On Entropy Generation and the Effect of Heat and Mass Transfer Coupling in a Distillation Process
NASA Astrophysics Data System (ADS)
Burgos-Madrigal, Paulina; Mendoza, Diego F.; López de Haro, Mariano
2018-01-01
The entropy production rates as obtained from the exergy analysis, entropy balance and the nonequilibrium thermodynamics approach are compared for two distillation columns. The first case is a depropanizer column involving a mixture of ethane, propane, n-butane and n-pentane. The other is a weighed sample of Mexican crude oil distilled with a pilot scale fractionating column. The composition, temperature and flow profiles, for a given duty and operating conditions in each column, are obtained with the Aspen Plus V8.4 software by using the RateFrac model with a rate-based nonequilibrium column. For the depropanizer column the highest entropy production rate is found in the central trays where most of the mass transfer occurs, while in the second column the highest values correspond to the first three stages (where the vapor mixture is in contact with the cold liquid reflux), and to the last three stages (where the highest temperatures take place). The importance of the explicit inclusion of thermal diffusion in these processes is evaluated. In the depropanizer column, the effect of the coupling between heat and mass transfer is found to be negligible, while for the fractionating column it becomes appreciable.
ERIC Educational Resources Information Center
Duarte, B. P. M.; Coelho Pinheiro, M. N.; Silva, D. C. M.; Moura, M. J.
2006-01-01
The experiment described is an excellent opportunity to apply theoretical concepts of distillation, thermodynamics of mixtures and process simulation at laboratory scale, and simultaneously enhance the ability of students to operate, control and monitor complex units.
Investigation related to hydrogen isotopes separation by cryogenic distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornea, A.; Zamfirache, M.; Stefanescu, I.
2008-07-15
Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (formore » The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)« less
NASA Astrophysics Data System (ADS)
Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.
2017-09-01
The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornea, A.; Zamfirache, M.; Stefan, L.
ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, themore » installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.« less
Miniature Distillation Column for Producing LOX From Air
NASA Technical Reports Server (NTRS)
Rozzi, Jay C.
2006-01-01
The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column, respectively. Because distillation is a mass-transfer process, the purity of the product(s) can be increased by increasing the effectiveness of the mass-transfer process (increasing the mass-transfer coefficient) and/or by increasing the available surface area for mass transfer through increased column height. The diameter of a distillation column is fixed by pressure-drop and mass-flow requirements. The approach taken in designing the present distillation column to be short yet capable of yielding a product of acceptably high purity was to pay careful attention to design details that affect mass-transfer processes.
Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column
NASA Astrophysics Data System (ADS)
Liu, Chong
2017-10-01
Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.
Yang, Dali; Le, Loan; Martinez, Ronald; ...
2013-06-21
Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanningmore » electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, G.; Erickson, D.C.
1999-07-01
The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less
Integrated process of distillation with side reactors for synthesis of organic acid esters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri
An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.
Continuous and Batch Distillation in an Oldershaw Tray Column
ERIC Educational Resources Information Center
Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F.
2011-01-01
The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…
An Automated Distillation Column for the Unit Operations Laboratory
ERIC Educational Resources Information Center
Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.
2005-01-01
A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1-propanol and 2-propanol is separated in the column, using either a constant distillate rate or constant composition…
Avoid problems during distillation column startups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloley, A.W.
1996-07-01
The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less
Low-energy route for alcohol/gasohol recovery from fermentor beer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mix, T.W.
1982-03-01
The production of gasohol directly from fermentor beer and gasoline is feasible and will enable a major reduction in the energy requirements for gasohol production. The fermentor beer is first enriched in a beer still to a 69 mol % ethanol, 31 mol % water product which is then dehydrated by extractive distillation with gasoline as the extractive agent. Gasohol is produced directly. In one version of the process, a heavy cut of gasoline, presumed available at a refinery before blending in of light components, is used as the extractive agent. The enriching column overhead vapors are used to reboilmore » the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light components are blended into the heavy cut-ethanol bottom product from the extractive distillation column to form the desired gasohol. Energy requirements, including feed preheat, are 11,000 Btu per gallon of ethanol in the product gasohol. One hundred and fifty pound steam is required. In a second version, full range gasoline is used as the extractive agent. The enriching column overhead vapors are again used to reboil the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light gasoline components recovered from the decanter following the overhead condenser of the extractive distillation column are blended in with the gasoline-ethanol product leaving the bottom of the extractive distillation column to form the desired gasohol. Energy requirements in this case are 13,000 Btu/gallon of ethanol in the product gasohol. In both of the above cases it is energy-conservative and desirable from a process standpoint to feed the enriched alcohol to the extractive distillation column as a liquid rather than as a vapor.« less
Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.
2017-06-01
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.
NASA Astrophysics Data System (ADS)
Sadeghifar, Hamidreza
2015-10-01
Developing general methods that rely on column data for the efficiency estimation of operating (existing) distillation columns has been overlooked in the literature. Most of the available methods are based on empirical mass transfer and hydraulic relations correlated to laboratory data. Therefore, these methods may not be sufficiently accurate when applied to industrial columns. In this paper, an applicable and accurate method was developed for the efficiency estimation of distillation columns filled with trays. This method can calculate efficiency as well as mass and heat transfer coefficients without using any empirical mass transfer or hydraulic correlations and without the need to estimate operational or hydraulic parameters of the column. E.g., the method does not need to estimate tray interfacial area, which can be its most important advantage over all the available methods. The method can be used for the efficiency prediction of any trays in distillation columns. For the efficiency calculation, the method employs the column data and uses the true rates of the mass and heat transfers occurring inside the operating column. It is highly emphasized that estimating efficiency of an operating column has to be distinguished from that of a column being designed.
A Comprehensive Real-World Distillation Experiment
ERIC Educational Resources Information Center
Kazameas, Christos G.; Keller, Kaitlin N.; Luyben, William L.
2015-01-01
Most undergraduate mass transfer and separation courses cover the design of distillation columns, and many undergraduate laboratories have distillation experiments. In many cases, the treatment is restricted to simple column configurations and simplifying assumptions are made so as to convey only the basic concepts. In industry, the analysis of a…
Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dali; Orler, Bruce; Tornga, Stephanie
2011-01-26
Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr andmore » reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.« less
First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, H. O.; Alexander, T.; Alton, A.
2012-04-01
We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixturemore » was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.« less
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1981-01-01
Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.
Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I
2014-10-29
Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.
Catalytic distillation process
Smith, Jr., Lawrence A.
1982-01-01
A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Catalytic distillation process
Smith, L.A. Jr.
1982-06-22
A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Sotelo, David; Favela-Contreras, Antonio; Sotelo, Carlos; Jiménez, Guillermo; Gallegos-Canales, Luis
2017-11-01
In recent years, interest for petrochemical processes has been increasing, especially in refinement area. However, the high variability in the dynamic characteristics present in the atmospheric distillation column poses a challenge to obtain quality products. To improve distillates quality in spite of the changes in the input crude oil composition, this paper details a new design of a control strategy in a conventional crude oil distillation plant defined using formal interaction analysis tools. The process dynamic and its control are simulated on Aspen HYSYS ® dynamic environment under real operating conditions. The simulation results are compared against a typical control strategy commonly used in crude oil atmospheric distillation columns. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, H. O.; Bottenus, D. R.; Clayton, C.
The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction... to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from..., flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. Hot...
Lubkowitz, Joaquin A; Meneghini, Roberto I
2002-01-01
This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit
We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesizemore » an entire new class of useful configurations based on heat and mass integration of distillation columns.« less
Systems and methods for reactive distillation with recirculation of light components
Stickney, Michael J [Nassau Bay, TX; Jones, Jr., Edward M.
2011-07-26
Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.
Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments
NASA Astrophysics Data System (ADS)
Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming
2013-04-01
Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction... UF4 to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from..., flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. Hot...
Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Orriols, Ignacio; Pérez-Correa, José Ricardo; López, Francisco
2016-12-15
The organoleptic quality of wine distillates depends on raw materials and the distillation process. Previous work has shown that rectification columns in batch distillation with fixed reflux rate are useful to obtain distillates or distillate fractions with enhanced organoleptic characteristics. This study explores variable reflux rate operating strategies to increase the levels of terpenic compounds in specific distillate fractions to emphasize its floral aroma. Based on chemical and sensory analyses, two distillate heart sub-fractions obtained with the best operating strategy found, were compared with a distillate obtained in a traditional alembic. Results have shown that a drastic reduction of the reflux rate at an early stage of the heart cut produced a distillate heart sub-fraction with a higher concentration of terpenic compounds and lower levels of negative aroma compounds. Therefore, this sub-fraction presented a much more noticeable floral aroma than the distillate obtained with a traditional alembic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cryogenic distillation facility for isotopic purification of protium and deuterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.
Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogenmore » isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.« less
The setup of an extraction system coupled to a hydrogen isotopes distillation column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamfirache, M.; Bornea, A.; Stefanescu, I.
2008-07-15
Among the most difficult problems of cryogenic distillation one stands apart: the extraction of the heavy fraction. By an optimal design of the cycle scheme, this problem could be avoided. A 'worst case scenario' is usually occurring when the extracted fraction consists of one prevalent isotope such as hydrogen and small amounts of the other two hydrogen isotopes (deuterium and/or tritium). This situation is further complicated by two parameters of the distillation column: the extraction flow rate and the hold-up. The present work proposes the conceptual design of an extraction system associated to the cryogenic distillation column used in hydrogenmore » separation processes. During this process, the heavy fraction (DT, T{sub 2}) is separated, its concentration being the highest at the bottom of the distillation column. From this place the extraction of the gaseous phase can now begin. Being filled with adsorbent, the extraction system is used to temporarily store the heavy fraction. Also the extraction system provides samples for the gas Chromatograph. The research work is focused on the existent pilot plant for tritium and deuterium separation from our institute to validate the experiments carried out until now. (authors)« less
Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control
NASA Technical Reports Server (NTRS)
Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly
2009-01-01
Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.
NASA Astrophysics Data System (ADS)
Wahid, A.; Putra, I. G. E. P.
2018-03-01
Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.
NASA Astrophysics Data System (ADS)
Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti
2016-06-01
In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured reactive distillation consisted of packing distillation columns equipped with a reboiler and condenser, with the prototype made of stainless steel material equipped with sigh glass. The filling column expands the contact of liquid-vapor phase so that the two reactants between methanol and oil would be converted into methyl ester and glycerol. The initial results of the study indicated that the relatively good condition is reached at the peak temperature and the base of the column of 62°C and 71°C with NaOH 2% of methanol weight as the catalyst at the feed ratio of methanol and the sunan pecan oil 4:1. The result of the performance test of the diesel engine indicated that the efficiency of the biodiesel fuel was achieved relatively good at 1.7% with 2500 rpm engine speed.
Prototype of an Interface for Hyphenating Distillation with Gas Chromatography and Mass Spectrometry
Tang, Ya-Ru; Yang, Hui-Hsien; Urban, Pawel L.
2017-01-01
Chemical analysis of complex matrices—containing hundreds of compounds—is challenging. Two-dimensional separation techniques provide an efficient way to reduce complexity of mixtures analyzed by mass spectrometry (MS). For example, gasoline is a mixture of numerous compounds, which can be fractionated by distillation techniques. However, coupling conventional distillation with other separations as well as MS is not straightforward. We have established an automatic system for online coupling of simple microscale distillation with gas chromatography (GC) and electron ionization MS. The developed system incorporates an interface between the distillation condenser and the injector of a fused silica capillary GC column. Development of this multidimensional separation (distillation-GC-MS) was preceded by a series of preliminary off-line experiments. In the developed technique, the components with different boiling points are fractionated and instantly analyzed by GC-MS. The obtained data sets illustrate dynamics of the distillation process. An important advantage of the distillation-GC-MS technique is that raw samples can directly be analyzed without removal of the non-volatile matrix residues that could contaminate the GC injection port and the column. Distilling the samples immediately before the injection to the GC column may reduce possible matrix effects—especially in the early phase of separation, when molecules with different volatilities co-migrate. It can also reduce losses of highly volatile components (during fraction collection and transfer). The two separation steps are partly orthogonal, what can slightly increase selectivity of the entire analysis. PMID:28337400
Catalytic distillation structure
Smith, Jr., Lawrence A.
1984-01-01
Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.
Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor
NASA Astrophysics Data System (ADS)
Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji
1994-07-01
A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.
Catalytic distillation structure
Smith, L.A. Jr.
1984-04-17
Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.
Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface
NASA Technical Reports Server (NTRS)
Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly
2010-01-01
Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.
NASA Astrophysics Data System (ADS)
Dasan, Y. K.; Abdullah, M. A.; Bhat, A. H.
2014-10-01
Continuous distillation column was used for the purification of bioethanol from fermentation of molasses using Saccharomyces cerevisia. Bioethanol produced was at 8.32% (v/v) level. The efficiency of continuous distillation process was evaluated based on reflux ratio, and feed condition. The lab results were validated using COFE simulation Software. The analyses showed that both reflux ratio and feed condition had significant effects on the distillation process. Stages increased from 1.79 to 2.26 as the reflux ratio was decreased from 90% to 45% and the saturated feed produced lower mole fraction of desired product. We concluded that the lower reflux ratio with cold feed condition was suitable for higher mole fraction of top product.
METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR
Vernon, H.C.
1962-08-14
A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)
Distillation sequence for the purification and recovery of hydrocarbons
Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian
2007-12-25
This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.
Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.
Grisales Diaz, Victor Hugo; Olivar Tost, Gerard
2018-03-01
Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.
GOBF-ARMA based model predictive control for an ideal reactive distillation column.
Seban, Lalu; Kirubakaran, V; Roy, B K; Radhakrishnan, T K
2015-11-01
This paper discusses the control of an ideal reactive distillation column (RDC) using model predictive control (MPC) based on a combination of deterministic generalized orthonormal basis filter (GOBF) and stochastic autoregressive moving average (ARMA) models. Reactive distillation (RD) integrates reaction and distillation in a single process resulting in process and energy integration promoting green chemistry principles. Improved selectivity of products, increased conversion, better utilization and control of reaction heat, scope for difficult separations and the avoidance of azeotropes are some of the advantages that reactive distillation offers over conventional technique of distillation column after reactor. The introduction of an in situ separation in the reaction zone leads to complex interactions between vapor-liquid equilibrium, mass transfer rates, diffusion and chemical kinetics. RD with its high order and nonlinear dynamics, and multiple steady states is a good candidate for testing and verification of new control schemes. Here a combination of GOBF-ARMA models is used to catch and represent the dynamics of the RDC. This GOBF-ARMA model is then used to design an MPC scheme for the control of product purity of RDC under different operating constraints and conditions. The performance of proposed modeling and control using GOBF-ARMA based MPC is simulated and analyzed. The proposed controller is found to perform satisfactorily for reference tracking and disturbance rejection in RDC. Copyright © 2015 Elsevier Inc. All rights reserved.
Distillation with Vapour Compression. An Undergraduate Experimental Facility.
ERIC Educational Resources Information Center
Pritchard, Colin
1986-01-01
Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching…
Distributive Distillation Enabled by Microchannel Process Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Ravi
The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation formore » new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.« less
Analysis and simulation of industrial distillation processes using a graphical system design model
NASA Astrophysics Data System (ADS)
Boca, Maria Loredana; Dobra, Remus; Dragos, Pasculescu; Ahmad, Mohammad Ayaz
2016-12-01
The separation column used for experimentations one model can be configured in two ways: one - two columns of different diameters placed one within the other extension, and second way, one column with set diameter [1], [2]. The column separates the carbon isotopes based on the cryogenic distillation of pure carbon monoxide, which is fed at a constant flow rate as a gas through the feeding system [1],[2]. Based on numerical control systems used in virtual instrumentation was done some simulations of the distillation process in order to obtain of the isotope 13C at high concentrations. The experimental installation for cryogenic separation can be configured from the point of view of the separation column in two ways: Cascade - two columns of different diameters and placed one in the extension of the other column, and second one column with a set diameter. It is proposed that this installation is controlled to achieve data using a data acquisition tool and professional software that will process information from the isotopic column based on a logical dedicated algorithm. Classical isotopic column will be controlled automatically, and information about the main parameters will be monitored and properly display using one program. Take in consideration the very-low operating temperature, an efficient thermal isolation vacuum jacket is necessary. Since the "elementary separation ratio" [2] is very close to unity in order to raise the (13C) isotope concentration up to a desired level, a permanent counter current of the liquid-gaseous phases of the carbon monoxide is created by the main elements of the equipment: the boiler in the bottom-side of the column and the condenser in the top-side.
Separation and purification of xenon
Schlea, deceased, Carl Solomon
1978-03-14
Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.
Enrichment of light hydrocarbon mixture
Yang, Dali [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL
2011-11-29
Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.
Enrichment of light hydrocarbon mixture
Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL
2010-08-10
Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2011-03-01
The distribution of distillation temperatures of liquid and semi-fluid products, including petroleum fractions and products, is an important process and practical parameter. It provides information on properties of crude oil and content of particular fractions, classified on the basis of their boiling points, as well as the optimum conditions of atmospheric or vacuum distillation. At present, the distribution of distillation temperatures is often investigated by simulated distillation (SIMDIS) using capillary gas chromatography (CGC) with a short capillary column with polydimethylsiloxane as the stationary phase. This paper presents the results of investigations on the possibility of replacing currently used CGC columns for SIMDIS with a deactivated fused silica capillary tube without any stationary phase. The SIMDIS technique making use of such an empty fused silica column allows a considerable lowering of elution temperature of the analytes, which results in a decrease of the final oven temperature while ensuring a complete separation of the mixture. This eliminates the possibility of decomposition of less thermally stable mixture components and bleeding of the stationary phase which would result in an increase of the detector signal. It also improves the stability of the baseline, which is especially important in the determination of the end point of elution, which is the basis for finding the final temperature of distillation. This is the key parameter for the safety process of hydrocracking, where an excessively high final temperature of distillation of a batch can result in serious damage to an expensive catalyst bed. This paper compares the distribution of distillation temperatures of the fraction from vacuum distillation of petroleum obtained using SIMDIS with that obtained by the proposed procedure. A good agreement between the two procedures was observed. In addition, typical values of elution temperatures of n-paraffin standards obtained by the two procedures were compared. Finally, the agreement between boiling points of polar compounds determined from their retention times and actual boiling points was investigated.
Contact structure for use in catalytic distillation
Jones, Jr., Edward M.
1984-01-01
A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.
Heat integrated ethanol dehydration flowsheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van
1995-04-01
zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essentialmore » for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, A. J.
In a method of the type where petrol is recovered from a mixture of petrol vapor and air by absorption of the petrol in a cooled petroleum distillate, a petroleum distillate having a boiling point range higher than that of the petrol is used, and this petroleum distillate is in sequence cooled by heat exchange with a cold reservoir, brought into direct contact with the petrol/air mixture to absorb petrol, transferred to a buffer tank and transferred from the buffer tank to a stripping means which may be a distillation column. By combining cooling condensation and absorption of the petrolmore » vapor and controlling the amount of cooled petroleum distillate brought into contact with the petrol/air mixture so that the petrol concentration in the petroleum distillate transferred to the buffer tank is substantially constant, an unprecedented optimum control of the petrol absorbing process can be obtained both in peak load and in average load operations. A system for carrying out the method is advantageous in that only the absorption means need be dimensioned for peak load operation, while the other components, such as the distillation column or a heat exchanger with associated conduits can be dimensioned for average loads, a buffer tank being provided to temporarily receive the petroleum distillate which owing to the above-mentioned control has a substantially constant, maximum petrol concentration so that the system can cope with peak loads with a surprisingly small buffer tank.« less
Setting the Pressure at Which to Conduct a Distillation.
ERIC Educational Resources Information Center
Barduhn, Allen J.
1984-01-01
Discusses how pressure setting is determined for distillation columns, examining factors which must be considered when optimizing design for economical balance. Also discusses the basics of heat exchangers and cites a common problem with pressure differences. (JM)
Low grade bioethanol for fuel mixing on gasoline engine using distillation process
NASA Astrophysics Data System (ADS)
Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami
2017-03-01
Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.
Contact structure for use in catalytic distillation
Jones, E.M. Jr.
1984-03-27
A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.
Contact structure for use in catalytic distillation
Jones, Jr., Edward M.
1985-01-01
A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.
Contact structure for use in catalytic distillation
Jones, E.M. Jr.
1985-08-20
A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.
Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit; ...
2018-04-20
Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit
Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less
2015-05-16
synthesis of iron magnetic nanoparticles is being investigated (Appendix A; Scheme IV). In the first step, precursor iron(III) chloride nanoparticles...and other methods. Currently, we are developing a two-step scheme for the synthesis of esters that will require distillation and/or column...recognize the link between them. We are developing for the above purpose, the microwave-assisted, two-step synthesis of high boiling point esters. The
The paper describes the application of capillary supercritical fluid chromatography (SFC) to the analysis of a middle distillate fuel. Small diameter (50 micrometer i.d.) fused silica capillary columns coated with crosslinked 50% phenyl polymethylsiloxane provided high separation...
Distillation tray structural parameter study: Phase 1
NASA Technical Reports Server (NTRS)
Winter, J. Ronald
1991-01-01
The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.
A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process
NASA Astrophysics Data System (ADS)
Hussain, Arif; Qyyum, Muhammad Abdul; Quang Minh, Le; Jimin, Hong; Lee, Moonyong
2017-11-01
The study aims to reveal the possibility of reactive distillation (RD) in the 2-methoxy-2-methylheptane (MMH) production process. MMH is getting more industrial and academic interests as a gasoline additive to replace methyl tert-butyl ether. Traditionally, MMH is obtained by carrying out the reaction in the reactor followed by three distillation columns. The high yield of MMH could be achieved by keeping the large reactor size or by using the large excess of 2-methyl-1-heptene (MH). Both former and latter strategies are associated with the high capital and operating costs. To solve these problems, this study proposed an innovative RD configuration to take synergistic benefits of reaction and separation involved. This innovative RD configuration allows the production of MMH with significantly lower capital, operating and total annual costs. For desired MMH yield, the result demonstrates that the proposed RD configuration can reduce energy, capital, and total annual costs up to 7.7, 31.3, and 17.1%, respectively, compared to a conventional process. Furthermore, the influence of some important design parameters on the RD column performance was also explored to overcome the temperature limitation of acid resin catalyst inside the reactive zone of the RD column.
Dizer, H; Nasser, A; Lopez, J M
1984-01-01
The adsorption of several enteroviruses and rotavirus SA11 to sand from an aquifer in the Federal Republic of Germany was estimated in sand-filled columns loaded with ca. 10(7) PFU and run at a velocity of 2.5 m/day for 12 h. After either distilled water, groundwater, secondary effluent, or tertiary effluent was percolated, the sand core was slowly extruded out of the column and cut in 1-cm slices. The slices were eluted with nutrient broth, and the amount of viruses in the broth was estimated. The best adsorption was promoted by groundwater and tertiary effluent, followed by distilled water and secondary effluent. Similar experiments, carried out at different percolation rates, indicated that a 50-day underground stay of recharged water probably suffices to eliminate viruses in the groundwater-recharged tertiary effluent. However, when viruses and sand were incubated in the presence of the surfactants sodium dodecyl sulfate, nonyl phenol, dodigen 226, or alkylbenzylsulfonate, the adsorption of the viruses was substantially diminished. Experiments in the presence of nonyl phenol seem to indicate that hydrophobic interactions are involved in the adsorption of viruses to sand. PMID:6324676
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, H.E.
The objective of the project was to investigate the economic feasibility of converting potato waste to fuel alcohol. The source of potato starch was Troyer Farms Potato Chips. Experimental work was carried out at both the laboratory scale and the larger pilot scale batch operation at a decommissioned waste water treatment building on campus. The laboratory scale work was considerably more extensive than originally planned, resulting in a much improved scientific work. The pilot scale facility has been completed and operated successfully. In contrast, the analysis of the economic feasibility of commercial production has not yet been completed. The projectmore » was brought to a close with the successful demonstration of the fermentation and distillation using the large scale facilities described previously. Two batches of mash were cooked using the procedures established in support of the laboratory scale work. One of the batches was fermented using the optimum values of the seven controlled factors as predicted by the laboratory scale application of the Box-Wilson design. The other batch was fermented under conditions derived out of Mr. Rouse's interpretation of his long sequence of laboratory results. He was gratified to find that his commitment to the Box-Wilson experiments was justified. The productivity of the Box-Wilson design was greater. The difference between the performance of the two fermentors (one stirred, one not) has not been established yet. Both batches were then distilled together, demonstrating the satisfactory performance of the column still. 4 references.« less
Aspects regarding at 13C isotope separation column control using Petri nets system
NASA Astrophysics Data System (ADS)
Boca, M. L.; Ciortea, M. E.
2015-11-01
This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.
A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION
Frazer, J.W.
1961-12-19
A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)
Short-cut Methods versus Rigorous Methods for Performance-evaluation of Distillation Configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo
Here, this study demonstrates the efficacy of a short-cut method such as the Global Minimization Algorithm (GMA), that uses assumptions of ideal mixtures, constant molar overflow (CMO) and pinched columns, in pruning the search-space of distillation column configurations for zeotropic multicomponent separation, to provide a small subset of attractive configurations with low minimum heat duties. The short-cut method, due to its simplifying assumptions, is computationally efficient, yet reliable in identifying the small subset of useful configurations for further detailed process evaluation. This two-tier approach allows expedient search of the configuration space containing hundreds to thousands of candidate configurations for amore » given application.« less
Short-cut Methods versus Rigorous Methods for Performance-evaluation of Distillation Configurations
Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo; ...
2018-05-17
Here, this study demonstrates the efficacy of a short-cut method such as the Global Minimization Algorithm (GMA), that uses assumptions of ideal mixtures, constant molar overflow (CMO) and pinched columns, in pruning the search-space of distillation column configurations for zeotropic multicomponent separation, to provide a small subset of attractive configurations with low minimum heat duties. The short-cut method, due to its simplifying assumptions, is computationally efficient, yet reliable in identifying the small subset of useful configurations for further detailed process evaluation. This two-tier approach allows expedient search of the configuration space containing hundreds to thousands of candidate configurations for amore » given application.« less
Nitric acid recycling and copper nitrate recovery from effluent.
Jô, L F; Marcus, R; Marcelin, O
2014-01-01
The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.
Vijaya Raghavan, S R; Radhakrishnan, T K; Srinivasan, K
2011-01-01
In this research work, the authors have presented the design and implementation of a recurrent neural network (RNN) based inferential state estimation scheme for an ideal reactive distillation column. Decentralized PI controllers are designed and implemented. The reactive distillation process is controlled by controlling the composition which has been estimated from the available temperature measurements using a type of RNN called Time Delayed Neural Network (TDNN). The performance of the RNN based state estimation scheme under both open loop and closed loop have been compared with a standard Extended Kalman filter (EKF) and a Feed forward Neural Network (FNN). The online training/correction has been done for both RNN and FNN schemes for every ten minutes whenever new un-trained measurements are available from a conventional composition analyzer. The performance of RNN shows better state estimation capability as compared to other state estimation schemes in terms of qualitative and quantitative performance indices. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Distillation and Air Stripping Designs for the Lunar Surface
NASA Technical Reports Server (NTRS)
Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly
2009-01-01
Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates.
NASA Astrophysics Data System (ADS)
Muharam, Y.; Zulkarnain, L. M.; Wirya, A. S.
2018-03-01
The increase in the dimethyl ether yield through methanol dehydration due to a recycle integration to a reaction-distillation system was studied in this research. A one-dimensional phenomenological model of a methanol dehydration reactor and a shortcut model of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to the system increases the dimethyl ether yield by 8%.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analysis was continued for the HSC process (Hemlock Semiconductor Corporation) in which solar cell silicon is produced in a 1,000 MT/yr plant. Progress and status are reported for the primary engineering activities involved in the preliminary process engineering design of the plant base case conditions (96%), reaction chemistry (96%), process flow diagram (85%), material balance (85%), energy balance (60%), property data (60%), equipment design (40%), major equipment list (30%) and labor requirements (10%). Engineering design of the second distillation column (D-02, TCS column) in the process was completed. The design is based on a 97% recovery of the light key (TCS, trichlorosilane) in the distillate and a 97% recovery of the heavy key (TET, silicon tetrachloride) in the bottoms. At a reflux ratio of 2, the specified recovery of TCS and TET is achieved with 20 trays (equilibrium stages, N=20). Respective feed tray locations are 9, 12 and 15 (NF sub 1 = 9, NF sub 2 = 12,, and NF sub 3 = 15). A total condenser is used for the distillation which is conducted at a pressure of 90 psia.
Separating Iso-Propanol-Toluene mixture by azeotropic distillation
NASA Astrophysics Data System (ADS)
Iqbal, Asma; Ahmad, Syed Akhlaq
2018-05-01
The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.
Side draw control design for a high purity multi-component distillation column.
A Udugama, Isuru; Munir, M T; Kirkpatrick, Rob; Young, Brent R; Yu, Wei
2018-05-01
Industrial methanol production involves a multi component feed containing methanol, water and trace levels of ethanol being refined to produce AA grade methanol at high product recovery. Due to practical constraints, the bottoms discharge of the column is primarily water with only trace of methanol impurities. As a result of these constraints, ethanol, which is a non-key middle boiling component gets "trapped" near the side draw of the column forming an ethanol bulge, which in turn results in non-linear, inverse, time and state varying behaviour of the side draw ethanol composition. In this work, we established that the existence of the ethanol bulge creates the complex process behaviour of the side draw ethanol composition and that this bulge needs to be explicitly controlled. This type of explicit composition bulge analysis and subsequent control has not been attempted on methanol distillation columns before. For this purpose a novel, robust and practical side draw control scheme to detect and remedy the excess ethanol bulge movement using override control is presented. The side draw controller, together with other regulatory controllers is shown to maintain on-specification operations of the column. Disturbance rejection tests carried out illustrate that the side draw control scheme will keep the column operating within commercial specification. It is also shown that a traditional DV control structure is unable to achieve this objective. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco
2002-09-01
Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.
Recovery and purification of ethylene
Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL
2008-10-21
A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.
Removing Chlorides From Metallurgical-Grade Silicon
NASA Technical Reports Server (NTRS)
Breneman, W. C.; Coleman, L. M.
1982-01-01
Process for making low-cost silicon for solar cells is further improved. Silane product recycled to feed stripper column converts some of heavy impurities to volatile ones that pass off at top of column with light wastes. Impurities--chlorides of arsenic, phosphorus, and boron-would otherwise be carried to subsequent distillations where they would be difficult to remove. Since only a small amount of silane is recycled, silicon production efficiency remains high.
NASA Astrophysics Data System (ADS)
Eden, W. T.; Alighiri, D.; Cahyono, E.; Supardi, K. I.; Wijayati, N.
2018-04-01
The aim of this work was to assess the performance of a vacuum fractionating column for the fractionation of Java Citronella Oil (Cymbopogon winterianus) and citronellal purification during batch mode operation at vacuum -76 cmHg and reflux ratios 5:1. Based on GC-MS analysis of Java Citronella Oil is known that citronellal, citronellol, and geraniol has yielded 21,59%; 7,43%; and 34,27%, respectively. Fractional distillation under reduced pressure and continued redistilled are needed to isolate the component of Java Citronella Oil. Redistilled can improve the purity, then distillate collected while the temperature changed. In the first distillate yielded citronellal with a purity of 75.67%. The first distillate obtained residue rhodinol product will then be carried back to separation into citronellol and geraniol. The purity of citronellol reached 80,65% purity, whereas geraniol reached 76.63% purity. Citronellal Purification resulting citronellal to 95.10% purity and p-menthane-3,8-diol reached 75.95% purity.
1989-12-01
fuel. Full D 2887 distillation data are also shown in the Appendix. Fractionation ADparatus - The glass vacuum distillation apparatus used was from a...liter - 3-neck glass round bottom flask 2. 120 cm (4 ft), 50-mm diameter vacuum -jacketed column packed with No. 2918 Helipak coils 12 TABLE 3. ASTM D...swinging bucket for variable reflux ratios and an integral condenser, all of which are vacuum jacketed 4. Product receiver of 1-liter capacity, vacuum
Advanced Distillation Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena Fanelli; Ravi Arora; Annalee Tonkovich
2010-03-24
The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the projectmore » were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.« less
Jin, Xin; Liu, Mingyan; Chen, Zaixing; Mao, Ruikun; Xiao, Qinghuan; Gao, Hua; Wei, Minjie
2015-10-01
Epigallocatechin-3-gallate (EGCG) is a major bioactive ingredient of green tea that produces beneficial neuroprotective effects. In this paper, to optimize the EGCG enrichment, thirteen macroporous resins with different chemical and physical properties were systemically evaluated. Among the thirteen tested resins, the H-bond resin HPD826 exhibited best adsorption/desorption capabilities and desorption ratio, as well as weakest affinity for caffeine. The absorption of EGCG on the HPD826 resin followed the pseudo-second-order kinetics and Langmuir isotherm model. The separation parameters of EGCG were optimized by dynamic adsorption/desorption experiments with the HPD826 resin column. Under the optimal condition, the content of EGCG in the 30% ethanol eluent increased by 5.8-fold from 7.7% to 44.6%, with the recovery yield of 72.1%. After further purification on a polyamide column, EGCG with 74.8% purity was obtained in the 40-50% ethanol fraction with a recovery rate of 88.4%. In addition, EGCG with 95.1% purity could be easily obtained after one-step crystallization in distilled water. Our study suggests that the combined macroporous resin and polyamide column chromatography is a simple method for large-scale separation and purification of EGCG from natural plants for food and pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karsten, Ulf; Escoubeyrou, Karine; Charles, François
2009-09-01
Many macroalgal species that are regularly exposed to high solar radiation such as the eulittoral green alga Prasiola crispa and the red alga Porphyra umbilicalis synthesize and accumulate high concentrations of mycosporine-like amino acids (MAAs) as UV-sunscreen compounds. These substances are typically extracted with a widely used standard protocol following quantification by various high performance liquid chromatography (HPLC) techniques. However, further preparation steps prior to HPLC analysis as well as different HPLC column types have not been systematically checked regarding separation quality and reproducibility. Therefore pure methanol, distilled water and HPLC eluent were evaluated as re-dissolution solvent for dried Prasiola and Porphyra extracts, which were subsequently analyzed on three reversed-phase C8 and C18 HPLC columns. The data indicate that distilled water and the HPLC eluent gave almost identical peak patterns and MAA contents on the C8 and C18 columns. In contrast, the application of the widely used methanol led to double peaks or even the loss of specific peaks as well as to a strong decline in total MAA amounts ranging from about 35% of the maximum in P. crispa to 80% of the maximum in P. umbilicalis. Consequently, methanol should be avoided as re-dissolution solvent for the HPLC sample preparation. An improved protocol for the MAA analysis in macroalgae in combination with a reliable C18 column is suggested.
Teaching Separations: Why, What, When, and How?
ERIC Educational Resources Information Center
Wankat, Phillip C.
2001-01-01
Describes how and when to teach separation science to chemical engineering students. Separation science is important for industrial businesses involving the manufacture of adsorption systems, distillation columns, extractors, and other separation equipment and techniques. (Contains 13 references.) (YDS)
Surfactants and Desensitizing Wax Substitutes for TNT-Based Systems.
1994-10-01
materials having dispersion (London or van der Waals) forces only. The concept thus had to be refined to take into account additional intermolecular...The column head pressure should have been set to produce a convenient column flow (-l to 5 ml/min) as determined by Van Demmeter plots. 8. Place...current OSHA criteria 2 200 Volatility, Approximate GC Neut . 3 hours at Carbon Typo Distillation Range No. 163 C Clay/SIlica Gel Analysis, Mass % Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosendahl, S., E-mail: rosendahl@wwu.de; Brown, E.; Fieguth, A.
The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive {sup 85}Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive {sup 83m}Kr-tracer method. The separation characteristics under different operationmore » conditions are determined for very low concentrations of krypton in xenon at the level of {sup 83m}Kr/Xe = 1.9 ⋅ 10{sup −15}, demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.« less
NASA Astrophysics Data System (ADS)
Widjaja, Tri; Altway, Ali; Ni'mah, Hikmatun; Tedji, Namira; Rofiqah, Umi
2015-12-01
Development and innovation of ethanol food grade production are becoming the reasearch priority to increase economy growth. Moreover, the government of Indonesia has established regulation for increasing the renewable energy as primary energy. Sorghum is cerealia plant that contains 11-16% sugar that is optimum for fermentation process, it is potential to be cultivated, especially at barren area in Indonesia. The purpose of this experiment is to learn about the effect of microorganisms in fermentation process. Fermentation process was carried out batchwise in bioreactor and used 150g/L initial sugar concentration. Microorganisms used in this experiment are Zymomonas mobilis mutation (A3), Saccharomyces cerevisiae and mixed of Pichia stipitis. The yield of ethanol can be obtained from this experiment. For ethanol purification result, distillation process from fermentation process has been done to search the best operation condition for efficiency energy consumption. The experiment for purification was divided into two parts, which are distillation with structured packing steel wool and adsorption (dehydration) sequencely. In distillation part, parameters evaluation (HETP and pressure drop) of distillation column that can be used for scale up are needed. The experiment was operated at pressure of 1 atm. The distillation stage was carried out at 85 °C and reflux ratio of 0.92 with variety porosities of 20%, 40%, and 60%. Then the adsorption process was done at 120°C and two types of adsorbent, which are starch - based adsorbent with ingredient of cassava and molecular sieve 3A, were used. The adsorption process was then continued to purify the ethanol from impurities by using activated carbon. This research shows that the batch fermentation process with Zymomonas mobilis A3 obtain higher % yield of ethanol of 40,92%. In addition to that, for purification process, the best operation condition is by using 40% of porosity of stuctured packing steel wool in distillation stage and starch-based adsorbent in adsorption stage, which can obtain ethanol content of 92,15% with acetic acid percentage of 0,001% and the rest is water. This result is qualified for ethanol food grade specification which is between 90 - 94 % of ethanol with maximum percentage of acetic acid is 0,003%, and passes in fusel oil and isopropyl alcohol test.
Prospective and development of butanol as an advanced biofuel.
Xue, Chuang; Zhao, Xin-Qing; Liu, Chen-Guang; Chen, Li-Jie; Bai, Feng-Wu
2013-12-01
Butanol has been acknowledged as an advanced biofuel, but its production through acetone-butanol-ethanol (ABE) fermentation by clostridia is still not economically competitive, due to low butanol yield and titer. In this article, update progress in butanol production is reviewed. Low price and sustainable feedstocks such as lignocellulosic residues and dedicated energy crops are needed for butanol production at large scale to save feedstock cost, but processes are more complicated, compared to those established for ABE fermentation from sugar- and starch-based feedstocks. While rational designs targeting individual genes, enzymes or pathways are effective for improving butanol yield, global and systems strategies are more reasonable for engineering strains with stress tolerance controlled by multigenes. Compared to solvent-producing clostridia, engineering heterologous species such as Escherichia coli and Saccharomyces cerevisiae with butanol pathway might be a solution for eliminating the formation of major byproducts acetone and ethanol so that butanol yield can be improved significantly. Although batch fermentation has been practiced for butanol production in industry, continuous operation is more productive for large scale production of butanol as a biofuel, but a single chemostat bioreactor cannot achieve this goal for the biphasic ABE fermentation, and tanks-in-series systems should be optimized for alternative feedstocks and new strains. Moreover, energy saving is limited for the distillation system, even total solvents in the fermentation broth are increased significantly, since solvents are distilled to ~40% by the beer stripper, and more than 95% water is removed with the stillage without phase change, even with conventional distillation systems, needless to say that advanced chemical engineering technologies can distil solvents up to ~90% with the beer stripper, and the multistage pressure columns can well balance energy consumption for solvent fraction. Indeed, an increase in butanol titer with ABE fermentation can significantly save energy consumption for medium sterilization and stillage treatment, since concentrated medium can be used, and consequently total mass flow with production systems can be reduced. As for various in situ butanol removal technologies, their energy efficiency, capital investment and contamination risk to the fermentation process need to be evaluated carefully. © 2013 Elsevier Inc. All rights reserved.
Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C
2010-02-01
There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.
Alkylation of organic aromatic compounds
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1993-01-01
Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.
Alkylation of organic aromatic compounds
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1993-01-05
Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.
Poliovirus removal from primary and secondary sewage effluent by soil filtration.
Gerba, C P; Lance, J C
1978-01-01
Adsorption of poliovirus from primary sewage effluent was similar to that from secondary sewage effluent in both batch soil studies and experiments with soil columns 240 cm long. Virus desorption by distilled water was also similar in a soil column that had been flooded with either primary or secondary effluent seeded with virus. These results indicated that absorption of poliovirus from primary effluent and virus movement through the soil were not affected by the higher organic content of primary sewage effluent. PMID:211936
Bartlit, John R.; Denton, William H.; Sherman, Robert H.
1982-01-01
A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.
Separation technologies for the recovery and dehydration of alcohols from fermentation broths
Multi-column distillation followed by molecular sieve adsorption is currently the standard method for producing fuel grade ethanol from dilute fermentation broths in modern corn-to-ethnol facilities. As the liquid biofuels industry transitions to lignocellulosic feedstocks, expan...
Ketenoğlu, Onur; Erdoğdu, Ferruh; Tekin, Aziz
2018-01-01
Oleic acid is a commercially valuable compound and has many positive health effects. Determining optimum conditions in a physical separation process is an industrially significant point due to environmental and health related concerns. Molecular distillation avoids the use of chemicals and adverse effects of high temperature application. The objective of this study was to determine the molecular distillation conditions for oleic acid to increase its purity and distillation yield in a model fatty acid mixture. For this purpose, a short-path evaporator column was used. Evaporation temperature ranged from 110 to 190℃, while absolute pressure was from 0.05 to 5 mmHg. Results showed that elevating temperature generally increased distillation yield until a maximum evaporation temperature. Vacuum application also affected the yield at a given temperature, and amount of distillate increased at higher vacuums except the case applied at 190℃. A multi-objective optimization procedure was then used for maximizing both yield and oleic acid amounts in distillate simultaneously, and an optimum point of 177.36℃ and 0.051 mmHg was determined for this purpose. Results also demonstrated that evaporation of oleic acid was also suppressed by a secondary dominant fatty acid of olive oil - palmitic acid, which tended to evaporate easier than oleic acid at lower evaporation temperatures, and increasing temperature achieved to transfer more oleic acid to distillate. At 110℃ and 0.05 mmHg, oleic and palmitic acid concentrations in distillate were 63.67% and 24.32%, respectively. Outcomes of this study are expected to be useful for industrial process conditions.
Neuro-estimator based GMC control of a batch reactive distillation.
Prakash, K J Jithin; Patle, Dipesh S; Jana, Amiya K
2011-07-01
In this paper, an artificial neural network (ANN)-based nonlinear control algorithm is proposed for a simulated batch reactive distillation (RD) column. In the homogeneously catalyzed reactive process, an esterification reaction takes place for the production of ethyl acetate. The fundamental model has been derived incorporating the reaction term in the model structure of the nonreactive distillation process. The process operation is simulated at the startup phase under total reflux conditions. The open-loop process dynamics is also addressed running the batch process at the production phase under partial reflux conditions. In this study, a neuro-estimator based generic model controller (GMC), which consists of an ANN-based state predictor and the GMC law, has been synthesized. Finally, this proposed control law has been tested on the representative batch reactive distillation comparing with a gain-scheduled proportional integral (GSPI) controller and with its ideal performance (ideal GMC). Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R. A.; Pak, D. J.
2012-09-11
Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using eithermore » recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.« less
Bartlit, J.R.; Denton, W.H.; Sherman, R.H.
Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operating as a reflux condenser on a reactor or distillation column shall be considered part of the unit... operation. For the purpose of these determinations, the primary condenser operating as a reflux condenser on...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating as a reflux condenser on a reactor or distillation column shall be considered part of the unit... operation. For the purpose of these determinations, the primary condenser operating as a reflux condenser on...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating as a reflux condenser on a reactor or distillation column shall be considered part of the unit... operation. For the purpose of these determinations, the primary condenser operating as a reflux condenser on...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operating as a reflux condenser on a reactor or distillation column shall be considered part of the unit... operation. For the purpose of these determinations, the primary condenser operating as a reflux condenser on...
Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Peter P.; Wagner, Katie A.
This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, eachmore » based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.« less
Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin
2005-09-01
Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.
Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry
Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.
1991-01-01
Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.
Unit Operation Experiment Linking Classroom with Industrial Processing
ERIC Educational Resources Information Center
Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon
2013-01-01
An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…
Ye, Jianchu; Tu, Song; Sha, Yong
2010-10-01
For the two-step transesterification biodiesel production made from the sunflower oil, based on the kinetics model of the homogeneous base-catalyzed transesterification and the liquid-liquid phase equilibrium of the transesterification product, the total methanol/oil mole ratio, the total reaction time, and the split ratios of methanol and reaction time between the two reactors in the stage of the two-step reaction are determined quantitatively. In consideration of the transesterification intermediate product, both the traditional distillation separation process and the improved separation process of the two-step reaction product are investigated in detail by means of the rigorous process simulation. In comparison with the traditional distillation process, the improved separation process of the two-step reaction product has distinct advantage in the energy duty and equipment requirement due to replacement of the costly methanol-biodiesel distillation column. Copyright 2010 Elsevier Ltd. All rights reserved.
Jones, E.M. Jr.
1985-03-12
A method is described for producing tertiary ethers from C[sub 4] or C[sub 5] streams containing isobutene and isoamylene respectively in a process wherein a acidic cation exchange resin is used as the catalyst and as a distillation structure in a distillation reactor column, wherein the improvement is the operation of the catalytic distillation in two zones at different pressures, the first zone containing the catalyst packing and operated a higher pressure in the range of 100 to 200 psig in the case of C[sub 4] and 15 to 100 psig in the case of C[sub 5] which favors the etherification reaction and the second zone being a distillation operated at a lower pressure in the range of 0 to 100 psig in the case of C[sub 4] and 0 to 15 psig in the case of C[sub 5] wherein a first overhead from the first zone is fractionated to remove a portion of the unreacted alcohol from the first overhead and to return a condensed portion containing said alcohol to the first zone and to produce a second overhead having less alcohol than said first overhead. 3 figs.
Jones, Jr., Edward M.
1985-01-01
A method for producing tertiary ethers from C.sub.4 or C.sub.5 streams containing isobutene and isoamylene respectively in a process wherein a acidic cation exchange resin is used as the catalyst and as a distillation structure in a distillation reactor column, wherein the improvement is the operation of the catalytic distillation in two zones at different pressures, the first zone containing the catalyst packing and operated a higher pressure in the range of 100 to 200 psig in the case of C.sub.4 's and 15 to 100 psig in the case of C.sub.5 's which favors the etherification reaction and the second zone being a distillation operated at a lower pressure in the range of 0 to 100 psig in the case of C.sub.4 's and 0 to 15 psig in the case of C.sub.5 's wherein a first overhead from the first zone is fractionated to remove a portion of the unreacted alcohol from the first overhead and to return a condensed portion containing said alcohol to the first zone and to produce a second overhead having less alcohol than said first overhead.
Xie, Yang; Guo, Qiu-Shi; Wang, Guang-Shu
2016-06-13
The use of macroporous resins for the separation and purification of total flavonoids to obtain high-purity total flavonoids from Scorzonera austriaca was studied. The optimal conditions for separation and purification of total flavonoids in S. austriaca with macroporous resins were as follows: D4020 resin columns were loaded with crude flavonoid extract solution, and after reaching adsorptive saturation, the columns were eluted successively with 5 bed volumes (BV) of water, 5 BV of 5% (v/v) aqueous ethanol and 5 BV of 30% (v/v) aqueous ethanol at an elute flow rate of 2 BV·h(-1). Total flavonoids were obtained from the 30% aqueous ethanol eluate by vacuum distillation recovery. The content of flavonoid compounds in the total flavonoids was 93.5%, which represents an improvement by about 150%. In addition, five flavonoid compounds in the product were identified as 2″-O-β-d-xylopyranosyl isoorientin, 6-C-α-l-arabipyranosyl orientin, orientin, isoorientin and vitexin by LC-ESI-MS analysis and internal standard methods. The results in this study could represent a method for the large-scale production of total flavonoids from S. austriaca.
ERIC Educational Resources Information Center
Bott, Tina M.; Wan, Hayley
2013-01-01
Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…
The performance of an innovative heat pump, equipped with a distillation column to shift the composition of a zeotropic refrigerant mixture, was evaluated. The results of U.S. Department of Energy (DOE) rating tests and seasonal energy calcuations are reported with the main cycl...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reaction quality should be used to apply the test substance to the carrier material. Double distilled water... this section. (i) With this apparatus, the microcolumn must be modified. A stopcock with 2-way action... particles invalidates the results, and the test should be repeated with improvements in the filtering action...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velaga, A.
1986-01-01
Packed cross-flow internals consisting of four and ten stages including the samplers for liquid and vapor were fabricated to fit into the existing distillation column. Experiments were conducted using methanol-water, ethanol-water and hexane-heptane binary mixtures. The experimental data were collected for compositions of inlet and exist streams of cross-flow stages. The overall gas phase height transfer units (H/sub og/) were estimated using the experimental data. H/sub og/ values were compared to those of counter current conditions. The individual mass transfer coefficients in the liquid and vapor phases were estimated using the collected experimental data for degree of separation, flow ratesmore » and physical properties of the binary system used. The physical properties were estimated at an average temperature of the specific cross-flow stage. The mass transfer coefficients were evaluated using three different correlations proposed by Shulman. Onda and Hayashi respectively. The interfacial areas were estimated using the evaluated mass transfer coefficients and the experimental data at each stage of the column for different runs and compared.« less
Tomiya, N; Suzuki, T; Awaya, J; Mizuno, K; Matsubara, A; Nakano, K; Kurono, M
1992-10-01
A sensitive and simple high-performance liquid chromatographic method has been developed to determine the concentration of monosaccharides and sugar alcohols in animal tissues. Five neutral monosaccharides (D-glucose, D-galactose, D-mannose, D-fructose, and D-ribose) and three neutral sugar alcohols (myo-inositol, glycerol, and D-sorbitol) predominate in the renal cortices and sciatic nerves of rats. These monosaccharides and sugar alcohols were extracted with distilled water, purified by deproteinization with ethanol, a Sep-Pak C18 cartridge, and columns of Dowex 50W-X8 and Amberlite CG-400, then separated on Ca2+ and Pb2+ cation-exchange columns, eluted with deionized distilled water at 80 degrees C, and detected using integrated pulsed amperometry. About 10 pmol of each sugar was detectable with a signal-to-noise ratio of 10:1. D-Glucose, D-fructose, D-sorbitol, and D-mannose were higher in both the renal and sciatic tissues of diabetic rats than in those of normal animals. D-Ribose and glycerol were higher in the renal cortex of diabetic animals.
G P, Bindumol; C C, Harilal
2017-09-15
Leaching potential of pesticides, apart from climatological factors, depends on soil physical properties, soil-pesticide interaction and chemical nature of the molecule. Recent investigations have revealed the presence of various organophosphate pesticides in various agroecosystems. The present study investigated the soil transport mechanism of commonly used organophosphate pesticides in acidic sandy clay loam soils of Kerala State, India. Packed soil column experiment was undertaken under laboratory condition for 30 days. Unsaturated flow was carried out using distilled water/0.01 M CaCl 2 solution after applying chlorpyriphos and quinalphos at the rate of 0.04% a.i.ha -1 and 0.025% a.i.ha -1 , respectively. The study revealed the retention of residues of chlorpyriphos and quinalphos in the top 5-cm layer. Irrespective of the applied concentration of chlorpyriphos and quinalphos, the relative concentration of the pesticides in soil was similar. About 56% of the applied chemicals were dissipated in 30 days of unsaturated flow. A new dissipation compound iron, tricarbonyl [N-(phenyl-2-pyridinylmethyene) benzenamine-N, N'], was detected in GCMS analysis of soil extract from distilled water percolated soil. The dissipation of chlorpyriphos and quinalphos was faster in 0.01 M CaCl 2 -treated soil column. Among the pesticides analysed, the residue of quinalphos was detected in leachate.
An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey; Graham, James; Guan, Jian
This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.
Distillation of cadmium from uranium plutonium cadmium alloy
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo
2005-04-01
Uranium-plutonium alloy was prepared by distillation of cadmium from U-Pu-Cd ternary alloy. The initial ternary alloy contained 2.9 wt% U and 8.7 wt% Pu other than Cd, which were recovered by molten salt electrolysis with liquid Cd cathode. The distillation experiments were conducted in 10 g scale of the initial alloy using a small-scale distillation furnace equipped with an evaporator and a condenser in a vacuum vessel. After distillation at 1073 K, the weight of the residue was in good agreement with that of the loaded actinides, where the content of Cd decreased to less than 0.05 wt%. The uranium-plutonium alloy product was recovered without adhering to the yttria crucible. The cross section of the product was observed using electron probe micro-analyzer and it was found to consist of a dense material. Almost all of the evaporated Cd was recovered in the condenser and so enclosed well in the apparatus.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.
DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R.; Pak, D.; Edwards, T.
2010-10-28
The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recoverymore » of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.« less
Physical and chemical characterization of petroleum products by GC-MS.
Mendez, A; Meneghini, R; Lubkowitz, J
2007-01-01
There is a need for reliable and fast means of monitoring refining, conversion, and upgrading processes aiming to increase the yield of light distillates, and thus, reducing the oil barrel bottoms. By simultaneously utilizing the FID and mass selective detectors while splitting the column effluent in a controlled way, it is possible to obtain identical gas chromatograms and total ion chromatograms from a single run. This means that besides the intensity vs. time graphs, the intensity vs. mass and boiling point can also be obtained. As a result, physical and chemical characterization can be performed in a simple and rapid manner. Experimental results on middle, heavy distillates, and crude oil fractions show clearly the effect of upgrading processes on the chemical composition and yields of diesel, jet fuels, and high vacuum gasoil fractions. The methodology is fully compliant with ASTM D-2887, D-7213, D-6352, and D7169 for simulated distillation and the previously mentioned mass spectrometry standards. The group type analysis correlated satisfactorily with high-performance liquid chromatography data.
Lachenmeier, Dirk W; Plato, Leander; Suessmann, Manuela; Di Carmine, Matthew; Krueger, Bjoern; Kukuck, Armin; Kranz, Markus
2015-01-01
The determination of the alcoholic strength in spirits and liqueurs is required to control the labelling of alcoholic beverages. The reference methodology prescribes a distillation step followed by densimetric measurement. The classic distillation using a Vigreux rectifying column and a West condenser is time consuming and error-prone, especially for liqueurs that may have problems with entrainment and charring. For this reason, this methodology suggests the use of an automated steam distillation device as alternative. The novel instrument comprises an increased steam power, a redesigned geometry of the condenser and a larger cooling coil with controllable flow, compared to previously available devices. Method optimization applying D-optimal and central composite designs showed significant influence of sample volume, distillation time and coolant flow, while other investigated parameters such as steam power, receiver volume, or the use of pipettes or flasks for sample measurement did not significantly influence the results. The method validation was conducted using the following settings: steam power 70 %, sample volume 25 mL transferred using pipettes, receiver volume 50 mL, coolant flow 7 L/min, and distillation time as long as possible just below the calibration mark. For four different liqueurs covering the typical range of these products between 15 and 35 % vol, the method showed an adequate precision, with relative standard deviations below 0.4 % (intraday) and below 0.6 % (interday). The absolute standard deviations were between 0.06 % vol and 0.08 % vol (intraday) and between 0.07 % vol and 0.10 % vol (interday). The improved automatic steam distillation devices offer an excellent alternative for sample cleanup of volatiles from complex matrices. A major advantage are the low costs for consumables per analysis (only distilled water is needed). For alcoholic strength determination, the method has become more rugged than before, and there are only few influences that would lead to incomplete distillation. Our validation parameters have shown that the performance of the method corresponds to the data presented for the reference method and we believe that automated steam distillation, can be used for the purpose of labelling control of alcoholic beverages.
Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji
2017-12-01
To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Weight-controlled capillary viscometer
NASA Astrophysics Data System (ADS)
Digilov, Rafael M.; Reiner, M.
2005-11-01
The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.
ERIC Educational Resources Information Center
Alty, Lisa T.; France, Marcia B.; Alty, Isaac G.; Saber, Christine A.; Smith, Donna M.
2016-01-01
The synthesis of 1,1-diphenylethylene (DPE) via a Grignard reaction, followed by an acid-catalyzed dehydration reaction, yields a mixture of compounds. DPE is a high boiling liquid that cannot be purified using simple distillation. However, it is easily separated from the more polar starting material and intermediate alcohol using both thin layer…
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
Warsito, Warsito; Palungan, Maimunah Hindun; Utomo, Edy Priyo
2017-01-01
Essential oil is consisting of complex component. It is divided into major and minor component. Therefore, this study aims to examine the distribution of major and minor components on Kaffir lime oil by using fractional distillation. Fractional distillation and distributional analysis of components within fractions have been performed on kaffir lime oil ( Citrus hystrix DC .). Fractional distillation was performed by using PiloDist 104-VTU, column length of 2 m (number of plate 120), the system pressure was set on 5 and 10 mBar, while the reflux ratio varied on 10/10, 20/10 and 60/10, and the chemical composition analysis was done by using GC-MS. Chemical composition of the distillated lime oil consisted of mix-twigs and leaves that composed of 20 compounds, with five main components β-citronellal (46.40%), L-linalool (13.11%), β-citronellol (11.03%), citronelyl acetate (6.76%) and sabinen (5.91%). The optimum conditions for fractional distillation were obtained at 5 mBar pressure with reflux ratio of 10/10. Components of β -citronellal and L-linalool were distributed in the fraction-1 to fraction 9, hydrocarbon monoterpenes components were distributed only on the fraction-1 to fraction 4, while the oxygenated monoterpenes components dominated the fraction-5 to fraction-9. The highest level of β-citronellal was 84.86% (fraction-7), L-linalool 20.13% (fraction-5), sabinen 19.83% (fraction-1), and the component level of 4-terpeneol, β-citronellol and sitronelyl acetate respectively 7.16%; 12.27%; 5.22% (fraction-9).
Distillation Column Flooding Predictor
DOE Office of Scientific and Technical Information (OSTI.GOV)
George E. Dzyacky
2010-11-23
The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less
Emara, Samy; Kamal, Maha; Abdel Kawi, Mohamed
2012-02-01
A sensitive and efficient on-line clean up and pre-concentration method has been developed using column-switching technique and protein-coated µ-Bondapak CN silica pre-column for quantification of ambroxol (AM) in human serum. The method is performed by direct injection of serum sample onto a protein-coated µ-Bondapak CN silica pre-column, where AM is pre-concentrated and retained, while proteins and very polar constituents are washed to waste using a phosphate buffer saline (pH 7.4). The retained analyte on the pre-column is directed onto a C(18) analytical column for separation, with a mobile phase consisting of a mixture of methanol and distilled deionized water (containing 1% triethylamine adjusted to pH 3.5 with ortho-phosphoric acid) in the ratio of 50:50 (v/v). Detection is performed at 254 nm. The calibration curve is linear over the concentration range of 12-120 ng/mL (r(2) = 0.9995). The recovery, selectivity, linearity, precision, and accuracy of the method are convenient for pharmacokinetic studies or routine assays.
A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.
Schmack, Mario; Ho, Goen; Anda, Martin
2016-01-01
This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.
Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza
Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less
Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator
Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza
2016-12-19
Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less
Nanophotonics-enabled solar membrane distillation for off-grid water purification.
Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J
2017-07-03
With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.
Nanophotonics-enabled solar membrane distillation for off-grid water purification
Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.
2017-01-01
With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307
Warsito, Warsito; Palungan, Maimunah Hindun; Utomo, Edy Priyo
2017-01-01
Introduction Essential oil is consisting of complex component. It is divided into major and minor component. Therefore, this study aims to examine the distribution of major and minor components on Kaffir lime oil by using fractional distillation. Fractional distillation and distributional analysis of components within fractions have been performed on kaffir lime oil (Citrus hystrix DC.). Methods Fractional distillation was performed by using PiloDist 104-VTU, column length of 2 m (number of plate 120), the system pressure was set on 5 and 10 mBar, while the reflux ratio varied on 10/10, 20/10 and 60/10, and the chemical composition analysis was done by using GC-MS. Chemical composition of the distillated lime oil consisted of mix-twigs and leaves that composed of 20 compounds, with five main components β-citronellal (46.40%), L-linalool (13.11%), β-citronellol (11.03%), citronelyl acetate (6.76%) and sabinen (5.91%). Results The optimum conditions for fractional distillation were obtained at 5 mBar pressure with reflux ratio of 10/10. Components of β -citronellal and L-linalool were distributed in the fraction-1 to fraction 9, hydrocarbon monoterpenes components were distributed only on the fraction-1 to fraction 4, while the oxygenated monoterpenes components dominated the fraction-5 to fraction-9. Conclusion The highest level of β-citronellal was 84.86% (fraction-7), L-linalool 20.13% (fraction-5), sabinen 19.83% (fraction-1), and the component level of 4-terpeneol, β-citronellol and sitronelyl acetate respectively 7.16%; 12.27%; 5.22% (fraction-9). PMID:29187951
Low capital implementation of distributed distillation in ethylene recovery
Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung
2006-10-31
An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.
Mooradian, A.J.
1958-07-01
A de-entrainnnent colunnn is described for removing substances from a stream of vapor coming from a distillation apparatus. The device comprises a hollow cylindrical body mounted with its axis vertical on a flange on the upper slde of a vaporizing vessel; two sintered metal circular discs through which all the vapor passes mounted in axially spaced relationship in the cylindrical body; and two semi-circular baffle plates mounted in spaced relationship between the discs.
The application of vacuum redistillation of patchouli oil to improve patchouli alcohol compound
NASA Astrophysics Data System (ADS)
Asnawi, T. M.; Alam, P. N.; Husin, H.; Zaki, M.
2018-04-01
Patchouli oil produced by traditional distillation of patchouli leaves and stems by farmers in Aceh still has low patchouli alcohol compound. In order to increase patchouli alcohol concentration, vacuum redistillation process using packed column was introduced. This research was conducted to fractionate terpene (alpha-copinene) from oxygenated hydrocarbon (patchouli alcohol) compound. The operation condition was conducted at two variables that was dependent variable and independent variable. The dependent variable was the 30 cm height distillation packed column, by using raschig ring with 8 mm x 8 mm dimension. And the independent variable was operating temperature 130 °C and 140 °C., vacuum pressure 143,61 mbar, 121,60 mbar and 88,59 mbar and operation time 2 hours, 3 hours and 5 hours. Total of treatments applied in this works were 3 x 3 x 3 or equal to 27 treatments. Patchouli oil used in this research was obtained from Desa Teladan-Lembah Seulawah, Aceh Province. The initial patchouli alcohol compound which analyzed with GC-MS contained 16,02% before treatment applied. After vacuum redistillation process treatment applied patchouli oil concentration increase up to 34,67%. Physico-chemical test of patchouli oil after vacuum redistillation is in accordance with SNI 06-23852006 standard.
Ion Exchange Technology Development in Support of the Urine Processor Assembly
NASA Technical Reports Server (NTRS)
Mitchell, Julie; Broyan, James; Pickering, Karen
2013-01-01
The urine processor assembly (UPA) on the International Space Station (ISS) recovers water from urine via a vacuum distillation process. The distillation occurs in a rotating distillation assembly (DA) where the urine is heated and subjected to sub-ambient pressure. As water is removed, the original organics, salts, and minerals in the urine become more concentrated and result in urine brine. Eventually, water removal will concentrate the urine brine to super saturation of individual constituents, and precipitation occurs. Under typical UPA DA operating conditions, calcium sulfate or gypsum is the first chemical to precipitate in substantial quantity. During preflight testing with ground urine, the UPA achieved 85% water recovery without precipitation. However, on ISS, it is possible that crewmember urine can be significantly more concentrated relative to urine from ground donors. As a result, gypsum precipitated in the DA when operating at water recovery rates at or near 85%, causing the failure and subsequent re14 NASA Tech Briefs, September 2013 placement of the DA. Later investigations have demonstrated that an excess of calcium and sulfate will cause precipitation at water recovery rates greater than 70%. The source of the excess calcium is likely physiological in nature, via crewmembers' bone loss, while the excess sulfate is primarily due to the sulfuric acid component of the urine pretreatment. To prevent gypsum precipitation in the UPA, the Precipitation Prevention Project (PPP) team has focused on removing the calcium ion from pretreated urine, using ion exchange resins as calcium removal agents. The selectivity and effectiveness of ion exchange resins are determined by such factors as the mobility of the liquid phase through the polymer matrix, the density of functional groups, type of functional groups bound to the matrix, and the chemical characteristics of the liquid phase (pH, oxidation potential, and ionic strength). Previous experience with ion exchange resins has demonstrated that the most effective implementation for an ion exchange resin is a cartridge, or column, in which the resin is contained. Based on the results of equilibrium and sub-scale dynamic column testing, a possible solution for mitigating the calcium precipitation issue on the ISS has been identified. From an original pool of 13 ion exchange resins, two candidates have been identified that demonstrate substantial calcium removal on the sub-scale. The dramatic reduction in resin performance from published calcium uptake demonstrates the need for thorough evaluation of resins at the low pH and strong oxidizing environment present in the UPA. Chemical variations in the influent (calcium concentrations and pretreatment dosing) appear to have a noticeable impact on the calcium capacity of the resin. Low calcium concentrations and high pretreatment dosing will likely result in a decrease in calcium capacity. Conversely, low pre trea t - ment dosing will likely result in an increase in calcium capacity. In contrast, investigations at a variety of flow rates, length-to-diameter ratios, resin volumes, and flow regimes (continuous versus pulsed) show that changes in physical parameters do not have substantial impacts on resin performance in the very low specific velocity ranges of interest. This result is particularly useful because most commercial applications at higher specific velocities do show a relatively strong relationship between flow and capacity. The lack of a strong relationship will allow more flexibility in the implementation of an ion exchange bed for flight. Verification of subscale tests with flight-scale resin beds is recommended prior to implementation in the on-orbit UPA.
Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process
Vlad, Elena; Bozga, Grigore
2012-01-01
Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics. PMID:23365512
Effect of NTP Pretreatment on Thermal Resistance and Fouling Components of Oilfield Wastewater
NASA Astrophysics Data System (ADS)
Zhao, Jie; Li, Wenli; Zou, Longsheng; Fu, Honghun
2018-01-01
In order to prevent scaling in the process of oilfield wastewater evaporation, low temperature plasma is used for pretreatment of heavy oil wastewater. It reacts with the ions and radicals produced by the low-temperature plasma and then is send into the evaporator. The changes of various indexes of the distilled water and the distribution of fouling in the evaporation process of heavy oil wastewater after plasma pretreatment were studied. The results showed that the content and hardness of silica in wastewater were decreased after plasma pretreatment, which was more suitable for evaporation treatment. At the same time, the content of salt and oil in distilled water is reduced, and the quality is improved. In addition, when the steam concentration was 30∼40 times, the suspended solids in the concentrated solution of the wastewater increased significantly after the plasma treatment. Correspondingly, the fouling at the bottom of evaporator is greatly reduced. Comparing the various indexes of distilled water and the feed water index of gas injection boiler, it can be seen that the excessive oil content in distilled water is the biggest obstacle to the recovery of distilled water to boiler feed water. Low temperature plasma pretreatment can provide a quick and new way to solve the scaling problems and water quality problems in the recovery of distilled water from a large number of heavy oil wastewater.
Big Data Analysis of Manufacturing Processes
NASA Astrophysics Data System (ADS)
Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert
2015-11-01
The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.
Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities
NASA Astrophysics Data System (ADS)
Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.
2016-06-01
The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.
McElhiney, Jacqui; Drever, Mathew; Lawton, Linda A.; Porter, Andy J.
2002-01-01
A naïve (unimmunized) human semisynthetic phage display library was employed to isolate recombinant antibody fragments against the cyanobacterial hepatotoxin microcystin-LR. Selected antibody scFv genes were cloned into a soluble expression vector and expressed in Escherichia coli for characterization against purified microcystin-LR by competition enzyme-linked immunosorbent assay (ELISA). The most sensitive single-chain antibody (scAb) isolated was capable of detecting microcystin-LR at levels below the World Health Organization limit in drinking water (1 μg liter−1) and cross-reacted with three other purified microcystin variants (microcystin-RR, -LW, and -LF) and the related cyanotoxin nodularin. Extracts of the cyanobacterium Microcystis aeruginosa were assayed by ELISA, and quantifications of microcystins in toxic samples showed good correlation with analysis by high-performance liquid chromatography. Immobilized scAb was also used to prepare immunoaffinity columns, which were assessed for the ability to concentrate microcystin-LR from water for subsequent analysis by high-performance liquid chromatography. Anti-microcystin-LR scAb was immobilized on columns via a hexahistidine tag, ensuring maximum exposure of antigen binding sites, and the performance of the columns was evaluated by directly applying 150 ml of distilled water spiked with 4 μg of purified microcystin-LR. The procedure was simple, and a recovery rate of 94% was achieved following elution in 1 ml of 100% methanol. Large-scale, low-cost production of anti-microcystin-LR scAb in E. coli is an exciting prospect for the development of biosensors and on-line monitoring systems for microcystins and will also facilitate a range of immunoaffinity applications for the cleanup and concentration of these toxins from environmental samples. PMID:12406716
Lima, Lisandra; Baêta, Bruno E L; Lima, Diego R S; Afonso, Robson J C F; de Aquino, Sérgio F; Libânio, Marcelo
2016-01-01
The aim of this study was to evaluate the performance of two forms of basic granular activated carbon (GAC), mineral (pH = 10.5) and vegetal (pH = 9), for the removal of three pharmaceuticals, as sulphamethoxazole (SMX), diclofenac (DCF) and 17β-estradiol (E2), from two different matrices: fortified distilled (2.4-3.0 mg L(-1) and pH from 5.5 to 6.5) and natural (∼1.0 mg L(-1) and pH from 7.1 to 7.2) water in a bench scale. The Rapid Small-Scale Column Test used to assess the ability of mineral and vegetal GAC on removal of such pharmaceuticals led to removal capacities varying from 14.9 to 23.5 mg g(-1) for E2, from 23.7 to 24.2 mg g(-1) for DCF and from 20.5 to 20.6 mg g(-1) for SMX. Removal efficiencies of 71%, 88% and 74% for DCF, SMX and E2, respectively, were obtained at breakthrough point when using mineral GAC, whereas for the vegetal GAC the figures were 76%, 77% and 65%, respectively. The carbon usage rate at the breakthrough point varied from 11.9 to 14.5 L g(-1) for mineral GAC and from 8.8 to 14.8 L g(-1) for vegetal GAC. Mineral CAG also exhibited the best performance when treating fortified natural water, since nearly complete removal was observed for all contaminants in the column operated for 22 h at a carbon usage rate of 2.9 L g(-1).
Migration through soil of organic solutes in an oil-shale process water
Leenheer, J.A.; Stuber, H.A.
1981-01-01
The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.
Airborne rotary air separator study
NASA Technical Reports Server (NTRS)
Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.
1990-01-01
Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.
Identification of the Predominant Volatile Compounds Produced by Aspergillus flavus
Kaminśki, E.; Libbey, L. M.; Stawicki, S.; Wasowicz, E.
1972-01-01
A culture of Aspergillus flavus grown on moistened wheat meal was homogenized with a blendor, and the resulting slurry was vacuum-distilled at 5 mm of Hg and 35 C. The aqueous distillate was collected in traps cooled to -10 to -80 C. The culture volatiles were extracted from the distillate with CH2Cl2, and, after removal of the bulk of the solvent, the concentrated volatiles were examined by packed-column gas chromatography. Nineteen peaks were observed, and coupled gas chromatography-mass spectrometry was employed to identify the larger components. The compounds identified were: 3-methyl-butanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and cis-2-octen-1-ol. The two octenols were the predominant compounds, and sufficient sample was trapped from the gas chromatograph for infrared analyses; this confirmed the mass spectral identifications and permitted the assignment of the cis designation to 2-octen-1-ol. Both oct-1-en-3-ol and cis-2-octen-1-ol are thought to be responsible for the characteristic musty-fungal odor of certain fungi; the latter compound may be a useful chemical index of fungal growth. PMID:4629700
Identification of the predominant volatile compounds produced by Aspergillus flavus.
Kamiński, E; Libbey, L M; Stawicki, S; Wasowicz, E
1972-11-01
A culture of Aspergillus flavus grown on moistened wheat meal was homogenized with a blendor, and the resulting slurry was vacuum-distilled at 5 mm of Hg and 35 C. The aqueous distillate was collected in traps cooled to -10 to -80 C. The culture volatiles were extracted from the distillate with CH(2)Cl(2), and, after removal of the bulk of the solvent, the concentrated volatiles were examined by packed-column gas chromatography. Nineteen peaks were observed, and coupled gas chromatography-mass spectrometry was employed to identify the larger components. The compounds identified were: 3-methyl-butanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and cis-2-octen-1-ol. The two octenols were the predominant compounds, and sufficient sample was trapped from the gas chromatograph for infrared analyses; this confirmed the mass spectral identifications and permitted the assignment of the cis designation to 2-octen-1-ol. Both oct-1-en-3-ol and cis-2-octen-1-ol are thought to be responsible for the characteristic musty-fungal odor of certain fungi; the latter compound may be a useful chemical index of fungal growth.
Liu, Jiang; Zhang, Lu; Li Han Song, Le; Liu, Yuan; Tang, Hui; Li, Yingchun
2015-04-01
Metronidazole-imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation-precipitation polymerization. The as-obtained polymers were characterized by Fourier-transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole-imprinted polymers were further applied as packing agents in solid-phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid-phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer-packed chromatographic column. The relative standard deviation of both methods was less than 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bovo, Barbara; Carlot, Milena; Fontana, Federico; Lombardi, Angiolella; Soligo, Stefano; Giacomini, Alessio; Corich, Viviana
2015-04-01
Nowadays grape marc represents one of the main by-product of winemaking. Many South Europe countries valorize this ligno-cellulosic waste through fermentation and distillation for industrial alcoholic beverage production. The storage of marcs is a crucial phase in the distillation process, due to the physicochemical transformations ascribed to microbial activity. Among the methods adopted by distillers to improve the quality of spirits, the use of selected yeasts has not been explored so far, therefore in this work we evaluated the selection criteria of Saccharomyces cerevisiae strains for grape marc fermentation. The proposed selection procedure included three steps: characterization of phenotypical traits, evaluation of selected strains on pasteurised grape marc at lab-scale (100 g) and pilot-scale fermentation (350 kg). This selection process was applied on 104 strains isolated from grape marcs of different origins and technological treatment. Among physiological traits, β-glucosidase activity level as quality trait seems to be only partially involved in increasing varietal flavour. More effective in describing yeast impact on distillate quality is the ratio higher alcohols/esters that indicates strain ability to increase positive flavours. Finally, evaluating grape marc as source of selected yeasts, industrial treatment rather than varietal origin seems to shape strain technological and quality traits. Copyright © 2014 Elsevier Ltd. All rights reserved.
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai
2018-04-01
Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.
Entanglement distillation by dissipation and continuous quantum repeaters.
Vollbrecht, Karl Gerd H; Muschik, Christine A; Cirac, J Ignacio
2011-09-16
Even though entanglement is very vulnerable to interactions with the environment, it can be created by purely dissipative processes. Yet, the attainable degree of entanglement is profoundly limited in the presence of noise sources. We show that distillation can also be realized dissipatively, such that a highly entangled steady state is obtained. The schemes put forward here display counterintuitive phenomena, such as improved performance if noise is added to the system. We also show how dissipative distillation can be employed in a continuous quantum repeater architecture, in which the resources scale polynomially with the distance.
Evaluating two process scale chromatography column header designs using CFD.
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.
Generation and migration of hydrocarbons in offshore South Texas Gulf Coast sediments
NASA Astrophysics Data System (ADS)
Huc, A. Y.; Hunt, J. M.
1980-08-01
The hydrocarbon content of two thick Tertiary sequences from the offshore Gulf Coast (South Padre Island and Mustang Island) was studied using a headspace technique, thermal distillation, pyrolysis and solvent extraction. The threshold of oil generation was determined to occur in the range of 3050 m (10,000 ft; 120°C) in Miocene sediments. In the South Padre Island well, the distribution of the different classes of hydrocarbons along the sedimentary column suggests some updip migration processes are occurring.
The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs
1985-09-30
210 ml stainless steel bombs were each filled with 100 ml of 28% aqueous NH4OH, 2.8 g (11 imol) of copper sulfate pentahydrate , and 15 g (87 mol) of...ethyl acetate. The organic extracts were washed twice with brine, dried over sodium sulfate , filtered and flashed to a black oil. A vacuum distillation...extracts were washed with brine, dried with sodium sulfate , filtered and flashed. The residue was then purified by column chromatography (silica gel
A scintillator purification plant and fluid handling system for SNO+
NASA Astrophysics Data System (ADS)
Ford, Richard J.
2015-08-01
A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2015-03-01
The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine.
Fumasoli, Alexandra; Etter, Bastian; Sterkele, Bettina; Morgenroth, Eberhard; Udert, Kai M
2016-01-01
Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer.
Modified method to improve the design of Petlyuk distillation columns.
Zapiain-Salinas, Javier G; Barajas-Fernández, Juan; González-García, Raúl
2014-01-01
A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads.
Site Simulation of Solidified Peat: Lab Monitoring
NASA Astrophysics Data System (ADS)
Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd
2018-04-01
In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.
APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R.; Pak, D.
2011-08-10
Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill frommore » the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.« less
Fuzzy control for a nonlinear mimo-liquid level problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.
2001-01-01
Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid levelmore » control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.« less
Odor-active constituents of Cedrus atlantica wood essential oil.
Uehara, Ayaka; Tommis, Basma; Belhassen, Emilie; Satrani, Badr; Ghanmi, Mohamed; Baldovini, Nicolas
2017-12-01
The main odorant constituents of Cedrus atlantica essential oil were characterized by GC-Olfactometry (GC-O), using the Aroma Extract Dilution Analysis (AEDA) methodology with 12 panelists. The two most potent odor-active constituents were vestitenone and 4-acetyl-1-methylcyclohexene. The identification of the odorants was realized by a detailed fractionation of the essential oil by liquid-liquid basic extraction, distillation and column chromatography, followed by the GC-MS and GC-O analyses of some fractions, and the synthesis of some non-commercial reference constituents. Copyright © 2017 Elsevier Ltd. All rights reserved.
A scintillator purification plant and fluid handling system for SNO+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Richard J., E-mail: ford@snolab.ca
A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPOmore » and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.« less
Multi-Column Experimental Test Bed Using CaSDB MOF for Xe/Kr Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, Amy Keil; Greenhalgh, Mitchell Randy; Garn, Troy Gerry
Processing of spent nuclear fuel produces off-gas from which several volatile radioactive components must be separated for further treatment or storage. As part of the Off-gas Sigma Team, parallel research at INL and PNNL has produced several promising sorbents for the selective capture of xenon and krypton from these off-gas streams. In order to design full-scale treatment systems, sorbents that are promising on a laboratory scale must be proven under process conditions to be considered for pilot and then full-scale use. To that end, a bench-scale multi-column system with capability to test multiple sorbents was designed and constructed at INL.more » This report details bench-scale testing of CaSDB MOF, produced at PNNL, and compares the results to those reported last year using INL engineered sorbents. Two multi-column tests were performed with the CaSDB MOF installed in the first column, followed with HZ-PAN installed in the second column. The CaSDB MOF column was placed in a Stirling cryocooler while the cryostat was employed for the HZ-PAN column. Test temperatures of 253 K and 191 K were selected for the first column while the second column was held at 191 K for both tests. Calibrated volume sample bombs were utilized for gas stream analyses. At the conclusion of each test, samples were collected from each column and analyzed for gas composition. While CaSDB MOF does appear to have good capacity for Xe, the short time to initial breakthrough would make design of a continuous adsorption/desorption cycle difficult, requiring either very large columns or a large number of smaller columns. Because of the tenacity with which Xe and Kr adhere to the material once adsorbed, this CaSDB MOF may be more suitable for use as a long-term storage solution. Further testing is recommended to determine if CaSDB MOF is suitable for this purpose.« less
Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid
2014-05-01
Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimization study of small-scale solar membrane distillation desalination systems (s-SMDDS).
Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong
2014-11-24
Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m(2) and 23 m(2) are analyzed. The lowest water production costs are $5.92/m(3) and $5.16/m(3) for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.
Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS)
Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong
2014-01-01
Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction. PMID:25421065
[Study on preparation of composite nano-scale Fe3O4 for phosphorus control].
Li, Lei; Pan, Gang; Chen, Hao
2010-03-01
Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.
Simplified method for detecting tritium contamination in plants and soil
Andraski, Brian J.; Sandstrom, M.W.; Michel, R.L.; Radyk, J.C.; Stonestrom, David A.; Johnson, M.J.; Mayers, C.J.
2003-01-01
Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation–SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation–SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.
Production and Purification of Bioethanol from Molasses and Cassava
NASA Astrophysics Data System (ADS)
Maryana, Roni; Wahono, Satriyo Krido
2009-09-01
This research aim to analysis bioethanol purification process. Bioethanol from cassava has been produced in previous research and the ethanol from molasses was taken from Bekonang region. The production of bioethanol from cassava was carried out through several processes such as homogenization, adding of α-amylase, β-amylase and yeast (Saccharomyces c). Two types of laboratory scale distillator have been used, the first type is 50 cm length and 4 cm diameter. The second type distillator is 30 cm length and 9 cm diameter. Both types have been used to distill bioethanol The initial concentration after the fermentation process is 15% for bioethanol from cassava and 20-30% ethanol from molasses. The results of first type distillator are 90% of bioethanol at 50° C and yield 2.5%; 70% of bioethanol at 60° C and yield 11.2%. 32% of bioethanol at 70° C and yield 42%. Meanwhile the second distillator results are 84% of bioethanol at 50° C with yield 12%; 51% of bioethanol at 60° C with yield 35.5%; 20% of bioethanol at 70° C with yield 78.8%; 16% of bioethanol at 80° C with yield 81.6%. The ethanol from molasses has been distillated once times in Bekonang after the fermentation process, the yield was about 20%. In this research first type distillator and the initial concentration is 20% has been used. The results are 95% of bioethanol at 75° C with yield 8%; 94% of bioethanol at 85° C with yield 13% when vacuum pump was used. And 94% of bioethanol at 90° C with yield 3.7% and 94% of bioethanol at 96° C with yield 10.27% without vacuum pump. The bioethanol purification use second type distillator more effective than first type distillator.
Udugama, Isuru A; Wolfenstetter, Florian; Kirkpatrick, Robert; Yu, Wei; Young, Brent R
2017-07-01
In this work we have developed a novel, robust practical control structure to regulate an industrial methanol distillation column. This proposed control scheme is based on a override control framework and can manage a non-key trace ethanol product impurity specification while maintaining high product recovery. For comparison purposes, a MPC with a discrete process model (based on step tests) was also developed and tested. The results from process disturbance testing shows that, both the MPC and the proposed controller were capable of maintaining both the trace level ethanol specification in the distillate (X D ) and high product recovery (β). Closer analysis revealed that the MPC controller has a tighter X D control, while the proposed controller was tighter in β control. The tight X D control allowed the MPC to operate at a higher X D set point (closer to the 10ppm AA grade methanol standard), allowing for savings in energy usage. Despite the energy savings of the MPC, the proposed control scheme has lower installation and running costs. An economic analysis revealed a multitude of other external economic and plant design factors, that should be considered when making a decision between the two controllers. In general, we found relatively high energy costs favour MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R.; Peters, T.
2011-11-01
Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for themore » distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.« less
Compact continuous-variable entanglement distillation.
Datta, Animesh; Zhang, Lijian; Nunn, Joshua; Langford, Nathan K; Feito, Alvaro; Plenio, Martin B; Walmsley, Ian A
2012-02-10
We introduce a new scheme for continuous-variable entanglement distillation that requires only linear temporal and constant physical or spatial resources. Distillation is the process by which high-quality entanglement may be distributed between distant nodes of a network in the unavoidable presence of decoherence. The known versions of this protocol scale exponentially in space and doubly exponentially in time. Our optimal scheme therefore provides exponential improvements over existing protocols. It uses a fixed-resource module-an entanglement distillery-comprising only four quantum memories of at most 50% storage efficiency and allowing a feasible experimental implementation. Tangible quantum advantages are obtainable by using existing off-resonant Raman quantum memories outside their conventional role of storage.
Speciation of Mercury in Selected Areas of the Petroleum Value Chain.
Avellan, Astrid; Stegemeier, John P; Gai, Ke; Dale, James; Hsu-Kim, Heileen; Levard, Clément; O'Rear, Dennis; Hoelen, Thomas P; Lowry, Gregory V
2018-02-06
Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (β-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR) 2 accounted for ∼60% of the Hg, with ∼20% present as β-HgS and/or Hg(SR) 4 species. β-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.
Guan, Yue Hugh; Hewitson, Peter; van den Heuvel, Remco N A M; Zhao, Yan; Siebers, Rick P G; Zhuang, Ying-Ping; Sutherland, Ian
2015-12-11
Manufacturing high-value added biotech biopharmaceutical products (e.g. therapeutic proteins) requires quick-to-develop, GMP-compliant, easy-to-scale and cost effective preparatory chromatography technologies. In this work, we describe the construction and testing of a set of 5-mm inner diameter stainless steel toroidal columns for use on commercially available preparatory scale synchronous J-type counter-current chromatography (CCC) machinery. We used a 20.2m long column with an aqueous two-phase system containing 14% (w/w) PEG1000 and 14% (w/w) potassium phosphate at pH 7, and tested a sample loading of 5% column volume and a mobile phase flow rate of 20ml/min. We then satisfactorily demonstrated the potential for a weekly protein separation and preparation throughput of ca. 11g based on a normal weekly routine for separating a pair of model proteins by making five stacked injections on a single portion of stationary phase with no stripping. Compared to our previous 1.6mm bore PTFE toroidal column, the present columns enlarged the nominal column processing throughput by nearly 10. For an ideal model protein injection modality, we observed a scaling up factor of at least 21. The 2 scales of protein separation and purification steps were realized on the same commercial CCC device. Copyright © 2015 Elsevier B.V. All rights reserved.
Scale Free Reduced Rank Image Analysis.
ERIC Educational Resources Information Center
Horst, Paul
In the traditional Guttman-Harris type image analysis, a transformation is applied to the data matrix such that each column of the transformed data matrix is the best least squares estimate of the corresponding column of the data matrix from the remaining columns. The model is scale free. However, it assumes (1) that the correlation matrix is…
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
Grondona, Sebastián I; Gonzalez, Mariana; Martínez, Daniel E; Massone, Héctor E; Miglioranza, Karina S B
2014-06-15
Endosulfan has been recently added to Persistent Organic Pollutants (POPs) list and due to its extensive and massive use and environmental persistence constitutes a potential hazard to groundwater resources. Undisturbed soil columns were used to evaluate endosulfan leaching in two series of Typic Argiudolls considering natural and agricultural land use. Columns were spiked with 10μgL(-1) of technical endosulfan and eluted under saturated flow with five pore volumes of distilled water. Alfa and beta isomer residues were detected in the upper soil level, with decreasing values through the profile, being influenced by soil texture and land use. The endosulfan sulfate metabolite was mainly found in the upper level linked to high dehydrogenase activity. Results from leachates (total endosulfan 27-87ngL(-1)) showed higher α-isomer mobility, and suggest alkaline hydrolysis of both endosulfan isomers. The agricultural use modified the physico-chemical properties and structure of soils leading to vertical migration of endosulfan isomers under saturated conditions. Intact column test provided information close to field data showing its utility for the assessment of groundwater pollution by endosulfan. Copyright © 2014 Elsevier B.V. All rights reserved.
Modified method to improve the design of Petlyuk distillation columns
2014-01-01
Background A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. Results The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. Conclusions The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads. PMID:25061476
Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt
2012-01-01
Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Scale tanks. 19.183... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this section, if the proprietor uses a tank to determine the distilled spirits tax imposed by 26 U.S.C. 5001...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Scale tanks. 19.183... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this section, if the proprietor uses a tank to determine the distilled spirits tax imposed by 26 U.S.C. 5001...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Scale tanks. 19.183... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this section, if the proprietor uses a tank to determine the distilled spirits tax imposed by 26 U.S.C. 5001...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Scale tanks. 19.183... Tank Requirements § 19.183 Scale tanks. (a) Except as otherwise provided in paragraph (b) of this section, if the proprietor uses a tank to determine the distilled spirits tax imposed by 26 U.S.C. 5001...
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.J. Tranter; R.D. Tillotson; T.A. Todd
2005-04-01
A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CSTmore » columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.« less
Olson, Mitchell R; Sale, Tom C
2015-01-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.
Direct Down-scale Experiments of Concentration Column Designs for SHINE Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Stepinski, Dominique C.; Vandegrift, George F.
Argonne is assisting SHINE Medical Technologies in their efforts to become a domestic Mo-99 producer. The SHINE accelerator-driven process uses a uranyl-sulfate target solution for the production of fission-product Mo-99. Argonne has developed a molybdenum recovery and purification process for this target solution. The process includes an initial Mo recovery column followed by a concentration column to reduce the product volume from 15-25 L to < 1 L prior to entry into the LEU Modified Cintichem (LMC) process for purification.1 This report discusses direct down-scale experiments of the plant-scale concentration column design, where the effects of loading velocity and temperaturemore » were investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A.A.
1958-01-01
culation of Purification Systems of Hydrocarbonmoderated Reactors). Agustin Alonso Santos. 1958. 23p. As as introduction to the calculation of the purification systems of bydrocarbon-moderated reactors, the effects of heat and radiation on the polyphenols are considered. The chemical, physical, and nuclear properties are tabulated. The formation velocity of the polymers and gases, pyrolysis, effects of heat on the polymer, and the activity accumulated in the moderator ars discussed. The calculation is based on the hypetheses that the radiation catalyzes the formation of polymers, the velocity of the polymerization reaction is constant, the polymer concentration is maintained at a limit whichmore » does not adversely affect the heat transfer properties, the velocity of the separation of polymers in the distillation column is in proportion to their concentration in the hydrocarbon and the pyrolysis causes gaseous products. Formulas are derived expressing the purified flow and the activities accumulated in the distillation residues. The results are applied to the parification system of the Organic Moderated Reactor Experiment (J.S.R.)« less
Removing krypton from xenon by cryogenic distillation to the ppq level
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.
2017-05-01
The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq =10^{-15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.
Quality of soil and Transfer of pesticide under wastewater irrigation regime
NASA Astrophysics Data System (ADS)
Dahchour, Abdelmalek; El hajjaji, Souad; El makhoukhi, Fadoua; El m'rabet, Mohammadine; Satrallah, Ahmed
2016-04-01
Wastewater (WW) usage in irrigation is seen as good and cost effective alternative to face scarcity of water in some arid areas of the world. In Morocco the situation of water resources could be alarming by 2030. Irrigation with WW has been proven beneficial in terms of stabilizing soil structure, enrichment with mineral nutrients useful for crops and increase of production. Usage of WW may coincide with the presence of pollutants such as pesticides and heavy metals in the soil. This situation may enhance the transfer of the pollutants towards groundwater sheet. Gharb area in an important agricultural area of Morocco dominated by sandy and clayey soils, the closeness of water sheet and frequent preferential flow channels in the soil. Test of mobility was conducted in non structured soil columns (30 cm length, 7.5 cm internal diameter), composed with 6 section of 5 cm each and packed with 300g of previously air dried soil sieved at 2mm. Mass equivalent to the rate of application of fenoxyprop-ethyl, an herbicide commonly used in the area was applied 1 cm under the top layer of the soil in the columns. Three columns were used for the test; one of them was eluted with distilled water and used as control. Columns were irrigated with treated wastewater at the flow rate of 1mL/min. Percolated water was collected at 5 intervals of 1 hours. Residue was the herbicide was analyzed in percolated water and the sections of the columns. Result showed net increase in organic matter and conductivity of soil and slight decrease in pH. Analysis of residue showed that the movement of herbicide has increased in the columns percolated with wastewater compared with the control. The herbicide was found five top sections treated eluted with WW and remains in the top section in the control. No residue was detected in percolated water from all the columns treated and the control.
Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.
Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui
2013-11-01
An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika
2014-11-01
The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process. Georg Thieme Verlag KG Stuttgart · New York.
PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HALGREN DL
2010-03-12
The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the samemore » six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.« less
Fiddler, W; Pensabene, J W; Gates, R A; Phillips, J G
1984-01-01
A dry column method for isolating N-nitrosopyrrolidine (NPYR) from fried, cure-pumped bacon and detection by gas chromatography-thermal energy analyzer (TEA) was studied collaboratively. Testing the results obtained from 11 collaborators for homogeneous variances among samples resulted in splitting the nonzero samples into 2 groups of sample levels, each with similar variances. Outlying results were identified by AOAC-recommended procedures, and laboratories having outliers within a group were excluded. Results from the 9 collaborators remaining in the low group yielded coefficients of variation (CV) of 6.00% and 7.47% for repeatability and reproducibility, respectively, and the 8 collaborators remaining in the high group yielded CV values of 5.64% and 13.72%, respectively. An 85.2% overall average recovery of the N-nitrosoazetidine internal standard was obtained with an average laboratory CV of 10.5%. The method has been adopted official first action as an alternative to the mineral oil distillation-TEA screening procedure.
Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier
2012-08-01
One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry.
On the buckling of an elastic holey column
Hazel, A. L.; Pihler-Puzović, D.
2017-01-01
We report the results of a numerical and theoretical study of buckling in elastic columns containing a line of holes. Buckling is a common failure mode of elastic columns under compression, found over scales ranging from metres in buildings and aircraft to tens of nanometers in DNA. This failure usually occurs through lateral buckling, described for slender columns by Euler’s theory. When the column is perforated with a regular line of holes, a new buckling mode arises, in which adjacent holes collapse in orthogonal directions. In this paper, we firstly elucidate how this alternate hole buckling mode coexists and interacts with classical Euler buckling modes, using finite-element numerical calculations with bifurcation tracking. We show how the preferred buckling mode is selected by the geometry, and discuss the roles of localized (hole-scale) and global (column-scale) buckling. Secondly, we develop a novel predictive model for the buckling of columns perforated with large holes. This model is derived without arbitrary fitting parameters, and quantitatively predicts the critical strain for buckling. We extend the model to sheets perforated with a regular array of circular holes and use it to provide quantitative predictions of their buckling. PMID:29225498
Prevention and management of silica scaling in membrane distillation using pH adjustment
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.; ...
2018-02-27
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Prevention and management of silica scaling in membrane distillation using pH adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Unit operations for gas-liquid mass transfer in reduced gravity environments
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Allen, David T.
1992-01-01
Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.
Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests
The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...
USDA-ARS?s Scientific Manuscript database
Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...
NASA Astrophysics Data System (ADS)
Dagan, Guy; Koren, Ilan; Altaratz, Orit
2018-05-01
Better representation of cloud-aerosol interactions is crucial for an improved understanding of natural and anthropogenic effects on climate. Recent studies have shown that the overall aerosol effect on warm convective clouds is non-monotonic. Here, we reduce the system's dimensions to its center of gravity (COG), enabling distillation and simplification of the overall trend and its temporal evolution. Within the COG framework, we show that the aerosol effects are nicely reflected by the interplay of the system's characteristic vertical velocities, namely the updraft (w) and the effective terminal velocity (η). The system's vertical velocities can be regarded as a sensitive measure for the evolution of the overall trends with time. Using a bin-microphysics cloud-scale model, we analyze and follow the trends of the aerosol effect on the magnitude and timing of w and η, and therefore the overall vertical COG velocity. Large eddy simulation (LES) model runs are used to upscale the analyzed trends to the cloud-field scale and study how the aerosol effects on the temporal evolution of the field's thermodynamic properties are reflected by the interplay between the two velocities. Our results suggest that aerosol effects on air vertical motion and droplet mobility imply an effect on the way in which water is distributed along the atmospheric column. Moreover, the interplay between w and η predicts the overall trend of the field's thermodynamic instability. These factors have an important effect on the local energy balance.
Spivakov, Boris Ya; Shkinev, Valeriy M; Danilova, Tatiana V; Knyazkov, Nikolai N; Kurochkin, Vladimir E; Karandashev, Vasiliy K
2012-12-15
A novel approach to sorption recovery and separation of different substances is proposed which is based on the use of suspended bead sorbents instead of conventional packed beds of such sorbents. This makes it possible to employ small-sized beads which are trapped in a low-pressure column due to ultrasound-assisted retention, without any frits to hold the sorption material. A flow system including a separation mini-column, named herein a suspension column, has been developed and tested by the studies of solid phase extraction (SPE) of trace metals from bi-distilled water and sea water using a 150-μL column with a silica-based sorbent containing iminodiacetic groups (DIAPAK IDA) and having a grain size of 6 μm. The adsorption properties of DIAPAK IDA suspension (9.5mg) were evaluated through adsorption/desorption experiments, where the effect of solution pH and eluent on the SPE of trace metals were examined by ICP-MS or ICP-AES measurements. When sample solution was adjusted to pH 8.0 and 1 mol L(-1) nitric acid was used as eluent, very good recoveries of more than 90% were obtained for a number of elements in a single-step extraction. To demonstrate the versatility of the approach proposed and to show another advantage of ultrasonic field (acceleration of sorbate/sorbent interaction), a similar system was used for heterogeneous immunoassays of some antigens in ultrasonic field using agarose sorbents modified by corresponding antibodies. It has been shown that immunoglobulins, chlamidia, and brucellos bacteria can be quantitatively adsorbed on 15-μm sorbent (15 particles in 50 μL) and directly determined in a 50-μL mini-chamber using fluorescence detection. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-05-01
In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Rakesh
This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. Wemore » also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.« less
Modeling evaporation using models that are not boundary-layer regulated.
Fingas, Merv F
2004-02-27
Experimentation shows that oil is not strictly air boundary-layer regulated. The fact that oil evaporation is not strictly boundary-layer regulated implies that a simplistic evaporation equation suffices to describe the process. The following processes do not require consideration: wind velocity, turbulence level, area, thickness, and scale size. The factors important to evaporation are time and temperature. The equation parameters found experimentally for the evaporation of oils can be related to commonly available distillation data for the oil. Specifically, it has been found that the distillation percentage at 180 degrees C correlates well with the equation parameters. Relationships have been developed enabling calculation of evaporation equations directly from distillation data: percentage evaporated = 0.165 (%D)ln(t) where %D is the percentage (by weight) distilled at 180 degrees C and t is the time in minutes. These equations were combined with the equations generated to account for the temperature variations: percentage evaporated = [0.165(%D)+0.045(T-15))ln(t) The results have application in oil spill prediction and modeling. The simple equations can be applied using readily available data such as sea temperature and time. Old equations required oil vapour pressure, specialized distillation data, spill area, wind speed, and mass transfer coefficients, all of which are difficult to obtain.
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz
2018-02-26
The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3 m -2 d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.
NASA Astrophysics Data System (ADS)
Sun, Kang; Cady-Pereira, Karen; Miller, David J.; Tao, Lei; Zondlo, Mark A.; Nowak, John B.; Neuman, J. A.; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Scarino, Amy J.; Hostetler, Chris A.
2015-05-01
Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5-80 ppbv) were available in a narrow spatiotemporal window (<10 km, <1 h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within ±1.5 h of the overpass. The TES total columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TREASURY LIQUORS DISTILLED SPIRITS PLANTS Construction, Equipment and Security § 19.273 Tanks. (a) General... safety devices shall be constructed to prevent extraction of spirits or wines. (b) Scale tanks. (1) Beams...
Performance of lap splices in large-scale column specimens affected by ASR and/or DEF.
DOT National Transportation Integrated Search
2012-06-01
This research program conducted a large experimental program, which consisted of the design, construction, : curing, deterioration, and structural load testing of 16 large-scale column specimens with a critical lap splice : region, and then compared ...
EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER
Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...
Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)
NASA Technical Reports Server (NTRS)
Hutchens, Cindy; Graves, Rex
2004-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Vandegrift, G. F.
2015-09-30
Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop SHINE, an accelerator-driven process that will utilize a uranyl-sulfate solution for the production of fission product Mo-99. An integral part of the process is the development of a column for the separation and recovery of Mo-99, followed by a concentration column to reduce the product volume from 15-25 L to <1 L. Argonne has collected data from batch studies and breakthrough column experiments to utilize the VERSE (Versatile Reaction Separation) simulation program (Purdue University) to design plant-scale product recovery and concentration processes.
Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui
2011-01-01
High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.
Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Tyler, S. W.; Childress, A. E.
2010-12-01
The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination systems, thus, it can be used to meet the future needs of energy and water use in a sustainable way.
Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.
Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura
2002-10-01
Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.
Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System
NASA Astrophysics Data System (ADS)
Senevirathna, Bathiya; Gentile, Charles
2011-10-01
This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.
DOT National Transportation Integrated Search
2015-03-01
A large experimental program, consisting of the design, construction, curing, exposure, and structural load : testing of 16 large-scale column specimens with a critical lap splice region that were influenced by varying : stages of alkali-silica react...
Principle of Parsimony, Fake Science, and Scales
NASA Astrophysics Data System (ADS)
Yeh, T. C. J.; Wan, L.; Wang, X. S.
2017-12-01
Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large-scale heterogeneities as detailed as possible and adapting the Fick's law for effects of small-scale heterogeneity resulting from our inability to characterize them in detail.
An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
Auxilio, Anthony R; Choo, Wei-Lit; Kohli, Isha; Chakravartula Srivatsa, Srikanth; Bhattacharya, Sankar
2017-09-01
A bench scale, two-stage, thermo-catalytic reactor equipped with a continuous feeding system was used to pyrolyse pure and waste plastics. Experiments using five zeolitic and clay-based catalysts of different forms (pellet and powders) and different plastic feedstocks - virgin HDPE, HDPE w1aste and mixed plastic waste (MPW) were compared to the control experiments - pyrolysis without catalyst. Results indicated that the two pelletized catalysts were the most promising for the conditions employed. Of these two, one with higher acidity and surface area was highly selective for the gasoline fraction (C 5 -C 11 ) giving 80% from the total medium distillate conversion using virgin HDPE as feedstock. It also produced the least amount of olefins (17% for virgin HDPE, 4% for HDPE waste and 2% for MPW) and coke (<1% for virgin HDPE, 3% for HDPE waste and 5% for MPW), and the highest aromatics content (22% for virgin HDPE from un-distilled medium distillate, 5% for HDPE and 13% for MPW both from distilled medium distillate). The second pelletized catalyst exhibited high selectivity for the diesel fraction (C 12 -C 25 ) giving 63% from the total medium distillate conversion using virgin HDPE as feedstock. The amount of coke deposited on the catalyst surface depended mainly on the mesopore volume, with less coke deposited as the mesopore volume increased. The variation in catalyst selectivity with acidity strength due to Lewis sites on the catalyst surface controls selectivity towards carbon chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seismic retrofit of cruciform-shaped columns in the Aurora Avenue Bridge using FRP wrapping.
DOT National Transportation Integrated Search
2010-08-01
Experimental tests were conducted on seven 1/3-scale column specimens to evaluate the vulnerabilities of existing cruciform-shaped columns and to develop appropriate retrofit measures that address the identified vulnerabilities. The specimens represe...
NASA Astrophysics Data System (ADS)
Aragon, A. R.; Siegel, M.
2004-12-01
The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full-scale systems. RSSCTs will be performed on a suite of water compositions representing the variety of water supplies in the United States that are affected by the new drinking water standard. Ultimately, this approach will be used to carry out inexpensive short-term pilot studies at a large number of sites where large-scale pilots are not economically feasible. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Darnault, C. J. G.; Pullano, C. P.; Mutty, T.; L'Ollivier, C.; Dubey, J. P.; Dumetre, A.
2017-12-01
The pathogenic microorganism Toxoplasma gondii is a current public health threat. Knowledge of the fate and transport of T. gondii in the environment, especially the subsurface, is critical to evaluate the risk of soil and groundwater contaminations. The physico-chemcial properties of groundwater systems, i.e. solution chemistry and aquifer materials, play a key role in the interaction of biocolloids with surfaces and therefore their mobility. This research examines how different salt solutions alter the mobility of T. gondii through saturated porous media. Salt solutions containing varying ionic strengths and concentrations of sodium chloride, calcium chloride, and magnesium chloride were used to test the transport of the T. gondii oocysts. These tests were performed using quartz silica sand columns fed by a peristaltic pump in order to generate flow and transport of the biocolloids. The salt solution was pumped though the column followed by a pulse of the T. gondii oocysts, then a pulse of salt solution without oocysts, and then lastly a pulse of distilled water. Sampling of the solution exiting the columns was tested for T. gondii oocysts using qPCR in order to quantify the oocysts present. The breakthough curve results were then compared to a conservative bromide tracer test in order to determine the factors associated with the movement of these biocolloids through the sand columns. A model of the flow of the toxoplasma colloids through the sand matrix was made in order to characterize the parameters affecting the transport and retention of T. gondii occysts though saturated porous media.
Scaling of Turbulence and Transport with ρ* in LAPD
NASA Astrophysics Data System (ADS)
Guice, Daniel; Carter, Troy; Rossi, Giovanni
2014-10-01
The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.
A New Freshwater Naked Lobose Amoeba Korotnevella venosa n. sp. (Amoebozoa, Discosea).
Udalov, Ilya A; Zlatogursky, Vasily V; Smirnov, Alexey V
2016-11-01
A new freshwater species of naked lobose amoebae Korotnevella venosa n. sp. isolated from freshwater pond in St. Petersburg, Russia was studied with light and transmission electron microscopy. Basket scales of this species have six vertical columns supporting perforated rim. The latter has tongue-like broadening with membranous region. Vertical columns bifurcate at both ends so that neighboring columns are connected by their bifurcations forming combined structure. Basket scales of K. venosa are similar to those of Korotnevella hemistylolepis in having six full-length vertical columns and perforated rim. At the same time, they are different in having tongue-like broadening of perforated rim with membranous region and absence of six half-length columns and an intermediate crosspiece. Phylogenetic trees based on 18S rDNA gene placed K. venosa either at the base of the whole Korotnevella clade, next to K. hemistylolepis, or as a sister to the clade comprising Korotnevella species with latticework basket in large scales. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Repair of earthquake damaged bridge columns with fractured bars.
DOT National Transportation Integrated Search
2013-07-01
The objective of this study is to repair three, half-scale RC bridge columns that will be tested to failure under slow cyclic loading. : These columns will have fractured longitudinal and transverse steel. The ultimate goal is to develop repair metho...
Canosa, Joel
2018-01-01
The aim of this study is the application of a software tool to the design of stripping columns to calculate the removal of trihalomethanes (THMs) from drinking water. The tool also allows calculating the rough capital cost of the column and the decrease in carcinogenic risk indeces associated with the elimination of THMs and, thus, the investment to save a human life. The design of stripping columns includes the determination, among other factors, of the height (HOG), the theoretical number of plates (NOG), and the section (S) of the columns based on the study of pressure drop. These results have been compared with THM stripping literature values, showing that simulation is sufficiently conservative. Three case studies were chosen to apply the developed software. The first case study was representative of small-scale application to a community in Córdoba (Spain) where chloroform is predominant and has a low concentration. The second case study was of an intermediate scale in a region in Venezuela, and the third case study was representative of large-scale treatment of water in the Barcelona metropolitan region (Spain). Results showed that case studies with larger scale and higher initial risk offer the best capital investment to decrease the risk. PMID:29562670
Movement of Endotoxin Through Soil Columns
Goyal, Sagar M.; Gerba, Charles P.; Lance, J. Clarence
1980-01-01
Land treatment of wastewater is an attractive alternative to conventional sewage treatment systems and is gaining widespread acceptance. Although land application systems prevent surface water pollution and augment the available water supplies, the potential dangers to human health should be evaluated. Since sewage may contain high amounts of bacterial endotoxin, the removal of endotoxin from sewage by percolation through soil was investigated. It was found that 90 to 99% of the endotoxin was removed after travel of sewage through 100 to 250 cm of loamy sand soil. When distilled water was allowed to infiltrate into the soil to simulate rainfall, the endotoxin was mobilized and moved in a concentrated band through the soil column. On testing samples from actual land treatment sites, as much as 480 ng of endotoxin per milliliter was found in some groundwater samples. The presence of endotoxin in potable water is known to be a potential problem under some circumstances, but the importance of endotoxin in water supplies has not been fully assessed. Therefore, the design, operation, and management of land application systems should take into account the fate of endotoxin in groundwater beneath the sites. PMID:7387154
SNO+ Scintillator Purification and Assay
NASA Astrophysics Data System (ADS)
Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.
2011-04-01
We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.
Vapor Compression Distillation Flight Experiment
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.
2002-01-01
One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.
2008-06-01
Assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus Spores on Indoor Surfaces Using a Hydrogen Peroxide Gas...24-25% hydrogen peroxide (CAS # 7722-84-1), and 1-1.4% acetic acid. Clorox® bleach was diluted 1/ 1 0 th with sterile distilled water. Clean Earth...Peridox TM was diluted 1/6th with sterile distilled water. The disinfectants were used within 2 hr of their preparation. 2.2 Coupon Procurement Small size
Directed module detection in a large-scale expression compendium.
Fu, Qiang; Lemmens, Karen; Sanchez-Rodriguez, Aminael; Thijs, Inge M; Meysman, Pieter; Sun, Hong; Fierro, Ana Carolina; Engelen, Kristof; Marchal, Kathleen
2012-01-01
Public online microarray databases contain tremendous amounts of expression data. Mining these data sources can provide a wealth of information on the underlying transcriptional networks. In this chapter, we illustrate how the web services COLOMBOS and DISTILLER can be used to identify condition-dependent coexpression modules by exploring compendia of public expression data. COLOMBOS is designed for user-specified query-driven analysis, whereas DISTILLER generates a global regulatory network overview. The user is guided through both web services by means of a case study in which condition-dependent coexpression modules comprising a gene of interest (i.e., "directed") are identified.
Hyung, Seok Won; Piehowski, Paul D.; Moore, Ronald J.; ...
2014-09-06
Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 µL) due to low yields stemming from losses caused by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizingmore » sample recovery when samples are limited, as well as for reducing the expense of large scale studies. We characterized the performance of a 346 µL column volume micro-scale depletion system, using four different flow rates to determine the most effective depletion conditions for ~6 μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10 mL depletion column served as the control. Results showed depletion efficiency of the micro-scale column increased as flow rate decreased, and that our micro-depletion was reproducible. We found, in an initial application, a 600 µL sample of human cerebral spinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.« less
Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling
NASA Astrophysics Data System (ADS)
Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.
2011-12-01
By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.
Cost effective design and operation of Granular Activated Carbon (GAC) facilities requires the selection of GAC that is optimal for a specific site. Rapid small-scale column tests (RSSCTs) are widely used for GAC assessment due to several advantages, including the ability to simu...
Cost effective design and operation of Granular Activated Carbon (GAC) facilities requires the selection of GAC that is optimal for a specific site. Rapid small-scale column tests (RSSCTs) are widely used for GAC assessment due to several advantages, including the ability to simu...
Synthesis and analysis of jet fuels from shale oil and coal syncrudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.; Gallagher, J. P.
1976-01-01
The technical problems involved in converting a significant portion of a barrel of either a shale oil or coal syncrude into a suitable aviation turbine fuel were studied. TOSCO shale oil, H-Coal and COED coal syncrudes were the starting materials. They were processed by distillation and hydrocracking to produce two levels of yield (20 and 40 weight percent) of material having a distillation range of approximately 422 to 561 K (300 F to 550 F). The full distillation range 311 to 616 K (100 F to 650 F) materials were hydrotreated to meet two sets of specifications (20 and 40 volume percent aromatics, 13.5 and 12.75 weight percent H, 0.2 and 0.5 weight percent S, and 0.1 and 0.2 weight percent N). The hydrotreated materials were distilled to meet given end point and volatility requirements. The syntheses were carried out in laboratory and pilot plant equipment scaled to produce thirty-two 0.0757 cu m (2-gal)samples of jet fuel of varying defined specifications. Detailed analyses for physical and chemical properties were made on the crude starting materials and on the products.
Tatari, K; Smets, B F; Albrechtsen, H-J
2013-10-15
A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.
Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A
2015-10-01
The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark
2014-01-01
An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.
Emissions of methane in Europe inferred by total column measurements
NASA Astrophysics Data System (ADS)
Wunch, D.; Deutscher, N. M.; Hase, F.; Notholt, J.; Sussmann, R.; Toon, G. C.; Warneke, T.
2017-12-01
Atmospheric total column measurements have been used to infer emissions of methane in urban centres around the world. These measurements have been shown to be useful for verifying city-scale bottom-up inventories, and they can provide both timely and sub-annual emission information. We will present our analysis of atmospheric total column measurements of methane and carbon monoxide to infer annual and seasonal regional emissions of methane within Europe using five long-running atmospheric observatories. These observatories are part of the Total Carbon Column Observing Network, part of a global network that has been carefully designed to measure these gases on a consistent scale. Our inferred emissions will then be used to evaluate gridded emissions inventories in the region.
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.
HD gas purification for polarized HDice targets production at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whisnant, Charles; D'Angelo, Annalisa; Colaneri, Luca
2014-06-01
Solid, frozen-spin targets of molecular HD were rst developed for nuclear physics by a collaboration between Syracuse University and Brookhaven National Lab. They have been successfully used in measurements with photon beams, rst at the Laser-Electron-Gamma-Source [1] and most recently at Je erson Lab during the running of the E06-101 (g14) experiment [2]. Preparations are underway to utilize the targets in future electron experiments after the completion of the 12 GeV JLab upgrade [3]. HD is an attractive target since all of the material is polarizable, of low Z, and requires only modest holding elds. At the same time, themore » small contributions from the target cell can be subtracted from direct measurements. Reaching the frozen-spin state with both high polarization and a signi cant spin relaxation time requires careful control of H2 and D2 impurities. Commercially available HD contains 0.5 - 2% concentrations of H2 and D2. Low-temperature distillation is required to reduce these concentrations to the 104 level to enable useful target production. This distillation is done using a column lled with heli-pack C [4] to give good separation e ciency. Approximately 12 moles of commercial HD is condensed into the mechanically refrigerated system at the base temperature of 11K. The system is then isolated and the temperature stabilized at 18K producing liquid HD, which is boiled by a resistive heater. The circulation established by the boil-o condensing throughout the column then ltering back down produces a steady-state isotopic separation permitting the extraction of HD gas with very low H2 and D2 content. A residual gas analyzer initially monitors distillation. Once the H2 concentration falls below its useful operating range, samples are periodically collected for analysis using gas chromatography [5] and Raman scattering. Where the measurement techniques overlap, good agreement is obtained. The operation of the distillery and results of gas analysis will be discussed. References [1] Phy. Rev. Lett. 101 (2009) 172002. [2] www.jlab.org/exp_prog/proposals/06/PR-06-101.pdf [3] www.jlab.org/exp_prog/proposals/12/PR12-12-009.pdf, www.jlab.org/exp_prog/proposals/12/PR12-12-010.pdf, and www.jlab.org/exp_prog/proposals/11/PR12-11-111.pdf [4] Nucl. Inst. Meth. 664 (2012) 347, www.wilmad-labglass.com/Products/LG-6730-104/ [5] Rev. Sci. Instrum. 82, 024101 (2011).« less
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1
NASA Technical Reports Server (NTRS)
Sullivan, M. R.
1982-01-01
The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.
NASA Astrophysics Data System (ADS)
Paillet, Frederick
2012-08-01
A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.
NASA Astrophysics Data System (ADS)
Huynh, Q.; Phan, T. D.; Thieu, V. Q. Q.; Tran, S. T.; Do, S. H.
2012-03-01
Tea tree oil (TTO) comes from the leaves of Melaleuca alternifornia that belongs to the myrtle family (Myrtaceae). It is one of the most powerful immune system stimulants and sorts out most viral, bacterial and fungal infections in a snap, while it is great to heal wounds and acnes. In Vietnam, Melaleuca trees can grow on acid land that stretches in a large portion of lands in the Mekong Delta region. So, there are some Melaleuca plantations developed under the Vietnamese government plans of increasing plantation forests now. However, TTO contains various amounts of 1,8-cineole that causes skin irritant. So TTO purification is very necessary. In this study, the purification of TTO that meet International Standard ISO 4730 was carried out via two steps. The first step is steam distillation to obtain crude TTO (terpinen-4-ol 35% v/v) and the average productivity is among 2.37% (v/wet-wt) or 1.23% (v/dry-wt). In the second step, the cleaned TTO is collected by vacuum distillation column and extraction yield of the whole process is about 0.3% (w/w). Besides, high concentration essential oil was applied in the cosmetic products to increase its commercial value.
Ramírez, Jorge; Gilardoni, Gianluca; Ramón, Erika; Tosi, Solveig; Picco, Anna Maria; Bicchi, Carlo; Vidari, Giovanni
2018-04-19
The plant Lepechinia mutica (Benth.) Epling (family Lamiaceae) is endemic to Ecuador. In the present study, we report some major non-volatile secondary metabolites from the leaves and the chemistry of the essential oil distilled from the flowers. The main identified compounds were carnosol, viridiflorol, ursolic acid, oleanolic acid, chrysothol, and 5-hydroxy-4′,7-dimethoxy flavone. Their structures were determined by X-ray diffraction and NMR and MS techniques. The essential oil showed a chemical composition similar to that distilled from the leaves, but with some qualitative and quantitative differences regarding several minor compounds. The main constituents (>4%) were: δ-3-carene (24.23%), eudesm-7(11)-en-4-ol (13.02%), thujopsan-2-α-ol (11.90%), β-pinene (7.96%), valerianol (5.19%), and co-eluting limonene and β-phellandrene (4.47%). The volatile fraction was also submitted to enantioselective analysis on a β-cyclodextrin column, obtaining the separation and identification of the enantiomers for α-thujene, β-pinene, sabinene, α-phellandrene, limonene and β-phellandrene. Furthermore, the anti-fungal activity of non-volatile secondary metabolites was tested in vitro, with carnosol resulting in being very active against the “blast disease” caused by the fungus Pyricularia oryzae .
Earth History databases and visualization - the TimeScale Creator system
NASA Astrophysics Data System (ADS)
Ogg, James; Lugowski, Adam; Gradstein, Felix
2010-05-01
The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the vertical-scale, column widths, fonts, colors, titles, ordering, range chart options and many other features. Mouse-activated pop-ups provide additional information on columns and events; including links to external Internet sites. The graphics can be saved as SVG (scalable vector graphics) or PDF files for direct import into Adobe Illustrator or other common drafting software. Users can load additional regional datapacks, and create and upload their own datasets. The "Pro" version has additional dataset-creation tools, output options and the ability to edit and re-save merged datasets. The databases and visualization package are envisioned as a convenient reference tool, chart-production assistant, and a window into the geologic history of our planet.
Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics
NASA Astrophysics Data System (ADS)
Zaid, Faraj Muftah
This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.
Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi
2013-01-01
A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.
NASA Astrophysics Data System (ADS)
Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.
2011-05-01
Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.
Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang
2014-01-01
This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.
Extraction and identification of flavonoids from parsley extracts by HPLC analysis
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.
2012-02-01
Flavonoids are phenolic compounds isolated from a wide variety of plants, and are valuable for their multiple properties, including antioxidant and antimicrobial activities. In the present work, parsley (Petroselinum crispum L.) extracts were obtained by three different extraction techniques: maceration, ultrasonic-assisted and microwave-assisted solvent extractions. The extractions were performed with ethanol-water mixtures in various ratios. From these extracts, flavonoids like the flavones apigenin and luteolin, and the flavonols quercetin and kaempferol were identified using an HPLC Shimadzu apparatus equipped with PDA and MS detectors. The separation method involved a gradient step. The mobile phase consisted of two solvents: acetonitrile and distilled water with 0.1% formic acid. The separation was performed on a RP-C18 column.
Thermal regeneration of an electrochemical concentration cell
Krumpelt, Michael; Bates, John K.
1981-01-01
A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.
Supplemental Hazard Analysis and Risk Assessment - Hydrotreater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Peter P.; Wagner, Katie A.
A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish amore » lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.« less
NASA Astrophysics Data System (ADS)
Nik Him, N. R.; Huda, T.
2018-05-01
Study on the production of bioethanol using palm oil empty fruit bunch (EFB) has been performed using actinomycete Streptosporangium roseum. Positive result of bioethanol production was recorded using Iodoform test followed by confirmation with GC-FID using a polar capillary column (PEG-type, 10m x 0.53, with autosampler) and n-propanol as internal standard. The first and second round distillation has produced azeotrope (85-15% ethanol-water) and the third round has concentrated the ethanol to 96.1%. Therefore, the process was accomplished by using molecular sieves that selectively absorbed the final excess water. Direct fermentation using Streptosporangium roseum has shown to be a very potential way to catalyst for the synthesis of bioethanol from EFB.
Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.
2015-01-01
The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
Bubble Size Distribution in a Vibrating Bubble Column
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian
2016-11-01
While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.
Costa, Fernanda das Neves; Vieira, Mariana Neves; Garrard, Ian; Hewitson, Peter; Jerz, Gerold; Leitão, Gilda Guimarães; Ignatova, Svetlana
2016-09-30
Countercurrent chromatography (CCC) is being widely used across the world for purification of various materials, especially in natural product research. The predictability of CCC scale-up has been successfully demonstrated using specially designed instruments of the same manufacturer. The reality is that the most of CCC users do not have access to such instruments and do not have enough experience to transfer methods from one CCC column to another. This unique study of three international teams is based on innovative approach to simplify the scale-up between different CCC machines using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. The optimized separation methodology, recently developed by the authors (Part I), was repeatedly performed on CCC columns of different design available at most research laboratories across the world. Hexane - ethyl acetate - methanol - water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds to monitor stationary phase retention and calculate peak resolution. It has been demonstrated that volumetric, linear and length scale-up transfer factors based on column characteristics can be directly applied to different i.d., volume and length columns independently on instrument make in an intra-apparatus scale-up and inter-apparatus method transfer. Copyright © 2016 Elsevier B.V. All rights reserved.
Horel, Agota; Schiewer, Silke; Misra, Debasmita
2015-09-01
The present research investigated to what extent results obtained in small microcosm experiments can be extrapolated to larger settings with non-uniform concentrations. Microbial hydrocarbon degradation in sandy sediments was compared for column experiments versus homogenized microcosms with varying concentrations of diesel, Syntroleum, and fish biodiesel as contaminants. Syntroleum and fish biodiesel had higher degradation rates than diesel fuel. Microcosms showed significantly higher overall hydrocarbon mineralization percentages (p < 0.006) than columns. Oxygen levels and moisture content were likely not responsible for that difference, which could, however, be explained by a strong gradient of fuel and nutrient concentrations through the column. The mineralization percentage in the columns was similar to small-scale microcosms at high fuel concentrations. While absolute hydrocarbon degradation increased, mineralization percentages decreased with increasing fuel concentration which was corroborated by saturation kinetics; the absolute CO2 production reached a steady plateau value at high substrate concentrations. Numerical modeling using HYDRUS 2D/3D simulated the transport and degradation of the investigated fuels in vadose zone conditions similar to those in laboratory column experiments. The numerical model was used to evaluate the impact of different degradation rate constants from microcosm versus column experiments.
Pilot-Scale Test of Counter-Current Ion Exchange (CCIX) Using UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wester, Dennis W; Leugemors, Robert K; Taylor, Paul W
2001-09-24
A pilot-scale test of a moving-bed configuration of a UOP IONSIV? IE-911 ion-exchange column was performed over 17 days at Severn Trent Services facilities. The objectives of the test, in order of priority, were to determine if aluminosilicate precipitation caused clumping of IE-911 particles in the column, to observe the effect on aluminum-hydroxide precipitation of water added to a simulant-filled column, to evaluate the extent of particle attrition, and to measure the expansion of the mass-transfer zone under the influence of column pulsing. The IE-911 moved through the column with no apparent clumping during the test, although analytical results indicatemore » that little if any aluminosilicate precipitated onto the particles. A precipitate of aluminum hydroxide was not produced when water was added to the simulant-filled column, indicating that this upset scenario is probably of little concern. Particle-size distributions remained relatively constant with time and position in the column, indicating that particle attrition was not significant. The expansion of the mass-transfer zone could not be accurately measured because of the slow loading kinetics of the IE-911 and the short duration of the test; however, the information obtained indicates that back-mixing of sorbent is not extensive.« less
Complete nutrient recovery from source-separated urine by nitrification and distillation.
Udert, K M; Wächter, M
2012-02-01
In this study we present a method to recover all nutrients from source-separated urine in a dry solid by combining biological nitrification with distillation. In a first process step, a membrane-aerated biofilm reactor was operated stably for more than 12 months, producing a nutrient solution with a pH between 6.2 and 7.0 (depending on the pH set-point), and an ammonium to nitrate ratio between 0.87 and 1.15 gN gN(-1). The maximum nitrification rate was 1.8 ± 0.3 gN m(-2) d(-1). Process stability was achieved by controlling the pH via the influent. In the second process step, real nitrified urine and synthetic solutions were concentrated in lab-scale distillation reactors. All nutrients were recovered in a dry powder except for some ammonia (less than 3% of total nitrogen). We estimate that the primary energy demand for a simple nitrification/distillation process is four to five times higher than removing nitrogen and phosphorus in a conventional wastewater treatment plant and producing the equivalent amount of phosphorus and nitrogen fertilizers. However, the primary energy demand can be reduced to values very close to conventional treatment, if 80% of the water is removed with reverse osmosis and distillation is operated with vapor compression. The ammonium nitrate content of the solid residue is below the limit at which stringent EU safety regulations for fertilizers come into effect; nevertheless, we propose some additional process steps that will increase the thermal stability of the solid product. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendren, Zachary; Choi, Young Chul
The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow formore » the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.« less
Nizio, Katie D; Harynuk, James J
2012-08-24
Alkyl phosphate based gellants used as viscosity builders for fracturing fluids used in the process of hydraulic fracturing have been implicated in numerous refinery-fouling incidents in North America. In response, industry developed an inductively coupled plasma optical emission spectroscopy (ICP-OES) based method for the analysis of total volatile phosphorus in distillate fractions of crude oil; however, this method is plagued by poor precision and a high limit of detection (0.5±1μg phosphorus mL(-1)). Furthermore this method cannot provide speciation information, which is critical for developing an understanding of the challenge of alkyl phosphates at a molecular level. An approach using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection (GC×GC-NPD) and post-column Deans switching is presented. This method provides qualitative and quantitative profiles of alkyl phosphates in industrial petroleum samples with increased precision and at levels comparable to or below those achievable by ICP-OES. A recovery study in a fracturing fluid sample and a profiling study of alkyl phosphates in four recovered fracturing fluid/crude oil mixtures (flowback) are also presented. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, I.; Cristescu, I. R.; Doerr, L.
2008-07-15
The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less
Colman, John A.; Waldron, Marcus C.; Breault, Robert F.; Lent, Robert M.
1999-01-01
Total mercury and methylmercury were measured in 4 reservoir cores and 12 wetland cores from Sudbury River. The distribution of total mercury and methylmercury in these cores was evaluated to determine the potential for total mercury and methylmercury transport from reservoir and wetlands sediments to the water column. Concentrations of methylmercury were corrected for an analytical artifact introduced during the separation distillation used in the analysis procedure. Corrected methylmercury concentrations correlated with total mercury concentrations in bulk sediment from below the top layers of reservoir and wetland cores; methylmercury concentrations at the top layers of cores were relatively high, however, and were not correlated with total mercury concentrations. Concentrations of methylmercury in pore water were positively correlated with methylmercury concentrations in the bulk sediment. High concentrations of total mercury and methylmercury in sediment (73 and 0.047 micrograms per gram dry-weight basis, respectively) contributed less to the water column in the reservoir than in the wetlands probably because of burial by low concentration sediment and differences in the processes available to transport mercury from the sediments to the water in the reservoirs, as compared to the wetlands .
Heshka, Nicole E; Choy, Joanne M; Chen, Jinwen
2017-12-29
A modification to American Society for Testing and Materials (ASTM) method D5623 is proposed to enable successful and repeatable analysis of heavy crude oil samples. A two-dimensional gas chromatography configuration was implemented, with separation of sulphur compounds occurring on two columns. A Deans switch is used to enable heart-cutting of volatile sulphur compounds onto a DB-Sulfur stationary phase, and separation occurs concurrently with the backflushing of the primary column. The use of a sulphur-selective detector increases selectivity, and 22 volatile sulphur species are quantified in less than 15min, which is almost half the time of the original ASTM method. Samples ranging from light distillation cuts to whole crudes (boiling from 100°C to >750°C) were analyzed with minimal sample preparation. The calculated limit of detection was 0.7mg/kg, repeatability was 3% relative standard deviation (RSD), and a linear range of 1-250mg/kg was obtained, with an R 2 value of 0.994 or better, depending on the compound. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Application of porous materials in oil substances separation from water
NASA Astrophysics Data System (ADS)
Gołub, Adam; Piekutin, Janina
2017-11-01
The aim of the study was to determine the ability of the four porous materials: birch bark, cork, glass wool, and polyurethane foam to reduce the mineral oil index and the concentration of n-alkanes C7H16-C38H78 as well as to select the most efficient materials. Model solutions of gasoline, diesel oil, and distilled water with the following values of mineral oil index were prepared to tests: 52 μg/dm3, 68 μg/dm3 and 73 μg/dm3. Then, studies were carried out using a dynamic method, wherein the columns were filled with adsorbents tested, and in each of three testing series, 500 mL of the model solution at constant bed load of 1,0551 m3/m2h was filtered through the column. After filtration, the collected sample had volume of 250 mL. The collected samples were subject to determination of mineral oil index and concentrations of n-alkanes from C7H16 to C38H78. Studies have shown that the most effective materials to lower the mineral oil index and the concentrations of n-alkanes in water are birch bark and glass wool.
Effects of Purification on the Crystallization of Lysozyme
NASA Technical Reports Server (NTRS)
Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.
1996-01-01
We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.
On the Origin of the High Column Density Turnover in the HI Column Density Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less
The design of a new concept chromatography column.
Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew
2011-12-21
Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.
Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N
2016-03-21
We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.
Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System
NASA Technical Reports Server (NTRS)
Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay
2016-01-01
The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.
Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong
2014-09-01
The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright © 2014 Elsevier B.V. All rights reserved.
Method for controlling boiling point distribution of coal liquefaction oil product
Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.
1982-12-21
The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.
Method for controlling boiling point distribution of coal liquefaction oil product
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-12-21
The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.
Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents
Lezin, George; Kuehn, Michael R.; Brunelli, Luca
2011-01-01
Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated LPS contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures. PMID:21351074
MacArthur, Katherine E; Brown, Hamish G; Findlay, Scott D; Allen, Leslie J
2017-11-01
Advances in microscope stability, aberration correction and detector design now make it readily possible to achieve atomic resolution energy dispersive X-ray mapping for dose resilient samples. These maps show impressive atomic-scale qualitative detail as to where the elements reside within a given sample. Unfortunately, while electron channelling is exploited to provide atomic resolution data, this very process makes the images rather more complex to interpret quantitatively than if no electron channelling occurred. Here we propose small sample tilt as a means for suppressing channelling and improving quantification of composition, whilst maintaining atomic-scale resolution. Only by knowing composition and thickness of the sample is it possible to determine the atomic configuration within each column. The effects of neighbouring atomic columns with differing composition and of residual channelling on our ability to extract exact column-by-column composition are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information
NASA Astrophysics Data System (ADS)
1980-12-01
The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.
Ahmad, Farrukh; Schnitker, Stephen P; Newell, Charles J
2007-02-20
Organic mulch is a complex organic material that is typically populated with its own consortium of microorganisms. The organisms in mulch breakdown complex organics to soluble carbon, which can then be used by these and other microorganisms as an electron donor for treating RDX and HMX via reductive pathways. A bench-scale treatability study with organic mulch was conducted for the treatment of RDX- and HMX-contaminated groundwater obtained from a plume at the Pueblo Chemical Depot (PCD) in Pueblo, Colorado. The site-specific cleanup criteria of 0.55 ppb RDX and 602 ppb HMX were used as the logical goals of the study. Column flow-through tests were run to steady-state at the average site seepage velocity, using a 70%:30% (vol.:vol.) mulch:pea gravel packing to approach the formation's permeability. Significant results included: (1) Complete removal of 90 ppb influent RDX and 8 ppb influent HMX in steady-state mulch column effluent; (2) pseudo-first-order steady-state kinetic rate constant, k, of 0.20 to 0.27 h(-1) based on RDX data, using triplicate parallel column runs; (3) accumulation of reduced RDX intermediates in the steady-state column effluent at less than 2% of the influent RDX mass; (4) no binding of RDX to the column fill material; and (5) no leaching of RDX, HMX or reduction intermediates from the column fill material. The results of the bench-scale study will be used to design and implement a pilot-scale organic mulch/pea gravel permeable reactive barrier (PRB) at the site.
Thermal regeneration of an electrochemical concentration cell
Krumpelt, M.; Bates, J.K.
1980-05-09
A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.
Determination of selected azaarenes in water by bonded-phase extraction and liquid chromatography
Steinheimer, T.R.; Ondrus, M.G.
1986-01-01
A method for the rapid and simple quantitative determination of quinoline, isoquinoline, and five selected three-ring azaarenes in water has been developed. The azaarene fraction is separated from its carbon analogues on n-octadecyl packing material by edition with acidified water/acetonitrile. Concentration as great as 1000-fold is achieved readily. Instrumental analysis involves high-speed liquid chromatography on flexible-walled, wide-bore columns with fluorescence and ultraviolet detection at several wavelengths employing filter photometers in series. Method-validation data is provided as azaarene recovery efficiency from fortified samples. Distilled water, river water, contaminated ground water, and secondary-treatment effluent have been tested. Recoveries at part-per-billion levels are nearly quantitative for the three-ring compounds, but they decrease for quinoline and isoquinoline. ?? 1986 American Chemical Society.
NASA Astrophysics Data System (ADS)
Azeredo, Laerte C.; Azeredo, Maria Aparecida A.; Castro, Rosane N.; Saldanha, Marcelo Francisco C.; Perez, Daniel V.
2002-12-01
A new method is described for the separation of molybdenum based on its chelation in a column packed with quercetin, immobilized on silica gel in a slightly acidic medium (pH 5.0). Recovery ranged from 95% (NIST 1515 apple leaves) to 99% (deionized, distilled water; DDW) with an absolute blank of 27.5±1.6 pg obtained for the analysis of DDW. Detection limits, absolute and relative, based on a 5.0-ml sample volume were 4.8 pg and 1 ng l -1, respectively. Results are presented for molybdenum determination in two standard reference materials, NIST 1515 and NIST 1547 peach leaves, using simple calibration curves for quantification. α-Benzoinoxime was used as the eluent.
Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1
NASA Technical Reports Server (NTRS)
Stockemer, F. J.
1981-01-01
Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.
Kiesewetter, André; Menstell, Peter; Peeck, Lars H; Stein, Andreas
2016-11-01
Rapid development of chromatographic processes relies on effective high-throughput screening (HTS) methods. This article describes the development of pseudo-linear gradient elution for resin selectivity screening using RoboColumns ® . It gives guidelines for the implementation of this HTS method on a Tecan Freedom EVO ® robotic platform, addressing fundamental aspects of scale down and liquid handling. The creation of a flexible script for buffer preparation and column operation plus efficient data processing provided the basis for this work. Based on the concept of discretization, linear gradient elution was transformed into multistep gradients. The impact of column size, flow rate, multistep gradient design, and fractionation scheme on separation efficiency was systematically investigated, using a ternary model protein mixture. We identified key parameters and defined optimal settings for effective column performance. For proof of concept, we examined the selectivity of several cation exchange resins using various buffer conditions. The final protocol enabled a clear differentiation of resin selectivity on miniature chromatography column (MCC) scale. Distinct differences in separation behavior of individual resins and the influence of buffer conditions could be demonstrated. Results obtained with the robotic platform were representative and consistent with data generated on a conventional chromatography system. A study on antibody monomer/high molecular weight separation comparing MCC and lab scale under higher loading conditions provided evidence of the applicability of the miniaturized approach to practically relevant feedstocks with challenging separation tasks as well as of the predictive quality for larger scale. A comparison of varying degrees of robotic method complexity with corresponding effort (analysis time and labware consumption) and output quality highlights tradeoffs to select a method appropriate for a given separation challenge or analytical constraints. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1503-1519, 2016. © 2016 American Institute of Chemical Engineers.
Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic
USDA-ARS?s Scientific Manuscript database
The feasibility of catalytic and non-catalytic pyrolytic conversion of low value post-consumer high density polyethylene (HDPE) plastic into crude oil and subsequent distillation was explored. Translation of optimized conditions for catalytic and non-catalytic pyrolysis from TGA to a bench-scale sys...
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.
2015-01-01
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.
Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J
2012-01-01
Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).
Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio
2017-10-31
This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(-)-β-pinene was 86.9:13.1, while the one of (+)/(-)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC 50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC 50 values of 40.8 μg/mL and 10.9 μg/mL, respectively.
Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio
2017-01-01
This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(−)-β-pinene was 86.9:13.1, while the one of (+)/(−)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC50 values of 40.8 μg/mL and 10.9 μg/mL, respectively. PMID:29088082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debasisbanerjee, Debasis; Simon, Cory; Elsaidi, Sameh
The global demand for Xe, a noble gas with applications in electronics, lighting, and the medical industry, is expected to rise significantly over the coming decades. However, the low abundance of Xe in the earth’s atmosphere and the costly cryogenic distillation process that is used to obtain Xe commercially via air separation have limited the scale of applications of Xe. A physisorption-based separation using porous materials may be a viable and cost-effective alternative to cryogenic distillation. In particular, metal-organic frameworks (MOFs) have shown promise as highly Xe-selective, porous solids. In this review, we detail the recent advances of MOFs asmore » adsorbents for noble gas adsorption/separation and the role of computer simulation in finding optimal materials for Xe adsorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy; Rozmiarek, Robert; Dally, Brice
2017-08-31
The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefactionmore » task and included temperature scoping, solvent optimization, and separations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crisp, T.E.; Nairn, R.W.; Strevett, K.A.
1998-12-31
A column study was conducted to evaluate the feasibility of using of coal combustion by-products (CCB) as alkaline materials in a field scale downflow constructed wetlands for acid mine drainage treatment. Five columns (15.24 cm in diameter and 91.44 cm high) were constructed and filled with a combination of spent mushroom substrate (SMS) and one of three alkaline materials (limestone, hydrated fly ash, or fluidized bed ash). The five mixtures utilized were 10% fluidized bed ash/40% limestone (FBA/LS), 10% fluidized bed ash (FBA), 50% limestone (LS), 50% hydrated fly ash (HFA),m and 50% sieved (>1.5 cm) hydrated fly ash (S.more » HFA) with the remainder as SMS on a w/w basis. Column received synthetic acid mine drainage containing: 400 mg/L iron, 59 mg/L aluminum, 11 mg/L manganese, 50% mg/L magnesium, 40 mg/L calcium, and 1200 mg/L sulfate for 5 months. Anoxic conditions in the influent reservoirs were maintained by a positive nitrogen pressure head. Flow rates of 2.0 mL/minute to each column were maintained by a multichannel peristaltic pump. For all columns, effluent acidity concentrations were less than influent acidity concentration (877{sup {minus}}30, n = 75f). Mean effluent acidity concentrations were 241 mg/L (FBA/LS), 186 mg/L (FBA), 419 mg/L (LS), {minus}28.5 mg/L (HFA), and 351 mg/L (S. HFA), respectively. While all column produced measurable alkalinity, only the HFA column produced a net alkaline discharge. The results of these column studies are applicable to the design and sizing of innovative field scale systems using alkaline-rich CCB`s.« less
Ingber, Lester; Nunez, Paul L
2011-02-01
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.
A rapid LC/MS/MS method for the analysis of nonvolatile antiinflammatory agents from Mentha spp.
Shen, Diandian; Pan, Min-Hsiung; Wu, Qing-Li; Park, Chung-Heon; Juliani, H Rodolfo; Ho, Chi-Tang; Simon, James E
2011-08-01
Mints (Mentha spp.), aromatic crops grown largely for their essential oils, also are rich sources of nonvolatile antiinflammatory agents. Identification and quantitation of the constituents responsible for their antiinflammatory activity is challenging owing to the lack of suitable chromatographic methodology. In the present research, the simultaneous quantitation of antiinflammatory constituents rosmarinic acid, oleanolic acid, and ursolic acid in mints was attained by using a unique tandem HPLC column system coupled with an electrospray ionization mass detection (MRM mode). The ion mode optimization for rosmarinic acid under negative and triterpenoid acids under positive was achieved by setting 2 time segments in a single run where the polarity mode was switched from negative (0 to 10 min) to positive (10 to 40 min). For the investigated concentration ranges of antiinflammatory agents in mints, good linearities (r² ≥ 0.998) were obtained for each calibration curve. Validation of precision and accuracy for this method showed that intra- and inter-day repeatabilities for all analytes were less than 5.51%, and the recoveries varied from 97.8% to 99.3%. The developed LC/MS/MS assay provides a suitable quality control method for the determination of antiinflammatory constituents in Mentha spp. There is a wide range of diversity in the natural product composition for these acids across the Mentha germplasm collection evaluated. The presence of these antiinflammatory acids in post-distilled mints shows that value-added nutraceutical enriched products can be developed with proper processing and recovery systems in addition to the distillation and capture of the valuable volatile essential oils. Results from this research would benefit both commercial farmers growing mint for essential oil and those in the food industry where value-added phytopharmaceutical enriched products can be developed with proper processing, quality control, and recovery systems during mint essential oil distillation. © 2011 Institute of Food Technologists®
Kehimkar, Benjamin; Parsons, Brendon A; Hoggard, Jamin C; Billingsley, Matthew C; Bruno, Thomas J; Synovec, Robert E
2015-01-01
Recent efforts in predicting rocket propulsion (RP-1) fuel performance through modeling put greater emphasis on obtaining detailed and accurate fuel properties, as well as elucidating the relationships between fuel compositions and their properties. Herein, we study multidimensional chromatographic data obtained by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS) to analyze RP-1 fuels. For GC × GC separations, RTX-Wax (polar stationary phase) and RTX-1 (non-polar stationary phase) columns were implemented for the primary and secondary dimensions, respectively, to separate the chemical compound classes (alkanes, cycloalkanes, aromatics, etc.), providing a significant level of chemical compositional information. The GC × GC-TOFMS data were analyzed using partial least squares regression (PLS) chemometric analysis to model and predict advanced distillation curve (ADC) data for ten RP-1 fuels that were previously analyzed using the ADC method. The PLS modeling provides insight into the chemical species that impact the ADC data. The PLS modeling correlates compositional information found in the GC × GC-TOFMS chromatograms of each RP-1 fuel, and their respective ADC, and allows prediction of the ADC for each RP-1 fuel with good precision and accuracy. The root-mean-square error of calibration (RMSEC) ranged from 0.1 to 0.5 °C, and was typically below ∼0.2 °C, for the PLS calibration of the ADC modeling with GC × GC-TOFMS data, indicating a good fit of the model to the calibration data. Likewise, the predictive power of the overall method via PLS modeling was assessed using leave-one-out cross-validation (LOOCV) yielding root-mean-square error of cross-validation (RMSECV) ranging from 1.4 to 2.6 °C, and was typically below ∼2.0 °C, at each % distilled measurement point during the ADC analysis.
Hyung, Seok-Won; Piehowski, Paul D; Moore, Ronald J; Orton, Daniel J; Schepmoes, Athena A; Clauss, Therese R; Chu, Rosalie K; Fillmore, Thomas L; Brewer, Heather; Liu, Tao; Zhao, Rui; Smith, Richard D
2014-11-01
Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 μL) due to low yields stemming from losses caused by nonspecific binding to the column matrix and concentration of large eluent volumes. Additionally, the cost of the depletion media can be prohibitive for larger-scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large-scale studies. We characterized the performance of a 346 μL column volume microscale depletion system, using four different flow rates to determine the most effective depletion conditions for ∼6-μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10-mL depletion column served as the control. Results showed depletion efficiency of the microscale column increased as flow rate decreased, and that our microdepletion was reproducible. In an initial application, a 600-μL sample of human cerebrospinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.
Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.
Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O
2018-04-01
Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .
Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...
NASA Astrophysics Data System (ADS)
de Boer, C. V.; O'Carroll, D. M.; Sleep, B.
2014-12-01
Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.
Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan
2002-01-01
This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.
Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms
NASA Astrophysics Data System (ADS)
Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.
2017-12-01
A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.
A new large-scale process for taxol and related taxanes from Taxus brevifolia.
Rao, K V; Hanuman, J B; Alvarez, C; Stoy, M; Juchum, J; Davies, R M; Baxley, R
1995-07-01
In view of the demonstrated antitumor activity of taxol, ready availability of the drug is important. The current isolation methods starting from the bark of Taxus brevifolia involve multiple manipulations, leading to only taxol and in a yield of 0.01%. A new process consisting of a single reverse phase column is introduced here, and the present purpose is to determine its large scale applicability. The chloroform extractable fraction of the bark of T. brevifolia is applied directly on to a C-18 bonded silica column in 25% acetonitrile/water, with elution using a step gradient: 30-50% acetonitrile/water. On standing, eight different taxanes, including taxol, crystallize out directly from different fractions. The crystals are filtered and purified further by recrystallization. Taxol and four other taxanes are purified this way. The other three require a short silica column. Taxol is freed from cephalomannine by selective ozonolysis. The large scale process gave taxol (0.04%), 10-deacetylbaccatin III (0.02%), 10-deacetyl taxol-7-xyloside (0.1%), 10-deacetyl taxol-C-7-xyloside (0.04%), 10-deacetyl cephalomannine-7-xyloside (0.006%), taxol-7-xyloside (0.008%), 10-deacetyl taxol (0.008%) and cephalomannine (0.004%). Processing of the needles of T. brevifolia gave brevifoliol (0.17%), and that of the wood, 10-deacetyl taxol-C-7-xyloside (0.01%) and 10-deacetyl taxol-C. The reverse phase column process is simpler (one column, direct crystallization), more efficient (eight taxanes obtained simultaneously) and also gives higher yields.
Effect of vertical ground motions on shear demand and capacity in bridge columns.
DOT National Transportation Integrated Search
2012-03-01
The objective of this project was to examine the effects of axial force variation in bridge columns due to strong vertical : ground motions and the influence of these axial force fluctuations on shear strength degradation. : Two quarter scale specime...
Heidebrecht, Hans-Jürgen; Kainz, Bernadette; Schopf, Roland; Godl, Klaus; Karcier, Züleyha; Kulozik, Ulrich; Förster, Beatrix
2018-05-23
The aim of the present work was to develop a new scalable and cost-efficient process to isolate bovine immunoglobulin G from colostral whey with high purity and minimal loss of activity. The mixed mode material Mercapto-Ethyl-Pyridine-Hypercel™ was identified appropriate for direct capture of immunoglobulin G. The binding mechanism is primarily based on hydrophobic interactions at physiological conditions. As compared to immunoglobulin G, all other low molecular whey proteins such as α-Lactalbumin or β-Lactoglobulin, except lactoperoxidase, are more hydrophilic and were therefore found in the flow-through fraction. In order to remove lactoperoxidase as an impurity the column was combined in series with a second mixed mode material (Capto™- with N-benzoyl-homocysteine as ligand) using the same binding conditions. At pH 7.5 the carboxyl group of this ligand is negatively charged and can hence bind the positively charged lactoperoxidase, whose isoelectric point is at pH 9.6. After sample application, the columns were eluted separately. By combining the two columns it was possible to obtain immunoglobulin G with a purity of >96.1% and yield of 65-80%. The process development was carried out using 1 mL columns and upscaling was performed in three steps up to a column volume of 8800 mL for the Hypercel™ column and 3000 mL for the Capto™- column. At this scale it is possible to obtain 130-150 g pure immunoglobulin G from 3 L colostrum within five hours, including the regeneration of both columns. Additionally, the impact of freeze-drying on the isolated immunoglobulin G was studied. The nativity of the freeze dried immunoglobulin was above 95%, which was proven by reversed phase liquid chromatography and validated by differential scanning calorimetry. The activity of immunoglobulin G was preserved over the isolation process and during drying as measured by enzyme-linked immunosorbent assay. In conclusion, by applying the proposed isolation process, it becomes feasible to obtain pure, active and stable imunnunoglobulin G at large scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography
Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi
2011-01-01
Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063
Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions
NASA Astrophysics Data System (ADS)
Freundt, A.; Schmincke, H.-U.
1985-04-01
The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.
Assessing Student Learning Outcomes Internationally: Insights and Frontiers
ERIC Educational Resources Information Center
Coates, Hamish
2016-01-01
As higher education systems and institutions expand, more energy is being invested in ensuring that sufficient learning has been achieved to warrant the award of a qualification. Many commonly used assessment approaches do not scale well, and there remains a pressing need for reform. This paper distils insights from international investigations of…
27 CFR 1.21 - Domestic producers, rectifiers, blenders, and warehousemen.
Code of Federal Regulations, 2011 CFR
2011-04-01
... in the business of distilling distilled spirits, producing wine, rectifying or blending distilled... or indirectly or through an affiliate, distilled spirits or wine so distilled, produced, rectified...
Large scale preparation and crystallization of neuron-specific enolase.
Ishioka, N; Isobe, T; Kadoya, T; Okuyama, T; Nakajima, T
1984-03-01
A simple method has been developed for the large scale purification of neuron-specific enolase [EC 4.2.1.11]. The method consists of ammonium sulfate fractionation of brain extract, and two subsequent column chromatography steps on DEAE Sephadex A-50. The chromatography was performed on a short (25 cm height) and thick (8.5 cm inside diameter) column unit that was specially devised for the large scale preparation. The purified enolase was crystallized in 0.05 M imidazole-HCl buffer containing 1.6 M ammonium sulfate (pH 6.39), with a yield of 0.9 g/kg of bovine brain tissue.
Baltussen, E; Snijders, H; Janssen, H G; Sandra, P; Cramers, C A
1998-04-10
A recently developed method for the extraction of organic micropollutants from aqueous samples based on sorptive enrichment in columns packed with 100% polydimethylsiloxane (PDMS) particles was coupled on-line with HPLC analysis. The sorptive enrichment procedure originally developed for relatively nonpolar analytes was used to preconcentrate polar phenylurea herbicides from aqueous samples. PDMS extraction columns of 5, 10 and 25 cm were used to extract the herbicides from distilled, tap and river water samples. A model that allows prediction of retention and breakthrough volumes is presented. Despite the essentially apolar nature of the PDMS material, it is possible to concentrate sample volumes up to 10 ml on PDMS cartridges without losses of the most polar analyte under investigation, fenuron. For less polar analytes significantly larger sample volumes can be applied. Since standard UV detection does not provide adequate selectivity for river water samples, an electrospray (ES)-MS instrument was used to determine phenylurea herbicides in a water sample from the river Dommel. Methoxuron was present at a level of 80 ng/l. The detection limit of the current set-up, using 10 ml water samples and ES-MS detection is 10 ng/l in river water samples. Strategies for further improvement of the detection limits are identified.
GlC analysis of temperature effects on furfural production during pyrolysis of black cherry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes D.P.; Blankenhorn, P.R.; Murphey, W.K.
1979-10-01
Thermal degradation of black cherry (Prunus serotina Ehrh.) was conducted in an inert atmosphere at temperatures ranging from 250 degrees to l000 degrees Celcius. The volatiles produced during carbonization were condensed in a liquid nitrogen trap and separated by steam distillation after which they were extracted with ether. This fraction was analyzed by gas-liquid chromatography (GLC) using a 4 mm (inside diameter) by 1.83 m long glass column packed with l0 percent methyl silicone fluid. The (GLC) column temperature was programed from 40 degrees to 240 degrees at a rate of l2.5 degrees Celcius per minute. Using this GLC temperaturemore » program, three chromatograms from each carbonization temperature were obtained and the furfural peak was identified and quantitatively analyzed. As carbonization temperature increased from 250 degrees at 500 degrees Celcius, the amount of furfural in the condensate also increased. The condensate chromatograms show that considerably more compounds are formed at temperatures above 320 degrees Celcius. The chromatograms from the temperature range of 500 degrees to l000 degrees showed little change in the number of compounds detected. Regression analysis revealed relationships between carbonization temperature, mass of the condensate, and mass furfural per original mass of wood.« less
Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland.
Dunne, E J; Culleton, N; O'Donovan, G; Harrington, R; Daly, K
2005-11-01
It may be necessary to use constructed wetlands as a land use practice to mitigate phosphorus (P) loss from agriculture in Ireland. The objectives of this study were to determine the ability of two constructed wetland site soils to retain and sorb P. Intact soil/water column studies were used to determine P release/retention rates during a 30-day incubation period. Soil columns flooded with distilled water released P during the first 2 days; however, soluble reactive P (SRP) concentrations in overlying floodwaters decreased thereafter. Soils with overlying floodwaters spiked at 5 and 15 mg SRP L(-1) retained highest amounts of P (p < 0.05) with retention at these concentrations controlled by SRP in overlying waters. Retention rates by soils ranged between 0.3 and 60.9 mg Pm(-2) d(-1). Maximum P sorption capacity (Smax) was higher for wetland soils at Dunhill, Waterford (1464 mg P kg(-1)) in comparison to soils at Johnstown Castle, Wexford (618 mg P kg(-1)). Equilibrium P concentrations (EPC0) were low (in the microg SRP L(-1) range), indicating a high capacity of these soils to sorb P. Phosphorus sorption parameters were significantly related to ammonium oxalate extractable aluminium (Al) and iron (Fe) content of soils.
Half the entanglement in critical systems is distillable from a single specimen
NASA Astrophysics Data System (ADS)
Orús, R.; Latorre, J. I.; Eisert, J.; Cramer, M.
2006-06-01
We establish a quantitative relationship between the entanglement content of a single quantum chain at a critical point and the corresponding entropy of entanglement. We find that, surprisingly, the leading critical scaling of the single-copy entanglement with respect to any bipartitioning is exactly one-half of the entropy of entanglement, in a general setting of conformal field theory and quasifree systems. Conformal symmetry imposes that the single-copy entanglement scales as E1(ρL)=(c/6)lnL-(c/6)(π2/lnL)+O(1/L) , where L is the number of constituents in a block of an infinite chain and c denotes the central charge. This shows that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to all isotropic quasifree fermionic models. An example of the XY spin chain shows that away from criticality the above relation is maintained only near the quantum phase transition.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; Dudchenko, Alexander V; Duan, Wenyan; Turchi, Craig; Vanneste, Johann; Cath, Tzahi Y; Jassby, David
2017-11-08
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with the hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.
Sensai, P; Thangamani, A; Visvanathan, C
2014-01-01
Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate.
27 CFR 27.40 - Distilled spirits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF THE TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Distilled Spirits § 27.40 Distilled spirits. (a) A tax is imposed on all...
27 CFR 27.40 - Distilled spirits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... OF THE TREASURY ALCOHOL IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Distilled Spirits § 27.40 Distilled spirits. (a) A tax is imposed on all...
27 CFR 27.40 - Distilled spirits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... OF THE TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Distilled Spirits § 27.40 Distilled spirits. (a) A tax is imposed on all...
27 CFR 27.40 - Distilled spirits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... OF THE TREASURY ALCOHOL IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Distilled Spirits § 27.40 Distilled spirits. (a) A tax is imposed on all...
27 CFR 27.40 - Distilled spirits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... OF THE TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Distilled Spirits § 27.40 Distilled spirits. (a) A tax is imposed on all...
27 CFR 24.216 - Distilling material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fermentation or distillation. No sugar may be added in the production of distilling material. Distillates containing aldehydes may be used in the fermentation of wine to be used as distilling material. Lees, filter...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, C.; Williams, M.; Restivo, M.
All prior testing with SuperLig® 639 has been done with the aqueous concentration of LAW at ~5 M [Na+], where the resin sinks, and can be used in a conventional down-flow column orientation. However, the aqueous LAW stream from the Waste Treatment Plant is expected to be ~8 M [Na+]. The resin would float in this higher density liquid, potentially disrupting the ability to achieve a good decontamination due to poor packing of the resin that leads to channeling. Testing was completed with a higher salt concentration in the feed simulant (7.8 M [Na+]) in an engineering-scale apparatus with twomore » columns, each containing ~0.9 L of resin. Testing of this system used a simulant of the LAW solution, and substituted ReO4 - as a surrogate for TcO4 -. Results were then compared using computer modeling. Bench-scale testing was also performed, and examined an unconstrained resin bed, while engineering-scale tests used both constrained and unconstrained beds in a two-column, lead and lag sequential arrangement.« less
DOT National Transportation Integrated Search
2015-01-01
This report is the first of three volumes and presents interpretation of all experimental and numerical data and recommendations. In : total, 30 large scale reinforced concrete columns tests were conducted under a variety of loading conditions. Using...
Numerical Investigation of the Formation of a Convective Column and a Fire Tornado by Forest Fires
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Matvienko, O. V.
2014-09-01
Computational modeling of the formation of a convective column by forest fires has been carried out. It has been established that in the case of an unstable atmosphere stratification the basic factor influencing the thermal column formation is the intensification of the processes of turbulent mixing and that at a stable atmosphere stratification a more significant factor determining the convective column formation is the action of the buoyancy force. It has been shown that a swirling flow in the convective column is formed due to the appearance of a tangential velocity component as a consequence of the local circulation arising against the background of large-scale motion owing to the thermal and orographic inhomogeneities of the underlying surface.
Viidanoja, Jyrki
2017-01-13
A new liquid chromatography-electrospray ionization-tandem Mass Spectrometry (LC-ESI-MS/MS) method was developed for the determination of more than 20 C 1 -C 6 alkyl and alkanolamines in aqueous matrices. The method employs Hydrophilic Interaction Liquid Chromatography Multiple Reaction Monitoring (HILIC-MRM) with a ZIC-pHILIC column and four stable isotope labeled amines as internal standards for signal normalization and quantification of the amines. The method was validated using a refinery process water sample that was obtained from a cooling cycle of crude oil distillation. The averaged within run precision, between run precision and accuracy were generally within 2-10%, 1-9% and 80-120%, respectively, depending on the analyte and concentration level. Selected aqueous process samples were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, J; Chen, L
1998-03-01
This paper reports the quantitative determination of 10-HDA in Chinese traditional medicine preparations by HPLC. Spherisorb C18 column was used. The mobile phase consisted of methanol-distilled water and phosphoric acid(45:55:0.5, V/V). The elute was monitored at 210 nm. The good linearity was shown between the concentration of 10-HDA and peak area in the concentration range of 6.0-30.0 mg/L (r = 0.9999, n = 5). The detection limit was 0.2 mg/L (S:N = 3:1). The within-day and between-day RSD were 2.1%-2.2% and 2.9%-4.0%, respectively. Peaks of 10-HDA and impurities in these samples were separated completely. This method is simple, sensitive and accurate.
Innovation of Iron Reinforcing Column of Partical From Frame of Light Steel
NASA Astrophysics Data System (ADS)
Ramadhan, M. R.; Faslih, A.; Umar, M. Z.
2018-05-01
Almost half of houses in Indonesia are using lightweight steel roof truss today. The phenomenon in the field is that lightweight steel roof truss can blend with mortar mixture. Thus this phenomenon is captured for later applied dynamically, creatively, and innovatively with new idioms such as reinforcement for columns. This research aims to investigate the comparison of the way of making and the price of the materials between the column material made of the light steel and the column material made of the iron reinforcement which is the most efficient. Type of research is qualitative with a comparative causal approach. This research is divided into several stages, namely; Literature study, column creation, and validation. This study concluds that the manufacture of column material from reinforcement is more efficient, than the lightweight steel column material. The reinforcement column material is more efficient because of the more effective way of making and the price of the working materials more economical than the lightweight steel column material. Lightweight steel columns can be used for public housing on condition made by experienced craftsmen to make the process faster, and the dimensions of lightweight steel can be scaled down to make it more economical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan
2015-02-24
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research weremore » to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.« less
Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies
The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...
Predicting the propagation of concentration and saturation fronts in fixed-bed filters.
Callery, O; Healy, M G
2017-10-15
The phenomenon of adsorption is widely exploited across a range of industries to remove contaminants from gases and liquids. Much recent research has focused on identifying low-cost adsorbents which have the potential to be used as alternatives to expensive industry standards like activated carbons. Evaluating these emerging adsorbents entails a considerable amount of labor intensive and costly testing and analysis. This study proposes a simple, low-cost method to rapidly assess the potential of novel media for potential use in large-scale adsorption filters. The filter media investigated in this study were low-cost adsorbents which have been found to be capable of removing dissolved phosphorus from solution, namely: i) aluminum drinking water treatment residual, and ii) crushed concrete. Data collected from multiple small-scale column tests was used to construct a model capable of describing and predicting the progression of adsorbent saturation and the associated effluent concentration breakthrough curves. This model was used to predict the performance of long-term, large-scale filter columns packed with the same media. The approach proved highly successful, and just 24-36 h of experimental data from the small-scale column experiments were found to provide sufficient information to predict the performance of the large-scale filters for up to three months. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmid, B. K.; Jackson, D. M.
1981-03-01
The Solvent Refined Coal (SRC-II) process which produces low-sulfur distillate fuel oil from coal is discussed. The process dissolves coal in a process-derived solvent at elevated temperature and pressure in the presence of hydrogen, separates the undissolved mineral residue, then recovers the original solvent by vacuum distillation. The distillate fuel oil produced is for use largely as a nonpolluting fuel for generating electrical power and steam and is expected to be competitive with petroleum fuels during the 1980s. During this period, the SRC-II fuel oil is expected to be attractive compared with combustion of coal with flue gas desulfurization in U.S. East Coast oil-burning power plants, as well as in small and medium-sized industrial boilers. The substantial quantities of methane, light hydrocarbons and naphtha produced by the process have value as feedstocks for preparation of pipeline gas, ethylene and high-octane unleaded gasoline, and can replace petroleum fractions in many applications. The liquid and gas products from a future large-scale plant, such as the 6000 t/day plant planned for Morgantown, West Virginia, are expected to have an overall selling price of $4.25 to $4.75/GJ.
Study of Differential Column Measurements for Urban Greenhouse Gas Emission Monitoring
NASA Astrophysics Data System (ADS)
Chen, Jia; Hedelius, Jacob K.; Viatte, Camille; Jones, Taylor; Franklin, Jonathan E.; Parker, Harrison; Wennberg, Paul O.; Gottlieb, Elaine W.; Dubey, Manvendra K.; Wofsy, Steven C.
2016-04-01
Urban areas are home to 54% of the total global population and account for ˜ 70% of total fossil fuel emissions. Accurate methods for measuring urban and regional scale carbon fluxes are required in order to design and implement policies for emissions reduction initiatives. In this paper, we demonstrate novel applications of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions (DMFs) of CH4 and CO2 within urban areas. Our differential column method uses at least two spectrometers to make simultaneous measurements of CO2, CH4 and O2 column number densities. We then compute the column-averaged DMFs XG for a gas G and the differences ΔXG between downwind and upwind stations. By accurately measuring the small differences in integrated column amounts across local and regional sources, we directly observe the mass loading of the atmosphere due to the influence of emissions in the intervening locale. The inference of the source strength is much more direct than inversion modeling using only surface concentrations, and less subject to errors associated with modeling small-scale transport phenomena. We characterize the differential sensor system using Allan variance analysis and show that the differential column measurement has a precision of 0.01% for XCO2 and XCH4 using an optimum integration time of 10 min, which corresponds to standard deviations of 0.04 ppm, and 0.2 ppb, respectively. The sensor system is very stable over time and after relocation across the contiguous US, i.e. the scaling factors between the two Harvard EM27/SUNs and the measured instrument line function parameters are consistent. We use the differential column measurements to determine the emission of an area source. We measure the downwind minus upwind column gradient ΔXCH4 (˜ 2 ppb, 0.1%) across dairy farms in the Chino California area, and input the data to a simple column model for comparison with emission strengths reported in the literature. Our model assumes that air parcels within the air column are transported with a mass-enhancement-weighed horizontal wind velocity U, which is estimated using surface wind speeds measured at nearby airports and assuming a wind profile power law up to the mixing height, to which CH4 emissions are transported vertically by turbulent flow. The emission estimate using differential column measurements is dominated by the uncertainty in the transport i.e. U, not the differential column measurements themself. Furthermore, we derive spatial column gradient ratios ΔXCH4/ΔXCO2 across Pasadena within the Los Angeles basin, and determine values that are consistent with regional emission ratios from the literature. Our precise, rapid measurements allow us to determine short-term variations (5 to 10 minutes) of XCO2 and XCH4 in side-by-side measurements at Caltech and Harvard. Both Harvard EM27/SUNs capture these fluctuations simultaneously, which represent geophysical phenomena, not noise as might be assumed. Overall, this study helps establish a range of new applications for compact solar-viewing Fourier transform spectrometers.
NASA Astrophysics Data System (ADS)
Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.
2011-07-01
A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.
Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock
2016-11-10
Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.
Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen
2015-08-01
Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.
40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4500 Isopropylamine distillation...
40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4500 Isopropylamine distillation...
40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4500 Isopropylamine distillation...
40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4500 Isopropylamine distillation...
40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4500 Isopropylamine distillation...
Thermochemical Process Integration, Scale-Up, and Piloting | Bioenergy |
; represented by spheres of hydrogen and carbon monoxide, then to "Gas Cleanup, Solids Removal, Reforming ; represented by a gasoline dispenser nozzle. A green arrow of "Fast Pyrolysis" and blue arrows for Distillation," and finally to "Fuels," represented by a gasoline dispenser nozzle Variety of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishkind, H.H.
The silvicultural matrix within which the nation's first large scale wood energy plantation will develop is described in detail. The relevant literature reviewed is identified and distilled. The plantation history, site preparation, planting, species selection, maintenance and management, harvesting, and the Eucalyptus biomass production estimates are presented.
VizieR Online Data Catalog: CALIFA galaxies observational hints (Ruiz-Lara+, 2017)
NASA Astrophysics Data System (ADS)
Ruiz-Lara, T.; Perez, I.; Florido, E.; Sanchez-Blazquez, P.; Mendez-Abreu, J.; Sanchez-Menguiano, L.; Sanchez, S. F.; Lyubenova, M.; Falcon-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Caceres, A.; Catalan-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; Garcia-Benito, R.; Husemann, B.; Kehrig, C.; Marquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegle, B.; Califa Team
2017-05-01
Characterisation of the sample of galaxies under analysis in the paper. The sample comprises 214 galaxies from the CALIFA survey. For each galaxy the name, equatorial coordinates, morphological type, presence of a bar, surface brightness profile type, inner disc scale length (kpc), outer disc scale length (kpc), and break radius in units of the inner disc scale length are given. Columns (1), (2), (3), and (4) from the CALIFA general sample characterisation (Walcher et al., 2014A&A...569A...1W). Columns (5), (6), (7), (8), (9), and (10) from the 2D decomposition performed in Mendez-Abreu et al. (2017, Cat. J/A+A/598/A32). (1 data file).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Distillation. 19.316 Section 19.316 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.316 Distillation. The distillation...
A Group Simulation of the Development of the Geologic Time Scale.
ERIC Educational Resources Information Center
Bennington, J. Bret
2000-01-01
Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Abdul, Momen; Youker, Amanda J.
2016-06-01
Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery andmore » -concentration columns. Promising results are reported for both methods.« less
Jones, Jamie; Chang, Ni-Bin; Wanielista, Martin P
2015-01-01
To support nutrient removal, various stormwater treatment technologies have been developed via the use of green materials, such as sawdust, tire crumbs, sand, clay, sulfur, and limestone, as typical constituents of filter media mixes. These materials aid in the physiochemical sorption and precipitation of orthophosphates as well as in the biological transformation of ammonia, nitrates and nitrites. However, these processes are dependent upon influent conditions such as hydraulic residence time, influent orthophosphate concentrations, and other chemical species present in the inflow. This study aims to compare the physiochemical removal of orthophosphate by isotherm and column tests under differing influent conditions to realize the reliability of orthophosphate removal process with the aid of green sorption media. The green sorption media of interest in this study is composed of a 5:2:2:1 (by volume) mixture of cement sand, tire crumb, fine expanded clay, and limestone. Scenarios of manipulating the hydraulic residence time of the water from 18 min and 60 min, the influent dissolved phosphorus concentrations of 1.0 mg·L(-1) and 0.5 mg·L(-1), and influent water types of distilled and pond water, were all investigated in the column tests. Experimental data were compared with the outputs from the Thomas Model based on orthophosphate removal to shed light on the equilibrium condition versus kinetic situation. With ANOVA tests, significant differences were confirmed between the experimental data sets of the breakthrough curves in the column tests. SEM imaging analysis helps to deepen the understanding of pore structures and pore networks of meta-materials being used in the green sorption media. Life expectancy curves derived from the output of Thomas Model may be applicable for future system design of engineering processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Determination of cocaine and metabolites in hair by column-switching LC-MS-MS analysis.
Alves, Marcela Nogueira Rabelo; Zanchetti, Gabriele; Piccinotti, Alberto; Tameni, Silvia; De Martinis, Bruno Spinosa; Polettini, Aldo
2013-07-01
A method for rapid, selective, and robust determination of cocaine (CO) and metabolites in 5-mg hair samples was developed and fully validated using a column-switching liquid chromatography-tandem mass spectrometry system (LC-MS-MS). Hair samples were decontaminated, segmented, incubated overnight in diluted HCl, and centrifuged, and the diluted (1:10 with distilled water) extracts were analyzed in positive ionization mode monitoring two reactions per analyte. Quantifier transitions were: m/z 304.2→182.2 for CO, m/z 290.1→168.1 for benzoylecgonine (BE), and m/z 318.2→196.2 for cocaethylene (CE). The lower limit of quantification (LLOQ) was set at 0.05 ng/mg for CO and CE, and 0.012 ng/mg for BE. Imprecision and inaccuracy at LLOQ were lower than 20 % for all analytes. Linearity ranged between 0.05 and 50.0 ng/mg for CO and CE and 0.012 and 12.50 ng/mg for BE. Selectivity, matrix effect, process efficiency, recovery, carryover, cross talk, and autosampler stability were also evaluated during validation. Eighteen real hair samples and five samples from a commercial proficiency testing program were comparatively examined with the proposed multidimensional chromatography coupled with tandem mass spectrometry procedure and our reference gas chromatography coupled to mass spectrometry (GC-MS) method. Compared with our reference GC-MS method, column-switching technique and the high sensitivity of the tandem mass spectrometry detection system allowed to significantly reduce sample amount (×10) with increased sensitivity (×2) and sample throughput (×4), to simplify sample preparation, and to avoid that interfering compounds and ions impaired the ionization and detection of the analytes and deteriorate the performance of the ion source.
The Extent of CH4 Emission and Oxidation in Thermogenic and Biogenic Gas Hydrate Environments
NASA Astrophysics Data System (ADS)
Kastner, M.; Solem, C.; Bartlett, D.; MacDonald, I.; Valentine, D.
2003-12-01
The role of methane hydrate in the global methane budget is poorly understood, because relatively little is known about the transport of gaseous and dissolved methane through the seafloor into the ocean, from the water column into the atmosphere, and the extent of water-column methanotrophy that occurs en route. We characterize the transport and consumption of methane in three distinct gas hydrate environments, spanning the spectrum of thermogenic and biogenic methane occurrences: Bush Hill in the Gulf of Mexico, Eel River off the coast of Northern California, and the Noth and South Hydrate Ridges on the Cascadia Oregon margin. At all the sites studied a significant enrichment in δ 13CH4 with distance along isopycnals away from the methane source is observed, indicative of extensive aerobic bacterial methane oxidation in the water column. The effects of this process are principally pronounced in the mostly biogenic methane setting, with δ 13C-CH4 measured as high as -12 permil (PDB) between North and South Hydrate Ridge. The δ 13C-CH4 values ranged from -12 to -67 permil at Hydrate Ridge, -34 to -52 permil at Eel River, and -41 to -49 permil at Bush Hill. The large variation in methane carbon isotope ranges between the sites suggest that major differences exist in both the rates of aerobic methane oxidation and system openness at the studied locations. A mean kinetic isotope fractionation factor is being determined using a closed-system Rayleigh distillation model. An approximate regional methane flux from the ocean into the atmosphere is being estimated for the Gulf of Mexico, by extrapolation of the flux value from the Bush Hill methane plume over 390 plume locations having persistent oil slicks on the ocean surface, mapped by time series satellite data.
Search for methane isotope fractionation due to Rayleigh distillation on Titan
NASA Astrophysics Data System (ADS)
Ádámkovics, Máté; Mitchell, Jonathan L.
2016-09-01
We search for meridional variation in the abundance of CH3D relative to CH4 on Titan using near-IR spectra obtained with NIRSPAO at Keck, which have a photon-limited signal-to-noise ratio of ∼50. Our observations can rule out a larger than 10% variation in the column of CH3D below 50 km. The preferential condensation of the heavy isotopologues will fractionate methane by reducing CH3D in the remaining vapor, and therefore these observations place limits on the amount of condensation that occurs in the troposphere. While previous estimates of CH3D fractionation on Titan have estimated an upper limit of -6‰, assuming a solid condensate, we consider more recent laboratory data for the equilibrium fractionation over liquid methane, and use a Rayleigh distillation model to calculate fractionation in an ascending parcel of air that is following a moist adiabat. We find that deep, precipitating convection can enhance the fractionation of the remaining methane vapor by -10 to -40‰, depending on the final temperature of the rising parcel. By relating fractionation of our reference parcel model to the pressure level where the moist adiabat achieves the required temperature, we argue that the measured methane fractionation constrains the outflow level for a deep convective event. Observations with a factor of at least 4-6 times larger signal-to-noise are required to detect this amount of fractionation, depending on the altitude range over which the outflow from deep convection occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groessle, R.; Beck, A.; Bornschein, B.
2015-03-15
Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase atmore » the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)« less
Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard
2017-01-01
Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.
27 CFR 24.216 - Distilling material.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.216 Distilling material. Wine may be produced on bonded wine premises from grapes and other fruit, natural fruit products, or... fermentation or distillation. No sugar may be added in the production of distilling material. Distillates...
27 CFR 24.216 - Distilling material.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.216 Distilling material. Wine may be produced on bonded wine premises from grapes and other fruit, natural fruit products, or... fermentation or distillation. No sugar may be added in the production of distilling material. Distillates...
27 CFR 24.216 - Distilling material.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.216 Distilling material. Wine may be produced on bonded wine premises from grapes and other fruit, natural fruit products, or... fermentation or distillation. No sugar may be added in the production of distilling material. Distillates...
27 CFR 24.216 - Distilling material.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.216 Distilling material. Wine may be produced on bonded wine premises from grapes and other fruit, natural fruit products, or... fermentation or distillation. No sugar may be added in the production of distilling material. Distillates...
Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.
2010-03-26
The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.J. Tranter; R.D. Tillotson; T.A. Todd
2005-04-01
Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less
Brunson, Laura R; Sabatini, David A
2014-08-01
The fluoride removal capacities of three materials, bone char (BC), aluminum oxide coated bone char (ACBC) and aluminum oxide impregnated wood char (AIWC), along with activated alumina (AA) as a baseline material, were investigated in batch and column studies, including comparison between synthetic and natural groundwater. Results suggest that in all cases the laboratory column results exhibited higher fluoride removal efficiency than the field studies conducted in the Ethiopian Rift Valley. Further studies indicate that the reduced effectiveness in the field was likely due to a combination of the high pH of groundwater (8.2) and the presence of competing ions (sulfate). Batch studies testing potential competition from natural organic material (NOM) showed no statistical evidence of NOM competition with BC and minor evidence of competition with ACBC and AIWC. To provide evidence for using Rapid Scale Small Column Test (RSSCT) principles for BC two different column volume and particle sizes were used. The results indicate that RSSCT scaling equations, developed for activated carbon, are applicable for BC removal of fluoride. These results thus provide valuable insights for translating laboratory results of novel sorbents for mitigating fluoride tainted groundwater in the field. Copyright © 2013 Elsevier B.V. All rights reserved.
The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...
DOT National Transportation Integrated Search
2015-01-01
This report is the second of three volumes and presents detailed data and test summaries of the experimental portion of the work. In total : 30 large scale reinforced concrete bridge columns are reported in this volume. Recommendations for design and...
USDA-ARS?s Scientific Manuscript database
Land application of both anaerobic lagoon liquid and sludge can increase nutrient accumulation beyond soil assimilative capacity and become a threat to water quality in regions with intensive confined swine production. In a 15-month meso-scale column study, we evaluated the effect of manure pretreat...
Water quality and nitrogen mass loss from anaerobic lagoon columns receiving pretreated influent
USDA-ARS?s Scientific Manuscript database
Control methods are needed to abate ammonia losses from swine anaerobic lagoons to reduce contribution of confined swine operations to air pollution. In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on water quality, reduction of N losses, and sludge accumulation...
Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent
USDA-ARS?s Scientific Manuscript database
In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on reduction of total suspended solids (TSS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu) and zinc (Zn) in swine lagoons using (i) enhanced solid–liquid separation with polymer (SS) and (i...
An Empirical Comparison of Variable Standardization Methods in Cluster Analysis.
ERIC Educational Resources Information Center
Schaffer, Catherine M.; Green, Paul E.
1996-01-01
The common marketing research practice of standardizing the columns of a persons-by-variables data matrix prior to clustering the entities corresponding to the rows was evaluated with 10 large-scale data sets. Results indicate that the column standardization practice may be problematic for some kinds of data that marketing researchers used for…
Kumar, Rajesh; Pant, H J; Goswami, Sunil; Sharma, V K; Dash, A; Mishra, S; Bhanja, K; Mohan, Sadhana; Mahajani, S M
2017-03-01
Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (H T ) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on themore » computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.« less
Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai
2013-05-01
A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.
NASA Astrophysics Data System (ADS)
Seneca, S. M.; Rabideau, A. J.; Bandilla, K.
2010-12-01
Experimental and modeling studies are in progress to evaluate the long-term performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Multiple column tests were performed at the University at Buffalo and on-site West Valley Environmental Services; columns were supplied with synthetic groundwater referenced to anticipate field conditions and radioactive groundwater on-site WVES. The primary focus in this work is on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+); the data obtained from the column studies is used to support the robust estimation of zeolite cation exchange parameters. This research will produce a five-solute cation exchange model describing the removal efficiency of the zeolite, using the various column tests to calibrate and validate the geochemical transport model. The field-scale transport model provides flexibility to explore design parameters and potential variations in groundwater geochemistry to investigate the long-term performance of a full scale treatment wall at the Western New York nuclear facility.
Longevity of granular iron in groundwater treatment processes: corrosion product development.
Kohn, Tamar; Livi, Kenneth J T; Roberts, A Lynn; Vikesland, Peter J
2005-04-15
Permeable reactive barriers employing iron as a reactive surface have received extensive attention. A remaining issue, however, relates to their longevity. As an integral part of a long-term column study conducted to examine the influence of inorganic cosolutes on iron reactivity toward chlorinated solvents and nitroaromatic compounds, Master Builder iron grains were characterized via scanning and transmission electron microscopy, electron energy loss spectroscopy (EELS), micro-Raman spectroscopy, and X-ray diffraction. Prior to exposure to carbonate solutions, the iron grains were covered by a surface scale that consisted of fayalite (Fe2SiO4), wüstite (FeO), magnetite (Fe3O4), maghemite (gamma-Fe2O3), and graphite. After 1100 days of exposure to solutions containing carbonate, other inorganic solutes, and organic contaminants, the wüstite, fayalite, and graphite of the original scale partially dissolved, and magnetite and iron carbonate hydroxide (Fe3(OH)2.2CO3) precipitated on top of the scale. Raman results indicate the presence of green rust (e.g., [Fe4(2+)Fe2(3+)(OH)12]-[CO3 x 2H2O]) toward the column outlet after 308 days of operation, although this mineral phase disappears at longer operation times. Grains extracted from a column exposed to a high concentration (20 mM) of sodium bicarbonate were more extensively weathered than those from columns exposed to 2 mM sodium bicarbonate. An iron carbonate hydroxide layer up to 100 microm thick was observed. Even though EELS analysis of iron carbonate hydroxide indicates that this is a redox-active phase, the thickness of this layer is presumed responsible for the previously observed decline in the reactivity of this column relative to low-bicarbonate columns. A silica-containing feed resulted in reduced reactivity toward TCE. Grains from this column had a strong enrichment of silicon in the precipitates, although no distinct silica-containing mineral phases were identified. The substitution of 2 mM calcium carbonate for 2 mM sodium bicarbonate in the feed did not produce a measurable reactivity loss, asthe discrete calcium carbonate precipitates that formed in this system did not severely restrict access to the reactive surface.
Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2015-04-01
Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this cycle system under a zero-dimensional configuration. Preliminary simulations of this cycle system over a two-dimensional domain will be presented.
Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California
NASA Astrophysics Data System (ADS)
Urmy, Samuel S.; Horne, John K.
2016-07-01
A 38 kHz upward-facing echosounder was deployed on the seafloor at a depth of 875 m in Monterey Bay, CA, USA (36° 42.748‧N, 122° 11.214‧W) from 27 February 2009 to 18 August 2010. This 18-month record of acoustic backscatter was compared to oceanographic time series from a nearby data buoy to investigate the responses of animals in sound-scattering layers to oceanic variability at seasonal and sub-seasonal time scales. Pelagic animals, as measured by acoustic backscatter, moved higher in the water column and decreased in abundance during spring upwelling, attributed to avoidance of a shoaling oxycline and advection offshore. Seasonal changes were most evident in a non-migrating scattering layer near 500 m depth that disappeared in spring and reappeared in summer, building to a seasonal maximum in fall. At sub-seasonal time scales, similar responses were observed after individual upwelling events, though they were much weaker than the seasonal relationship. Correlations of acoustic backscatter with oceanographic variability also differed with depth. Backscatter in the upper water column decreased immediately following upwelling, then increased approximately 20 days later. Similar correlations existed deeper in the water column, but at increasing lags, suggesting that near-surface productivity propagated down the water column at 10-15 m d-1, consistent with sinking speeds of marine snow measured in Monterey Bay. Sub-seasonal variability in backscatter was best correlated with sea-surface height, suggesting that passive physical transport was most important at these time scales.
Using Ice-Cooled Condensers in Chemistry Laboratory
NASA Astrophysics Data System (ADS)
Solomon, Sally; Brook, Bryan; Rutkowsky, Susan; Bennet, Joseph
2003-03-01
An ice-cooled condenser, consisting of a jacket built around a tube open to the atmosphere with an outlet for removal of melting ice, is designed for use in academic laboratory classes. The apparatus can be used in place of standard water cooled condensers in setups where refluxing or distillation is performed. With this simple, inexpensive device there is no need for access to running water. Potential flooding due to insecure tubing is no longer a problem. The ice-cooled accessory, produced with standard glass tubing and either 14/10 or 14/20 ground glass joints, is compatible with most commercially available microscale or small scale kits. The device may even be used with an Erlenmeyer flask and a stopper or cork. Two experiments using ordinary household chemicals are suggested, one requiring refluxing and the other distillation.
Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.
Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A
2017-11-21
We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-05-01
Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
Wong, Peerapon; Sritippayawan, Suchila; Suwannakhon, Narutchala; Tapprom, Akamon; Deoisares, Rawisut; Sanguansermsri, Torpong
2016-11-01
For beta thalassemia control program in pregnancy, mass screening of the carrier state by determination of the hemoglobin (Hb) A 2 and Hb E proportions and mutation analysis is a preferred method for making prenatal diagnoses. Q Sepharose micro-column chromatography, developed for the determination of Hb A 2 and Hb E for screening purposes, was compared with high performance liquid chromatography (HPLC) to ascertain its relative accuracy and reliability. Results using Q Sepharose micro-column chromatography in 350 blood specimens, including 50 samples genetically proven to be beta thalassemia heterozygotes, were compared to HPLC for validation. An additional study was conducted to test a clinical application on a large-scale survey for beta thalassemia in 1581 pregnant women and their spouses. The mean (±SD) Hb A 2 proportions in the normal and genetically proven beta thalassemia heterozygotes were 2.70±0.40% and 6.30±1.23%, respectively, as determined by Q-Sepharose micro-column chromatography, and 2.65±0.31% and 5.37±0.96%, respectively, as determined by HPLC. The mean Hb E proportions in the Hb E heterozygotes were 23.25±4.13% and 24.72±3.5% as determined by Q Sepharose micro-column chromatography and HPLC, respectively. In the large-scale survey for beta thalassemia, 23 at risk couples were detected. Seven affected fetuses were identified by prenatal diagnosis. Q Sepharose micro-column chromatography was found to be reliable, reproducible and well-suited for large-scale surveys. Additionally, by being reusable and convenient, this simple and economical chromatography method may be an alternative means to screen for beta thalassemia and Hb E carriers in the mass population. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Scaling a Conditional Proximity Matrix to Symmetry.
ERIC Educational Resources Information Center
Levin, Joseph; Brown, Morton
1979-01-01
Two least squares procedures for symmetrization of a conditional proximity matrix are derived. The solutions provide multiplicative constants for scaling the rows or columns of the matrix to maximize symmetry. (Author/JKS)
NASA Astrophysics Data System (ADS)
Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.
2015-12-01
Studies have shown that satellite NO2 columns are closely related to ground level NO2 concentrations, particularly over polluted areas. This provides a means to assess surface level NO2 spatial variability over a broader area than what can be monitored from ground stations. The characterization of surface level NO2 variability is important to understand air quality in urban areas, emissions, health impacts, photochemistry, and to evaluate the performance of chemical transport models. Using data from the NASA DISCOVER-AQ campaign in Baltimore/Washington we calculate NO2 mixing ratios from the Airborne Compact Atmospheric Mapper (ACAM), through four different methods to derive surface concentration from column measurements. High spectral resolution lidar (HSRL) mixed layer heights, vertical P3B profiles, and CMAQ vertical profiles are used to scale ACAM vertical column densities. The derived NO2 mixing ratios are compared to EPA ground measurements taken at Padonia and Edgewood. We find similar results from scaling with HSRL mixed layer heights and normalized P3B vertical profiles. The HSRL mixed layer heights are then used to scale ACAM vertical column densities across the DISCOVER-AQ flight pattern to assess spatial variability of NO2 over the area. This work will help define the measurement requirements for future satellite instruments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... industrial use, unless such distilled spirits are shipped or delivered directly to the industrial user... of Distilled Spirits Sales of Distilled Spirits for Industrial Use § 1.95 General. Distillers...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation.
Sequeira, Fatima C; Bovino, Michael T; Chipre, Anthony J; Chemler, Sherry R
2012-05-01
(S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure.
Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation
Sequeira, Fatima C.; Bovino, Michael T.; Chipre, Anthony J.
2012-01-01
(S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure. PMID:22639473
Distilling entanglement with noisy operations
NASA Astrophysics Data System (ADS)
Chang, Jinho; Bae, Joonwoo; Kwon, Younghun
Entanglement distillation is a fundamental task in quantum information processing. It not only extracts entanglement out of corrupted systems but also leads to protecting systems of interest against intervention with environment. In this work, we consider a realistic scenario of entanglement distillation where noisy quantum operations are applied. In particular, the two-way distillation protocol that tolerates the highest error rate is considered. We show that among all types of noise there are only four equivalence classes according to the distillability condition. Since the four classes are connected by local unitary transformations, our results can be used to improve entanglement distillability in practice when entanglement distillation is performed in a realistic setting.
Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew
2015-08-07
It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column. Copyright © 2015. Published by Elsevier B.V.
Uzdevenes, Chad G; Gao, Chi; Sandhu, Amandeep K; Yagiz, Yavuz; Gu, Liwei
2018-03-24
Muscadine grape pomace, a by-product of juicing and wine-making, contains significant amounts of anthocyanin 3,5-diglucosides, known to be beneficial to human health. The objective of this research was to use mathematical modeling to investigate the adsorption/desorption characteristics of these anthocyanins from muscadine grape pomace on Amberlite FPX66 resin in a fixed bed column. Anthocyanins were extracted using hot water and ultrasound, and the extracts were loaded onto a resin column at five bed depths (5, 6, 8, 10 and 12 cm) using three flow rates (4, 6 and 8 mL min -1 ). It was found that adsorption on the column fitted the bed depth service time (BDST) model and the empty bed residence time (EBRT) model. Desorption was achieved by eluting the column using ethanol at four concentrations (25, 40, 55 and 70% v/v) and could be described with an empirical sigmoid model. The breakthrough curves of anthocyanins fitted the BDST model for all three flow rates with R 2 values of 0.983, 0.992 and 0.984 respectively. The EBRT model was successfully employed to find the operating lines, which allow for column scale-up while still achieving similar results to those found in a laboratory operation. Desorption with 40% (v/v) ethanol achieved the highest recovery rate of anthocyanins at 79.6%. The mathematical models established in this study can be used in designing a pilot/industrial- scale column for the separation and concentration of anthocyanins from muscadine juice pomace. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge
2015-01-01
Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.
Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.
Asshifa Md Noh, Nur; Al-Ashraf Abdullah, Amirul; Nasir Mohamad Ibrahim, Mohamad; Ramli Mohd Yahya, Ahmad
2012-01-01
A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.
Topology of Neutral Hydrogen within the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Chepurnov, A.; Gordon, J.; Lazarian, A.; Stanimirovic, S.
2008-12-01
In this paper, genus statistics have been applied to an H I column density map of the Small Magellanic Cloud in order to study its topology. To learn how topology changes with the scale of the system, we provide topology studies for column density maps at varying resolutions. To evaluate the statistical error of the genus, we randomly reassign the phases of the Fourier modes while keeping the amplitudes. We find that at the smallest scales studied (40 pc <= λ <= 80 pc), the genus shift is negative in all regions, implying a clump topology. At the larger scales (110 pc <= λ <= 250 pc), the topology shift is detected to be negative (a "meatball" topology) in four cases and positive (a "swiss cheese" topology) in two cases. In four regions, there is no statistically significant topology shift at large scales.
NASA Astrophysics Data System (ADS)
Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.
2013-02-01
It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.
Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.
Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias
2015-10-01
Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ou, Ming-Chiu; Liu, Yi-Hsin; Sun, Yung-Wei; Chan, Chin-Feng
2015-01-01
The chemical composition and functional activities of cold-pressed and water distilled peel essential oils of Citrus paradisi (C. paradisi) and Citrus grandis (L.) Osbeck (C. grandis) were investigated in present study. Yields of cold-pressed oils were much higher than those of distilled oils. Limonene was the primary ingredient of essential oils of C. paradisi (cold 92.83%; distilled 96.06%) and C. grandis (cold 32.63%; distilled 55.74%). In addition, C. grandis oils obtained were rich in oxygenated or nitrogenated compounds which may be involved in reducing cardiovascular diseases or enhancing sleep effectiveness. The order of free radical scavenging activities of 4 citrus oils was distilled C. paradisi oil > cold-pressed C. paradisi oil > distilled C. grandis oil > cold-pressed C. grandis oil. Cold-pressed C. grandis oil exhibited the lowest activity in all antioxidative assays. The order of antimicrobial activities of 4 citrus oils was distilled C. grandis oil, cold-pressed C. paradisi oil > distilled C. paradisi oil > cold-pressed C. paradisi oil. Surprisingly, distilled C. grandis oil exhibited better antimicrobial activities than distilled C. paradisi oil, especially against Escherichia coli and Salmonella enterica subsp. The results also indicated that the antimicrobial activities of essential oils may not relate to their antioxidative activities. PMID:26681970
Code of Federal Regulations, 2010 CFR
2010-04-01
... or wine for experimental purposes and in manufacture of nonbeverage products. 1.62 Section 1.62... OF DISTILLED SPIRITS AND WINE, BULK SALES AND BOTTLING OF DISTILLED SPIRITS Nonindustrial Use of Distilled Spirits and Wine Uses Regarded As Industrial § 1.62 Use of distilled spirits or wine for...
Graham, D.W.; Miley, M.K.; Denoyelles, F.; Smith, Val H.; Thurman, E.M.; Carter, R.
2000-01-01
Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications. Copyright (C) 2000 Elsevier Science Ltd.Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications.Aquatic field mesocosms were used to examine the influence of DO concentration and the presence of nutrients on alachlor transformation. Four treatments were used: wholly aerobic water columns, thermally and oxygen stratified water columns with low nutrient levels, stratified water columns with moderate nutrient levels, and wholly anaerobic water columns. The anaerobic treatment produced the highest rate of alachlor decay, followed by the aerobic and stratified treatments. The lowest decay rate occurred in the aerobic, low-nutrient stratified units.
[Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].
Zhang, Yi; Yan, Dan; Han, Yumei
2005-10-01
To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.
Yokoi, Michinori; Shimoda, Mitsuya
2017-03-01
A low-density polyethylene (LDPE) membrane pouch method was developed to extract volatile flavor compounds from tobacco leaf. Tobacco leaf suspended in water was enclosed in a pouch prepared from a LDPE membrane of specific gravity 0.92 g/cm3 and 0.03 mm thickness and then extracted with diethyl ether. In comparison with direct solvent extraction, LDPE membrane excluded larger and higher boiling point compounds which could contaminate a gas chromatograph inlet and damage a column. Whilst being more convenient than a reduced-pressure steam distillation, it could extract volatile flavor compounds of wide range of molecular weight and polarity. Repeatabilities in the extracted amounts were ranged from 0.38% of 2.3-bipyridyl to 26% of β-ionone, and average value of 39 compounds was 5.9%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pershing, Teal; SNO+ Collaboration
2016-03-01
The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.
NASA Astrophysics Data System (ADS)
Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.
2010-03-01
An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.
NASA Astrophysics Data System (ADS)
Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.
2010-07-01
An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; ...
2017-10-13
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Li; Iddya, Arpita; Zhu, Xiaobo
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar
2002-01-01
A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a low-pressure, reverse-phase column and the bacteriocins were detected as major optical density peaks upon elution with propanol. More than 80% of the activity that was initially in the culture supernatant was recovered in both purification steps, and the final bacteriocin preparation was more than 90% pure as judged by analytical reverse-phase chromatography and capillary electrophoresis. PMID:11823243
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
Multipartite nonlocality distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Li-Yi; Wu, Keng-Shuo
2010-11-15
The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-typemore » inequality. Accordingly, a distillability criterion in the postquantum region is proposed.« less
Evolution of Volatile Compounds during the Distillation of Cognac Spirit.
Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre
2017-09-06
Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling; ...
2018-03-25
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
Nokleberg, Warren J.; Badarch, Gombosuren; Berzin, Nikolai A.; Diggles, Michael F.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Miller, Robert J.; Naumova, Vera V.; Obolensky, Alexander A.; Ogasawara, Masatsugu; Parfenov, Leonid M.; Prokopiev, Andrei V.; Rodionov, Sergey M.; Yan, Hongquan
2004-01-01
This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. This publication contains a a series of files for Northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps descriptions of map units and metallogenic belts, and stratigraphic columns. This region includes Eastern Siberia, Russian Far East, Mongolia, Northeast China, South Korea, and Japan. The files include: (1) a geodynamics map at a scale of 1:5,000,000; (2) page-size stratigraphic columns for major terranes; (3) a generalized geodynamics map at a scale of 1:15,000,000; (4) a mineral deposit location map at a scale of 1:7,500,000; (5) metallogenic belt maps at a scale of 1:15,000,000; (6) detailed descriptions of geologic units with references; (7) detailed descriptions of metallogenic belts with references; and (8) summary mineral deposit and metallogenic belt tables. The purpose of this publication is to provide high-quality, digital graphic files for maps and figures, and Word files for explanations, descriptions, and references to customers and users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
NASA Astrophysics Data System (ADS)
Fitri, Noor; Yandi, Nefri; Hermawati, Julianto, Tatang Shabur
2017-03-01
A comparative study of the quality of patchouli oil using Water-Steam Distillation (WSD) and Water Bubble Distillation (WBD) techniques has been studied. The raw materials were Patchouli plants from Samigaluh village, Kulon Progo district, Yogyakarta. This study is aimed to compare two distillation techniques in order to find out the optimal distillation technique to increase the content of patchouli alcohol (patchoulol) and the quality of patchouli oil. Pretreatment such as withering, drying, size reduction and light fermentation were intended to increase the yield. One kilogramm of patchouli was moisturized with 500 mL of aquadest. The light fermentation process was carried out for 20 hours in a dark container. Fermented patchouli was extracted for 6 hours using Water-Steam and Water Bubble Distillation techniques. Physical and chemical properties test of patchouli oil were performed using SNI standard No. SNI-06-2385-2006 and the chemical composition of patchouli oil was analysed by GC-MS. As the results, the higher yield oil is obtained using Water-Steam Distillation, i.e. 5.9% versus 2.4%. Spesific gravity, refractive index and acid number of patchouli oil in Water-Steam Distillation results did not meet the SNI standard, i.e. 0.991; 1.623 and 13.19, while the Water Bubble Distillation met the standard, i.e. 0.955; 1.510 and 6.61. The patchoulol content using Water Bubble Distillation technique is 61.53%, significant higher than those using Water-Steam Distillation, i.e. 38.24%. Thus, Water Bubble Distillation promises a potential technique to increase the content of patchoulol in the patchouli oil.
Process design and optimization of novel wheat-based continuous bioethanol production system.
Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A
2007-01-01
A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.
Impact Forces from Tsunami-Driven Debris
NASA Astrophysics Data System (ADS)
Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.
2012-12-01
Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The tsunami was modeled as a transient pulse command signal to the wavemaker to provide a low amplitude long wave. Results are expected to show the effect of the water on the debris collision by comparing water tests with the in-air tests. It is anticipated that the water will provide some combination of added mass and cushioning of the collision. Results will be compared with proposed equations for the new ASCE-7 standard and with numerical models at the University of Hawaii.
Gan, Zhilin; Liang, Zheng; Chen, Xiaosong; Wen, Xin; Wang, Yuxiao; Li, Mo; Ni, Yuanying
2016-02-01
Molecular distillation residue (MD-R) from ginger had the most total phenol content of 247.6mg gallic acid equivalents per gram (GAE/g) among the ginger oils. High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale was successfully performed in separation and purification of 6-gingerol from MD-R by using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:2:5:7, v/v/v/v). The target compound was isolated, collected, purified by HSCCC in the head-tail mode, and then analyzed by HPLC. A total of 90.38±0.53mg 6-gingerol was obtained from 600mg MD-R, with purity of 99.6%. In addition, the structural identification of 6-gingerol was performed by EI/MS, (1)H NMR and (13)C NMR. Moreover, the orders of antioxidant activity were vitamin E (VE)>supercritical fluid extraction oleoresin (SFE-O)=MD-R=6-gingerol>molecular distillation essential oil (MD-EO) and butylated hydroxytoluene (BHT)=VE>6-gingerol>MD-R=SFE-O>MD-EO, respectively in 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging and β-Carotene bleaching. Copyright © 2016 Elsevier B.V. All rights reserved.
Random bipartite entanglement from W and W-like states.
Fortescue, Ben; Lo, Hoi-Kwong
2007-06-29
We describe a protocol for distilling maximally entangled bipartite states between random pairs of parties from those sharing a tripartite W state |W=(1/sqrt[3])(|100+|010+|001)(ABC), and show that the total distillation rate E(t)(infinity) [the total number of Einstein-Podolsky-Rosen (EPR) pairs distilled per W, irrespective of who shares them] may be done at a higher rate than EPR distillation between specified pairs of parties. Specifically, the optimal rate for distillation to specified parties has been previously shown to be 0.92 EPR pairs per W, while our protocol can asymptotically distill 1 EPR pair per W between random pairs of parties, which we conjecture to be optimal. We thus demonstrate a tradeoff between overall distillation rate and final distribution of EPR pairs. We further show that there exist states with fixed lower-bounded E(t)(infinity), but arbitrarily small distillable entanglement for specified parties.
Qutrit Magic State Distillation Tight in Some Directions.
Dawkins, Hillary; Howard, Mark
2015-07-17
Magic state distillation is a crucial component in the leading approaches to implementing universal fault-tolerant quantum computation, with existing protocols for both qubit and higher dimensional systems. Early work focused on determining the region of distillable states for qubit protocols; yet comparatively little is known about which states can be distilled and with what distillable region for d>2. Here we focus on d=3 and present new four-qutrit distillation schemes that improve upon the known distillable region, and achieve distillation tight to the boundary of undistillable states for some classes of state. As a consequence of recent results, this implies that there is a family of quantum states that enable universality if and only if they exhibit contextuality with respect to stabilizer measurements. We also identify a new routine whose fixed point is a magic state with maximal sum negativity; i.e., it is maximally nonstablizer in a specific sense.
Secret key distillation from shielded two-qubit states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Joonwoo
The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key canmore » be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.« less
NASA Astrophysics Data System (ADS)
Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.
2018-05-01
Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.
Solar membrane distillation: desalination for the Navajo Nation.
Karanikola, Vasiliki; Corral, Andrea F; Mette, Patrick; Jiang, Hua; Arnoldand, Robert G; Ela, Wendell P
2014-01-01
Provision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. One clear example is the Navajo Nation. The reservation covers 27,000 square miles, mainly in northeastern Arizona. Low population density coupled with water scarcity and impairment makes provision of clean water particularly challenging. The Navajos rely primarily on ground water, which is often present in deep aquifers or of brackish quality. Commonly, reverse osmosis (RO) is chosen to desalinate brackish ground water, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies demand technical experience for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling sources of heat and does not require extensive operational experience. This presentation discusses a project on the Navajo Nation, Arizona (Native American tribal lands) that is designed to investigate and deploy an autonomous (off-grid) system to pump and treat brackish groundwater using solar energy. Βench-scale, hollow fiber MD experiment results showed permeate water fluxes from 21 L/m2·d can be achieved with transmembrane temperature differences between 40 and 80˚C. Tests run with various feed salt concentrations indicate that the permeate flux decreases only about 25% as the concentration increases from 0 to 14% (w/w), which is four times seawater salt concentration. The quality of the permeate water remains constant at about 1 mg/L regardless of the changes in the influent salt concentration. A nine-month MD field trial, using hollow fiber membranes and completely off-the-shelf components demonstrated that a scaled-up solar-driven MD system was practical and economically viable. Based on these results, a pilot scale unit will be constructed and deployed on the tribal lands.
Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area
NASA Astrophysics Data System (ADS)
Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.
2013-04-01
Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.
The computer program AQUASIM was used to model biological treatment of perchlorate-contaminated water using zero-valent iron corrosion as the hydrogen gas source. The laboratory-scale column was seeded with an autohydrogenotrophic microbial consortium previously shown to degrade ...
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2009-12-01
Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water from low permeability clay lenses sustain biogeochemical cycling for a longer period of time than in homogeneous soil columns. Preliminary results indicate: i) certain variables (anion, cation concentrations, etc.) do not follow normal or lognormal distributions even at the column scale, ii) strong correlations exist between parameters related to redox geochemistry (pH with S2- concentrations), and iii) PCA can identify dominant processes (e.g. iron and sulfate reduction) occurring in the system by grouping together causative variables (e.g. dominant TEAPs).
Sub-ply level scaling approach investigated for graphite-epoxy composite beam columns
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris
1994-01-01
Scale model graphite-epoxy composite specimens were fabricated using the 'sub-ply level' approach and tested as beam-columns under an eccentric axial load to determine the effect of specimen size on flexural response and failure. In the current research project, although the fiber diameters are not scaled, the thickness of the pre-preg material itself has been scaled by adjusting the number of fibers through the thickness of a single ply. Three different grades of graphite-epoxy composite material (AS4/3502) were obtained from Hercules, Inc., in which the number of fibers through the thickness of a single ply was reduced (Grade 190 with 12 to 16 fibers, Grade 95 with 6 to 8 fibers, and Grade 48 with 3 to 4 fibers). Thus, using the sub-ply level approach, a baseline eight ply quasi-isotropic laminate could be fabricated using either the Grade 48 or Grade 95 material and the corresponding full-scale laminate would be constructed from Grade 95 or standard Grade 190 material, respectively. Note that in the sub-ply level approach, the number of ply interfaces is constant for the baseline and full-scale laminates. This is not true for the ply level and sublaminate level scaled specimens. The three grades of graphite-epoxy composite material were used to fabricate scale model beam-column specimens with in-plane dimensions of 0.5*n x 5.75*n, where n=1,2,4 corresponsing to 1/4, 1/2, and full-scale factors. Angle ply, cross ply, and quasi-isotropic laminate stacking sequences were chosen for the investigation and the test matrices for each laminate type are given. Specimens in each laminate family with the same in-plane dimensions but different thicknesses were tested to isolate the influence of the thickness dimension on the flexural response and failure. Also, specific lay-ups were chosen with blocked plies and dispersed plies for each laminate type. Specimens were subjected to an eccentric axial load until failure. The load offset was introduced through a set of hinges which were attached to the platens of a standard load test machine. Three sets of geometrically scaled hinges were used to ensure that scaled loading conditions were applied. This loading condition was chosen because it promotes large flexural deformations and specimens fail at the center of the beam, away from the grip supports. Five channels of data including applied vertical load, end shortening displacement, strain from gages applied back-to-back at the midspan of the beam, and rotation of the hinge from a bubble inclinometer were recorded for each specimen. The beam-column test configuration was used previously to study size effects in ply level scaled composite specimens of the same material system, sizes, and stacking sequences. Thus, a direct comparison between the two scaling approaches is possible. Ply level scaled beam-columns with angle ply, cross ply, and quasi-isotropic lay-ups exhibited no size dependencies in the flexural response, but significant size effects in strength. The reduction in strength with increasing specimen size was not predicted successfully by analysis techniques. It is anticipated that results from this investigation will lead to a better understanding of the strength scale effect in composite structures.
Single-copy entanglement in critical quantum spin chains
NASA Astrophysics Data System (ADS)
Eisert, J.; Cramer, M.
2005-10-01
We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results—which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains—are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ˜(1/6)log2(L) , and contrast it with the block entropy.
Zhang, Xin; Peng, Lei; Ni, Zhao-peng; Ni, Tian-xiao; Huang, Yi-liang; Zhou, Yang
2018-01-01
Experimental research was conducted to study the fire resistance of steel tubular columns used in prefabricated and modular construction. In order to achieve high-efficient prefabrication and fast on-site installation, membrane protections using board products and thermal insulation blankets are adopted as the favorable protection method. Three protected tubular columns were tested in a full-scale column furnace with axial load applied. The study variables were different membranes, including fiber reinforced calcium silicate (FRCS) boards, rock wool and aluminum silica (Fiberfrax) insulations. The results suggest that one layer of 12 mm FRCS board with rock wool insulation has insufficient fire protection. However, steel columns protected with two layers of 12 mm FRCS boards with insulation appeared to have good fire resistances and could achieve a fire resistance rating as high as 2.5~3.0 h. PMID:29547574
Treatment of batik waste using distillation method
NASA Astrophysics Data System (ADS)
Riyanto, Sidiq, Nurma Yunita; Hidayah, Nailil
2017-12-01
In this study has been the treatment of batik waste using distillation method. This study aims to the treatment of batik waste using distillation method. Batik is a world heritage that has an impact on economic improvement and environmental damage. Batik waste is a hazardous and toxic waste material. Batik waste in this research has been taken from Batik Industry in Yogyakarta, Indonesia. Batik waste of 5 L is included in the distillation apparatus, then the distillation run for 4 hours. The distillation product of solids and liquids is collected and analyzed. The solid produced at the distillation boiler was analyzed by FTIR. The distillation liquid was analyzed ammonia and COD concentration using UV-Vis Spectrophotometer. The result of the analysis showed that based on FTIR spectra obtained by dye with high purity. The analysis results shown are of ammonia, COD and pH were 0.652 mg/L, 238.31 mg/L, and 7.306, respectively. The compounds produced by boiler are the azo dye based on the spectrum at wave numbers 1554.07 cm-1. The conclusion of this research is that the distillation method is very suitable for the treatment of the batik waste at small batik industry. Advantages of distillation techniques that can be obtained two products are water and dye that can be used in batik industry.
The influence of a fire-induced convection column on radiological fallout patterns
A. Broido; A.W. McMasters
1959-01-01
Since no nuclear devices have been detonated by the United States under conditions leading to both mass fires and radiological fallout, a theoretical and small-scale experimental study was undertaken to see if fire-induced convection columns could significantly affect fallout patterns. Experiments were conducted in a 6- by 6-foot low-velocity wind tunnel using full-...
What is Wrong with the Boundary Conditions in Column Tracer Tests
NASA Astrophysics Data System (ADS)
Zhan, H.
2007-12-01
Solute transport in a column is probably one of the most fundamental problems investigated in contaminant hydrology and soil physics because it serves as a benchmark for testing transport theories, for measuring dispersivities, etc. Despite its importance, there are still dispute and inconsistency on how to deal with the boundary conditions involved in such problems. The boundary condition could impose great influence upon transport in a column, particularly when the length of the column is relatively short, or the so-called Peclet number is not large. There are three types of boundary conditions to choose for transport in a column. Among these three types of boundary conditions, only the third-type boundary satisfies the mass balance requirement rigorously. The first type boundary, despite its frequent use in previous studies, could lead to serious mass balance problems. The most serious problem is on how to deal with the outlet boundary. Some studies have used a zero concentration gradient at the outlet (the so-called Danckwerts' boundary condition). This is named the model A. Another idea is to treat the finite length column as a part of an infinitely long column and to calculate the concentration at the outlet based on a formula developed for an infinitely long column. This is named the model B. The model A satisfies the mass balance requirement but was found to fit with the experimental data poorly. The model B does not satisfy the mass balance requirement, but usually agree well with the experimental data. So, the dilemma is: which model to choose? At present, most investigators prefer to choose the model B because of its close agreement with the experimental data, despite of its violation of the mass balance requirement. But the question is: why the model A, which satisfies the mass balance requirement, does not fit with the experimental data? It turns out that the advection-dispersion equation (ADE) that uses the Fick's first law to describe the hydrodynamic dispersion has some problems, particularly in the regions near the two boundaries. Taylor (1921) has pointed out that the dispersion coefficient varies linearly with time at the beginning and tends to its asymptotic, Fickian value after a travel time of a few correlation scales. Dagan and Bresler (1985) have further pointed out that the constant dispersivity is attained after the solute body has traveled tens of conductivity integral scales. For transport in a homogeneous column, the integral scale of the conductivity is probably around the pore scale or equivalent to the dispersivity value. Therefore, for a finite column whose length is not much greater than the dispersivity value, the transition zones in which solute transport is non-Fickian could consist of a significant portion of the column length. It is such non-Fickian transport in the column that is responsible for the failure of the model A. But still, why does the model B yield the right solution? There is no answer to this question based on a rigorous quantitative analysis yet. To resolve the dilemma, one must carry out a non-Fickian transport study to deal with the transition zones. It is my hypothesis that if the non-Fickian transport analysis succeeds, one will find that the mass balance requirement is indeed satisfied in the model B. Dagan and Bresler (1985) have pointed to the right direction, but a rigorous analysis has not followed. This is something interesting and worthwhile to investigate. REFERENCES CITED Dagan, G., and Bresler, E., 1985. Comment on ¡°Flux-averaged and volume-averaged concentration in continuum approaches to solute transport¡± by J.C. Parker and M.Th. van Genuchten. Water Resources Research, 21: 1299- 1300. Taylor, G.I., 1921. Diffusion by continuous movements. Proc. London Math Soc. 2: 196-212.
Non-catalytic steam hydrolysis of fats. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deibert, M.C.
1992-08-28
Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steammore » mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.« less
Non-catalytic steam hydrolysis of fats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deibert, M.C.
1992-08-28
Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steammore » mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.« less
Direct liquefaction Proof-of-Concept facility. Final technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comolli, A.G.; Lee, L.K.; Pradhan, V.R.
1995-08-01
This report presents the results of work which included extensive modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the first PDU run. The 58-day Run 1 demonstrated scale-up of the Catalytic Two-Stage Liquefaction (CTSL Process) on Illinois No. 6 coal to produce distillate liquid products at a rate of up to 5 barrels per to of moisture-ash-free coal. The Kerr McGee Rose-SR unit from Wilsonville was redesigned and installed next to the US Filter installation to allow a comparison of the two solids removal systems. Also included was a new enclosed reactor tower,more » upgraded computer controls and a data acquisition system, an alternate power supply, a newly refurbished reactor, an in-line hydrotreater, interstage sampling system, coal handling unit, a new ebullating pump, load cells and improved controls and remodeled preheaters. Distillate liquid yields of 5 barrels/ton of moisture ash free coal were achieved. Coal slurry recycle rates were reduced from the 2--2.5 to 1 ratio demonstrated at Wilsonville to as low as 0.9 to 1. Coal feed rates were increased during the test by 50% while maintaining process performance at a marginally higher reactor severity. Sulfur in the coal was reduced from 4 wt% to ca. 0.02 wt% sulfur in the clean distillate fuel product. More than 3,500 gallons of distillate fuels were collected for evaluation and upgrading studies. The ROSE-SR Process was operated for the first time with a pentane solvent in a steady-state model. The energy rejection of the ash concentrate was consistently below prior data, being as low as 12%, allowing improved liquid yields and recovery.« less
Solar-driven membrane distillation demonstration in Leupp, Arizona.
Ravisankar, Vishnu Arvind; Seaman, Robert; Mirchandani, Sera; Arnold, Robert G; Ela, Wendell P
2016-03-01
The Navajo Nation is the largest and one of the driest Native American reservations in the US. The population in the Navajo Nation is sporadically distributed over a very large area making it extremely ineffective to connect homes to a centralized water supply system. Owing to this population distribution and the multi decadal drought prevailing in the region, over 40% of the 300,000 people living on Navajo Tribal Lands lack access to running potable water. For many people the only alternative is hauling water from filling stations, resulting in economic hardship and limited supply. A solution to this problem is a de-centralized off-grid water source. The University of Arizona and US Bureau of Reclamation's Solar Membrane Distillation (SMD), stand-alone, pilot desalination system on the Navajo Reservation will provide an off-grid source of potable water; the pilot will serve as a proximal water source, ease the financial hardships caused by the drought, and provide a model for low-cost water treatment systems in arid tribal lands. Bench-scale experiments and an earlier field prototype plant showed viable operation of a solar heated, membrane distillation (MD) system, but further optimization is required. The objectives of the Navajo pilot study are to i) demonstrate integration of solar collectors and membrane distillation, ii) optimize operational parameters, iii) demonstrate and monitor technology performance during extended duration operation, and iv) facilitate independent system operation by the Navajo Water Resources Department, including hand-over of a comprehensive operations manual for implementation of subsequent SMD systems. The Navajo SMD system is designed as a perennial installation that includes remote communication of research data and full automation for remote, unmanned operation.
Palenzuela, P; Miralles-Cuevas, S; Cabrera-Reina, A; Cornejo-Ponce, L
2018-06-22
In the context of a regional Chilean project (FIC Taltape project, BIP code 30158422-0), a multi-effect distillation (MED) pilot plant has been built and installed in a small community in the north of Chile (Taltape, Arica) in order to supply treated water for agricultural and domestic purposes. The aim of this paper is to assess the techno-economic feasibility of this system for supplying water with the required quality to the population. The characterization of the feed water and the effluents from the MED pilot plant (distillate and brine), obtained during five months of operation, has been firstly performed. Then, the prediction of the operation of the water treatment system with solar energy has been carried out using a typical meteorological year and the design of a static solar field that cover the thermal energy needs of the water treatment plant. The annual simulations of the MED pilot plant operating with solar energy showed that the water needs can be mostly covered using a static solar thermal field with a total area of 113.2 m 2 , which would generate roughly 46% of the total heat required by the water treatment plant. The technical analysis has been completed with an exhaustive economic assessment. The specific water costs have been determined for the MED pilot plant and the scale factor when the productivity is increased up to 5000 m 3 /day has been evaluated. The cost of distillated water produced by the MED plant varied from 15.0 USD$/m 3 for the 10 m 3 /day production capacity to 1.25 USD$/m 3 when this variable is increased to 5000 m 3 /day. Copyright © 2018 Elsevier B.V. All rights reserved.
40 CFR 721.10530 - Acrylate manufacture byproduct distillation residue (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... distillation residue (generic). 721.10530 Section 721.10530 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10530 Acrylate manufacture byproduct distillation... substance is identified generically as acrylate manufacture byproduct distillation residue (PMN P-12-87) is...
40 CFR 721.10530 - Acrylate manufacture byproduct distillation residue (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... distillation residue (generic). 721.10530 Section 721.10530 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10530 Acrylate manufacture byproduct distillation... substance is identified generically as acrylate manufacture byproduct distillation residue (PMN P-12-87) is...
[Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].
Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang
2016-11-25
This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.
Surface code implementation of block code state distillation.
Fowler, Austin G; Devitt, Simon J; Jones, Cody
2013-01-01
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved [formula: see text] state given 15 input copies. New block code state distillation methods can produce k improved [formula: see text] states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.
Surface code implementation of block code state distillation
Fowler, Austin G.; Devitt, Simon J.; Jones, Cody
2013-01-01
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved |A〉 state given 15 input copies. New block code state distillation methods can produce k improved |A〉 states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three. PMID:23736868
Optical Measurement Technique for Space Column Characterization
NASA Technical Reports Server (NTRS)
Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.
2004-01-01
A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.
NASA Astrophysics Data System (ADS)
Molnar, I. L.; O'Carroll, D. M.; Gerhard, J.; Willson, C. S.
2014-12-01
The recent success in using Synchrotron X-ray Computed Microtomography (SXCMT) for the quantification of nanoparticle concentrations within real, three-dimensional pore networks [1] has opened up new opportunities for collecting experimental data of pore-scale flow and transport processes. One opportunity is coupling SXCMT with nanoparticle/soil transport experiments to provide unique insights into how pore-scale processes influence transport at larger scales. Understanding these processes is a key step in accurately upscaling micron-scale phenomena to the continuum-scale. Upscaling phenomena from the micron-scale to the continuum-scale typically involves the assumption that the pore space is well mixed. Using this 'well mixed assumption' it is implicitly assumed that the distribution of nanoparticles within the pore does not affect its retention by soil grains. This assumption enables the use of volume-averaged parameters in calculating transport and retention rates. However, in some scenarios, the well mixed assumption will likely be violated by processes such as deposition and diffusion. These processes can alter the distribution of the nanoparticles in the pore space and impact retention behaviour, leading to discrepancies between theoretical predictions and experimental observations. This work investigates the well mixed assumption by employing SXCMT to experimentally examine pore-scale mixing of silver nanoparticles during transport through sand packed columns. Silver nanoparticles were flushed through three different sands to examine the impact of grain distribution and nanoparticle retention rates on mixing: uniform silica (low retention), well graded silica sand (low retention) and uniform iron oxide coated silica sand (high retention). The SXCMT data identified diffusion-limited retention as responsible for violations of the well mixed assumption. A mathematical description of the diffusion-limited retention process was created and compared to the experimental data at the pore and column-scale. The mathematical description accurately predicted trends observed within the SXCMT-datasets such as concentration gradients away from grain surfaces and also accurately predicted total retention of nanoparticles at the column scale. 1. ES&T 2014, 48, (2), 1114-1122.
40 CFR 721.10670 - Bromine, manufacture of, by-products from, distillation residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... from, distillation residues. 721.10670 Section 721.10670 Protection of Environment ENVIRONMENTAL..., distillation residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bromine, manufacture of, by-products from, distillation residues (PMN P...
40 CFR 721.10670 - Bromine, manufacture of, by-products from, distillation residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... from, distillation residues. 721.10670 Section 721.10670 Protection of Environment ENVIRONMENTAL..., distillation residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bromine, manufacture of, by-products from, distillation residues (PMN P...
NASA Astrophysics Data System (ADS)
Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.
2017-12-01
Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors
Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian
2016-01-01
This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.
NASA Astrophysics Data System (ADS)
Xing, Xuguang; Ma, Xiaoyi
2018-06-01
The maximum upward flux ( E max) is a control condition for the development of groundwater evaporation models, which can be predicted through the Gardner model. A high-precision E max prediction helps to improve irrigation practice. When using the Gardner model, it has widely been accepted to ignore parameter b (a soil-water constant) for model simplification. However, this may affect the prediction accuracy; therefore, how parameter b affects E max requires detailed investigation. An indoor one-dimensional soil-column evaporation experiment was conducted to observe E max in the presence of a water table of depth 50 cm. The study consisted of 13 treatments based on four solutes and three concentrations in groundwater: KCl, NaCl, CaCl2, and MgCl2, with concentrations of 5, 30, and 100 g/L (salty groundwater); distilled water was used as a control treatment. Results indicated that for the experimental homogeneous loam, the average E max for the treatments supplied by salty groundwater was larger than that supplied by distilled water. Furthermore, during the prediction of the Gardner-model-based E max, ignoring b and including b always led to an overestimate and underestimate, respectively, compared to the observed E max. However, the maximum upward flux calculated including b (i.e. E bmax) had higher accuracy than that ignoring b for E max prediction. Moreover, the impact of ignoring b on E max gradually weakened with increasing b value. This research helps to reveal the groundwater evaporation mechanism.
Bound states for magic state distillation in fault-tolerant quantum computation.
Campbell, Earl T; Browne, Dan E
2010-01-22
Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, nondistillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.
7 CFR 160.9 - Destructively distilled wood turpentine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...
7 CFR 160.9 - Destructively distilled wood turpentine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...
7 CFR 160.9 - Destructively distilled wood turpentine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...
40 CFR 721.10531 - Distillation bottoms from manufacture of brominated cycloalkanes (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Distillation bottoms from manufacture... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10531 Distillation bottoms from... reporting. (1) The chemical substance identified generically as distillation bottoms from manufacture of...
40 CFR 721.10531 - Distillation bottoms from manufacture of brominated cycloalkanes (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Distillation bottoms from manufacture... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10531 Distillation bottoms from... reporting. (1) The chemical substance identified generically as distillation bottoms from manufacture of...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Distillation. 19.301 Section 19.301 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... of Spirits § 19.301 Distillation. The distillation of spirits must be done in a continuous system...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Distillation. 19.301 Section 19.301 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... of Spirits § 19.301 Distillation. The distillation of spirits must be done in a continuous system...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Distillation. 19.301 Section 19.301 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... of Spirits § 19.301 Distillation. The distillation of spirits must be done in a continuous system...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Distillation. 19.301 Section 19.301 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... of Spirits § 19.301 Distillation. The distillation of spirits must be done in a continuous system...
27 CFR 17.186 - Transfer of distilled spirits to other containers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Transfer of distilled... USED IN MANUFACTURING NONBEVERAGE PRODUCTS Miscellaneous Provisions § 17.186 Transfer of distilled spirits to other containers. A manufacturer may transfer taxpaid distilled spirits from the original...
7 CFR 160.9 - Destructively distilled wood turpentine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...
7 CFR 160.9 - Destructively distilled wood turpentine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...
[Comparison study of different methods for extracting volatile oil from bergamot].
Chen, Fei; Li, Qun-li; Sheng, Liu-qing; Qiu, Jiao-ying
2008-08-01
To test different methods for extracting volatile oil from bergamot. The determination of bergapten was carried out by RP-HPLC. Four different ways of organic solvent extraction, steam-input distillation, distillation of the material mixed with water and press extraction were compared. Bergapten wasnt extracted by ways of steam-input distillation and distillation of the material mixed with water. The steam distillation extraction can be taken to extract volatile oil from bergamot for protecting humans' skins.
Jiang, Xiaogang; Feng, Shun; Tian, Ruijun; Han, Guanghui; Jiang, Xinning; Ye, Mingliang; Zou, Hanfa
2007-02-01
An approach was developed to automate sample introduction for nanoflow LC-MS/MS (microLC-MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 microm id x 2 cm SCX trap column and a 75 microm id x 12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two-dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC-7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current microLC-MS/MS system. This system represented a promising platform for routine proteome analysis.
27 CFR 19.669 - Distilled spirits taxes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Distilled spirits taxes. 19.669 Section 19.669 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Taxes § 19.669 Distilled spirits taxes. (a) Proprietors may withdraw distilled spirits free of tax from...
27 CFR 29.55 - Registry of stills and distilling apparatus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... distilling apparatus. 29.55 Section 29.55 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Registry of stills and distilling apparatus. (a) General. Every person having possession, custody, or control of any still or distilling apparatus set up shall, immediately on its being set up, register the...
27 CFR 29.55 - Registry of stills and distilling apparatus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... distilling apparatus. 29.55 Section 29.55 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Registry of stills and distilling apparatus. (a) General. Every person having possession, custody, or control of any still or distilling apparatus set up shall, immediately on its being set up, register the...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants
NASA Technical Reports Server (NTRS)
Bernat, A. P.
1981-01-01
Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.
Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material
USDA-ARS?s Scientific Manuscript database
Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...
Tomographic quantum cryptography: equivalence of quantum and classical key distillation.
Bruss, Dagmar; Christandl, Matthias; Ekert, Artur; Englert, Berthold-Georg; Kaszlikowski, Dagomir; Macchiavello, Chiara
2003-08-29
The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an important class of protocols, which exploit tomographically complete measurements on entangled pairs of any dimension, we show that the noise threshold for classical advantage distillation is identical with the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures are equivalent: neither offers a security advantage over the other.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.
2013-01-01
Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578
Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition
NASA Astrophysics Data System (ADS)
Chowdhury, Ershad Ullah
In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over the FRP strengthening system.
Fiber-based monolithic columns for liquid chromatography.
Ladisch, Michael; Zhang, Leyu
2016-10-01
Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.
Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil
Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to performmore » this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.« less
NASA Astrophysics Data System (ADS)
Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul
2017-08-01
Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.
Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latheef, I.M.; Huckman, M.E.; Anthony, R.G.
2000-05-01
A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less
Atrazine remediation in wetland microcosms.
Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J
2001-05-01
Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
2018-01-01
Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.
Aeration costs in stirred-tank and bubble column bioreactors
Humbird, D.; Davis, R.; McMillan, J. D.
2017-08-10
To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less
Aeration costs in stirred-tank and bubble column bioreactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, D.; Davis, R.; McMillan, J. D.
To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less
Mitigating oil spills in the water column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, Edward; Libera, Joseph A.; Mane, Anil U.
The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. Wemore » find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.« less
Mitigating oil spills in the water column
Barry, Edward; Libera, Joseph A.; Mane, Anil U.; ...
2017-10-05
The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. Wemore » find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.« less