions and feedbacks across spatial and temporal scales are common features of biological and physical systems. These emergent behaviors often result in surprises that challenge the ability of scientists to understand and predict system behavior at one scale based on information at f...

  19. Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Eisenreich, Maximilian; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Emsellem, Eric

    2017-06-01

    We present three-dimensional hydrodynamical simulations showing the effect of kinetic and radiative active galactic nuclei (AGN) feedback on a model galaxy representing a massive quiescent low-redshift early-type galaxy of M* = 8.41 × 1010 M⊙, harbouring an MBH = 4 × 108 M⊙ black hole surrounded by a cooling gaseous halo. We show that, for a total baryon fraction of ˜20 per cent of the cosmological value, feedback from the AGN can keep the galaxy quiescent for about 4.35 Gyr and with properties consistent with black hole mass and X-ray luminosity scaling relations. However, this can only be achieved if the AGN feedback model includes both kinetic and radiative feedback modes. The simulation with only kinetic feedback fails to keep the model galaxy fully quiescent, while one with only radiative feedback leads to excessive black hole growth. For higher baryon fractions (e.g. 50 per cent of the cosmological value), the X-ray luminosities exceed observed values by at least one order of magnitude, and rapid cooling results in a star-forming galaxy. The AGN plays a major role in keeping the circumgalactic gas at observed metallicities of Z/Z⊙ ≳ 0.3 within the central ˜30 kpc by venting nuclear gas enriched with metals from residual star formation activity. As indicated by previous cosmological simulations, our results are consistent with a model for which the black hole mass and the total baryon fraction are set at higher redshifts z > 1 and the AGN alone can keep the model galaxy on observed scaling relations. Models without AGN feedback violate both the quiescence criterion as well as circumgalactic medium metallicity constraints.

  20. Short Answers to Deep Questions: Supporting Teachers in Large-Class Settings

    ERIC Educational Resources Information Center

    McDonald, J.; Bird, R. J.; Zouaq, A.; Moskal, A. C. M.

    2017-01-01

    In large class settings, individualized student-teacher interaction is difficult. However, teaching interactions (e.g., formative feedback) are central to encouraging deep approaches to learning. While there has been progress in automatic short-answer grading, analysing student responses to support formative feedback at scale is arguably some way…

  1. High-frequency chaotic dynamics enabled by optical phase-conjugation

    PubMed Central

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  2. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.

  3. Improving left spatial neglect through music scale playing.

    PubMed

    Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe

    2017-03-01

    The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.

  4. Developing students' teaching through peer observation and feedback.

    PubMed

    Rees, Eliot L; Davies, Benjamin; Eastwood, Michael

    2015-10-01

    With the increasing popularity and scale of peer teaching, it is imperative to develop methods that ensure the quality of teaching provided by undergraduate students. We used an established faculty development and quality assurance process in a novel context: peer observation of teaching for undergraduate peer tutors. We have developed a form to record observations and aid the facilitation of feedback. In addition, experienced peer tutors have been trained to observe peer-taught sessions and provide tutors with verbal and written feedback. We have found peer observation of teaching to be a feasible and acceptable process for improving quality of teaching provided by undergraduate medical students. However, feedback regarding the quality of peer observer's feedback may help to develop students' abilities further.

  5. Ramifying feedback networks, cross-scale interactions, and emergent quasi individuals in Conway's game of Life.

    PubMed

    Gotts, Nicholas M

    2009-01-01

    Small patterns of state 1 cells on an infinite, otherwise empty array of Conway's game of Life can produce sets of growing structures resembling in significant ways a population of spatially situated individuals in a nonuniform, highly structured environment. Ramifying feedback networks and cross-scale interactions play a central role in the emergence and subsequent dynamics of the quasi population. The implications are discussed: It is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  6. Is the Role of External Feedback in Auditory Skill Learning Age Dependent?

    PubMed

    Zaltz, Yael; Roth, Daphne Ari-Even; Kishon-Rabin, Liat

    2017-12-20

    The purpose of this study is to investigate the role of external feedback in auditory perceptual learning of school-age children as compared with that of adults. Forty-eight children (7-9 years of age) and 64 adults (20-35 years of age) conducted a training session using an auditory frequency discrimination (difference limen for frequency) task, with external feedback (EF) provided for half of them. Data supported the following findings: (a) Children learned the difference limen for frequency task only when EF was provided. (b) The ability of the children to benefit from EF was associated with better cognitive skills. (c) Adults showed significant learning whether EF was provided or not. (d) In children, within-session learning following training was dependent on the provision of feedback, whereas between-sessions learning occurred irrespective of feedback. EF was found beneficial for auditory skill learning of 7-9-year-old children but not for young adults. The data support the supervised Hebbian model for auditory skill learning, suggesting combined bottom-up internal neural feedback controlled by top-down monitoring. In the case of immature executive functions, EF enhanced auditory skill learning. This study has implications for the design of training protocols in the auditory modality for different age groups, as well as for special populations.

  7. Active Cellular Mechanics and its Consequences for Animal Development

    NASA Astrophysics Data System (ADS)

    Noll, Nicholas B.

    A central goal of developmental biology is to understand how an organism shapes itself, a process referred to as morphogenesis. While the molecular components critical to determining the initial body plan have been well characterized, the control of the subsequent dynamics of cellular rearrangements which ultimately shape the organism are far less understood. A major roadblock to a more complete picture of morphogenesis is the inability to measure tissue-scale mechanics throughout development and thus answer fundamental questions: How is the mechanical state of the cell regulated by local protein expression and global pattering? In what way does stress feedback onto the larger developmental program? In this dissertation, we begin to approach these questions through the introduction and analysis of a multi-scale model of epithelial mechanics which explicitly connects cytoskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy two primary assumptions: that the mechanical balance of cells is dominated by cortical tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent manner. Remarkably, the interplay of these features allows for angle-preserving, i.e. 'isogonal', dilations or contractions of local cell geometry that do not generate stress. Asymptotically this model is stabilized provided there is mechanical feedback on expression of myosin within the cell; we take this to be a strong prediction to be tested. The ATN model exposes a fundamental connection between equilibrium cell geometry and its underlying force network. In Chapter 3, we relax the tension-net approximation and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have non-trivial geometric constraints that imply the network is described by a weighted `dual' triangulation. We show that the dual triangulation encodes all information about the mechanical state of an epithelial tissue. Utilizing the stress-geometry 'duality', we formulate a local "Mechanical Inference" of cellular-level stress using solely cell geometry that dramatically improves over past image-based inference techniques. In Chapter 4, we generalize the ATN model to explore the controlled re-arrangement of cells within epithelial tissues. This requires us to explicitly consider the effects of cadherin mediated adhesion, and its regulation, on tissue morphogenesis. We find that positive feedback between myosin and cortical tension, along with traction-dependent depletion of cytoskeletal cadherin is sufficient to recapitulate the morphogenetic movement of cells observed during convergent extension of the lateral ectoderm during Drosophila embryogenesis. Statistical analyses of live-imaging data supports the fundamentals of the model. Chapter 5 focuses on morphogenesis at a mesoscopic scale by coarse-graining the cellular ATN model. Under this limit, we expect an epithelial tissue should behave as an effective viscous, compressible fluid driven by myosin gradients on intermediate time-scales. Theoretical predictions are empirically tested against in-toto microscopy data obtained during early Drosophila embryogenesis.

  8. Development of control strategies for safe microburst penetration: A progress report

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1987-01-01

    A single-engine, propeller-driven, general-aviation model was incorporated into the nonlinear simulation and into the linear analysis of root loci and frequency response. Full-scale wind tunnel data provided its aerodynamic model, and the thrust model included the airspeed dependent effects of power and propeller efficiency. Also, the parameters of the Jet Transport model were changed to correspond more closely to the Boeing 727. In order to study their effects on steady-state repsonse to vertical wind inputs, altitude and total specific energy (air-relative and inertial) feedback capabilities were added to the nonlinear and linear models. Multiloop system design goals were defined. Attempts were made to develop controllers which achieved these goals.

  9. How much is too much assessment? Insight into assessment-driven student learning gains in large-scale undergraduate microbiology courses.

    PubMed

    Wang, Jack T H; Schembri, Mark A; Hall, Roy A

    2013-01-01

    Designing and implementing assessment tasks in large-scale undergraduate science courses is a labor-intensive process subject to increasing scrutiny from students and quality assurance authorities alike. Recent pedagogical research has provided conceptual frameworks for teaching introductory undergraduate microbiology, but has yet to define best-practice assessment guidelines. This study assessed the applicability of Biggs' theory of constructive alignment in designing consistent learning objectives, activities, and assessment items that aligned with the American Society for Microbiology's concept-based microbiology curriculum in MICR2000, an introductory microbiology course offered at the University of Queensland, Australia. By improving the internal consistency in assessment criteria and increasing the number of assessment items explicitly aligned to the course learning objectives, the teaching team was able to efficiently provide adequate feedback on numerous assessment tasks throughout the semester, which contributed to improved student performance and learning gains. When comparing the constructively aligned 2011 offering of MICR2000 with its 2010 counterpart, students obtained higher marks in both coursework assignments and examinations as the semester progressed. Students also valued the additional feedback provided, as student rankings for course feedback provision increased in 2011 and assessment and feedback was identified as a key strength of MICR2000. By designing MICR2000 using constructive alignment and iterative assessment tasks that followed a common set of learning outcomes, the teaching team was able to effectively deliver detailed and timely feedback in a large introductory microbiology course. This study serves as a case study for how constructive alignment can be integrated into modern teaching practices for large-scale courses.

  10. Investigating Galaxy Evolution and Active Galactic Nucleus Feedback with the Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Spacek, Alexander; Scannapieco, Evan; Cohen, Seth H.; Joshi, Bhavin; Mauskopf, Philip; Richardson, Mark L. A.; Devriendt, Julien; Dubois, Yohan; Peirani, Sebastien; Pichon, Christophe

    2018-06-01

    Galaxy formation is a complex process with aspects that are still very uncertain. A mechanism that has been used in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback, where a large amount of energy is driven outwards through a galaxy and the surrounding region by a central supermassive black hole. A promising method for directly measuring this energy is by looking at small increases in the energy of the cosmic microwave background (CMB) photons as they pass through hot gas, known as the thermal Sunyaev-Zel'dovich (tSZ) effect. I will present work done to measure the tSZ effect around a large number of 0.5 < z < 1.5 elliptical galaxies using the South Pole Telescope (SPT), Atacama Cosmology Telescope (ACT), and Planck telescope, finding signals at 1-sigma to 3-sigma confindence levels depending on the dataset and redshift range. The results are mixed, including hints at non-gravitational energy possibly due to AGN feedback. Then I will present work done to analyze these results further by comparing them to matching simulated measurements, both including and not including AGN feedback, from the large-scale Horizon-AGN and Horizon-NoAGN cosmological simulations. In these comparisons, the SPT results, which tend to have lower-mass galaxies (<5x10^11 M_Sun), favor the Horizon-AGN results at about a 1-sigma level, while the ACT results, which tend to have higher-mass galaxies (>5x10^11 M_Sun), favor the Horizon-NoAGN results at more than a 6-sigma level. These results indicate that AGN feedback may be milder than often predicted, and they also highlight the promising nature of tSZ effect measurements and the need for further work using better data and more varied simulations.

  11. The hydrological cycle at European Fluxnet sites: modeling seasonal water and energy budgets at local scale.

    NASA Astrophysics Data System (ADS)

    Stockli, R.; Vidale, P. L.

    2003-04-01

    The importance of correctly including land surface processes in climate models has been increasingly recognized in the past years. Even on seasonal to interannual time scales land surface - atmosphere feedbacks can play a substantial role in determining the state of the near-surface climate. The availability of soil moisture for both runoff and evapotranspiration is dependent on biophysical processes occuring in plants and in the soil acting on a wide time-scale from minutes to years. Fluxnet site measurements in various climatic zones are used to drive three generations of LSM's (land surface models) in order to assess the level of complexity needed to represent vegetation processes at the local scale. The three models were the Bucket model (Manabe 1969), BATS 1E (Dickinson 1984) and SiB 2 (Sellers et al. 1996). Evapotranspiration and runoff processes simulated by these models range from simple one-layer soils and no-vegetation parameterizations to complex multilayer soils, including realistic photosynthesis-stomatal conductance models. The latter is driven by satellite remote sensing land surface parameters inheriting the spatiotemporal evolution of vegetation phenology. In addition a simulation with SiB 2 not only including vertical water fluxes but also lateral soil moisture transfers by downslope flow is conducted for a pre-alpine catchment in Switzerland. Preliminary results are presented and show that - depending on the climatic environment and on the season - a realistic representation of evapotranspiration processes including seasonally and interannually-varying state of vegetation is significantly improving the representation of observed latent and sensible heat fluxes on the local scale. Moreover, the interannual evolution of soil moisture availability and runoff is strongly dependent on the chosen model complexity. Biophysical land surface parameters from satellite allow to represent the seasonal changes in vegetation activity, which has great impact on the yearly budget of transpiration fluxes. For some sites, however, the hydrological cycle is simulated reasonably well even with simple land surface representations.

  12. Effects of reward and punishment on learning from errors in smokers.

    PubMed

    Duehlmeyer, Leonie; Levis, Bianca; Hester, Robert

    2018-04-30

    Punishing errors facilitates adaptation in healthy individuals, while aberrant reward and punishment sensitivity in drug-dependent individuals may change this impact. Many societies have institutions that use the concept of punishing drug use behavior, making it important to understand how drug dependency mediates the effects of negative feedback for influencing adaptive behavior. Using an associative learning task, we investigated differences in error correction rates of dependent smokers, compared with controls. Two versions of the task were administered to different participant samples: One assessed the effect of varying monetary contingencies to task performance, the other, the presence of reward as compared to avoidance of punishment for correct performance. While smokers recalled associations that were rewarded with a higher value 11% more often than lower rewarded locations, they did not correct higher punished locations more often. Controls exhibited the opposite pattern. The three-way interaction between magnitude, feedback type and group was significant, F(1,48) = 5.288, p =0.026, ɳ 2 p =0.099. Neither participant group corrected locations offering reward more often than those offering avoidances of punishment. The interaction between group and feedback condition was not significant, F(1,58) = 0.0, p =0.99, ɳ 2 p =0.001. The present results suggest that smokers have poorer learning from errors when receiving negative feedback. Moreover, larger rewards reinforce smokers' behavior stronger than smaller rewards, whereas controls made no distinction. These findings support the hypothesis that dependent smokers may respond to positively framed and rewarded anti-smoking programs when compared to those relying on negative feedback or punishment. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Perception of scale in forest management planning: Challenges and implications

    Treesearch

    Swee May Tang; Eric J. Gustafson

    1997-01-01

    Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...

  14. Dynamics of nonlinear feedback control.

    PubMed

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  15. Toward Process-resolving Synthesis and Prediction of Arctic Climate Change Using the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Maslowski, W.

    2017-12-01

    The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.

  16. Water and salt dynamics and the hydraulic conductivity feedback: irreversible soil degradation and reclamation opportunities

    NASA Astrophysics Data System (ADS)

    Mau, Yair; Porporato, Amilcare

    2017-04-01

    We present a model for the dynamics of soil water, salt concentration and exchangeable sodium fraction in the root zone, driven by irrigation water of various qualities and stochastic rainfall. The main nonlinear feedback is the decrease in hydraulic conductivity for low salinity and/or high sodicity levels. The three variables have quite disparate characteristic time scales: soil water can vary two or three orders of magnitude faster than the exchangeable sodium fraction. In certain limiting cases in which the input of water is constant, the system can be simplified by eliminating the equation for soil water, allowing a full description of the dynamics in the two-dimensional salinity-sodicity phase space. We estimate soil structure degradation time scales for high sodium-adsorption-ratio irrigation water, and delineate the regions in the salinity-sodicity phase space where sodium-induced degradation is effectively irreversible. This apparent irreversibility is the result of relatively long evolution time scales with respect to human activity. When we take into account stochastic rainfall—and the accompanying wetting and drying cycles—the system produces a myriad of statistical steady states. This means that equal environmental conditions can produce different outcomes, accessible to each other only by large interventions, such as temporary changes in the quality of irrigation water or one-time amendment use. Our characterization of the dynamics of water and salt in the root zone, and how it depends on environmental parameters, offers us opportunities to control and reclaim degraded states making optimal resource use. We show an example of sodic soil reclamation through calcium-based fertigation, with minimal time (and applied water) expenditure.

  17. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

  18. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2012-01-01

    6.Synthesis. Below-ground responses of marshes to sea level rise are more broadly applicable than above-ground feedbacks because they are consistent among different species and do not depend on the availability of mineral sediment.

  19. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  20. Biomorphodynamics: Physical-biological feedbacks that shape landscapes

    USGS Publications Warehouse

    Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L.

    2008-01-01

    Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the modeling of such emergent interactions. Copyright 2008 by the American Geophysical Union.

  1. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  2. Ecogeomorphology of semiarid rangelands: understanding and quantifying rates and feedbacks to prevent landscape degradation.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia

    2017-04-01

    In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions on the distribution of vegetation leading to degradation are related to sharp variations on the landscape surface connectivity. Finally we will discuss results analysing the potential effect of soils depths on the coevolution of system structures and connectivity. The relevance and implications of these results for the successful reclamation of water-limited environments in which vegetation stability largely depends on the redistribution of the scarce water resources will be discussed.

  3. Optimal output fast feedback in two-time scale control of flexible arms

    NASA Technical Reports Server (NTRS)

    Siciliano, B.; Calise, A. J.; Jonnalagadda, V. R. P.

    1986-01-01

    Control of lightweight flexible arms moving along predefined paths can be successfully synthesized on the basis of a two-time scale approach. A model following control can be designed for the reduced order slow subsystem. The fast subsystem is a linear system in which the slow variables act as parameters. The flexible fast variables which model the deflections of the arm along the trajectory can be sensed through strain gage measurements. For full state feedback design the derivatives of the deflections need to be estimated. The main contribution of this work is the design of an output feedback controller which includes a fixed order dynamic compensator, based on a recent convergent numerical algorithm for calculating LQ optimal gains. The design procedure is tested by means of simulation results for the one link flexible arm prototype in the laboratory.

  4. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less

  5. Stochastic multi-scale models of competition within heterogeneous cellular populations: Simulation methods and mean-field analysis.

    PubMed

    Cruz, Roberto de la; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás

    2016-10-21

    We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i.e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Integration of Host Strain Bioengineering and Bioprocess Development Using Ultra-Scale Down Studies to Select the Optimum Combination: An Antibody Fragment Primary Recovery Case Study

    PubMed Central

    Aucamp, Jean P; Davies, Richard; Hallet, Damien; Weiss, Amanda; Titchener-Hooker, Nigel J

    2014-01-01

    An ultra scale-down primary recovery sequence was established for a platform E. coli Fab production process. It was used to evaluate the process robustness of various bioengineered strains. Centrifugal discharge in the initial dewatering stage was determined to be the major cause of cell breakage. The ability of cells to resist breakage was dependant on a combination of factors including host strain, vector, and fermentation strategy. Periplasmic extraction studies were conducted in shake flasks and it was demonstrated that key performance parameters such as Fab titre and nucleic acid concentrations were mimicked. The shake flask system also captured particle aggregation effects seen in a large scale stirred vessel, reproducing the fine particle size distribution that impacts the final centrifugal clarification stage. The use of scale-down primary recovery process sequences can be used to screen a larger number of engineered strains. This can lead to closer integration with and better feedback between strain development, fermentation development, and primary recovery studies. Biotechnol. Bioeng. 2014;111: 1971–1981. © 2014 Wiley Periodicals, Inc. PMID:24838387

  7. Impairments in learning by monetary rewards and alcohol-associated rewards in detoxified alcoholic patients.

    PubMed

    Jokisch, Daniel; Roser, Patrik; Juckel, Georg; Daum, Irene; Bellebaum, Christian

    2014-07-01

    Excessive alcohol consumption has been linked to structural and functional brain changes associated with cognitive, emotional, and behavioral impairments. It has been suggested that neural processing in the reward system is also affected by alcoholism. The present study aimed at further investigating reward-based associative learning and reversal learning in detoxified alcohol-dependent patients. Twenty-one detoxified alcohol-dependent patients and 26 healthy control subjects participated in a probabilistic learning task using monetary and alcohol-associated rewards as feedback stimuli indicating correct responses. Performance during acquisition and reversal learning in the different feedback conditions was analyzed. Alcohol-dependent patients and healthy control subjects showed an increase in learning performance over learning blocks during acquisition, with learning performance being significantly lower in alcohol-dependent patients. After changing the contingencies, alcohol-dependent patients exhibited impaired reversal learning and showed, in contrast to healthy controls, different learning curves for different types of rewards with no increase in performance for high monetary and alcohol-associated feedback. The present findings provide evidence that dysfunctional processing in the reward system in alcohol-dependent patients leads to alterations in reward-based learning resulting in a generally reduced performance. In addition, the results suggest that alcohol-dependent patients are, in particular, more impaired in changing an established behavior originally reinforced by high rewards. Copyright © 2014 by the Research Society on Alcoholism.

  8. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.

  9. Robust permanence for ecological equations with internal and external feedbacks.

    PubMed

    Patel, Swati; Schreiber, Sebastian J

    2018-07-01

    Species experience both internal feedbacks with endogenous factors such as trait evolution and external feedbacks with exogenous factors such as weather. These feedbacks can play an important role in determining whether populations persist or communities of species coexist. To provide a general mathematical framework for studying these effects, we develop a theorem for coexistence for ecological models accounting for internal and external feedbacks. Specifically, we use average Lyapunov functions and Morse decompositions to develop sufficient and necessary conditions for robust permanence, a form of coexistence robust to large perturbations of the population densities and small structural perturbations of the models. We illustrate how our results can be applied to verify permanence in non-autonomous models, structured population models, including those with frequency-dependent feedbacks, and models of eco-evolutionary dynamics. In these applications, we discuss how our results relate to previous results for models with particular types of feedbacks.

  10. Barriers to using eHealth data for clinical performance feedback in Malawi: A case study.

    PubMed

    Landis-Lewis, Zach; Manjomo, Ronald; Gadabu, Oliver J; Kam, Matthew; Simwaka, Bertha N; Zickmund, Susan L; Chimbwandira, Frank; Douglas, Gerald P; Jacobson, Rebecca S

    2015-10-01

    Sub-optimal performance of healthcare providers in low-income countries is a critical and persistent global problem. The use of electronic health information technology (eHealth) in these settings is creating large-scale opportunities to automate performance measurement and provision of feedback to individual healthcare providers, to support clinical learning and behavior change. An electronic medical record system (EMR) deployed in 66 antiretroviral therapy clinics in Malawi collects data that supervisors use to provide quarterly, clinic-level performance feedback. Understanding barriers to provision of eHealth-based performance feedback for individual healthcare providers in this setting could present a relatively low-cost opportunity to significantly improve the quality of care. The aims of this study were to identify and describe barriers to using EMR data for individualized audit and feedback for healthcare providers in Malawi and to consider how to design technology to overcome these barriers. We conducted a qualitative study using interviews, observations, and informant feedback in eight public hospitals in Malawi where an EMR system is used. We interviewed 32 healthcare providers and conducted seven hours of observation of system use. We identified four key barriers to the use of EMR data for clinical performance feedback: provider rotations, disruptions to care processes, user acceptance of eHealth, and performance indicator lifespan. Each of these factors varied across sites and affected the quality of EMR data that could be used for the purpose of generating performance feedback for individual healthcare providers. Using routinely collected eHealth data to generate individualized performance feedback shows potential at large-scale for improving clinical performance in low-resource settings. However, technology used for this purpose must accommodate ongoing changes in barriers to eHealth data use. Understanding the clinical setting as a complex adaptive system (CAS) may enable designers of technology to effectively model change processes to mitigate these barriers. Copyright © 2015. Published by Elsevier Ireland Ltd.

  11. Barriers to using eHealth data for clinical performance feedback in Malawi: A case study

    PubMed Central

    Landis-Lewis, Zach; Manjomo, Ronald; Gadabu, Oliver J; Kam, Matthew; Simwaka, Bertha N; Zickmund, Susan L; Chimbwandira, Frank; Douglas, Gerald P; Jacobson, Rebecca S

    2016-01-01

    Introduction Sub-optimal performance of healthcare providers in low-income countries is a critical and persistent global problem. The use of electronic health information technology (eHealth) in these settings is creating large-scale opportunities to automate performance measurement and provision of feedback to individual healthcare providers, to support clinical learning and behavior change. An electronic medical record system (EMR) deployed in 66 antiretroviral therapy clinics in Malawi collects data that supervisors use to provide quarterly, clinic-level performance feedback. Understanding barriers to provision of eHealth-based performance feedback for individual healthcare providers in this setting could present a relatively low-cost opportunity to significantly improve the quality of care. Objective The aims of this study were to identify and describe barriers to using EMR data for individualized audit and feedback for healthcare providers in Malawi and to consider how to design technology to overcome these barriers. Methods We conducted a qualitative study using interviews, observations, and informant feedback in eight public hospitals in Malawi where an EMR is used. We interviewed 32 healthcare providers and conducted seven hours of observation of system use. Results We identified four key barriers to the use of EMR data for clinical performance feedback: provider rotations, disruptions to care processes, user acceptance of eHealth, and performance indicator lifespan. Each of these factors varied across sites and affected the quality of EMR data that could be used for the purpose of generating performance feedback for individual healthcare providers. Conclusion Using routinely collected eHealth data to generate individualized performance feedback shows potential at large-scale for improving clinical performance in low-resource settings. However, technology used for this purpose must accommodate ongoing changes in barriers to eHealth data use. Understanding the clinical setting as a complex adaptive system (CAS) may enable designers of technology to effectively model change processes to mitigate these barriers. PMID:26238704

  12. Confirming, Validating, and Norming the Factor Structure of Systemic Therapy Inventory of Change Initial and Intersession.

    PubMed

    Pinsof, William M; Zinbarg, Richard E; Shimokawa, Kenichi; Latta, Tara A; Goldsmith, Jacob Z; Knobloch-Fedders, Lynne M; Chambers, Anthony L; Lebow, Jay L

    2015-09-01

    Progress or feedback research tracks and feeds back client progress data throughout the course of psychotherapy. In the effort to empirically ground psychotherapeutic practice, feedback research is both a complement and alternative to empirically supported manualized treatments. Evidence suggests that tracking and feeding back progress data with individual or nonsystemic feedback systems improves outcomes in individual and couple therapy. The research reported in this article pertains to the STIC(®) (Systemic Therapy Inventory of Change)-the first client-report feedback system designed to empirically assess and track change within client systems from multisystemic and multidimensional perspectives in individual, couple, and family therapy. Clients complete the STIC Initial before the first session and the shorter STIC Intersession before every subsequent session. This study tested and its results supported the hypothesized factor structure of the six scales that comprise both STIC forms in a clinical outpatient sample and in a normal, random representative sample of the U.S. This study also tested the STIC's concurrent validity and found that its 6 scales and 40 of its 41 subscales differentiated the clinical and normal samples. Lastly, the study derived clinical cut-offs for each scale and subscale to determine whether and how much a client's score falls in the normal or clinical range. Beyond supporting the factorial and concurrent validity of both STIC forms, this research supported the reliabilities of the six scales (Omegahierarchical ) as well as the reliabilities of most subscales (alpha and rate-rerate). This article delineates clinical implications and directions for future research. © 2015 Family Process Institute.

  13. Understanding scale dependency of climatic processes with diarrheal disease

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.

  14. Atypical valuation of monetary and cigarette rewards in substance dependent smokers.

    PubMed

    Baker, Travis E; Wood, Jonathan M A; Holroyd, Clay B

    2016-02-01

    Substance dependent (SD) relative to non-dependent (ND) individuals exhibit an attenuated reward positivity, an electrophysiological signal believed to index sensitivity of anterior cingulate cortex (ACC) to rewards. Here we asked whether this altered neural response reflects a specific devaluation of monetary rewards relative to drug-related rewards by ACC. We recorded the reward positivity from SD and ND individuals who currently smoke, following an overnight period of abstinence, while they engaged in two feedback tasks. In a money condition the feedback indicated either a monetary reward or no reward, and in a cigarette condition the feedback indicated either a drug-related reward or no reward. Overall, cigarette relative to monetary rewards elicited a larger reward positivity. Further, for the subjects who engaged in the money condition first, the reward positivity was smaller for the SD compared to the ND participants, but for the subjects who engaged in the cigarette condition first, the reward positivity was larger for the SD compared to the ND participants. Our results suggest that the initial category of feedback "primed" the response of the ACC to the alternative feedback type on subsequent trials, and that SD and ND individuals responded differently to this priming effect. We propose that for people who misuse addictive substances, the prospect of obtaining drug-related rewards engages the ACC to exert control over extended behaviors. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. A PI3-kinase-mediated negative feedback regulates neuronal excitability.

    PubMed

    Howlett, Eric; Lin, Curtis Chun-Jen; Lavery, William; Stern, Michael

    2008-11-01

    Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.

  16. 78 FR 37783 - Proposed Information Collection; Comment Request; Generic Clearance for Internet Nonprobability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... design of a survey or a release of a Census Bureau data dissemination product with a feedback mechanism... encompass both methodological and subject matter research questions that can be tested on a medium-scale... comments to determine optimal interface designs and to obtain feedback from respondents. For the initial...

  17. The Feedback Environment Scale: Construct Definition, Measurement, and Validation

    ERIC Educational Resources Information Center

    Steelman, Lisa A.; Levy, Paul E.; Snell, Andrea F.

    2004-01-01

    Managers are increasingly being held accountable for providing resources that support employee development, particularly in the form of feedback and coaching. To support managers as trainers and coaches, organizations must provide managers with the tools they need to succeed in this area. This article presents a new tool to assist in the diagnosis…

  18. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  19. Effectiveness and feasibility of Socratic feedback to increase awareness of deficits in patients with acquired brain injury: Four single-case experimental design (SCED) studies.

    PubMed

    Schrijnemaekers, Anne-Claire M C; Winkens, Ieke; Rasquin, Sascha M C; Verhaeg, Annette; Ponds, Rudolf W H M; van Heugten, Caroline M

    2018-06-29

    To investigate the effectiveness and feasibility of a Socratic feedback programme to improve awareness of deficits in patients with acquired brain injury (ABI). Rehabilitation centre. Four patients with ABI with awareness problems. A series of single-case experimental design studies with random intervention starting points (A-B + maintenance design). Rate of trainer-feedback and self-control behaviour on everyday tasks, patient competency rating scale (PCRS), self-regulating skills interview (SRSI), hospital anxiety and depression scale. All patients needed less trainer feedback, the change was significant in 3 out of 4. One patient increased in overt self-corrective behaviour. SRSI performance increased in all patients (medium to strong effect size), and PCRS performance increased in two patients (medium and strong effect size). Mood and anxiety levels were elevated in one patient at the beginning of the training and decreased to normal levels at the end of the training. The feasibility of the programme was scored 9 out of 10. The Socratic feedback method is a promising intervention for improving awareness of deficits in patients with ABI. Controlled studies with larger populations are needed to draw more solid conclusions about the effect of this method.

  20. Useful but Different: Resident Physician Perceptions of Interprofessional Feedback.

    PubMed

    Vesel, Travis P; O'Brien, Bridget C; Henry, Duncan M; van Schaik, Sandrijn M

    2016-01-01

    Phenomenon: Based on recently formulated interprofessional core competencies, physicians are expected to incorporate feedback from other healthcare professionals. Based on social identity theory, physicians likely differentiate between feedback from members of their own profession and others. The current study examined residents' experiences with, and perceptions of, interprofessional feedback. In 2013, Anesthesia, Obstetrics-Gynecology, Pediatrics, and Psychiatry residents completed a survey including questions about frequency of feedback from different professionals and its perceived value (5-point scale). The authors performed an analysis of variance to examine interactions between residency program and profession of feedback provider. They conducted follow-up interviews with a subset of residents to explore reasons for residents' survey ratings. Fifty-two percent (131/254) of residents completed the survey, and 15 participated in interviews. Eighty percent of residents reported receiving written feedback from physicians, 26% from nurses, and less than 10% from other professions. There was a significant interaction between residency program and feedback provider profession, F(21, 847) = 3.82, p < .001, and a significant main effect of feedback provider profession, F(7, 847) = 73.7, p < .001. On post hoc analyses, residents from all programs valued feedback from attending physicians higher than feedback from others, and anesthesia residents rated feedback from other professionals significantly lower than other residents. Ten major themes arose from qualitative data analysis, which revealed an overall positive attitude toward interprofessional feedback and clarified reasons behind residents' perceptions and identified barriers. Insights: Residents in our study reported limited exposure to interprofessional feedback and valued such feedback less than intraprofessional feedback. However, our data suggest opportunities exist for effective utilization of interprofessional feedback.

  1. Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays.

    PubMed

    Tong, Shao Cheng; Li, Yong Ming; Zhang, Hua-Guang

    2011-07-01

    In this paper, two adaptive neural network (NN) decentralized output feedback control approaches are proposed for a class of uncertain nonlinear large-scale systems with immeasurable states and unknown time delays. Using NNs to approximate the unknown nonlinear functions, an NN state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping technique with decentralized control design principle, an adaptive NN decentralized output feedback control approach is developed. In order to overcome the problem of "explosion of complexity" inherent in the proposed control approach, the dynamic surface control (DSC) technique is introduced into the first adaptive NN decentralized control scheme, and a simplified adaptive NN decentralized output feedback DSC approach is developed. It is proved that the two proposed control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the observer errors and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approaches.

  2. Comparing the effects of positive and negative feedback in information-integration category learning.

    PubMed

    Freedberg, Michael; Glass, Brian; Filoteo, J Vincent; Hazeltine, Eliot; Maddox, W Todd

    2017-01-01

    Categorical learning is dependent on feedback. Here, we compare how positive and negative feedback affect information-integration (II) category learning. Ashby and O'Brien (2007) demonstrated that both positive and negative feedback are required to solve II category problems when feedback was not guaranteed on each trial, and reported no differences between positive-only and negative-only feedback in terms of their effectiveness. We followed up on these findings and conducted 3 experiments in which participants completed 2,400 II categorization trials across three days under 1 of 3 conditions: positive feedback only (PFB), negative feedback only (NFB), or both types of feedback (CP; control partial). An adaptive algorithm controlled the amount of feedback given to each group so that feedback was nearly equated. Using different feedback control procedures, Experiments 1 and 2 demonstrated that participants in the NFB and CP group were able to engage II learning strategies, whereas the PFB group was not. Additionally, the NFB group was able to achieve significantly higher accuracy than the PFB group by Day 3. Experiment 3 revealed that these differences remained even when we equated the information received on feedback trials. Thus, negative feedback appears significantly more effective for learning II category structures. This suggests that the human implicit learning system may be capable of learning in the absence of positive feedback.

  3. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    NASA Astrophysics Data System (ADS)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  4. Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2

    NASA Astrophysics Data System (ADS)

    Senior, Catherine A.; Andrews, Timothy; Burton, Chantelle; Chadwick, Robin; Copsey, Dan; Graham, Tim; Hyder, Pat; Jackson, Laura; McDonald, Ruth; Ridley, Jeff; Ringer, Mark; Tsushima, Yoko

    2016-06-01

    Idealized climate change simulations with a new physical climate model, HadGEM3-GC2 from The Met Office Hadley Centre are presented and contrasted with the earlier MOHC model, HadGEM2-ES. The role of atmospheric resolution is also investigated. The Transient Climate Response (TCR) is 1.9 K/2.1 K at N216/N96 and Effective Climate Sensitivity (ECS) is 3.1 K/3.2 K at N216/N96. These are substantially lower than HadGEM2-ES (TCR: 2.5 K; ECS: 4.6 K) arising from a combination of changes in the size of climate feedbacks. While the change in the net cloud feedback between HadGEM3 and HadGEM2 is relatively small, there is a change in sign of its longwave and a strengthening of its shortwave components. At a global scale, there is little impact of the increase in atmospheric resolution on the future climate change signal and even at a broad regional scale, many features are robust including tropical rainfall changes, however, there are some significant exceptions. For the North Atlantic and western Europe, the tripolar pattern of winter storm changes found in most CMIP5 models is little impacted by resolution but for the most intense storms, there is a larger percentage increase in number at higher resolution than at lower resolution. Arctic sea-ice sensitivity shows a larger dependence on resolution than on atmospheric physics.

  5. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.

    2014-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  6. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Genel, Shy; Springel, Volker; Torrey, Paul; Sijacki, Debora; Xu, Dandan; Snyder, Greg; Nelson, Dylan; Hernquist, Lars

    2014-10-01

    We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5 Mpc)3, has a dark mass resolution of 6.26 × 106 M⊙, and an initial baryonic matter mass resolution of 1.26 × 106 M⊙. At z = 0 gravitational forces are softened on scales of 710 pc, and the smallest hydrodynamical gas cells have an extent of 48 pc. We follow the dynamical evolution of 2 × 18203 resolution elements and in addition passively evolve 18203 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40 000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.

  7. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG.

    PubMed

    Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang

    2017-05-15

    Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.

  8. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. IV. Mechanical and radiative feedback

    NASA Astrophysics Data System (ADS)

    Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; Hogerheijde, M. R.; Karska, A.; Belloche, A.; Endo, A.; Frieswijk, W.; Güsten, R.; van Kempen, T. A.; Leurini, S.; Nagy, Z.; Pérez-Beaupuits, J. P.; Risacher, C.; van der Marel, N.; van Weeren, R. J.; Wyrowski, F.

    2015-04-01

    Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims: Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods: Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the Atacama Pathfinder EXperiment (12CO and 13CO 6-5; Eup ~ 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope (12CO and 13CO 3-2; Eup ~ 30 K). The maps have high spatial resolution, particularly the CO 6-5 maps taken with a 9″ beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from 13CO 6-5 observations. Results: All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, FCO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner ~3000 AU and is therefore at least as important on small scales. Appendix A is available in electronic form at http://www.aanda.orgThe CHAMP+ maps (data cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A109

  9. Hydrologic processes in China and their association with summer precipitation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, M.; Pollard, D.; Barron, E. J.

    2005-01-01

    A climate version of MM5 is applied to study hydrologic processes in China and their association with precipitation anomalies in 1980 and 1985, which are two anomalous years with opposite signs of summer precipitation anomalies. The study reveals that anomalous atmospheric moisture transport due to synoptic scale circulation was primarily responsible for initiating the anomalous wet (dry) summer in south-central China and dry (wet) summer in northeastern China in 1980 (1985). The recycling ratio (defined as contribution of local evaporation to total precipitation) ranges from less than 4% in northwestern China to more than 30% in south-central China at 1000 km space scale. Higher (lower) values of recycling ratio correspond to drier (wetter) summers in south-central China and northeastern China. However, the opposite is true in northwestern China. The recycling ratio reflects feedback among hydrologic components over both land and atmosphere. In northwestern China, these feedbacks will further sustain drought events that are triggered by anomalous synoptic scale disturbances, and turn them into prolonged and possibly perpetual phenomenon. However, in south-central China and northeastern China, these feedbacks help reducing severity of drought. The large differences in recycling ratio between the dry and wet years of 1980 and 1985 are indicative of powerful feedback between hydrologic and climatic processes, and imply that surface-atmosphere interaction in China is highly sensitive to climatic perturbation.

  10. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  11. Auditory biofeedback substitutes for loss of sensory information in maintaining stance.

    PubMed

    Dozza, Marco; Horak, Fay B; Chiari, Lorenzo

    2007-03-01

    The importance of sensory feedback for postural control in stance is evident from the balance improvements occurring when sensory information from the vestibular, somatosensory, and visual systems is available. However, the extent to which also audio-biofeedback (ABF) information can improve balance has not been determined. It is also unknown why additional artificial sensory feedback is more effective for some subjects than others and in some environmental contexts than others. The aim of this study was to determine the relative effectiveness of an ABF system to reduce postural sway in stance in healthy control subjects and in subjects with bilateral vestibular loss, under conditions of reduced vestibular, visual, and somatosensory inputs. This ABF system used a threshold region and non-linear scaling parameters customized for each individual, to provide subjects with pitch and volume coding of their body sway. ABF had the largest effect on reducing the body sway of the subjects with bilateral vestibular loss when the environment provided limited visual and somatosensory information; it had the smallest effect on reducing the sway of subjects with bilateral vestibular loss, when the environment provided full somatosensory information. The extent that all subjects substituted ABF information for their loss of sensory information was related to the extent that each subject was visually dependent or somatosensory-dependent for their postural control. Comparison of postural sway under a variety of sensory conditions suggests that patients with profound bilateral loss of vestibular function show larger than normal information redundancy among the remaining senses and ABF of trunk sway. The results support the hypothesis that the nervous system uses augmented sensory information differently depending both on the environment and on individual proclivities to rely on vestibular, somatosensory or visual information to control sway.

  12. Feedback Effects of Teaching Quality Assessment: Macro and Micro Evidence

    ERIC Educational Resources Information Center

    Bianchini, Stefano

    2014-01-01

    This study investigates the feedback effects of teaching quality assessment. Previous literature looked separately at the evolution of individual and aggregate scores to understand whether instructors and university performance depends on its past evaluation. I propose a new quantitative-based methodology, combining statistical distributions and…

  13. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  14. KINETIC ENERGY FROM SUPERNOVA FEEDBACK IN HIGH-RESOLUTION GALAXY SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Christine M.; Bryan, Greg L.; Ostriker, Jeremiah P.

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (∼10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 10{sup 9} M{sub ⊙} dwarf halo. Wemore » find that in high-density media (≳50 cm{sup −3}) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.« less

  15. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  16. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  17. The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale

    NASA Astrophysics Data System (ADS)

    Middlemas, E.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.

  18. State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.

    2017-10-01

    Growing evidence from general circulation models (GCMs) indicates that the equilibrium climate sensitivity (ECS) depends on the magnitude of forcing, which is commonly referred to as state-dependence. We present a comprehensive assessment of ECS state-dependence in Earth system models of intermediate complexity (EMICs) by analyzing millennial simulations with sustained 2×CO2 and 4×CO2 forcings. We compare different extrapolation methods and show that ECS is smaller in the higher-forcing scenario in 12 out of 15 EMICs, in contrast to the opposite behavior reported from GCMs. In one such EMIC, the Bern3D-LPX model, this state-dependence is mainly due to the weakening sea ice-albedo feedback in the Southern Ocean, which depends on model configuration. Due to ocean-mixing adjustments, state-dependence is only detected hundreds of years after the abrupt forcing, highlighting the need for long model integrations. Adjustments to feedback parametrizations of EMICs may be necessary if GCM intercomparisons confirm an opposite state-dependence.

  19. THE EFFECT OF FEEDBACK ON THE ACCURACY OF CHECKLIST COMPLETION DURING INSTRUMENT FLIGHT TRAINING

    PubMed Central

    Rantz, William G; Dickinson, Alyce M; Sinclair, Gilbert A; Van Houten, Ron

    2009-01-01

    This study examined whether pilots completed airplane checklists more accurately when they receive postflight graphic and verbal feedback. Participants were 8 college students who are pilots with an instrument rating. The task consisted of flying a designated flight pattern using a personal computer aviation training device (PCATD). The dependent variables were the number of checklist items completed correctly. A multiple baseline design across pairs of participants with withdrawal of treatment was employed in this study. During baseline, participants were given postflight technical feedback. During intervention, participants were given postflight graphic feedback on checklist use and praise for improvements along with technical feedback. The intervention produced near perfect checklist performance, which was maintained following a return to the baseline conditions. PMID:20190914

  20. How Much Is Too Much Assessment? Insight into Assessment-Driven Student Learning Gains in Large-Scale Undergraduate Microbiology Courses

    PubMed Central

    Wang, Jack T. H.; Schembri, Mark A.; Hall, Roy A.

    2013-01-01

    Designing and implementing assessment tasks in large-scale undergraduate science courses is a labor-intensive process subject to increasing scrutiny from students and quality assurance authorities alike. Recent pedagogical research has provided conceptual frameworks for teaching introductory undergraduate microbiology, but has yet to define best-practice assessment guidelines. This study assessed the applicability of Biggs’ theory of constructive alignment in designing consistent learning objectives, activities, and assessment items that aligned with the American Society for Microbiology’s concept-based microbiology curriculum in MICR2000, an introductory microbiology course offered at the University of Queensland, Australia. By improving the internal consistency in assessment criteria and increasing the number of assessment items explicitly aligned to the course learning objectives, the teaching team was able to efficiently provide adequate feedback on numerous assessment tasks throughout the semester, which contributed to improved student performance and learning gains. When comparing the constructively aligned 2011 offering of MICR2000 with its 2010 counterpart, students obtained higher marks in both coursework assignments and examinations as the semester progressed. Students also valued the additional feedback provided, as student rankings for course feedback provision increased in 2011 and assessment and feedback was identified as a key strength of MICR2000. By designing MICR2000 using constructive alignment and iterative assessment tasks that followed a common set of learning outcomes, the teaching team was able to effectively deliver detailed and timely feedback in a large introductory microbiology course. This study serves as a case study for how constructive alignment can be integrated into modern teaching practices for large-scale courses. PMID:23858350

  1. Developing a Scale to Measure Reader Self-Perception for EFL Students

    ERIC Educational Resources Information Center

    Adunyarittigun, Dumrong

    2015-01-01

    The development of a scale for measuring self-perception for readers of English as a foreign language is discussed in this paper. The scale was developed from the four dimensions of self-efficacy theory proposed by Bandura (1977a): progress, observational comparison, social feedback and physiological states. A 36 item scale was developed to…

  2. Mapping the core mass function to the initial mass function

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2015-07-01

    It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.

  3. Visual feedback training using WII Fit improves balance in Parkinson's disease.

    PubMed

    Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna

    2013-01-01

    Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.

  4. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  5. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    PubMed

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  6. In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.

    2017-12-01

    Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.

  7. Microbial dormancy improves development and experimental validation of ecosystem model

    DOE PAGES

    Wang, Gangsheng; Jagadamma, Sindhu; Mayes, Melanie; ...

    2014-07-11

    Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life history traits and functions may be necessary to predict climate feedbacks due to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here, we enhanced the Microbial-Enzyme-mediated Decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, i.e., MEND with dormancy and MEND without dormancy, against long-term (270 d) lab incubations of fourmore » soils with isotopically-labeled substrates. MEND without dormancy adequately fitted multiple observations (total and 14C respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. The MEND with dormancy improved estimates of microbial biomass by 20 71% over the MEND without dormancy. We observed large differences for two fitted model parameters, the specific maintenance and growth rates for active microbes, depending on whether dormancy was considered. Together our model extrapolations of the incubation study show that long-term soil incubations with observations in multiple carbon pools are necessary to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations and enable more confident predictions of feedbacks between environmental change and carbon cycling.« less

  8. Active Galactic Nucleus Feedback with the Square Kilometre Array and Implications for Cluster Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Iqbal, Asif; Kale, Ruta; Majumdar, Subhabrata; Nath, Biman B.; Pandge, Mahadev; Sharma, Prateek; Malik, Manzoor A.; Raychaudhury, Somak

    2017-12-01

    Active Galactic Nuclei (AGN) feedback is regarded as an important non-gravitational process in galaxy clusters, providing useful constraints on large-scale structure formation. It modifies the structure and energetics of the intra-cluster medium (ICM) and hence its understanding is crucially needed in order to use clusters as high precision cosmological probes. In this context, particularly keeping in mind the upcoming high quality radio data expected from radio surveys like Square Kilometre Array (SKA) with its higher sensitivity, high spatial and spectral resolutions, we review our current understanding of AGN feedback, its cosmological implications and the impact that SKA can have in revolutionizing our understanding of AGN feedback in large-scale structures. Recent developments regarding the AGN outbursts and its possible contribution to excess entropy in the hot atmospheres of groups and clusters, its correlation with the feedback energy in ICM, quenching of cooling flows and the possible connection between cool core clusters and radio mini-halos, are discussed. We describe current major issues regarding modeling of AGN feedback and its impact on the surrounding medium. With regard to the future of AGN feedback studies, we examine the possible breakthroughs that can be expected from SKA observations. In the context of cluster cosmology, for example, we point out the importance of SKA observations for cluster mass calibration by noting that most of z>1 clusters discovered by eROSITA X-ray mission can be expected to be followed up through a 1000 hour SKA1-mid programme. Moreover, approximately 1000 radio mini halos and ˜ 2500 radio halos at z<0.6 can be potentially detected by SKA1 and SKA2 and used as tracers of galaxy clusters and determination of cluster selection function.

  9. Dynamical nexus of water supply, hydropower and environment based on the modeling of multiple socio-natural processes: from socio-hydrological perspective

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.

    2017-12-01

    In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.

  10. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  11. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  12. The Physics of AGN Feedback During Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot

    A key lesson in our modern understanding of how galaxies form is that the release of energy by newly formed stars and accreting black holes -- in the form of both radiation and powerful outflows -- has a dramatic effect on the process of star formation and black hole growth itself. As a result, developing more realistic treatments of these stellar and black hole feedback processes is one of the primary challenges facing predictive models of galaxy formation. This proposal centers on understanding the dynamics of gas in galactic nuclei, with an emphasis on how black holes at the centers of galaxies grow and the resulting effects of black hole feedback on the scale of individual galaxies. Some of the calculations we propose will also have direct application to feedback by star formation. Our proposed work consists of two interrelated sets of projects. In the first, we will study in detail the mechanisms by which radiation and outflows from an accreting black hole interact with surrounding gas: this is the key science question at the heart of understanding black hole feedback. It is also important, however, to place this understanding of the key feedback processes in the broader context of gas dynamics in galaxies. With this in mind, we will carry out numerical simulations of gas in galactic nuclei and study, for the first time, the competition between gas inflow, star formation, and stellar and black hole feedback at the radii that the accretion rate onto a central black hole is determined and that galaxy-scale outflows of gas are likely initiated. Our work bears directly on, and will be applied to, observations by current NASA missions such as HST, Chandra, GALEX, Xmm-Newton, Herschel, and NuSTAR, and future missions such as JWST.

  13. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.

  14. Enhancing the Performance of Passive Teleoperation Systems via Cutaneous Feedback.

    PubMed

    Pacchierotti, Claudio; Tirmizi, Asad; Bianchini, Gianni; Prattichizzo, Domenico

    2015-01-01

    We introduce a novel method to improve the performance of passive teleoperation systems with force reflection. It consists of integrating kinesthetic haptic feedback provided by common grounded haptic interfaces with cutaneous haptic feedback. The proposed approach can be used on top of any time-domain control technique that ensures a stable interaction by scaling down kinesthetic feedback when this is required to satisfy stability conditions (e.g., passivity) at the expense of transparency. Performance is recovered by providing a suitable amount of cutaneous force through custom wearable cutaneous devices. The viability of the proposed approach is demonstrated through an experiment of perceived stiffness and an experiment of teleoperated needle insertion in soft tissue.

  15. Feedback, Goal Setting, and Incentives Effects on Organizational Productivity.

    ERIC Educational Resources Information Center

    Pritchard, Robert D.; And Others

    This technical paper is one of three produced by a large-scale effort aimed at implementing a new approach to measuring productivity, and using that approach to assess the impact of feedback, goal setting, and incentives on productivity. The productivity measurement system was developed for five units in the maintenance and supply areas at an Air…

  16. Movement Pattern and Parameter Learning in Children: Effects of Feedback Frequency

    ERIC Educational Resources Information Center

    Goh, Hui-Ting; Kantak, Shailesh S.; Sullivan, Katherine J.

    2012-01-01

    Reduced feedback during practice has been shown to be detrimental to movement accuracy in children but not in young adults. We hypothesized that the reduced accuracy is attributable to reduced movement parameter learning, but not pattern learning, in children. A rapid arm movement task that required the acquisition of a motor pattern scaled to…

  17. Implementing a Peer Mentoring Model in the Clemson Eportfolio Program

    ERIC Educational Resources Information Center

    Ring, Gail L.

    2015-01-01

    Since the implementation of the ePortfolio Program in 2006, Clemson University has incorporated peer review for the formative feedback process. One of the challenges with this large-scale implementation has been ensuring that all work is reviewed and constructive feedback is provided in a timely manner. In this article, I discuss the strategies…

  18. Closing the Loop: The Impact of Student Feedback on Students' Subsequent Learning. Research Report Series.

    ERIC Educational Resources Information Center

    Powney, Janet; Hall, Stuart

    Higher education institutions in the United Kingdom (UK) use a variety of ways to collect views from students about the quality of their educational experiences and suggestions for improvements. A small-scale study, funded by Higher Education Quality Council (QAA), explored how this feedback contributes to enhancing subsequent performance. Drawing…

  19. Negative soil moisture-precipitation feedback in dry and wet regions.

    PubMed

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  20. Non-Numeric Intrajudge Consistency Feedback in an Angoff Procedure

    ERIC Educational Resources Information Center

    Harrison, George M.

    2015-01-01

    The credibility of standard-setting cut scores depends in part on two sources of consistency evidence: intrajudge and interjudge consistency. Although intrajudge consistency feedback has often been provided to Angoff judges in practice, more evidence is needed to determine whether it achieves its intended effect. In this randomized experiment with…

  1. Instructive Feedback Embedded within Group Instruction for Children Diagnosed with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Cihon, Joseph H.; Alcalay, Aditt; Mitchell, Erin; Townley-Cochran, Donna; Miller, Kevin; Leaf, Ronald; Taubman, Mitchell; McEachin, John

    2017-01-01

    The present study evaluated the effects of instructive feedback embedded within a group discrete trial teaching to teach tact relations to nine children diagnosed with autism spectrum disorder using a nonconcurrent multiple-baseline design. Dependent variables included correct responses for: primary targets (directly taught), secondary targets…

  2. Written Corrective Feedback and Peer Review in the BYOD Classroom

    ERIC Educational Resources Information Center

    Ferreira, Daniel

    2013-01-01

    Error correction in the English as a Foreign Language (EFL) writing curriculum is a practice both teachers and students agree is important for writing proficiency development (Ferris, 2004; Van Beuningen, De Jong, & Kuiken, 2012; Vyatkina, 2010, 2011). Research suggests student dependency on teacher corrective feedback yields few long-term…

  3. Mining Feedback in Ranking and Recommendation Systems

    ERIC Educational Resources Information Center

    Zhuang, Ziming

    2009-01-01

    The amount of online information has grown exponentially over the past few decades, and users become more and more dependent on ranking and recommendation systems to address their information seeking needs. The advance in information technologies has enabled users to provide feedback on the utilities of the underlying ranking and recommendation…

  4. Prefrontal Neural Activity When Feedback Is Not Relevant to Adjust Performance

    PubMed Central

    Özyurt, Jale; Rietze, Mareike; Thiel, Christiane M.

    2012-01-01

    It has been shown that the rostral cingulate zone (RCZ) in humans uses both positive and negative feedback to evaluate performance and to flexibly adjust behaviour. Less is known on how the feedback types are processed by the RCZ and other prefrontal brain areas, when feedback can only be used to evaluate performance, but cannot be used to adjust behaviour. The present fMRI study aimed at investigating feedback that can only be used to evaluate performance in a word-learning paradigm. One group of volunteers (N = 17) received informative, performance-dependent positive or negative feedback after each trial. Since new words had to be learnt in each trial, the feedback could not be used for task-specific adaptations. The other group (N = 17) always received non-informative feedback, providing neither information about performance nor about possible task-specific adaptations. Effects of the informational value of feedback were assessed between-subjects, comparing trials with positive and negative informative feedback to non-informative feedback. Effects of feedback valence were assessed by comparing neural activity to positive and negative feedback within the informative-feedback group. Our results show that several prefrontal regions, including the pre-SMA, the inferior frontal cortex and the insula were sensitive to both, the informational value and the valence aspect of the feedback with stronger activations to informative as compared to non-informative feedback and to informative negative compared to informative positive feedback. The only exception was RCZ which was sensitive to the informational value of the feedback, but not to feedback valence. The findings indicate that outcome information per se is sufficient to activate prefrontal brain regions, with the RCZ being the only prefrontal brain region which is equally sensitive to positive and negative feedback. PMID:22615774

  5. Comprehensive feedback on trainee surgeons’ non-technical skills

    PubMed Central

    Dieckmann, Peter; Beier-Holgersen, Randi; Rosenberg, Jacob; Oestergaard, Doris

    2015-01-01

    Objectives This study aimed to explore the content of conversations, feedback style, and perceived usefulness of feedback to trainee surgeons when conversations were stimulated by a tool for assessing surgeons’ non-technical skills. Methods Trainee surgeons and their supervisors used the Non-Technical Skills for Surgeons in Denmark tool to stimulate feedback conversations. Audio recordings of post-operation feedback conversations were collected. Trainees and supervisors provided questionnaire responses on the usefulness and comprehensiveness of the feedback. The feedback conversations were qualitatively analyzed for content and feedback style. Usefulness was investigated using a scale from 1 to 5 and written comments were qualitatively analyzed. Results Six trainees and six supervisors participated in eight feedback conversations. Eighty questionnaires (response rate 83 percent) were collected from 13 trainees and 12 supervisors. Conversations lasted median eight (2-15) minutes. Supervisors used the elements and categories in the tool to structure the content of the conversations. Supervisors tended to talk about the trainees’ actions and their own frames rather than attempting to understand the trainees’ perceptions. Supervisors and trainees welcomed the feedback opportunity and agreed that the conversations were useful and comprehensive. Conclusions The content of the feedback conversations reflected the contents of the tool and the feedback was considered useful and comprehensive. However, supervisors talked primarily about their own frames, so in order for the feedback to reach its full potential, supervisors may benefit from training techniques to stimulate a deeper reflection among trainees. PMID:25602262

  6. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  7. Assessing communication skills of clinical call handlers working at an out-of-hours centre: development of the RICE rating scale.

    PubMed

    Derkx, Hay P; Rethans, Jan-Joost E; Knottnerus, J André; Ram, Paul M

    2007-05-01

    Out-of-hours centres provide telephone support to patients with medical problems. In most of these centres specially-trained nurses handle incoming telephone calls. They assess patients' needs, the degree of urgency, and determine the level of care required. Assessment of the medical problem and the quality of 'care-by-phone' depend on the medical and communication skills of the call handlers. To develop a valid, reliable, and practical rating scale to evaluate the communication skills of call handlers working at an out-of-hours centre and to improve quality of communication. Qualitative study with focus groups followed by validation of the rating scale and measurement of reliability (internal consistency). Out-of-hours centres in the Netherlands. A focus group developed the rating scale. Experts with experience in training and evaluating communication skills of medical students and GPs commented on the scale to ensure content validity. The reliability of the rating scale was tested in a pilot in which ten specially-trained assessors scored six telephone calls each. The scale, known as the RICE rating scale, has 17 items divided over four different phases of the telephone consultation: Reason for calling; Information gathering; Conclusion; and Evaluation (RICE). Content validity of the scale was assessed by two experts. Reliability of the scale tested in the pilot was 0.73 (Cronbach's alpha). Establishing a rating scale to assess the communication skills of call handlers which meets common scientific demands, such as content validity and reliability, proved successful. This instrument can be used to give feedback to call handlers.

  8. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    PubMed

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  9. Coupling between lower‐tropospheric convective mixing and low‐level clouds: Physical mechanisms and dependence on convection scheme

    PubMed Central

    Bony, Sandrine; Dufresne, Jean‐Louis; Roehrig, Romain

    2016-01-01

    Abstract Several studies have pointed out the dependence of low‐cloud feedbacks on the strength of the lower‐tropospheric convective mixing. By analyzing a series of single‐column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary‐layer clouds depend on this mixing in the present‐day climate and under surface warming. An increased lower‐tropospheric convective mixing leads to a reduction of low‐cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary‐layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower‐tropospheric drying induced by the convective mixing, which damps the reduction of the low‐cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low‐cloud radiative cooling, which enhances the reduction of the low‐cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low‐cloud radiative cooling exhibits a stronger sensitivity of low‐clouds to convective mixing in the present‐day climate, and a stronger low‐cloud feedback in response to surface warming. In this model, the low‐cloud feedback is stronger when the present‐day convective mixing is weaker and when present‐day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low‐cloud feedbacks observationally is discussed. PMID:28239438

  10. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to natural and anthropogenic disturbances therefore require quantification of spatial pattern (Asselman and Middelkoop, 1995; Walling and He, 1998). Quantifying these patterns also provides insights into the spatial and temporal domains of structuring processes as well as enabling the detection of self-emergent phenomena, environmental constraints or anthropogenic interference (Turner et al., 1990; Holling, 1992; De Jager and Rohweder, 2012). Thus, quantifying spatial pattern is an important building block on which to examine floodplains as complex adaptive systems (Levin, 1998). Approaches to measuring spatial pattern in floodplains must be cognisant of scale, self-emergent phenomena, spatial organisation, and location. Fundamental problems may arise when patterns observed at a site or transect scale are scaled-up to infer processes and patterns over entire floodplain surfaces (Wiens, 2002; Thorp et al., 2008). Likewise, patterns observed over the entire spatial extent of a landscape can mask important variation and detail at finer scales (Riitters et al., 2002). Indeed, different patterns often emerge at different scales (Turner et al., 1990) because of hierarchical structuring processes (O'Neill et al., 1991). Categorising data into discrete, homogeneous and predefined spatial units at a particular scale (e.g. polygons) creates issues and errors associated with scale and subjective classification (McGarigal et al., 2009; Cushman et al., 2010). These include, loss of information within classified ‘patches’, as well as the ability to detect the emergence of new features that do not fit the original classification scheme. Many of these issues arise because floodplains are highly heterogeneous and have complex spatial organizations (Carbonneau et al., 2012; Legleiter, 2013). As a result, the scale and location at which measurements are made can influence the observed spatial patterns; and patterns may not be scale independent or applicable in different geomorp

  11. Computational motor control: feedback and accuracy.

    PubMed

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-02-01

    Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.

  12. Time-Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, Chaincy; Feldman, Daniel R.; Huang, Xianglei; Flanner, Mark; Yang, Ping; Chen, Xiuhong

    2018-01-01

    Frozen and unfrozen surfaces exhibit different longwave surface emissivities with different spectral characteristics, and outgoing longwave radiation and cooling rates are reduced for unfrozen scenes relative to frozen ones. Here physically realistic modeling of spectrally resolved surface emissivity throughout the coupled model components of the Community Earth System Model (CESM) is advanced, and implications for model high-latitude biases and feedbacks are evaluated. It is shown that despite a surface emissivity feedback amplitude that is, at most, a few percent of the surface albedo feedback amplitude, the inclusion of realistic, harmonized longwave, spectrally resolved emissivity information in CESM1.2.2 reduces wintertime Arctic surface temperature biases from -7.2 ± 0.9 K to -1.1 ± 1.2 K, relative to observations. The bias reduction is most pronounced in the Arctic Ocean, a region for which Coupled Model Intercomparison Project version 5 (CMIP5) models exhibit the largest mean wintertime cold bias, suggesting that persistent polar temperature biases can be lessened by including this physically based process across model components. The ice emissivity feedback of CESM1.2.2 is evaluated under a warming scenario with a kernel-based approach, and it is found that emissivity radiative kernels exhibit water vapor and cloud cover dependence, thereby varying spatially and decreasing in magnitude over the course of the scenario from secular changes in atmospheric thermodynamics and cloud patterns. Accounting for the temporally varying radiative responses can yield diagnosed feedbacks that differ in sign from those obtained from conventional climatological feedback analysis methods.

  13. Feedback on prescribing errors to junior doctors: exploring views, problems and preferred methods.

    PubMed

    Bertels, Jeroen; Almoudaris, Alex M; Cortoos, Pieter-Jan; Jacklin, Ann; Franklin, Bryony Dean

    2013-06-01

    Prescribing errors are common in hospital inpatients. However, the literature suggests that doctors are often unaware of their errors as they are not always informed of them. It has been suggested that providing more feedback to prescribers may reduce subsequent error rates. Only few studies have investigated the views of prescribers towards receiving such feedback, or the views of hospital pharmacists as potential feedback providers. Our aim was to explore the views of junior doctors and hospital pharmacists regarding feedback on individual doctors' prescribing errors. Objectives were to determine how feedback was currently provided and any associated problems, to explore views on other approaches to feedback, and to make recommendations for designing suitable feedback systems. A large London NHS hospital trust. To explore views on current and possible feedback mechanisms, self-administered questionnaires were given to all junior doctors and pharmacists, combining both 5-point Likert scale statements and open-ended questions. Agreement scores for statements regarding perceived prescribing error rates, opinions on feedback, barriers to feedback, and preferences for future practice. Response rates were 49% (37/75) for junior doctors and 57% (57/100) for pharmacists. In general, doctors did not feel threatened by feedback on their prescribing errors. They felt that feedback currently provided was constructive but often irregular and insufficient. Most pharmacists provided feedback in various ways; however some did not or were inconsistent. They were willing to provide more feedback, but did not feel it was always effective or feasible due to barriers such as communication problems and time constraints. Both professional groups preferred individual feedback with additional regular generic feedback on common or serious errors. Feedback on prescribing errors was valued and acceptable to both professional groups. From the results, several suggested methods of providing feedback on prescribing errors emerged. Addressing barriers such as the identification of individual prescribers would facilitate feedback in practice. Research investigating whether or not feedback reduces the subsequent error rate is now needed.

  14. Multidecadal Variability in Surface Albedo Feedback Across CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Flanner, Mark; Perket, Justin

    2018-02-01

    Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess its variability on decadal time scales. Using the Coupled Model Intercomparison Project Version 5 (CMIP5) multimodel ensemble data set, we calculate time evolving SAF in multiple decades from surface albedo and temperature linear regressions. Results are meaningful when temperature change exceeds 0.5 K. Decadal-scale SAF is strongly correlated with century-scale SAF during the 21st century. Throughout the 21st century, multimodel ensemble mean SAF increases from 0.37 to 0.42 W m-2 K-1. These results suggest that models' mean decadal-scale SAFs are good estimates of their century-scale SAFs if there is at least 0.5 K temperature change. Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo decline despite there being less sea ice. If the CMIP5 multimodel ensemble results are representative of the Earth, we cannot expect decreasing Arctic sea ice extent to suppress SAF in the 21st century.

  15. Increased topsoil carbon stock across China's forests.

    PubMed

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models. © 2014 John Wiley & Sons Ltd.

  16. Interference Alignment With Partial CSI Feedback in MIMO Cellular Networks

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Lau, Vincent K. N.

    2014-04-01

    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. However, most existing IA designs require full channel state information (CSI) at the transmitters, which would lead to significant CSI signaling overhead. There are two techniques, namely CSI quantization and CSI feedback filtering, to reduce the CSI feedback overhead. In this paper, we consider IA processing with CSI feedback filtering in MIMO cellular networks. We introduce a novel metric, namely the feedback dimension, to quantify the first order CSI feedback cost associated with the CSI feedback filtering. The CSI feedback filtering poses several important challenges in IA processing. First, there is a hidden partial CSI knowledge constraint in IA precoder design which cannot be handled using conventional IA design methodology. Furthermore, existing results on the feasibility conditions of IA cannot be applied due to the partial CSI knowledge. Finally, it is very challenging to find out how much CSI feedback is actually needed to support IA processing. We shall address the above challenges and propose a new IA feasibility condition under partial CSIT knowledge in MIMO cellular networks. Based on this, we consider the CSI feedback profile design subject to the degrees of freedom requirements, and we derive closed-form trade-off results between the CSI feedback cost and IA performance in MIMO cellular networks.

  17. A feedback intervention to increase digital and paper checklist performance in technically advanced aircraft simulation.

    PubMed

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes.

  18. Theoretical Limits of Damping Attainable by Smart Beams with Rate Feedback

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    Using a generally accepted model we present a comprehensive analysis (within the page limitation) of an Euler- Bernoulli beam with PZT sensor-actuator and pure rate feedback. The emphasis is on the root locus - the dependence of the attainable damping on the feedback gain. There is a critical value of the gain beyond which the damping decreases to zero. We construct the time-domain response using semigroup theory, and show that the eigenfunctions form a Riesz basis, leading to a 'modal' expansion.

  19. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  20. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  1. Alpine treeline of western North America: Linking organism-to-landscape dynamics

    USGS Publications Warehouse

    Malanson, George P.; Butler, David R.; Fagre, Daniel B.; Walsh, Stephen J; Tomback, Diana F.; Daniels, Lori D.; Resler, Lynn M.; Smith, William K.; Weiss, Daniel J.; Peterson, David L.; Bunn, Andrew G.; Hiemstra, Christopher A.; Liptzin, Daniel; Bourgeron, Patrick S.; Shen, Zehao; Millar, Constance I.

    2007-01-01

    Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.

  2. Leadership and satisfaction in tennis: examination of congruence, gender, and ability.

    PubMed

    Riemer, H A; Toon, K

    2001-09-01

    The study investigated: (a) the congruency hypothesis, and (b) the member characteristics hypotheses relating to ability and gender, of Chelladurai's (1978) Multidimensional Model of Leadership. One hundred forty-eight tennis players (77 women) competing at the NCAA Division I and II Tennis Championship level participated in the study. Results indicated athlete satisfaction (Athlete Satisfaction Scale; Riemer & Chelladurai, 1998) was not dependent on the congruence between preferred and perceived leadership behavior. Other results indicated that an athlete's level of ability did affect preferences for leadership behavior. Further, while athlete gender was responsible for some variance in preferences for autocratic behavior and positive feedback behavior, the gender of the athlete's coach had a significant effect on the athlete's preferences for social support behavior.

  3. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

    DOE PAGES

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...

    2017-01-01

    Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less

  4. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.

    NASA Technical Reports Server (NTRS)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.; hide

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system?

  5. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro

    Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less

  6. LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures

    NASA Astrophysics Data System (ADS)

    An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling

    2017-08-01

    This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.

  7. An Overview of NSTX Research Facility and Recent Experimental Results

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2006-10-01

    The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.

  8. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  9. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  10. [The optimization of restoration approaches of advanced hand activity using the sensorial glove and the mCIMT method].

    PubMed

    Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V

    To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.

  11. On the decentralized control of large-scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chong, C.

    1973-01-01

    The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.

  12. Nonlinear zero-sum differential game analysis by singular perturbation methods

    NASA Technical Reports Server (NTRS)

    Sinar, J.; Farber, N.

    1982-01-01

    A class of nonlinear, zero-sum differential games, exhibiting time-scale separation properties, can be analyzed by singular-perturbation techniques. The merits of such an analysis, leading to an approximate game solution, as well as the 'well-posedness' of the formulation, are discussed. This approach is shown to be attractive for investigating pursuit-evasion problems; the original multidimensional differential game is decomposed to a 'simple pursuit' (free-stream) game and two independent (boundary-layer) optimal-control problems. Using multiple time-scale boundary-layer models results in a pair of uniformly valid zero-order composite feedback strategies. The dependence of suboptimal strategies on relative geometry and own-state measurements is demonstrated by a three dimensional, constant-speed example. For game analysis with realistic vehicle dynamics, the technique of forced singular perturbations and a variable modeling approach is proposed. Accuracy of the analysis is evaluated by comparison with the numerical solution of a time-optimal, variable-speed 'game of two cars' in the horizontal plane.

  13. The necessity of feedback physics in setting the peak of the initial mass function

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Krumholz, Mark R.; Hopkins, Philip F.

    2016-05-01

    A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution dN/dM ∝ M-2 for the stellar IMF. We show that this problem can be alleviated by introducing additional physics that provides a termination scale for the cascade. Our candidate for such physics is a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.

  14. Health Sciences Graduate Students' Perceptions of the Quality of their Supervision: A Measurement Scale

    ERIC Educational Resources Information Center

    Bravo, Gina; Saint-Mleux, Julie; Dubois, Marie-France

    2007-01-01

    We developed and evaluated the G3S-SP, a scale measuring health sciences graduate students' perceptions of the quality of their supervision. The scale was developed from a literature review and existing questionnaires. Feedback from health sciences graduate students and supervisors led to a revised version of the scale that was mailed to 215…

  15. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    PubMed

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Incremental passivity and output regulation for switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  17. The Physical Origin of Long Gas Depletion Times in Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-18

    We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolatedmore » $$L_*$$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.« less

  18. Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning

    PubMed Central

    Lipinski, John; Spencer, John P.; Samuelson, Larissa K.

    2010-01-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881

  19. Biased feedback in spatial recall yields a violation of delta rule learning.

    PubMed

    Lipinski, John; Spencer, John P; Samuelson, Larissa K

    2010-08-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.

  20. A Comparison of Real-time Feedback and Tissue Response to Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Ablation using Scanned Track Exposure Regimes

    NASA Astrophysics Data System (ADS)

    Gray, Robert H. R.; Leslie, Thomas A.; Civale, John; Kennedy, James E.; ter Haar, Gail

    2007-05-01

    Real time ultrasound monitoring of tissue ablation in clinical HIFU treatments currently depends on the observation of the appearance of new hyperechoic regions within the target volume, allowing visually directed treatment. These grey-scale changes are attributed to the formation of gas or vapour bubbles. In this study, scanned track lesions have been formed in ex vivo bovine liver samples at a range of ablative intensities (free field spatial peak intensities 7 - 47 kW cm-2), and tracking speeds (1-2 mms-1). Their appearance on conventional B-mode ultrasound images has been assessed using digital imaging techniques over the first 60 seconds following HIFU exposure. The size of the lesion as seen on the ultrasound scan is compared to the macroscopic size of the lesion at dissection. It is seen that the lesion size is highly dependent on the intensity and scanning speed of the transducer. Reliable lesions can be created using scanned tracks at the lowest powers, with increased numbers of cycles, and grey-scale changes correlated strongly with the histological findings. Although not a highly sensitive indication of ablated area, ultrasound monitoring of treatment is highly specific thus confirming its clinical utility.

  1. Formation and survival of Population III stellar systems

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Bromm, Volker

    2017-09-01

    The initial mass function of the first, Population III (Pop III), stars plays a vital role in shaping galaxy formation and evolution in the early Universe. One key remaining issue is the final fate of secondary protostars formed in the accretion disc, specifically whether they merge or survive. We perform a suite of hydrodynamic simulations of the complex interplay among fragmentation, protostellar accretion and merging inside dark matter minihaloes. Instead of the traditional sink particle method, we employ a stiff equation of state approach, so that we can more robustly ascertain the viscous transport inside the disc. The simulations show inside-out fragmentation because the gas collapses faster in the central region. Fragments migrate on the viscous time-scale, over which angular momentum is lost, enabling them to move towards the disc centre, where merging with the primary protostar can occur. This process depends on the fragmentation scale, such that there is a maximum scale of (1-5) × 104 au, inside which fragments can migrate to the primary protostar. Viscous transport is active until radiative feedback from the primary protostar destroys the accretion disc. The final mass spectrum and multiplicity thus crucially depends on the effect of viscosity in the disc. The entire disc is subjected to efficient viscous transport in the primordial case with viscous parameter α ≤ 1. An important aspect of this question is the survival probability of Pop III binary systems, possible gravitational wave sources to be probed with the Advanced LIGO detectors.

  2. Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Zhuang, Leimeng; Boller, Klaus-Jochen; Lowery, Arthur James

    2017-06-01

    Optical delay lines implemented in photonic integrated circuits (PICs) are essential for creating robust and low-cost optical signal processors on miniaturized chips. In particular, tunable delay lines enable a key feature of programmability for the on-chip processing functions. However, the previously investigated tunable delay lines are plagued by a severe drawback of delay-dependent loss due to the propagation loss in the constituent waveguides. In principle, a serial-connected amplifier can be used to compensate such losses or perform additional amplitude manipulation. However, this solution is generally unpractical as it introduces additional burden on chip area and power consumption, particularly for large-scale integrated PICs. Here, we report an integrated tunable delay line that overcomes the delay-dependent loss, and simultaneously allows for independent manipulation of group delay and amplitude responses. It uses a ring resonator with a tunable coupler and a semiconductor optical amplifier in the feedback path. A proof-of-concept device with a free spectral range of 11.5 GHz and a delay bandwidth in the order of 200 MHz is discussed in the context of microwave photonics and is experimentally demonstrated to be able to provide a lossless delay up to 1.1 to a 5 ns Gaussian pulse. The proposed device can be designed for different frequency scales with potential for applications across many other areas such as telecommunications, LIDAR, and spectroscopy, serving as a novel building block for creating chip-scale programmable optical signal processors.

  3. Dopamine Dependence in Aggregate Feedback Learning: A Computational Cognitive Neuroscience Approach

    PubMed Central

    Valentin, Vivian V.; Maddox, W. Todd; Ashby, F. Gregory

    2016-01-01

    Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investigated single stimulus-response procedural learning followed by feedback. However, many skills include several actions that must be performed before feedback is available. A new procedural-learning task is developed in which three independent and successive unsupervised categorization responses receive aggregate feedback indicating either that all three responses were correct, or at least one response was incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first two positions was initially compromised, and then recovered. An extensive theoretical analysis that used parameter space partitioning found that a large class of procedural-learning models, which predict propagation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for these data. The analysis also suggested that any dopamine released to the second or third stimulus impaired categorization learning in the first and second positions. A second experiment tested and confirmed a novel prediction of this large class of procedural-learning models that if the to-be-learned actions are introduced one-by-one in succession then learning is much better if training begins with the first action (and works forwards) than if it begins with the last action (and works backwards). PMID:27596541

  4. Effect of feedback mode and task difficulty on quality of timing decisions in a zero-sum game.

    PubMed

    Tikuisis, Peter; Vartanian, Oshin; Mandel, David R

    2014-09-01

    The objective was to investigate the interaction between the mode of performance outcome feedback and task difficulty on timing decisions (i.e., when to act). Feedback is widely acknowledged to affect task performance. However, the extent to which feedback display mode and its impact on timing decisions is moderated by task difficulty remains largely unknown. Participants repeatedly engaged a zero-sum game involving silent duels with a computerized opponent and were given visual performance feedback after each engagement. They were sequentially tested on three different levels of task difficulty (low, intermediate, and high) in counterbalanced order. Half received relatively simple "inside view" binary outcome feedback, and the other half received complex "outside view" hit rate probability feedback. The key dependent variables were response time (i.e., time taken to make a decision) and survival outcome. When task difficulty was low to moderate, participants were more likely to learn and perform better from hit rate probability feedback than binary outcome feedback. However, better performance with hit rate feedback exacted a higher cognitive cost manifested by higher decision response time. The beneficial effect of hit rate probability feedback on timing decisions is partially moderated by task difficulty. Performance feedback mode should be judiciously chosen in relation to task difficulty for optimal performance in tasks involving timing decisions.

  5. Self-organizing dynamic stability of far-from-equilibrium biological systems

    NASA Astrophysics Data System (ADS)

    Ivanitskii, G. R.

    2017-10-01

    One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.

  6. No positive feedback between fire and a nonnative perennial grass

    Treesearch

    Erika L. Geiger; Guy R. McPherson

    2005-01-01

    Semi-desert grasslands flank the “Sky Island” mountains in southern Arizona and Northern Mexico. Many of these grasslands are dominated by nonnative grasses, which potentially alter native biotic communities. One specific concern is the potential for a predicted feedback between nonnative grasses and fire. In a large-scale experiment in southern Arizona we investigated...

  7. The Effects of Facilitating Feedback on Online Learners' Cognitive Engagement: Evidence from the Asynchronous Online Discussion

    ERIC Educational Resources Information Center

    Guo, Wenge; Chen, Ye; Lei, Jing; Wen, Yan

    2014-01-01

    With a large-scale online K-12 teacher professional development course as the research context, this study examined the effects of facilitating feedback on online learners' cognitive engagement using quasi-experiment method. A total of 1,540 discussion messages from 110 learners (65 in the experimental group and 45 in the control group) were both…

  8. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism

    DOE PAGES

    Yu, Yan; Notaro, Michael; Wang, Fuyao; ...

    2017-11-30

    Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative ofmore » amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.« less

  9. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yan; Notaro, Michael; Wang, Fuyao

    Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative ofmore » amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.« less

  10. Diagnosing Disaster Resilience of Communities as Multi-scale Complex Socio-ecological Systems

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Mochizuki, Junko; Keating, Adriana; Mechler, Reinhard; Williges, Keith; Hochrainer, Stefan

    2014-05-01

    Global environmental change, growing anthropogenic influence, and increasing globalisation of society have made it clear that disaster vulnerability and resilience of communities cannot be understood without knowledge on the broader social-ecological system in which they are embedded. We propose a framework for diagnosing community resilience to disasters, as a form of disturbance to social-ecological systems, with feedbacks from the local to the global scale. Inspired by iterative multi-scale analysis employed by Resilience Alliance, the related socio-ecological systems framework of Ostrom, and the sustainable livelihood framework, we developed a multi-tier framework for thinking of communities as multi-scale social-ecological systems and analyzing communities' disaster resilience and also general resilience. We highlight the cross-scale influences and feedbacks on communities that exist from lower (e.g., household) to higher (e.g., regional, national) scales. The conceptual framework is then applied to a real-world resilience assessment situation, to illustrate how key components of socio-ecological systems, including natural hazards, natural and man-made environment, and community capacities can be delineated and analyzed.

  11. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  12. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-01-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  13. Ecogeomorphological feedbacks in a tidal freshwater marsh

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Engelhardt, K.

    2013-12-01

    Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems. However, ecogeomorphological feedbacks (i.e., feedbacks between sediment dynamics and the vegetation community) in freshwater marshes have not received as much attention as within their saltwater counterparts. This study evaluates the role of these feedbacks in stabilizing marsh-surface elevation, relative to sea-level rise, in Dyke Marsh Preserve (Potomac River, USA). Specifically, we relate the composition of the vegetation community to current and historical patterns of sedimentation that occur on bimonthly to decadal time scales. Along with a ~3-year time series of bimonthly and seasonal-scale observations, 210Pb (half-life 22.3 y) profiles are used to identify sites with relatively steady sediment accumulation (i.e., stable sediments) and those with numerous deposition/erosion events (i.e., unstable sediments). Differences in the vegetation community (e.g., composition, stem density) and sediment character (e.g., organic content, grain size) among sites in each of these stability categories are examined with statistical techniques and compared to observations of marsh-surface elevation change. The resulting insights are placed into a geomorphological context to assess the potential response of this marsh to rapid global environmental change.

  14. Soil frost-induced soil moisture precipitation feedback and effects on atmospheric states

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian

    2016-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact large-scale hydrology and climate over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Results show a large improvement in the simulated discharge. On one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction of soil moisture leads to a positive land atmosphere feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil moisture - atmosphere feedbacks have previously not been in the research focus over the high latitudes. These results point out the importance of high latitude physical processes at the land surface for the regional climate.

  15. Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations

    ERIC Educational Resources Information Center

    Hudock, Daniel; Kalinowski, Joseph

    2014-01-01

    Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…

  16. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  17. The Role of Auditory Feedback in the Encoding of Paralinguistic Responses.

    ERIC Educational Resources Information Center

    Plazewski, Joseph G.; Allen, Vernon L.

    Twenty college students participated in an examination of the role of auditory feedback in the encoding of paralinguistic affect by adults. A dependent measure indicating the accuracy of paralinguistic communication of affect was obtained by comparing the level of affect that encoders intended to produce with ratings of vocal intonations from…

  18. Forest response to elevated CO2 is conserved across a broad range of productivity

    Treesearch

    R. Norby; E. DeLucia; B. Gielen; C. Calfapietra; C. Giardina; J. King; J. Ledford; H. McCarthy; D. Moore; R. Ceulemans; P. De Angelis; A. C. Finzi; D. F. Karnosky; M. E. Kubiske; M. Lukac; K. S. Pregitzer; G. E. Scarascia-Mugnozza; W. Schlesinger and R. Oren.

    2005-01-01

    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ("CO2 fertilization...

  19. Delayed Auditory Feedback and Movement

    ERIC Educational Resources Information Center

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  20. Effect of increasing CO2 on the terrestrial carbon cycle

    PubMed Central

    Schimel, David; Fisher, Joshua B.

    2015-01-01

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156

  1. Effects of different feedback types on information integration in repeated monetary gambles

    PubMed Central

    Haffke, Peter; Hübner, Ronald

    2015-01-01

    Most models of risky decision making assume that all relevant information is taken into account (e.g., von Neumann and Morgenstern, 1944; Kahneman and Tversky, 1979). However, there are also some models supposing that only part of the information is considered (e.g., Brandstätter et al., 2006; Gigerenzer and Gaissmaier, 2011). To further investigate the amount of information that is usually used for decision making, and how the use depends on feedback, we conducted a series of three experiments in which participants choose between two lotteries and where no feedback, outcome feedback, and error feedback was provided, respectively. The results show that without feedback participants mostly chose the lottery with the higher winning probability, and largely ignored the potential gains. The same results occurred when the outcome of each decision was fed back. Only after presenting error feedback (i.e., signaling whether a choice was optimal or not), participants considered probabilities as well as gains, resulting in more optimal choices. We propose that outcome feedback was ineffective, because of its probabilistic and ambiguous nature. Participants improve information integration only if provided with a consistent and deterministic signal such as error feedback. PMID:25667576

  2. Effects of different feedback types on information integration in repeated monetary gambles.

    PubMed

    Haffke, Peter; Hübner, Ronald

    2014-01-01

    Most models of risky decision making assume that all relevant information is taken into account (e.g., von Neumann and Morgenstern, 1944; Kahneman and Tversky, 1979). However, there are also some models supposing that only part of the information is considered (e.g., Brandstätter et al., 2006; Gigerenzer and Gaissmaier, 2011). To further investigate the amount of information that is usually used for decision making, and how the use depends on feedback, we conducted a series of three experiments in which participants choose between two lotteries and where no feedback, outcome feedback, and error feedback was provided, respectively. The results show that without feedback participants mostly chose the lottery with the higher winning probability, and largely ignored the potential gains. The same results occurred when the outcome of each decision was fed back. Only after presenting error feedback (i.e., signaling whether a choice was optimal or not), participants considered probabilities as well as gains, resulting in more optimal choices. We propose that outcome feedback was ineffective, because of its probabilistic and ambiguous nature. Participants improve information integration only if provided with a consistent and deterministic signal such as error feedback.

  3. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    PubMed

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.

  4. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  5. Feedback in low-mass galaxies in the early Universe.

    PubMed

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  6. Periodic binary sequence generators: VLSI circuits considerations

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1984-01-01

    Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.

  7. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.; Hoffman, Forrest M.

    2016-07-01

    The effects of phosphorus (P) availability on carbon (C) cycling in the Amazon region are investigated using CLM-CNP. We demonstrate that the coupling of P dynamics reduces the simulated historical terrestrial C sink due to increasing atmospheric CO2 concentrations ([CO2]) by about 26%. Our exploratory simulations show that the response of tropical forest C cycling to increasing [CO2] depends on how elevated CO2 affects phosphatase enzyme production. The effects of warming are more complex, depending on the interactions between humidity, C, and nutrient dynamics. While a simulation with low humidity generally shows the reduction of net primary productivity (NPP), a second simulation with higher humidity suggests overall increases in NPP due to the dominant effects of reduced water stress and more nutrient availability. Our simulations point to the need for (1) new observations on how elevated [CO2] affects phosphatase enzyme production and (2) more tropical leaf-scale measurements under different temperature/humidity conditions with different soil P availability.

  8. Web-Based Cognitive Behavioral Relapse Prevention Program With Tailored Feedback for People With Methamphetamine and Other Drug Use Problems: Development and Usability Study.

    PubMed

    Takano, Ayumi; Miyamoto, Yuki; Kawakami, Norito; Matsumoto, Toshihiko

    2016-01-06

    Although drug abuse has been a serious public health concern, there have been problems with implementation of treatment for drug users in Japan because of poor accessibility to treatment, concerns about stigma and confidentiality, and costs. Therapeutic interventions using the Internet and computer technologies could improve this situation and provide more feasible and acceptable approaches. The objective of the study was to show how we developed a pilot version of a new Web-based cognitive behavioral relapse prevention program with tailored feedback to assist people with drug problems and assessed its acceptance and usability. We developed the pilot program based on existing face-to-face relapse prevention approaches using an open source Web application to build an e-learning website, including relapse prevention sessions with videos, exercises, a diary function, and self-monitoring. When users submitted exercise answers and their diary, researchers provided them with personalized feedback comments using motivational interviewing skills. People diagnosed with drug dependence were recruited in this pilot study from a psychiatric outpatient ward and nonprofit rehabilitation facilities and usability was evaluated using Internet questionnaires. Overall, website usability was assessed by the Web Usability Scale. The adequacy of procedures in the program, ease of use, helpfulness of content, and adverse effects, for example, drug craving, mental distress, were assessed by original structured questionnaires and descriptive form questions. In total, 10 people participated in the study and completed the baseline assessment, 60% completed all relapse prevention sessions within the expected period. The time needed to complete one session was about 60 minutes and most of the participants took 2 days to complete the session. Overall website usability was good, with reasonable scores on subscales of the Web Usability Scale. The participants felt that the relapse prevention sessions were easy to use and helpful, but that the length of the videos was too long. The participant who until recently used drugs was satisfied with the self-monitoring, but others that had already maintained abstinence for more than a year felt this activity was unhelpful and were bored tracking and recording information on daily drug use. Feedback comments from researchers enhanced participants' motivation and further insight into the disease. Serious adverse effects caused by the intervention were not observed. Some possible improvements to the program were suggested. The Web-based relapse prevention program was easy to use and acceptable to drug users in this study. This program will be helpful for drug users who do not receive behavioral therapy. After the pilot program is revised, further large-scale research is needed to assess its efficacy among drug users who have recently used drugs.

  9. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  10. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE PAGES

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...

    2018-03-23

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  11. Assessing medical students' performance in core competencies using multiple admission programs for colleges and universities: from the perspective of multi-source feedback.

    PubMed

    Fang, Ji-Tseng; Ko, Yu-Shien; Chien, Chu-Chun; Yu, Kuang-Hui

    2013-01-01

    Since 1994, Taiwanese medical universities have employed the multiple application method comprising "recommendations and screening" and "admission application." The purpose of this study is to examine whether medical students admitted using different admission programs gave different performances. To evaluate the six core competencies for medical students proposed by Accreditation Council for Graduate Medical Education (ACGME), this study employed various assessment tools, including student opinion feedback, multi-source feedback (MSF), course grades, and examination results.MSF contains self-assessment scale, peer assessment scale, nursing staff assessment scale, visiting staff assessment scale, and chief resident assessment scale. In the subscales, the CronbachÊs alpha were higher than 0.90, indicating good reliability. Research participants consisted of 182 students from the School of Medicine at Chang Gung University. Regarding studentsÊ average grade for the medical ethics course, the performance of students who were enrolled through school recommendations exceeded that of students who were enrolled through the National College University Entrance Examination (NCUEE) p = 0.011), and all considered "teamwork" as the most important. Different entry pipelines of students in the "communication," "work attitude," "medical knowledge," and "teamwork" assessment scales showed no significant difference. The improvement rate of the students who were enrolled through the school recommendations was better than that of the students who were enrolled through the N CUEE in the "professional skills," "medical core competencies," "communication," and "teamwork" projects of self-assessment and peer assessment scales. However, the students who were enrolled through the NCUEE were better in the "professional skills," "medical core competencies," "communication," and "teamwork" projects of the visiting staff assessment scale and the chief resident assessment scale. Collectively, the performance of the students enrolled through recommendations was slightly better than that of the students enrolled through the NCUEE, although statistical significance was found in certain parts of the grades only.

  12. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    PubMed

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  13. Providing rapid feedback to residents on their teaching skills: an educational strategy for contemporary trainees.

    PubMed

    Katz-Sidlow, Rachel J; Baer, Tamar G; Gershel, Jeffrey C

    2016-03-20

    The objective of this study was to assess the attitudes of contemporary residents toward receiving rapid feedback on their teaching skills from their medical student learners. Participants consisted of 20 residents in their second post-graduate training year. These residents facilitated 44 teaching sessions with medical students within our Resident-as-Teacher program. Structured, written feedback from students was returned to the resident within 3 days following each session. Residents completed a short survey about the utility of the feedback, whether they would make a change to future teaching sessions based on the feedback, and what specifically they might change. The survey utilized a 4-point scale ("Not helpful/likely=1" to "Very helpful/likely=4"), and allowed for one free-text response. Free-text responses were hand-coded and underwent qualitative analysis to identify themes. There were 182 student feedback encounters resulting from 44 teaching sessions. The survey response rate was 73% (32/44). Ninety-four percent of residents rated the rapid feedback as "very helpful," and 91% would "very likely" make a change to subsequent sessions based on student feedback. Residents' proposed changes included modifications to session content and/or their personal teaching style. Residents found that rapid feedback received from medical student learners was highly valuable to them in their roles as teachers. A rapid feedback strategy may facilitate an optimal educational environment for contemporary trainees.

  14. Dynamic Mesoscale Land-Atmosphere Feedbacks in Fragmented Forests in Amazonia

    NASA Astrophysics Data System (ADS)

    Rastogi, D.; Baidya Roy, S.

    2011-12-01

    This paper investigates land-atmosphere feedbacks in disturbed rainforests of Amazonia. Deforestation along the rapidly expanding highways and road network has created the unique fishbone land cover pattern in Rondonia, a state in southwestern Amazonia. Numerical experiments and observations show that sharp gradients in land cover due to the fishbone heterogeneity triggers mesoscale circulations. These circulations significantly change the spatial pattern of local hydrometeorology, especially convection, clouds and precipitation. The primary research question now is can these changes in local hydrometeorology affect vegetation growth in the clearings. If so, that would be a clear indication that land-atmosphere feedbacks can affect vegetation recovery in fragmented forests. A computationally-efficient modeling tool consisting of a mesoscale atmospheric model dynamically coupled with a plant growth model has been specifically developed to identify the atmospheric feedback pathways. Preliminary experiments focus on the seasonal-scale feedbacks during the dry season. Results show that temperature, incoming shortwave and precipitation are the three primary drivers through which the feedbacks operate. Increasing temperature increases respiratory losses generating a positive feedback. Increased cloud cover reduces incoming PAR and photosynthesis, resulting in a positive feedback. Increased precipitation reduces water stress and promotes growth resulting in a negative feedback. The net effect is a combination of these 3 feedback loops. These findings can significantly improve our understanding of ecosystem resiliency in disturbed tropical forests.

  15. Look who's judging-Feedback source modulates brain activation to performance feedback in social anxiety.

    PubMed

    Peterburs, Jutta; Sandrock, Carolin; Miltner, Wolfgang H R; Straube, Thomas

    2016-06-01

    It is as yet unknown if behavioral and neural correlates of performance monitoring in socially anxious individuals are affected by whether feedback is provided by a person or a computer. This fMRI study investigated modulation of feedback processing by feedback source (person vs. computer) in participants with high (HSA) (N=16) and low social anxiety (LSA) (N=16). Subjects performed a choice task in which they were informed that they would receive positive or negative feedback from a person or the computer. Subjective ratings indicated increased arousal and anxiety in HSA versus LSA, most pronounced for social and negative feedback. FMRI analyses yielded hyperactivation in ventral medial prefrontal cortex (vmPFC)/anterior cingulate cortex (ACC) and insula for social relative to computer feedback, and in mPFC/ventral ACC for positive relative to negative feedback in HSA as compared to LSA. These activation patterns are consistent with increased interoception and self-referential processing in social anxiety, especially during processing of positive feedback. Increased ACC activation in HSA to positive feedback may link to unexpectedness of (social) praise as posited in social anxiety disorder (SAD) psychopathology. Activation in rostral ACC showed a reversed pattern, with decreased activation to positive feedback in HSA, possibly indicating altered action values depending on feedback source and valence. The present findings corroborate a crucial role of mPFC for performance monitoring in social anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  17. Towards a unified theory for morphomechanics

    PubMed Central

    Taber, Larry A.

    2009-01-01

    Mechanical forces are closely involved in the construction of an embryo. Experiments have suggested that mechanical feedback plays a role in regulating these forces, but the nature of this feedback is poorly understood. Here, we propose a general principle for the mechanics of morphogenesis, as governed by a pair of evolution equations based on feedback from tissue stress. In one equation, the rate of growth (or contraction) depends on the difference between the current tissue stress and a target (homeostatic) stress. In the other equation, the target stress changes at a rate that depends on the same stress difference. The parameters in these morphomechanical laws are assumed to depend on stress rate. Computational models are used to illustrate how these equations can capture a relatively wide range of behaviours observed in developing embryos, as well as show the limitations of this theory. Specific applications include growth of pressure vessels (e.g. the heart, arteries and brain), wound healing and sea urchin gastrulation. Understanding the fundamental principles of tissue construction can help engineers design new strategies for creating replacement tissues and organs in vitro. PMID:19657011

  18. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer.

    PubMed

    Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2015-01-10

    We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

  19. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Feedforward/feedback control synthesis for performance and robustness

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  1. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  2. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE PAGES

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    2018-04-23

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  3. A model for the origin of bursty star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  4. Pressure of the hot gas in simulations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Fabjan, D.; Borgani, S.; Murante, G.; Rasia, E.; Biffi, V.; Truong, N.; Ragone-Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M.

    2017-06-01

    We analyse the radial pressure profiles, the intracluster medium (ICM) clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the treepm-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, active galactic nucleus (AGN) and/or stellar feedback. Our results are analysed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z = 1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster centre and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping (√{C}_{ρ }˜ 1.2 at R200) in good agreement with recent observational estimates. The simulated YSZ-M scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.

  5. The influence of visual and tactile perception on hand control in children with Duchenne muscular dystrophy.

    PubMed

    Troise, Denise; Yoneyama, Simone; Resende, Maria Bernadette; Reed, Umbertina; Xavier, Gilberto Fernando; Hasue, Renata

    2014-09-01

    To investigate tactile perception and manual dexterity, with or without visual feedback, in males with Duchenne muscular dystrophy (DMD). Forty males with DMD (mean age 9 y 8 mo, SD 2 y 3 mo; range 5-14 y), recruited from the teaching hospital of the School of Medicine of the University of São Paulo, with disease severity graded as '1' to '6' on the Vignos Scale and '1' on Brooke's Scale, and 49 healthy males (mean age 8 y 2 mo; range 5-11 y; SD 1 y 11 mo), recruited from a local education center, participated in the study. We assessed tactile perception using two-point discrimination and stereognosis tests, and manual dexterity using the Pick-Up test with the eyes either open or closed. Analysis of variance was used to compare groups; a p value of less than 0.05 was considered statistically significant. Males with DMD exhibited no impairment in tactile perception, as measured by the two-point discrimination test and the number of objects correctly named in the stereognosis test. Manipulation during stereognosis was statistically slower with both hands (p<0.001), and manual dexterity was much worse in males with DMD when there was no visual feedback (p<0.001). Males with DMD exhibited disturbances in manipulation during stereognosis and dexterity tests. Hand control was highly dependent on visual information rather than on tactile perception. Motor dysfunction in males with DMD, therefore, might be related to altered neural control. © 2014 Mac Keith Press.

  6. Relations among Teacher Expectancies, Student Perceptions of Teacher Oral Feedback, and Student Self-Concept: An Empirical Study in Taiwanese Elementary Schools.

    ERIC Educational Resources Information Center

    Chen, Yi-Hsin; Thompson, Marilyn S.

    This research investigated the relationships among teacher expectancy, student perception, and student self-concept. A sample of 1,598 Taiwanese elementary school children in grades 3-6 were administered a school self-concept scale and a measure of their perceptions of teachers' positive and negative oral feedback in academic and nonacademic…

  7. Observed increase in local cooling effect of deforestation at higher latitudes

    Treesearch

    Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei Zhao

    2011-01-01

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it...

  8. Integrating 360° behavior-orientated feedback in communication skills training for medical undergraduates: concept, acceptance and students' self-ratings of communication competence.

    PubMed

    Engerer, Cosima; Berberat, Pascal O; Dinkel, Andreas; Rudolph, Baerbel; Sattel, Heribert; Wuensch, Alexander

    2016-10-18

    Feedback is considered a key didactic element in medical education, especially for teaching of communication skills. This study investigates the impact of a best evidence-based practice feedback concept within the context of communication skills training (CST). We evaluate this concept for acceptance and changes in students self-ratings of communication competence. Our CST integrating feedback process comprises a short theoretical introduction presenting standards for good communication and a constructive 360° feedback from three perspectives: feedback from peers, from standardized patients (SPs), and from a trainer. Feed-forward process was facilitated for documenting suggestions for improvements based on observable behaviors to maximize learning benefits. Our CST was applied to four groups of eight or nine students. We assessed the data on students' acceptance using a 6-point scale ranging from very good (1) to poor (6), applied a forced choice question to rank didactic items, and assessed changes in student' self-ratings of their communication competence on a 10-cm visual analogue scale (VAS). Thirty-four medical undergraduates (82 % female, 18 % male) in their first clinical year, with an average age of 21.4 years (SD = 1.0), participated in the new training. The concept achieved high acceptance from good to very good: overall impression (M = 1.56), sufficient interaction for discussion (M = 1.15), and constructive learning atmosphere (M = 1.18). Specific elements, such as practical training with SPs (M = 1.18) and feedback by SPs (M = 1.12), showed highest acceptance. The forced choice ranking placed all feedback elements at the top of the list (feedback (FB) by SPs, rank 2; FB by trainer, rank 3; FB by colleagues, rank 4), whereas theoretical elements were at the bottom (theoretical introduction, rank 7; memory card, rank 9). Overall, student self-ratings of communication competence significantly improved in nine of the ten communication items assessed by VAS and showed a pre-post effect size of ES = 0.74 on a global rating. This study demonstrates that the training concept based on 360° behavioral feedback was well accepted and generated significant changes in student self-ratings of their communication competence. Further research is needed to determine the effects on objective communication performance.

  9. The Race to Nourish: Exploring resource equity in a coupled human coastline model

    NASA Astrophysics Data System (ADS)

    Williams, Z. C.; McNamara, D.; Murray, A.; Smith, M.

    2011-12-01

    Many coastal communities are faced with eroding shorelines due to gradients in the alongshore transport of sediment and rising sea level. These communities often employ a beach nourishment mitigation strategy to counter erosion from natural forces. These nourishment activities provide economic benefits in the form of protection from storms and enhanced recreation on the stabilized beach. Previous work has shown that economically optimal nourishment decisions indicate that rising nourishment costs can lead to more frequent nourishment. Given that the cost of nourishing is likely to rise as offshore sediment borrow sites become more scarce, this suggests a positive feedback whereby nourishment that dwindles offshore borrow sites causes more frequent nourishment. We explore the dynamics of this feedback in a coupled economic-coastline model and how resulting long term shoreline and economic patterns respond to forcing changes in the form of increased sea level rise and changing storminess along both a straight shoreline and a cuspate Carolina like shoreline. The economic model utilizes myopic manager agents that inform a community of the optimal nourishment interval based on the current cost of sand and locally observed erosion rate since the last nourishment episode. Communities nourish independently but can affect the erosion rate of adjacent communities through alongshore sediment transport dynamics. The coastline model tracks large-scale coastline change via alongshore sediment transport calculations and erosion due to rising sea level. Model experiments show that when the economic model is coupled to a flat coastline, the feedback in sand cost leads to resource inequity as communities that become caught in the feedback nourish frequently while adjacent communities maintain coastline position by "free riding" on these neighbor towns. Model experiments also show that on cuspate coastlines, the emergent cuspate features enhance the cost feedback and create unequal resource distributions similar to flat coastlines but in locations pre-determined by large-scale patterns of erosion associated with the cuspate features. As wave climates change, communities that are already caught in a nourishment feedback, are not able to adjust their behavior to the new wave climate. This hysteresis effect in nourishment suggests the need for large-spatial-scale management of coastlines to achieve resource equity.

  10. Animal personality and state-behaviour feedbacks: a review and guide for empiricists.

    PubMed

    Sih, Andrew; Mathot, Kimberley J; Moirón, María; Montiglio, Pierre-Olivier; Wolf, Max; Dingemanse, Niels J

    2015-01-01

    An exciting area in behavioural ecology focuses on understanding why animals exhibit consistent among-individual differences in behaviour (animal personalities). Animal personality has been proposed to emerge as an adaptation to individual differences in state variables, leading to the question of why individuals differ consistently in state. Recent theory emphasizes the role that positive feedbacks between state and behaviour can play in producing consistent among-individual covariance between state and behaviour, hence state-dependent personality. We review the role of feedbacks in recent models of adaptive personalities, and provide guidelines for empirical testing of model assumptions and predictions. We discuss the importance of the mediating effects of ecology on these feedbacks, and provide a roadmap for including state-behaviour feedbacks in behavioural ecology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  12. An overview of neural function and feedback control in human communication.

    PubMed

    Hood, L J

    1998-01-01

    The speech and hearing mechanisms depend on accurate sensory information and intact feedback mechanisms to facilitate communication. This article provides a brief overview of some components of the nervous system important for human communication and some electrophysiological methods used to measure cortical function in humans. An overview of automatic control and feedback mechanisms in general and as they pertain to the speech motor system and control of the hearing periphery is also presented, along with a discussion of how the speech and auditory systems interact.

  13. A FEEDBACK INTERVENTION TO INCREASE DIGITAL AND PAPER CHECKLIST PERFORMANCE IN TECHNICALLY ADVANCED AIRCRAFT SIMULATION

    PubMed Central

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes. PMID:21541133

  14. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  15. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less

  16. The Impact of Public Feedback on Three Recycling-Related Behaviors in South Korea

    ERIC Educational Resources Information Center

    Kim, Sungbum; Oah, Shezeen; Dickinson, Alyce M.

    2005-01-01

    The effectiveness of posted feedback on recycling in a lounge area at a South Korean university was studied. Participants were college students, professors, and staff members. The dependent variables were the percentage and number of correctly separated aluminum cans, the percentage and number of correctly separated paper cups, and the weight of…

  17. Effect of Feedback and Training on Utility Usage among Adolescent Delinquents.

    ERIC Educational Resources Information Center

    Sexton, Richard E.; And Others

    The usefulness of providing specific information and a progress/feedback mechanism to control utility usage in community-based, halfway houses for dependent-neglected and for delinquent adolescents was explored. The investigation was carried out in a random sample of 12 houses of an Arizona facility, divided into equivalent groups of three houses.…

  18. Children's Interpretation of Evaluative Feedback: The Effect of Social Cues on Learned Helplessness

    ERIC Educational Resources Information Center

    Dweck, Carol S.

    1976-01-01

    Examines ways in which social cues, in conjunction with a child's history, influence the child's interpretation of and reaction to failure feedback in evaluative settings. It is suggested that the way in which a child reacts to another's behavior is largely dependent upon subtle but powerful social cues within situation. (JH)

  19. Instructional Feedback III: How Do Instructor Facework Tactics and Immediacy Cues Interact to Predict Student Perceptions of Being Mentored?

    ERIC Educational Resources Information Center

    Kerssen-Griep, Jeff; Witt, Paul L.

    2015-01-01

    Mentoring is a trusting, developmental supervisory relationship whose success largely depends on participants' interpersonal abilities. Feedback interventions with mentees commonly present interactional challenges to maintaining that relationship, yet are integral to any teaching-learning context. In this study we examined whether and how two key,…

  20. An Evaluation of the Effectiveness of an Automated Observation and Feedback System on Safe Sitting Postures

    ERIC Educational Resources Information Center

    Yu, Eunjeong; Moon, Kwangsu; Oah, Shezeen; Lee, Yohaeng

    2013-01-01

    This study evaluated the effectiveness of an automated observation and feedback system in improving safe sitting postures. Participants were four office workers. The dependent variables were the percentages of time participants spent in five safe body positions during experimental sessions. We used a multiple-baseline design counterbalanced across…

  1. Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Colberg, Jorg M.; Diaferio, Antonaldo; White, Simon D. M.

    1999-02-01

    We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter haloes as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes. This scheme enables us to explore the clustering properties of galaxies, and to investigate how selection by luminosity, colour or type influences the results. In this paper we study the properties of the galaxy distribution at z=0. These include B- and K-band luminosity functions, two-point correlation functions, pairwise peculiar velocities, cluster mass-to-light ratios, B-V colours, and star formation rates. We focus on two variants of a cold dark matter (CDM) cosmology: a high-density (Omega =1) model with shape-parameter Gamma =0.21 (tau CDM), and a low-density model with Omega =0.3 and Lambda =0.7 (Lambda CDM). Both models are normalized to reproduce the I-band Tully-Fisher relation of Giovanelli et al. near a circular velocity of 220 km s^-1. Our results depend strongly both on this normalization and on the adopted prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For tau CDM, efficient feedback is required to suppress the growth of galaxies, particularly in low-mass field haloes. Without it, there are too many galaxies and the correlation function exhibits a strong turnover on scales below 1 Mpc. For Lambda CDM, feedback must be weaker, otherwise too few L_* galaxies are produced and the correlation function is too steep. Although neither model is perfect, both come close to reproducing most of the data. Given the uncertainties in modelling some of the critical physical processes, we conclude that it is not yet possible to draw firm conclusions about the values of cosmological parameters from studies of this kind. Further observational work on global star formation and feedback effects is required to narrow the range of possibilities.

  2. Unexpected Acceptance? Patients with Social Anxiety Disorder Manifest their Social Expectancy in ERPs During Social Feedback Processing.

    PubMed

    Cao, Jianqin; Gu, Ruolei; Bi, Xuejing; Zhu, Xiangru; Wu, Haiyan

    2015-01-01

    Previous studies on social anxiety have demonstrated negative-expectancy bias in social contexts. In this study, we used a paradigm that employed self-relevant positive or negative social feedback, in order to test whether this negative expectancy manifests in event-related potentials (ERPs) during social evaluation among socially anxious individuals. Behavioral data revealed that individuals with social anxiety disorder (SAD) showed more negative expectancy of peer acceptance both in the experiment and in daily life than did the healthy control participants. Regarding ERP results, we found a overally larger P2 for positive social feedback and also a group main effect, such that the P2 was smaller in SAD group. SAD participants demonstrated a larger feedback-related negativity (FRN) to positive feedback than to negative feedback. In addition, SAD participants showed a more positive ΔFRN (ΔFRN = negative - positive). Furthermore, acceptance expectancy in daily life correlated negatively with ΔFRN amplitude, while the Interaction Anxiousness Scale (IAS) score correlated positively with the ΔFRN amplitude. Finally, the acceptance expectancy in daily life fully mediated the relationship between the IAS and ΔFRN. These results indicated that both groups could differentiate between positive and negative social feedback in the early stage of social feedback processing (reflected on the P2). However, the SAD group exhibited a larger FRN to positive social feedback than to negative social feedback, demonstrating their dysfunction in the late stage of social feedback processing. In our opinion, such dysfunction is due to their greater negative social feedback expectancy.

  3. Unexpected Acceptance? Patients with Social Anxiety Disorder Manifest their Social Expectancy in ERPs During Social Feedback Processing

    PubMed Central

    Cao, Jianqin; Gu, Ruolei; Bi, Xuejing; Zhu, Xiangru; Wu, Haiyan

    2015-01-01

    Previous studies on social anxiety have demonstrated negative-expectancy bias in social contexts. In this study, we used a paradigm that employed self-relevant positive or negative social feedback, in order to test whether this negative expectancy manifests in event-related potentials (ERPs) during social evaluation among socially anxious individuals. Behavioral data revealed that individuals with social anxiety disorder (SAD) showed more negative expectancy of peer acceptance both in the experiment and in daily life than did the healthy control participants. Regarding ERP results, we found a overally larger P2 for positive social feedback and also a group main effect, such that the P2 was smaller in SAD group. SAD participants demonstrated a larger feedback-related negativity (FRN) to positive feedback than to negative feedback. In addition, SAD participants showed a more positive ΔFRN (ΔFRN = negative – positive). Furthermore, acceptance expectancy in daily life correlated negatively with ΔFRN amplitude, while the Interaction Anxiousness Scale (IAS) score correlated positively with the ΔFRN amplitude. Finally, the acceptance expectancy in daily life fully mediated the relationship between the IAS and ΔFRN. These results indicated that both groups could differentiate between positive and negative social feedback in the early stage of social feedback processing (reflected on the P2). However, the SAD group exhibited a larger FRN to positive social feedback than to negative social feedback, demonstrating their dysfunction in the late stage of social feedback processing. In our opinion, such dysfunction is due to their greater negative social feedback expectancy. PMID:26635659

  4. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  5. Can Arctic sea-ice melt be explained by atmospheric meridional transports? (Invited)

    NASA Astrophysics Data System (ADS)

    Tjernstrom, M. K.; Graversen, R. G.

    2010-12-01

    The Arctic summer sea ice is melting away at an alarming rate, and it is now expected that an principally sea-ice free Arctic summer will occur much earlier than projected by the IPCC AR4 models. At the same time Arctic near-surface temperatures are rising at a rate much faster than the global average. The processes responsible for these changes are debated and many claim that local feedbacks, such as the surface albedo feedback, are the main culprits while other argue that remote effects, such as atmospheric circulation changes on synoptic and hemispheric scales, are the most important. We will explore the effects of the meridional transport by synoptic and larger scale atmospheric circulation on recent changes, using reanalysis data. It will be illustarated how this transport can contribute significant amounts of sensible heat, but also of atmospheric moisture such that local cloud feedbacks as well as the direct greenhouse effect of the water vapor contributes significantly to the surface energy balance over the Arctic polar cap.

  6. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  7. Mapping social-ecological vulnerability to inform local decision making.

    PubMed

    Thiault, Lauric; Marshall, Paul; Gelcich, Stefan; Collin, Antoine; Chlous, Frédérique; Claudet, Joachim

    2018-04-01

    An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social-ecological vulnerability offers a valuable framework for identifying and understanding important social-ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social-ecological vulnerability. We developed a method to map social-ecological vulnerability based on information on human-nature dependencies and ecosystem services at local scales. We applied our method to the small-scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social-ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human-nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social-ecological vulnerability framework for policy, planning, and participatory management decisions. © 2017 Society for Conservation Biology.

  8. The Role of Time-Scales in Socio-hydrology

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Sivapalan, Murugesu

    2016-04-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.

  9. Multiscale Modeling of Human-Water Interactions: The Role of Time-Scales

    NASA Astrophysics Data System (ADS)

    Bloeschl, G.; Sivapalan, M.

    2015-12-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time Scale Interactions and the Co-evolution of Humans and Water. Water Resour. Res., 51, in press.

  10. Functional imaging of cortical feedback projections to the olfactory bulb

    PubMed Central

    Rothermel, Markus; Wachowiak, Matt

    2014-01-01

    Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal input from cortical areas but there has been as yet no characterization of their activity in vivo. We focused on projections to the OB from the anterior olfactory nucleus (AON), a major source of cortical feedback to the OB. We expressed GCaMP selectively in AON projection neurons using a mouse line expressing Cre recombinase (Cre) in these neurons and Cre-dependent viral vectors injected into AON, allowing us to image GCaMP fluorescence signals from their axon terminals in the OB. Electrical stimulation of AON evoked large fluorescence signals that could be imaged from the dorsal OB surface in vivo. Surprisingly, odorants also evoked large signals that were transient and coupled to odorant inhalation both in the anesthetized and awake mouse, suggesting that feedback from AON to the OB is rapid and robust across different brain states. The strength of AON feedback signals increased during wakefulness, suggesting a state-dependent modulation of cortical feedback to the OB. Two-photon GCaMP imaging revealed that different odorants activated different subsets of centrifugal AON axons and could elicit both excitation and suppression in different axons, indicating a surprising richness in the representation of odor information by cortical feedback to the OB. Finally, we found that activating neuromodulatory centers such as basal forebrain drove AON inputs to the OB independent of odorant stimulation. Our results point to the AON as a multifunctional cortical area that provides ongoing feedback to the OB and also serves as a descending relay for other neuromodulatory systems. PMID:25071454

  11. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models

    NASA Astrophysics Data System (ADS)

    Mauritsen, T.; Stevens, B. B.

    2015-12-01

    Current climate models exhibit equilibrium climate sensitivities to a doubling of CO2 of 2.0-4.6 K and a weak increase of global mean precipitation. But inferences from the observational record place climate sensitivity near the lower end of the range, and indicate that models underestimate changes in certain aspects of the hydrological cycle under warming. Here we show that both these discrepancies can be explained by a controversial hypothesis of missing negative tropical feedbacks in climate models, known as the iris-effect: Expanding dry and clear regions in a warming climate yield a negative feedback as more infrared radiation can escape to space through this metaphorical opening iris. At the same time the additional infrared cooling of the atmosphere must be balanced by latent heat release thereby accelerating the hydrological cycle. Alternative suggestions of too little aerosol cooling, missing volcanic eruptions, or insufficient ocean heat uptake in models may explain a slow observed transient warming, but are not able to explain the observed enhanced hydrological cycle. We propose that a temperature-dependency of the extent to which precipitating convective clouds cluster or aggregate into larger clouds constitutes a plausible physical mechanism for the iris-effect. On a large scale, organized convective states are dryer than disorganized convection and therefore radiate more in the longwave to space. Thus, if a warmer atmosphere can host more organized convection, then this represents one possible mechanism for an iris-effect. The challenges in modeling, understanding and possibly quantifying a temperature-dependency of convection are, however, substantial.

  12. Understanding pathways for scaling up health services through the lens of complex adaptive systems.

    PubMed

    Paina, Ligia; Peters, David H

    2012-08-01

    Despite increased prominence and funding of global health initiatives, efforts to scale up health services in developing countries are falling short of the expectations of the Millennium Development Goals. Arguing that the dominant assumptions for scaling up are inadequate, we propose that interpreting change in health systems through the lens of complex adaptive systems (CAS) provides better models of pathways for scaling up. Based on an understanding of CAS behaviours, we describe how phenomena such as path dependence, feedback loops, scale-free networks, emergent behaviour and phase transitions can uncover relevant lessons for the design and implementation of health policy and programmes in the context of scaling up health services. The implications include paying more attention to local context, incentives and institutions, as well as anticipating certain types of unintended consequences that can undermine scaling up efforts, and developing and implementing programmes that engage key actors through transparent use of data for ongoing problem-solving and adaptation. We propose that future efforts to scale up should adapt and apply the models and methodologies which have been used in other fields that study CAS, yet are underused in public health. This can help policy makers, planners, implementers and researchers to explore different and innovative approaches for reaching populations in need with effective, equitable and efficient health services. The old assumptions have led to disappointed expectations about how to scale up health services, and offer little insight on how to scale up effective interventions in the future. The alternative perspectives offered by CAS may better reflect the complex and changing nature of health systems, and create new opportunities for understanding and scaling up health services.

  13. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    NASA Astrophysics Data System (ADS)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  14. Cytopathology whole slide images and virtual microscopy adaptive tutorials: A software pilot

    PubMed Central

    Van Es, Simone L.; Pryor, Wendy M.; Belinson, Zack; Salisbury, Elizabeth L.; Velan, Gary M.

    2015-01-01

    Background: The constant growth in the body of knowledge in medicine requires pathologists and pathology trainees to engage in continuing education. Providing them with equitable access to efficient and effective forms of education in pathology (especially in remote and rural settings) is important, but challenging. Methods: We developed three pilot cytopathology virtual microscopy adaptive tutorials (VMATs) to explore a novel adaptive E-learning platform (AeLP) which can incorporate whole slide images for pathology education. We collected user feedback to further develop this educational material and to subsequently deploy randomized trials in both pathology specialist trainee and also medical student cohorts. Cytopathology whole slide images were first acquired then novel VMATs teaching cytopathology were created using the AeLP, an intelligent tutoring system developed by Smart Sparrow. The pilot was run for Australian pathologists and trainees through the education section of Royal College of Pathologists of Australasia website over a period of 9 months. Feedback on the usability, impact on learning and any technical issues was obtained using 5-point Likert scale items and open-ended feedback in online questionnaires. Results: A total of 181 pathologists and pathology trainees anonymously attempted the three adaptive tutorials, a smaller proportion of whom went on to provide feedback at the end of each tutorial. VMATs were perceived as effective and efficient E-learning tools for pathology education. User feedback was positive. There were no significant technical issues. Conclusion: During this pilot, the user feedback on the educational content and interface and the lack of technical issues were helpful. Large scale trials of similar online cytopathology adaptive tutorials were planned for the future. PMID:26605119

  15. Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.

    PubMed

    Bachmann, Julie; Raue, Andreas; Schilling, Marcel; Böhm, Martin E; Kreutz, Clemens; Kaschek, Daniel; Busch, Hauke; Gretz, Norbert; Lehmann, Wolf D; Timmer, Jens; Klingmüller, Ursula

    2011-07-19

    Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

  16. Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    NASA Astrophysics Data System (ADS)

    Wilson, R. M.; Fitzhugh, L.; Whiting, G. J.; Frolking, S.; Harrison, M. D.; Dimova, N.; Burnett, W. C.; Chanton, J. P.

    2017-02-01

    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene ( 3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming.

  17. A modeling study on the hydrodynamics of a coastal embayment occupied by mussel farms (Ria de Ares-Betanzos, NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Duarte, Pedro; Alvarez-Salgado, Xosé Antón; Fernández-Reiriz, Maria José; Piedracoba, Silvia; Labarta, Uxío

    2014-06-01

    The present study suggests that both under upwelling and downwelling winds, the residual circulation of Ria de Ares-Betanzos remains positive with a strong influence from river discharge and a positive feedback from wind, unlike what is generally accepted for Galician rias. Furthermore, mussel cultivation areas may reduce residual velocities by almost 40%, suggesting their potential feedbacks on food replenishment for cultivated mussels. The Ria de Ares-Betanzos is a partially stratified estuary in the NW Iberian upwelling system where blue mussels are extensively cultured on hanging ropes. This type of culture depends to a large extent on water circulation and residence times, since mussels feed on suspended particles. Therefore, understanding the role of tides, continental runoff, and winds on the circulation of this embayment has important practical applications. Furthermore, previous works have emphasized the potential importance of aquaculture leases on water circulation within coastal ecosystems, with potential negative feedbacks on production carrying capacity. Here we implemented and validated a 3D hydrodynamic numerical model for the Ria de Ares-Betanzos to (i) evaluate the relative importance of the forcing agents on the circulation within the ria and (ii) estimate the importance of culture leases on circulation patterns at the scale of the mussel farms from model simulations. The model was successfully validated with empirical current velocity data collected during July and October 2007 using an assortment of efficiency criteria. Model simulations were carried out to isolate the effects of wind and river flows on circulation patterns.

  18. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.

    2016-09-01

    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.

  19. Analysis of Atmosphere-Ocean Surface Flux Feedbacks in Recent Satellite and Model Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Clayson, C. A.

    2010-01-01

    Recent investigations have examined observations in an attempt to determine when and how the ocean forces the atmosphere, and vice versa. These studies focus primarily on relationships between sea surface temperature anomalies and the turbulent and radiative surface heat fluxes. It has been found that both positive and negative feedbacks, which enhance or reduce sea surface temperature anomaly amplitudes, can be generated through changes in the surface boundary layer. Consequent changes in sea surface temperature act to change boundary layer characteristics through changes in static stability or turbulent fluxes. Previous studies over the global oceans have used coarse-resolution observational and model products such as ICOADS and the NCEP Reanalysis. This study focuses on documenting the atmosphere ocean feedbacks that exist in recently produced higher resolution products, namely the SeaFlux v1.0 product and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). It has been noted in recent studies that evidence of oceanic forcing of the atmosphere exists on smaller scales than the usually more dominant atmospheric forcing of the ocean, particularly in higher latitudes. It is expected that use of these higher resolution products will allow for a more comprehensive description of these small-scale ocean-atmosphere feedbacks. The SeaFlux intercomparisons have revealed large scatter between various surface flux climatologies. This study also investigates the uncertainty in surface flux feedbacks based on several of these recent satellite based climatologies

  20. X-raying galaxies: a Chandra legacy.

    PubMed

    Wang, Q Daniel

    2010-04-20

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete x-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and active galactic nuclear feedback--the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our galaxy. The gas is concentrated around the galactic bulge and disk on scales of a few kiloparsec. The column density of chemically enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The x-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed x-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of the feedback to infer its dynamics and interplay with the circumgalactic medium, hence the evolution of galaxies.

Top