DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Heath, Garvin A
The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less
Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model.
Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy
2018-01-23
Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation. Graphical Abstract Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.
Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator
NASA Astrophysics Data System (ADS)
Bravo, A.
2017-12-01
Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.
The EPA has completed a national-scale risk assessment for mercury to inform the appropriate and necessary determination for electric utility steam generating unites in the United States (U.S. EGU's), persuant to Section 112(n)(1)(A) of the Clean Air Act. This document describes...
NASA Astrophysics Data System (ADS)
Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2017-06-01
We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and customer type, and specified additional features for STEALS that are needed to meet the needs of this growing power market.
The SunShot Initiative’s 2030 Goal: 3¢ per Kilowatt Hour for Solar Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In 2011, when solar power comprised less than 0.1% of the U.S. electricity supply, the U.S. Department of Energy (DOE) launched the SunShot Initiative with the goal of making solar electricity cost-competitive with traditionally generated electricity by 2020 without subsidies. At the time, this meant reducing photovoltaic (PV) and concentrating solar power (CSP) prices by approximately 75% across the residential, commercial, and utility-scale sectors. For utility-scale solar, this target is a levelized cost of energy (LCOE) of 6¢ per kilowatt hour (kWh)1. Rapid progress has been made in accelerating achievement of these cost reductions, and DOE’s Solar Energy Technologies Officemore » (SETO) sees clear pathways to meeting the SunShot 2020 cost targets on schedule.2 Enabled by the cost reductions to date, solar-generated electricity has become mainstream. In 2014 and 2015, solar represented about one-third of new electrical generating capacity installed in the United States Halfway through 2016, solar was supplying 1% of U.S. electricity demand and growing with an installed capacity of 30 gigawatts.« less
Fuel to burn : economics of converting forest thinnings to energy using BioMax in southern Oregon
E.M. (Ted) Bilek; Kenneth E. Skog; Jeremy Fried; Glenn Christensen
2005-01-01
Small-scale gasification plants that generate electrical energy from forest health thinnings may have the potential to deliver substantial amounts of electricity to the national grid. We evaluated the economic feasibility of two sizes of BioMax, a generator manufactured by the Community Power Corporation of Littleton, Colorado. At current avoided- cost electricity...
Fuel to burn: economics of converting forest thinnings to energy using BioMax in southern Oregon.
E.M. (Ted) Bilek; Kenneth E. Skog; Jeremy Fried; Glenn Christensen
2005-01-01
Small-scale gasification plants that generate electrical energy from forest health thinnings may have the potential to deliver substantial amounts of electricity to the national grid. We evaluated the economic feasibility of two sizes of BioMax, a generator manufactured by the Community Power Corporation of Littleton, Colorado. At current avoided-cost electricity...
49. Photocopy of scale drawing (from Station 'L' office files, ...
49. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawings, 1930 FLOW DIAGRAM OF THE STEAM GENERATION PROCESS AT STATION 'L' - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR
Smart grid integration of small-scale trigeneration systems
NASA Astrophysics Data System (ADS)
Vacheva, Gergana; Kanchev, Hristiyan; Hinov, Nikolay
2017-12-01
This paper presents a study on the possibilities for implementation of local heating, air-conditioning and electricity generation (trigeneration) as distributed energy resource in the Smart Grid. By the means of microturbine-based generators and absorption chillers buildings are able to meet partially or entirely their electrical load curve or even supply power to the grid by following their heating and air-conditioning daily schedule. The principles of small-scale cooling, heating and power generation systems are presented at first, then the thermal calculations of an example building are performed: the heat losses due to thermal conductivity and the estimated daily heating and air-conditioning load curves. By considering daily power consumption curves and weather data for several winter and summer days, the heating/air-conditioning schedule is estimated and the available electrical energy from a microturbine-based cogeneration system is estimated. Simulation results confirm the potential of using cogeneration and trigeneration systems for local distributed electricity generation and grid support in the daily peaks of power consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.
We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales inmore » the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and customer type, and specified additional features for STEALS that are needed to meet the needs of this growing power market.« less
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system
Jensen, Tue V.; Pinson, Pierre
2017-01-01
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.
Jensen, Tue V; Pinson, Pierre
2017-11-28
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system
NASA Astrophysics Data System (ADS)
Jensen, Tue V.; Pinson, Pierre
2017-11-01
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.
NASA Astrophysics Data System (ADS)
Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.
2016-12-01
Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.
NASA Astrophysics Data System (ADS)
Veselov, F. V.; Novikova, T. V.; Khorshev, A. A.
2015-12-01
The paper focuses on economic aspects of the Russian thermal generation sector's renovation in a competitive market environment. Capabilities of the existing competitive electricity and capacity pricing mechanisms, created during the wholesale market reform, to ensure the wide-scale modernization of thermal power plants (TPPs) are estimated. Some additional stimulating measures to focus the investment process on the renovation of the thermal generation sector are formulated, and supplementing and supporting costs are assessed. Finally, the systemic effect of decelerating wholesale electricity prices caused by efficiency improvements at thermal power plants is analyzed depending on the scales of renovation and fuel prices.
GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING
The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...
NASA Astrophysics Data System (ADS)
Maitani, Tatsuyuki; Tezuka, Tetsuo
The electric power market of Japan has been locally monopolized for a long time. But, like many countries, Japan is moving forward with the deregulation of its electric power industry so that any power generation company could sell electric power in the market. The power price, however, will fluctuate inevitably to balance the power supply and demand. A new appropriate market design is indispensable when introducing new market mechanisms in the electric power market to avoid undesirable results of the market. The first stage of deregulation will be the competition between an existing large-scaled power utility and a new power generation company. In this paper we have investigated the wholesale market with competition of these two power companies based on a simulation model approach. Under the competitive situation the effects of exogenous disturbance may bring serious results and we estimated the influence on the market when the price of fossil fuel rises. The conclusion of this study is that several types of Nash equilibriums have been found in the market: the larger the new power generation company becomes, the higher the electricity price under the Nash equilibriums rises. Because of the difference in their structure of generation capacity, the existing large-scaled power utility gets more profit while the new power generation company loses its profit when the price of fossil fuel rises.
NASA Astrophysics Data System (ADS)
Lynes, Melissa Kate
Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of greenhouse gas emitting electric generation plants. However, renewable energy policies do not have an effect on productivity growth. Renewable energy inputs are found to be as efficient if not more efficient than traditional energy sources.
Optimal Wind Energy Integration in Large-Scale Electric Grids
NASA Astrophysics Data System (ADS)
Albaijat, Mohammad H.
The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and data acquisition [SCADA] system), which provides one sample of measurement every 2 to 5 seconds. Because PMUs provide more measurement data samples, PMU can improve electric grid reliability and observability. (Abstract shortened by UMI.)
Miller, Lee M; Kleidon, Axel
2016-11-29
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.
Miller, Lee M.; Kleidon, Axel
2016-01-01
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587
Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.
Di Renzo, M; Urzay, J
2018-04-26
Self-induced electricity, including lightning, is often observed in dusty atmospheres. However, the physical mechanisms leading to this phenomenon remain elusive as they are remarkably challenging to determine due to the high complexity of the multi-phase turbulent flows involved. Using a fast multi-pole method in direct numerical simulations of homogeneous turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic electric fields can be aerodynamically created in bi-disperse suspensions of oppositely charged particles. The generation mechanism is self-regulating and relies on turbulence preferentially concentrating particles of one sign in clouds while dispersing the others more uniformly. The resulting electric field varies over much larger length scales than both the mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the dynamical relevance of this aerodynamic mechanism for electrical breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARTONE, ERIK
DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.
Electricity: From Tabletop to Power Plant
ERIC Educational Resources Information Center
Moran, Timothy
2009-01-01
While electricity is central to our daily lives, it remains "black box" technology to most students. They know that electricity is produced somewhere and that it costs money, but they do not have personal experience with the operation and scale of the machines that provide it. Fortunately, electricity generation can be added to the more basic…
Optimization of Industrial Ozone Generation with Pulsed Power
NASA Astrophysics Data System (ADS)
Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team
2013-09-01
Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.
Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenclik, Derek; Denholm, Paul; Chalamala, Babu
For nearly a century, global power systems have focused on three key functions: generating, transmitting, and distributing electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load-despite variability in load on time scales ranging from subsecond disturbances to multiyear trends. With the increasing role of variable generation from wind and solar, the retirement of fossil-fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.
NASA Astrophysics Data System (ADS)
Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui
2018-01-01
With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.
NASA Astrophysics Data System (ADS)
Francois, Baptiste; Martino, Sara; Tofte, Lena; Hingray, Benoit; Mo, Birger; Creutin, Jean-Dominique
2017-04-01
Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e. when electricity consumption and prices are high. At the annual scale, the deficit behavior depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighboring regions which are also modified both in terms of average, variability and seasonality. Keywords: Variable renewable energy, Wind, Hydro, Energy balance, Energy market
Modelling utility-scale wind power plants. Part 1: Economics
NASA Astrophysics Data System (ADS)
Milligan, Michael R.
1999-10-01
As the worldwide use of wind turbine generators continues to increase in utility-scale applications, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry in the United States appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This article is the first of two which address modelling approaches and results obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This first article addresses the basic economic issues associated with electricity production from several generators that include large-scale wind power plants. An important part of this discussion is the role of unit commitment and economic dispatch in production cost models. This paper includes overviews and comparisons of the prevalent production cost modelling methods, including several case studies applied to a variety of electric utilities. The second article discusses various methods of assessing capacity credit and results from several reliability-based studies performed at NREL.
Solar electricity supply isolines of generation capacity and storage.
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W
2015-03-24
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.
Solar electricity supply isolines of generation capacity and storage
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.
2015-01-01
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261
Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction.
Yochum, Maxime; Laforêt, Jérémy; Marque, Catherine
2018-02-01
Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The results also permit us to evidence the effect on IUP of this enhanced synchronization induced by the presence of SACs. This proposed simplified model will be further improved in order to permit a better understanding of the global uterine synchronization occurring during efficient labor contractions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solar Thermoelectricity via Advanced Latent Heat Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.
2016-05-31
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less
Solar thermoelectricity via advanced latent heat storage
NASA Astrophysics Data System (ADS)
Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2016-05-01
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
Top Five Large-Scale Solar Myths | State, Local, and Tribal Governments |
of large-scale photovoltaic (PV) facilities or solar farms tend to include a myriad of misperceptions technologies do use mirrors which can cause glare, most solar farms use PV modules to generate electricity. PV panels in order to convert solar energy into electricity. PV modules are generally less reflective than
Concept Overview & Preliminary Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark
2017-07-12
'H2@Scale' is an opportunity for wide-scale use of hydrogen as an intermediate that carries energy from various production options to multiple uses. It is based on identifying and developing opportunities for low-cost hydrogen production and investigating opportunities for using that hydrogen across the electricity, industrial, and transportation sectors. One of the key production opportunities is use of low-cost electricity that may be generated under high penetrations of variable renewable generators such as wind and solar photovoltaics. The technical potential demand for hydrogen across the sectors is 60 million metric tons per year. The U.S. has sufficient domestic renewable resources somore » that each could meet that demand and could readily meet the demand using a portfolio of generation options. This presentation provides an overview of the concept and the technical potential demand and resources. It also motivates analysis and research on H2@Scale.« less
Wave Power Demonstration Project at Reedsport, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekhiche, Mike; Downie, Bruce
2013-10-21
Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity ismore » then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.« less
Regional air quality impacts of increased natural gas production and use in Texas.
Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T
2013-04-02
Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.
The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J; Gagnon, Pieter J; Frew, Bethany A
This analysis uses a new method to link the NREL Regional Energy Deployment System (ReEDS) capacity expansion model with the NREL distributed generation market demand model (dGen) to explore the impact that the evolution of retail electricity tariffs can have on the adoption of distributed photovoltaics (DPV). The evolution most notably takes the form of decreased mid-day electricity costs, as low-cost PV reduces the marginal cost of electricity during those hours and the changes are subsequently communicated to electricity consumers through tariffs. We find that even under the low PV prices of the new SunShot targets the financial performance ofmore » DPV under evolved tariffs still motivates behind-the-meter adoption, despite significant reduction in the costs of electricity during afternoon periods driven by deployment of cheap utility-scale PV. The amount of DPV in 2050 in these low-cost futures ranged from 206 GW to 263 GW, a 13-fold and 16-fold increase over 2016 adoption levels respectively. From a utility planner's perspective, the representation of tariff evolution has noteworthy impacts on forecasted DPV adoption in scenarios with widespread time-of-use tariffs. Scenarios that projected adoption under a portfolio of time-of-use tariffs, but did not represent the evolution of those tariffs, predicted up to 36 percent more DPV in 2050, compared to scenarios that did not represent that evolution. Lastly, we find that a reduction in DPV deployment resulting from evolved tariffs had a negligible impact on the total generation from PV - both utility-scale and distributed - in the scenarios we examined. Any reduction in DPV generation was replaced with utility-scale PV generation, to arrive at the quantity that makes up the least-cost portfolio.« less
Solar Energy Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-03-01
The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This investment will help re-establish American technological and market leadership in solar energy, reduce environmental impacts of electricity generation, and strengthen U.S. economic competitiveness.
NASA Astrophysics Data System (ADS)
Luong, Hung Truyen; Goo, Nam Seo
2011-03-01
We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.
NASA Astrophysics Data System (ADS)
Grattieri, Matteo; Minteer, Shelley D.
2018-01-01
Biological photovoltaic devices (BPVs) use photosynthetic microorganisms to produce electricity, but low photocurrent generation impedes their application. Now, a micro-scale flow-based BPV system is reported with power density outputs similar to that of large-scale biofuels.
NASA Technical Reports Server (NTRS)
Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.
2004-01-01
Electric fields generate transverse flows near electrodes that sweep colloidal particles into densely packed assemblies. We interpret this behavior in terms of electrohydrodynamic motion stemming from distortions of the field by the particles that alter the body force distribution in the electrode charge polarization layer. A scaling analysis shows how the action of the applied electric field generates fluid motion that carries particles toward one another. The resulting fluid velocity is proportional to the square of the applied field and decreases inversely with frequency. Experimental measurements of the particle aggregation rate accord with the electrohydrodynamic theory over a wide range of voltages and frequencies.
Lightning Scaling Laws Revisited
NASA Technical Reports Server (NTRS)
Boccippio, D. J.; Arnold, James E. (Technical Monitor)
2000-01-01
Scaling laws relating storm electrical generator power (and hence lightning flash rate) to charge transport velocity and storm geometry were originally posed by Vonnegut (1963). These laws were later simplified to yield simple parameterizations for lightning based upon cloud top height, with separate parameterizations derived over land and ocean. It is demonstrated that the most recent ocean parameterization: (1) yields predictions of storm updraft velocity which appear inconsistent with observation, and (2) is formally inconsistent with the theory from which it purports to derive. Revised formulations consistent with Vonnegut's original framework are presented. These demonstrate that Vonnegut's theory is, to first order, consistent with observation. The implications of assuming that flash rate is set by the electrical generator power, rather than the electrical generator current, are examined. The two approaches yield significantly different predictions about the dependence of charge transfer per flash on storm dimensions, which should be empirically testable. The two approaches also differ significantly in their explanation of regional variability in lightning observations.
PERFORMANCE OF SOLAR HOT WATER COLLECTORS FOR ELECTRICITY PRODUCTION AND CLIMATE CONTROL
We will systematically evaluate commercially available solar thermal collectors and thermal storage systems for use in residential scale co-generative heat and electrical power systems. Currently, reliable data is unavailable over the range of conditions and installations thes...
Field-aligned currents and large-scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1979-01-01
The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.
2017 Annual Technology Baseline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J; Hand, M. M; Eberle, Annika
Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV,more » residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.« less
Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines
NASA Astrophysics Data System (ADS)
Khazdozian, Helena; Hadimani, Ravi; Jiles, David
2015-03-01
Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.
NASA Astrophysics Data System (ADS)
Dudek, M.; Podsadna, J.; Jaszczur, M.
2016-09-01
In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
Kada, T; Asahi, S; Kaizu, T; Harada, Y; Tamaki, R; Okada, Y; Kita, T
2017-07-19
We studied the effects of the internal electric field on two-step photocarrier generation in InAs/GaAs quantum dot superlattice (QDSL) intermediate-band solar cells (IBSCs). The external quantum efficiency of QDSL-IBSCs was measured as a function of the internal electric field intensity, and compared with theoretical calculations accounting for interband and intersubband photoexcitations. The extra photocurrent caused by the two-step photoexcitation was maximal for a reversely biased electric field, while the current generated by the interband photoexcitation increased monotonically with increasing electric field intensity. The internal electric field in solar cells separated photogenerated electrons and holes in the superlattice (SL) miniband that played the role of an intermediate band, and the electron lifetime was extended to the microsecond scale, which improved the intersubband transition strength, therefore increasing the two-step photocurrent. There was a trade-off relation between the carrier separation enhancing the two-step photoexcitation and the electric-field-induced carrier escape from QDSLs. These results validate that long-lifetime electrons are key to maximising the two-step photocarrier generation in QDSL-IBSCs.
Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L
2011-09-01
This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fedorov, M. I.; Engalychev, A. E.; Zaitsev, V. K.; Kaliazin, A. E.; Solomkin, F. Yu.
1994-08-01
The problems of energy supply of low power electric devices very often can be solved with thermoelectric generator even with low coefficient of performance, when other electric energy sources are not convenient. The problems of thermoelectric and construction choice for such generators are discussed in the paper. A series of domestic thermoelectric generators was designed by the authors. The work is based on designing an universal thermoelectric unit—a battery which consist of ten thermoelements. The coefficient of performance of the unit is about 4%. Any thermoelectric generator can be made as a combination of these units. Principal opportunity of production such thermoelectric generators on industrial scale was proved.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.
NASA Astrophysics Data System (ADS)
Truyen Luong, Hung; Goo, Nam Seo
2012-02-01
A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.
Competition and Cooperation of Distributed Generation and Power System
NASA Astrophysics Data System (ADS)
Miyake, Masatoshi; Nanahara, Toshiya
Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J. O.; Mosey, G.
2014-04-01
Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.
NASA Astrophysics Data System (ADS)
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
Field-aligned currents and large scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1980-01-01
D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.
NASA Astrophysics Data System (ADS)
Goodrich, K. A.
Magnetic turbulence is a universal phenomenon that occurs in space plasma physics, the small-scale processes of which is not well understood. This thesis presents on observational analysis of kinetic electric field signatures associated with magnetic turbulence, in an attempt to examine its underlying microphysics. Such kinetic signatures include small-scale magnetic holes, double layers, and phase-space holes. The first and second parts of this thesis presents observations of small-scale magnetic holes, observed depressions in total magnetic field strength with spatial widths on the order of or less than the ion Larmor radius, in the near-Earth plasmasheet. Here I demonstrate electric field signatures associated small-scale magnetic holes are consistent with the presence of electron Hall currents, currents oriented perpendicularly to the magnetic field. Further investigation of these fields indicates that the Hall electron current is primarily responsible for the depletion of | B| associated with small-scale magnetic holes. I then present evidence that suggests these currents can descend to smaller spatial scales, indicating they participate in a turbulent cascade to smaller scales, a link that has not been observable suggested until now. The last part of this thesis investigates the presence of double layers and phase-space holes in a magnetically turbulent region of the terrestrial bow shock. In this part, I present evidence that these same signatures can be generated via field-aligned currents generated by strong magnetic fluctuations. I also show that double layers and phase-space holes, embedded within localized nonlinear ion acoustic waves, correlate with localized electron heating and possible ion deceleration, indicating they play a role in turbulent dissipation of kinetic to thermal energy. This thesis clearly demonstrates that energy dissipation in turbulent plasma is closely linked to the small-scale electric field environment.
Designing the Nuclear Energy Attitude Scale.
ERIC Educational Resources Information Center
Calhoun, Lawrence; And Others
1988-01-01
Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nathan; Grue, Nicholas W; Rosenlieb, Evan
The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resourcesmore » for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy and Mines and other Lao power sector stakeholders. and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resources for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources.« less
Feasibility of large-scale power plants based on thermoelectric effects
NASA Astrophysics Data System (ADS)
Liu, Liping
2014-12-01
Heat resources of small temperature difference are easily accessible, free and enormous on the Earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs for electricity generators based on thermoelectric effects that utilize heat resources of small temperature difference, e.g., ocean water at different depths and geothermal resources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power generators based on thermoelectric effects, if validated, will have the advantages of the scalability, renewability, and free supply of heat resources of small temperature difference on the Earth.
Effect of a pulsating electric field on ECR heating in the CERA-RX(C) X-ray generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balmashnov, A. A., E-mail: abalmashnov@sci.pfu.edu.ru; Kalashnikov, A. V.; Kalashnikov, V. V.
2016-03-15
3D particle-in-cell plasma simulations for the field configurations implemented in the CERA-RX(C) ECR X-ray generator (2.45 GHz) have been conducted. Dependences of the energy spectra of electrons incident on the target electrode on the amplitude and frequency of pulsations of the electric field in a megahertz range are derived. The simulation data are compared with the results of the full-scale experiment.
Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John; Smutzer, Chad; Sinha, Jayanti
The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less
Wave resource variability: Impacts on wave power supply over regional to international scales
NASA Astrophysics Data System (ADS)
Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian
2017-04-01
The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the planning and siting of future wave energy arrays when the industry reaches the point of large-scale deployment.
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
International bioenergy synthesis-lessons learned and opportunities for the western United States
D.L. Nicholls; R. Monserud; D. Dykstra
2009-01-01
This synthesis examines international opportunities for utilizing biomass for energy at several different scales, with an emphasis on larger scale electrical power generation at stand-alone facilities as well as smaller scale thermal heating applications such as those at governmental, educational, or other institutional facilities. It identifies barriers that can...
Near-term implications of a ban on new coal-fired power plants in the United States.
Newcomer, Adam; Apt, Jay
2009-06-01
Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.
Net air emissions from electric vehicles: the effect of carbon price and charging strategies.
Peterson, Scott B; Whitacre, J F; Apt, Jay
2011-03-01
Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.
NASA Astrophysics Data System (ADS)
Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern
2017-04-01
Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.
S-MMICs: Sub-mm-Wave Transistors and Integrated Circuits
2008-09-01
Research Lab BAA DAAD19-03-R-0017 Research area 2.35: RF devices—Dr. Alfred Hung Submitted by: Mark Rodwell, Department of Electrical and Computer ...MOTIVATION / APPLICATION 3 TECHNOLOGY STATUS 4 TRANSISTOR SCALING LAWS 5 256 NM GENERATION 6 HBT POWER AMPLIFIER DEVELOPMENT 7 DRY-ETCHED EMITTER...TECHNOLOGY: 256 NM GENERATION 9 SCALED EPITAXY 11 CONCLUSIONS 12 20081103013 Executive Summary Transistor and power amplifier IC technology was
High-performance flat-panel solar thermoelectric generators with high thermal concentration
NASA Astrophysics Data System (ADS)
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-07-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.
Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion
NASA Astrophysics Data System (ADS)
Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor
2017-11-01
A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.
A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11
NASA Astrophysics Data System (ADS)
Cradden, Lucy C.; McDermott, Frank
2018-05-01
Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.
Technology-based design and scaling for RTGs for space exploration in the 100 W range
NASA Astrophysics Data System (ADS)
Summerer, Leopold; Pierre Roux, Jean; Pustovalov, Alexey; Gusev, Viacheslav; Rybkin, Nikolai
2011-04-01
This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 W e (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.
NASA Technical Reports Server (NTRS)
1979-01-01
The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.
Electric generation and ratcheted transport of contact-charged drops
NASA Astrophysics Data System (ADS)
Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.
2017-10-01
We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.
Electric generation and ratcheted transport of contact-charged drops.
Cartier, Charles A; Graybill, Jason R; Bishop, Kyle J M
2017-10-01
We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.
Homemade Electricity: An Introduction to Small-Scale Wind, Hydro, and Photovoltaic Systems.
ERIC Educational Resources Information Center
Smith, Diane
This report consists of three parts. The first part provides advice (in the form of questions and answers) to prospective individual power producers who are considering investing in electricity-producing systems and in generating their own power. A list of Public Utilities Regulatory Policies Act (PURPA) regulations is included. This legislation…
Particle-In-Cell Simulations of a Thermionic Converter
NASA Astrophysics Data System (ADS)
Clark, S. E.
2017-12-01
Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.
Particle-In-Cell Simulations of a Thermionic Converter
NASA Astrophysics Data System (ADS)
Clark, Stephen
2017-10-01
Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.
Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M
2010-07-15
The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.
Cosmological magnetic fields from inflation in extended electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran Jimenez, Jose; Maroto, Antonio L.
2011-01-15
In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge densitymore » generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutz, Thomas G; Ogden, Joan M
2000-07-01
In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., singlemore » family, residential, multi-dwelling, neighborhood).« less
Advancing solar energy forecasting through the underlying physics
NASA Astrophysics Data System (ADS)
Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.
2017-12-01
As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.
Abraham, Alyson; Housel, Lisa M; Lininger, Christianna N; Bock, David C; Jou, Jeffrey; Wang, Feng; West, Alan C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2016-06-22
Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work (w) and minimize the generation of waste heat (q). Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4.
NASA Astrophysics Data System (ADS)
Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.
2018-02-01
We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.
NASA Astrophysics Data System (ADS)
Lassonde, Sylvain; Boucher, Olivier; Breon, François-Marie; Tobin, Isabelle; Vautard, Robert
2016-04-01
The share of renewable energies in the mix of electricity production is increasing worldwide. This trend is driven by environmental and economic policies aiming at a reduction of greenhouse gas emissions and an improvement of energy security. It is expected to continue in the forthcoming years and decades. Electricity production from renewables is related to weather and climate factors such as the diurnal and seasonal cycles of sunlight and wind, but is also linked to variability on all time scales. The intermittency in the renewable electricity production (solar, wind power) could eventually hinder their future deployment. Intermittency is indeed a challenge as demand and supply of electricity need to be balanced at any time. This challenge can be addressed by the deployment of an overcapacity in power generation (from renewable and/or thermal sources), a large-scale energy storage system and/or improved management of the demand. The main goal of this study is to optimize a hypothetical renewable energy system at the French and European scales in order to investigate if spatial diversity of the production (here electricity from wind energy) could be a response to the intermittency. We use ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim meteorological reanalysis and meteorological fields from the Weather Research and Forecasts (WRF) model to estimate the potential for wind power generation. Electricity demand and production are provided by the French electricity network (RTE) at the scale of administrative regions for years 2013 and 2014. Firstly we will show how the simulated production of wind power compares against the measured production at the national and regional scale. Several modelling and bias correction methods of wind power production will be discussed. Secondly, we will present results from an optimization procedure that aims to minimize some measure of the intermittency of wind energy. For instance we estimate the optimal distribution between French regions (with or without cross-border inputs) that minimizes the impact of low-production periods computed in a running mean sense and its sensitivity to the period considered. We will also assess which meteorological situations are the most problematic over the 35-year ERA-interim climatology(1980-2015).
Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides
Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji
2013-01-01
Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551
NASA Astrophysics Data System (ADS)
Almansour, Faris Abdullah
The advantages of Renewable Energy Sources (RES) are much more than the disadvantages, RES such as solar, wind energy, biomass, and geothermal, which can be used for generating distributed power but cannot directly replace the existing electric energy grid technologies. The latter are far too well established to abandon, while the new RES technologies are not sufficiently developed to meet the total energy demand. Therefore, it is sensible to gradually infuse RES into existing grids and transform the system over time Saudi Arabia (SA) is a semi-developed nation with a population of over twenty nine million people. It is the largest country in western Asia with an area of 2.225MKm2. SA's largest export is oil, owning 1/5 of the world's supply, and producing twelve million barrels a day. However, SA is far behind in developing a smart grid and RES. A lot of this is to do with lack of participation by both the government and the private business sector. Currently SA spends over $13B a year on generating electricity from oil. SA is the largest consumer of petroleum in the Middle East, due to the high demand for transportation and electricity generation. According to the Saudi electrical company, the total amount of generated power in 2011 was 190.280GW. In addition, SA's electricity consumption is currently growing 8% a year. SA aims to generate 55GW of renewable energy by 2020, in order to free up fossil fuels for export. 41GW of the 55GW will be generated from solar energy. Smart grid technologies are also under consideration in SA; this will allow an efficient and reliable way to control the energy in the future. In addition, the potential for wind and geothermal energy is very high. In this thesis, there is a full exploration of RES components which are critical to manage carbon emission and the limitations of the current grid to the new RES technologies, which face barriers to full-scale deployment. A study in Dhahran, SA has been simulated on a installing a Dual-Tariff PV system using HOMER. The result of the simulation has been discussed, analyzed, and plotted. We also give evidence in the thesis how useful the small PV systems can be as oppose to the larger scale system that must deal with location issues.
Utility-Scale Energy Technology Capacity Factors | Energy Analysis | NREL
Transparent Cost Database Button This chart indicates the range of recent capacity factor estimates for utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in... efficiencies have been improving, and turbine heights have been rising to altitudes with much stronger winds... configurations that meet the minimum height requirement and are designed to support wind turbine electrical...
Near-term implications of a ban on new coal-fired power plants in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Newcomer; Jay Apt
2009-06-15
Large numbers of proposed new coal power generators in the United States have been cancelled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO{sub 2} emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changesmore » in dispatch order, CO{sub 2} emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO{sub 2} reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies. 50 refs., 5 figs., 4 tabs.« less
Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures
Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...
2016-03-24
The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less
Gasification of torrefied fuel at power generation for decentralized consumers
NASA Astrophysics Data System (ADS)
Safin, R. R.; Khakimzyanov, I. F.; Galyavetdinov, N. R.; Mukhametzyanov, S. R.
2017-10-01
The increasing need of satisfaction of the existing needs of the population and the industry for electric energy, especially in the areas remote from the centralized energy supply, results in need of development of “small-scale energy generation”. At the same time, the basis in these regions is made by the energy stations, using imported fuel, which involve a problem of increase in cost and transportation of fuel to the place of consumption. The solution of this task is the use of the torrefied waste of woodworking and agricultural industry as fuel. The influence of temperature of torrefaction of wood fuel on the developed electric generator power is considered in the article. As a result of the experiments, it is revealed that at gasification of torrefied fuel from vegetable raw material, the generating gas with the increased content of hydrogen and carbon oxide, in comparison with gasification of the raw materials, is produced. Owing to this, the engine capacity increases that exerts direct impact on power generation by the electric generator.
Decompositions of injection patterns for nodal flow allocation in renewable electricity networks
NASA Astrophysics Data System (ADS)
Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin
2017-08-01
The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.
ADMAP (automatic data manipulation program)
NASA Technical Reports Server (NTRS)
Mann, F. I.
1971-01-01
Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.
Feasibility study of Thermal Electric Generator Configurations as Renewable Energy Sources
NASA Astrophysics Data System (ADS)
Akmal Johar, Muhammad; Yahaya, Zulkarnain; Faizan Marwah, Omar Mohd; Jamaludin, Wan Akashah Wan; Najib Ribuan, Mohamed
2017-10-01
Thermoelectric Generator is a solid state device that able to convert thermal energy into electrical energy via temperature differences. The technology is based on Seebeck effect that was discovered in year 1821, however till now there is no real application to exploit this capability in mass scale. This research will report the performance analysis of TEG module in controlled environment of lab scale model. National Instrument equipment and Labview software has been choosen and developed to measure the TEG module in various configurations. Based on the experiment result, an additional passive cooling effort has produced a better ΔT by 7°C. The optimal electrical loading of single TEG is recorded at 200Ω. As for circuit connections, series connection has shown superior power output when compared to parallel connection or single TEG. A series connection of two TEGs has produced power output of 416.82μW when compared to other type connections that only produced around 100μW.
Static Electricity-Responsive Supramolecular Assembly.
Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki
2017-12-01
Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electromagnetohydrodynamic vortices and corn circles
NASA Astrophysics Data System (ADS)
Kikuchi, H.
A novel type of large-scale vortex formation has theoretically been found in helical turbulence in terms of hydrodynamic, electric, magnetic, and space charge fields in an external electric (and magnetic) field. It is called 'electro-MHD (EMHD) vortices' and is generated as a result of self-organization processes in nonequilibrium media by the transfer of energy from small- to large-scale sizes. Explanations for 'corn circles', circular symmetric ground patterns found in a corn field in southern England, are provided on the basis of a new theory of the EMHD vortices under consideration.
NASA Astrophysics Data System (ADS)
Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.
2017-06-01
Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper
MATERIALS SCIENCE: New Tigers in the Fuel Cell Tank.
Service, R F
2000-06-16
After decades of incremental advances, a spurt of findings suggests that fuel cells that run on good old fossil fuels are almost ready for prime time. Although conventional ceramic cells, known as solid oxide fuel cells, require expensive heat-resistant materials, a new generation of SOFCs, including one featured on page 2031, converts hydrocarbons directly into electricity at lower temperatures. And a recent demonstration of a system of standard SOFCs large enough to light up more than 200 homes showed that it is the most efficient large-scale electrical generator ever designed.
U.S. sulfur dioxide emission reductions: Shifting factors and a carbon dioxide penalty
Brown, Marilyn Ann; Li, Yufei; Massetti, Emanuele; ...
2017-01-18
For more than 20 years, the large-scale application of flue gas desulfurization technology has been a dominant cause of SO 2 emission reductions. From 1994–2004, electricity generation from coal increased, but the shift to low-sulfur coal eclipsed this. From 2004–2014, electricity generation from coal decreased, but a shift to higher-sulfur subbituminous and lignite coal overshadowed this. Here, the shift in coal quality has also created a CO 2 emissions penalty, representing 2% of the sector’s total emissions in 2014.
High-performance flat-panel solar thermoelectric generators with high thermal concentration.
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-05-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved
NASA Astrophysics Data System (ADS)
Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.
2017-12-01
Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.
Electricity in foams: from one soapy interface to the macroscopic material
NASA Astrophysics Data System (ADS)
Biance, Anne-Laure
2017-11-01
Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.
Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
2018-01-03
While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less
Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less
Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system
NASA Astrophysics Data System (ADS)
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
2018-01-01
While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.
Global analysis of a renewable micro hydro power generation plant
NASA Astrophysics Data System (ADS)
Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul
2017-12-01
Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.
NASA Astrophysics Data System (ADS)
Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi
2017-01-01
Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.
Research on Efficiency of a Wave Energy Conversion System
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-02-01
The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.
Point-Focusing Solar-Power Distributed Receivers
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1985-01-01
Two-volume annual report describes development work aimed at achieving large-scale production of modular, point-focusing distributed receivers (PFDR's) for solar-powered generation of electricity or thermal power for industrial use.
NASA Astrophysics Data System (ADS)
Kennedy, Scott Warren
A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.
The Potential of Geothermal as a Major Supplier of U.S. Primary Energy using EGS technology
NASA Astrophysics Data System (ADS)
Tester, J. W.
2012-12-01
Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well-distributed nationally. To transition from our current hydrocarbon-based energy system, we will need to expand and diversify the portfolio of options we currently have. One such option that has been undervalued and often ignored completely in national assessments is geothermal energy from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in groundsource heat pumps, most of the emphasis in the US has been generating electricity. For example, a 2006 MIT-led study focused on the potential for EGS to provide 100,000 MWe of base-load electric generating capacity in the US by 2050. Since that time, a Cornell-led study has evaluated the potential for geothermal to meet the more than 25 EJ per year demand in the US for low temperature thermal energy for heating and other direct process applications Field testing of EGS in the US, Europe, and Australia is reviewed to outline what remains to be done for large-scale deployment. Research, Development and Demonstration (RD&D) needs in five areas important to geothermal deployment on a national scale will be reviewed: 1. Resource - estimating the magnitude and distribution of the US resource 2. Reservoir Technology - establishing requirements for extracting and utilizing energy from EGS reservoirs including drilling, reservoir design and stimulation 3. Utilization - exploring end use options for district heating, electricity generation and co-generation. 4. Environmental impacts and tradeoffs -- dealing with water and land use and seismic risk and quantifying the reduction in carbon emissions with increased deployment 5. Economics - projecting costs for EGS supplied electricity as a function of invested R&D and deployment in evolving US energy markets
NASA Astrophysics Data System (ADS)
Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina
2013-06-01
Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially economy of scale residue collection prices at higher collection volumes associated with low SOC loss, the lignin-land amendment option is economically and environmentally preferable, with the lowest GHG abatement costs relative to gasoline among the three lignin co-product options we consider.
A Stirling engine for use with lower quality fuels
NASA Astrophysics Data System (ADS)
Paul, Christopher J.
There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendren, Zachary; Choi, Young Chul
The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow formore » the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mafi, Elham; Tao, Xin; Zhu, Wenguang
2016-07-08
Using single crystalline In2Se3 nanowires as a platform, we have studied the RESET switching (from low to high electrical resistance) in this phase-change material under electric pulses. Particularly, we correlated the atomic-scale structural evolutions with local electrical resistance variations, by performing transmission electron microscopy and scanning Kelvin probe microscopy on the same nanowires. By coupling the experimental results with density functional theory calculations, we show that the immobile dislocations generated via vacancy condensations are responsible for the RESET switching and that the material maintains the single crystallinity during the process. This new mechanism is fundamentally different from the crystalline-amorphous transition,more » which is commonly understood as the underlying process for the RESET switching in similar phase-change materials.« less
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Moorkamp, M.; Jones, A. G.
2014-12-01
Most electromagnetic (EM) geophysical methods focus on the electrical conductivity of rocks and sediments to determine the geological structure of the subsurface. Electric conductivity itself is measured in the laboratory with a wide range of instruments and techniques. These measurements seldom return a compatible result. The presence of partially-interconnected random pathways of electrically conductive materials in resistive hosts has been studied for decades, and recently with increasing interest. To comprehend which conductive mechanism scales from the microstructures up to field electrical conductivity measurements, two main branch of studies have been undertaken: statistical probability of having a conductive pathways and mixing laws. Several numerical approaches have been tested to understand the effects of interconnected pathways of conductors at field scale. Usually these studies were restricted in two ways: the sources are considered constant in time (i.e., DC) and the domain is, with few exception, two-dimensional. We simulated the effects of time-varying EM sources on the conductivity measured on the surface of a three-dimensional randomly generated body embedded in an uniform host by using electromagnetic induction equations. We modelled a two-phase mixture of resistive and conductive elements with the goal of comparing the conductivity measured on field scale with the one proper of the elements constituting the random rock, and to test how the internal structures influence the directionality of the responses. Moreover, we modelled data from randomly generated bodies characterized by coherent internal structures, to check the effect of the named structures on the anisotropy of the effective conductivity. We compared these values with the electrical conductivity limits predicted by Hashin-Shtrikman bounds and the effective conductivity predicted by the Archie's law, both cast in its classic form and in an updated that allow to take in account two materials. The same analysis was done for both the resistive and the conductive conductivity values for the anisotropic case.
Shipboard Sewage Treatment System for Great Lakes Vessels
1979-09-01
practical and economical method available today for large-scale 03 production is by the electrical, or corona , discharge principle. 7 In this method...2-L2 corona generator.* It required a standard, grounded 120-V, 10-A, 60-Hz electrical source for power. Compressed air at 75 psig (517 kPag) for the...from 50 to 100 psig (340 to 690 kPag). Electrical power supplied to the corona cell was adjusted manually with a variable resistor. In general, for a
NASA Astrophysics Data System (ADS)
Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin
2017-10-01
The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.
NASA Astrophysics Data System (ADS)
Heath, Garvin A.; Nazaroff, William W.
In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric energy delivered to the place of use. We find that the central tendency of IDER is much greater for almost every DG technology evaluated than for existing CS facilities in California.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Gregory
2015-09-01
The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessarymore » to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.« less
Generation of coronal electric currents due to convective motions on the photosphere
NASA Astrophysics Data System (ADS)
Sakurai, T.; Levine, R. H.
1981-09-01
Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.
Generation of coronal electric currents due to convective motions on the photosphere
NASA Technical Reports Server (NTRS)
Sakurai, T.; Levine, R. H.
1981-01-01
Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.
Solar-Power System Produces High-Pressure Steam
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1985-01-01
Combination of three multistaged solar collectors produces highpressure steam for large-scale continuously operating turbines for generating mechanical or electrical energy. Superheated water vapor drives turbines, attaining an overall system efficiency about 22 percent.
Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics
Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan
2013-01-01
The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220
Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills
NASA Astrophysics Data System (ADS)
Lucas, G.; Thayer, J. P.; Deierling, W.
2016-12-01
Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.
Potential for electricity generation from biomass residues in Cuba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lora, E.S.
The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase inmore » the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.« less
A Model of the Turbulent Electric Dynamo in Multi-Phase Media
NASA Astrophysics Data System (ADS)
Dementyeva, Svetlana; Mareev, Evgeny
2016-04-01
Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the electrification process determined by the turbulence intensity and particles sizes is strong enough. The electric field strength grows exponentially. For the non-inductive mechanism we have found the conditions when the electric field strength grows but linearly in time. Our results show that turbulent electric dynamo could play a substantial role in the electrification processes for different mechanisms of charge generation and separation. Thunderstorms and lightning are the most frequent and spectacular manifestations of electric dynamo in the atmosphere, but turbulent electric dynamo may also be the reason of electric discharges occurring in dust and snow storms or even in technological setups with intense mixing of small particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies
A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.
Jeremy S. Fried; Glenn Christensen; Dale Weyermann; R. Jamie Barbour; Roger Fight; Bruce Hiserote; Guy Pinjuv
2005-01-01
Utilization of small diameter trees is viewed by many as the key to making landscape-scale fuel treatment financially feasible. But little capacity currently exists for utilizing such material and capacity of sufficient scale to have a significant impact on the economics of small diameter removals will only be added if predictable feedstocks can be assured. The FIA...
Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Qin, Yong [Atlanta, GA; Yang, Rusen [Atlanta, GA
2011-07-19
A small scale electrical generator includes an elongated substrate and a first piezoelectric fine wire. The first piezoelectric fine wire is disposed along a surface of the substrate. The first piezoelectric fine wire has a first end and a spaced-apart second end. A first conductive contact secures the first end of the fine wire to a first portion of the substrate and a second conductive contact secures the second end of the fine wire to a second portion of the substrate. A fabric made of interwoven strands that includes fibers from which piezoelectric nanowires extend radially therefrom and conductive nanostructures extend therefrom is configured to generate electricity.
Ultrafast Plasmonic Control of Second Harmonic Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Ultrafast Plasmonic Control of Second Harmonic Generation
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.; ...
2016-06-01
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
ERIC Educational Resources Information Center
Pelka, David G.; And Others
1978-01-01
The large-scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power that can be extracted by a wind turbine is 16/27 of the power available in the wind. (BB)
ERIC Educational Resources Information Center
Seaborg, Glenn T.
1985-01-01
Discusses the unusual chemistry of the transuranium elements as well as their impact on the periodic table. Also considers the practical applications of transuranium isotopes, such as their use in nuclear fuel for the large-scale generation of electricity. (JN)
NASA Astrophysics Data System (ADS)
Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.
2015-12-01
Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.
Ambipolar Electric Field, Photoelectrons, and Their Role in Atmospheric Escape From Hot Jupiters
NASA Technical Reports Server (NTRS)
Cohen, O.; Glocer, A.
2012-01-01
Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the "polar wind," is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization.We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.
Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications
NASA Astrophysics Data System (ADS)
Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.
2013-07-01
This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.
Electrical current nanogeneration driven by spontaneous nanofluidic oscillations.
Gimenez, R; Mercuri, M; Berli, C L A; Bellino, M G
2018-02-15
Exploiting natural phenomena is a central route for providing electricity to sustainably drive wearable electronics. Here we report a nano-scale water-driven energy generator that produces tiny electrical currents from spontaneous wetting-drying oscillations in mesoporous thin films. The system was fabricated with a wormlike mesoporous silica film, which was packed in between Cu and silicon contacts. The nanogenerator runs autonomously when a water droplet is laid over the film close to the Cu electrode, as water infiltration into the film under the electrode produces a direct-current. Wetting-drying cycles, which are spontaneously triggered by water evaporation, are perfectly correlated to the generated electrical current. The autonomous water displacement through the film yields a sustained energy conversion until the droplet reservoir vanishes. This novel water-driven nanogenerator opens new alternatives for versatile, mobile and cost-effective self-powering of nanosystems and nanodevices.
Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling
NASA Astrophysics Data System (ADS)
Abel, D.
2016-12-01
This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.
Global tidal phasing potential
NASA Astrophysics Data System (ADS)
Neill, S. P.; Cooper, M. M.; Lewis, M. J.
2016-02-01
Tidal energy is characterised by intermittency over a range of timescales, from semi-diurnal and lunar periods through to annual and decadal. Therefore, the electricity that can be generated by the tides will be characterised by similar scales of intermittency. However, with knowledge of the phase relationship between sites, it may be possible to reduce intermittency, particularly at the semi-diurnal timescale, by aggregating the electricity generated by discrete regions suitable for the conversion of tidal energy into electricity. In this study, we make use of a global tidal atlas (FES2012) to make a preliminary assessment of regions of the globe where it could be possible to combine the electricity generated at a number of discrete sites to provide firmer power to regional electricity networks. In contrast to the northwest European shelf, where the high tidal stream sites tend to either be in phase or 180 out-of-phase with one-another, we find numerous regions around the globe with potential for regional tidal phasing. However, development of higher resolution regional models, or the examination of field data, are required to fully characterise the phasing potential of these regions. In addition, technical and economical constraints on the resource should be considered such as water depth and distance to shore.
Tortuosity of lightning return stroke channels
NASA Technical Reports Server (NTRS)
Levine, D. M.; Gilson, B.
1984-01-01
Data obtained from photographs of lightning are presented on the tortuosity of return stroke channels. The data were obtained by making piecewise linear fits to the channels, and recording the cartesian coordinates of the ends of each linear segment. The mean change between ends of the segments was nearly zero in the horizontal direction and was about eight meters in the vertical direction. Histograms of these changes are presented. These data were used to create model lightning channels and to predict the electric fields radiated during return strokes. This was done using a computer generated random walk in which linear segments were placed end-to-end to form a piecewise linear representation of the channel. The computer selected random numbers for the ends of the segments assuming a normal distribution with the measured statistics. Once the channels were simulated, the electric fields radiated during a return stroke were predicted using a transmission line model on each segment. It was found that realistic channels are obtained with this procedure, but only if the model includes two scales of tortuosity: fine scale irregularities corresponding to the local channel tortuosity which are superimposed on large scale horizontal drifts. The two scales of tortuosity are also necessary to obtain agreement between the electric fields computed mathematically from the simulated channels and the electric fields radiated from real return strokes. Without large scale drifts, the computed electric fields do not have the undulations characteristics of the data.
Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houchens, Brent C.; Blaylock, Myra L.
The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, withmore » numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.« less
AGUACLARA: CLEAN WATER FOR SMALL COMMUNITIES
We will systematically evaluate commercially available solar thermal collectors and thermal storage systems for use in residential scale co-generative heat and electrical power systems. Currently, reliable data is unavailable over the range of conditions and installations thes...
Electrothermal energy conversion using electron gas volumetric change inside semiconductors
NASA Astrophysics Data System (ADS)
Yazawa, K.; Shakouri, A.
2016-07-01
We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.
Electrothermal energy conversion using electron gas volumetric change inside semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazawa, K.; Shakouri, A.
2016-07-25
We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The powermore » generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Zubkov, M. A.
2017-09-01
The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .
Five years of full-scale utility demonstration of pulsed energization of electric precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, S.A.; Jacobus, P.L.; Casey, P.J.
1996-11-01
In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less
Integration of HTS Cables in the Future Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.
NASA Astrophysics Data System (ADS)
Wohland, Jan; Reyers, Mark; Weber, Juliane; Witthaut, Dirk
2017-11-01
Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr-1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.
NASA Astrophysics Data System (ADS)
Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav
2018-04-01
We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.
Combined heat and power systems: economic and policy barriers to growth.
Kalam, Adil; King, Abigail; Moret, Ellen; Weerasinghe, Upekha
2012-04-23
Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education.
1990-02-15
electrical activity mapping procedures. It is necessary to employ approximately 20 electrodes to conduct full- scale brain mapping procedures, using a...animal groups, likewise, showed no observable differences in the animal’s exploratory behavior, nuzzle response, lid-corneal and ear reflexes, pain ...SPECIFICATIONS FOR THE ENVIRONICS SERIES 100 GAS STANDARDS GENERATOR Accuracy of Flow 0.15 % of Full Scale Linearity 0.15 % of Full Scale Repeatability 0.10
Economies of scale and asset values in power production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Considine, T.J.
While innovative trading tools have become an increasingly important aspect of the electricity business, the future of any firm in the industry boils down to a basic bread and butter issue of generating power at competitive costs. While buying electricity from power pools at spot prices instead of generating power to service load may be profitable for some firms in the short run, the need to efficiently utilize existing plants in the long run remains. These competitive forces will force the closure of many inefficient plants. As firms close plants and re-evaluate their generating asset portfolios, the basic structure ofmore » the industry will change. This article presents some quantitative analysis that sheds light on this unfolding transformation.« less
Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells.
Tang, Qunwei; Zhu, Wanlu; He, Benlin; Yang, Peizhi
2017-02-28
A great challenge for state-of-the-art solar cells is to generate electricity in all weather. We present here the rapid conversion of carbon quantum dots (CQDs) from carbohydrates (including glucose, maltol, sucrose) for an all-weather solar cell, which comprises a CQD-sensitized mesoscopic titanium dioxide/long-persistence phosphor (m-TiO 2 /LPP) photoanode, a I - /I 3 - redox electrolyte, and a platinum counter electrode. In virtue of the light storing and luminescent behaviors of LPP phosphors, the generated all-weather solar cells can not only convert sunlight into electricity on sunny days but persistently realize electricity output in all dark-light conditions. The maximized photoelectric conversion efficiency is as high as 15.1% for so-called all-weather CQD solar cells in dark conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Karma; Green, Johney; Jackson, Roderick
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicle’s engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Sawyer, Karma; Green, Johney; Jackson, Roderick; Love, Lonnie
2018-01-16
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicleâs engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
NASA Astrophysics Data System (ADS)
Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.
2018-05-01
Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.; Peng, J.; NE)
2011-02-24
Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use inmore » electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.« less
Zou, Shiqiang; Kanimba, Eurydice; Diller, Thomas E; Tian, Zhiting; He, Zhen
2018-04-22
The thermal energy represents a significant portion of energy potential in municipal wastewater and may be recovered as electricity by a thermoelectric generator (TEG). Converting heat to all-purpose electricity by TEG has been demonstrated with large heat gradients, but its application in waste heat recovery from wastewater has not been well evaluated. Herein, a bench-scale Bi 2 Te 3 -based waste heat recovery system was employed to generate electricity from a low temperature gradient through a combination of experiments and mathematical modeling. With an external resistance of 7.8 Ω and a water (hot side) flow rate of 75 mL min -1 , a maximum normalized energy recovery of 4.5 × 10 -4 kWh m -3 was achieved under a 2.8 °C temperature gradient (ΔT). Model simulation indicated a boost in both power output and energy conversion efficiency from 0.76 mW and 0.13% at ΔT = 2.8 °C to 61.83 mW and 1.15% at ΔT = 25 °C. Based on the data of two-year water/air temperature obtained from the Christiansburg Wastewater Treatment Plant, an estimated energy generation of 1094 to 70,986 kWh could be expected annually with a saving of $163 to $6076. Those results have revealed a potential for TEG-centered direct electricity generation from low-grade heat towards enhanced resource recovery from wastewater and encouraged further exploration of this approach. Copyright © 2018. Published by Elsevier B.V.
Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.
Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur
2017-09-22
Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa
2017-03-01
Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.
Foundations for the Fourth Generation of Nuclear Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lake, James Alan
2000-11-01
Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world’s population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developingmore » nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20–25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world’s electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing with radioactive wastes. I will have more to say about this later. For the moment, let me put forth the proposition that nuclear power should (and must) play a role in the future world energy supply, and perhaps should play an increasing role as the only technology capable of large-scale, near-term deployment without greenhouse gas emissions. If there is a moral imperative to assure the world of abundant, affordable, and clean electricity supplies, then there is no less of a moral imperative for us to assure that nuclear power is capable of taking its rightful place in this energy mix« less
Reinforced wind turbine blades--an environmental life cycle evaluation.
Merugula, Laura; Khanna, Vikas; Bakshi, Bhavik R
2012-09-04
A fiberglass composite reinforced with carbon nanofibers (CNF) at the resin-fiber interface is being developed for potential use in wind turbine blades. An energy and midpoint impact assessment was performed to gauge impacts of scaling production to blades 40 m and longer. Higher loadings force trade-offs in energy return on investment and midpoint impacts relative to the base case while remaining superior to thermoelectric power generation in these indicators. Energy-intensive production of CNFs forces impacts disproportionate to mass contribution. The polymer nanocomposite increases a 2 MW plant's global warming potential nearly 100% per kWh electricity generated with 5% CNF by mass in the blades if no increase in electrical output is realized. The relative scale of impact must be compensated by systematic improvements whether by deployment in higher potential zones or by increased life span; the trade-offs are expected to be significantly lessened with CNF manufacturing maturity. Significant challenges are faced in evaluating emerging technologies including uncertainty in future scenarios and process scaling. Inventories available for raw materials and monte carlos analysis have been used to gain insight to impacts of this development.
NASA Astrophysics Data System (ADS)
Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.
In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a human health standpoint.
The Development of a Small High Speed Steam Microturbine Generator System
NASA Astrophysics Data System (ADS)
Alford, Adrian; Nichol, Philip; Frisby, Ben
2015-08-01
The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.
Scaling laws for first and second generation electrospray droplets
NASA Astrophysics Data System (ADS)
Basaran, Osman; Sambath, Krishnaraj; Anthony, Christopher; Collins, Robert; Wagoner, Brayden; Harris, Michael
2017-11-01
When uncharged liquid interfaces of pendant and free drops (hereafter referred to as parent drops) or liquid films are subject to a sufficiently strong electric field, they can emit thin fluid jets from conical tip structures that form at their surfaces. The disintegration of such jets into a spray consisting of charged droplets (hereafter referred to as daughter droplets) is common to electrospray ionization mass spectrometry, printing and coating processes, and raindrops in thunderclouds. We use simulation to determine the sizes and charges of these first-generation daughter droplets which are shown to be Coulombically stable and charged below the Rayleigh limit of stability. Once these daughter droplets shrink in size due to evaporation, they in turn reach their respective Rayleigh limits and explode by emitting yet even smaller second-generation daughter droplets from their conical tips. Once again, we use simulation and theory to deduce scaling laws for the sizes and charges of these second-generation droplets. A comparison is also provided for scaling laws pertaining to different generations of daughter droplets.
Terawatt-scale photovoltaics: Trajectories and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haegel, Nancy M.; Margolis, Robert; Buonassisi, Tonio
The annual potential of solar energy far exceeds the world's total energy consumption. However, the vision of photovoltaics (PVs) providing a substantial fraction of global electricity generation and total energy demand is far from being realized. What technical, infrastructure, economic, and policy barriers need to be overcome for PVs to grow to the multiple terawatt (TW) scale? Here, we assess realistic future scenarios and make suggestions for a global agenda to move toward PVs at a multi-TW scale.
Terawatt-scale photovoltaics: Trajectories and challenges
Haegel, Nancy M.; Margolis, Robert; Buonassisi, Tonio; ...
2017-04-13
The annual potential of solar energy far exceeds the world's total energy consumption. However, the vision of photovoltaics (PVs) providing a substantial fraction of global electricity generation and total energy demand is far from being realized. What technical, infrastructure, economic, and policy barriers need to be overcome for PVs to grow to the multiple terawatt (TW) scale? Here, we assess realistic future scenarios and make suggestions for a global agenda to move toward PVs at a multi-TW scale.
Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren
2013-01-01
Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715
Energy Systems Integration Partnerships: NREL + Cogent Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdahl, Sonja E
2017-08-09
NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.
Wang, Yong-Hui; Meng, Fei; Zhang, Yang; Xu, Mao-Yu; Yue, Shou-Wei
2016-06-01
To investigate whether full-movement neuromuscular electrical stimulation, which can generate full range of movement, reduces spasticity and/or improves motor function more effectively than control, sensory threshold-neuromuscular electrical stimulation, and motor threshold-neuromuscular electrical stimulation in sub-acute stroke patients. A randomized, single-blind, controlled study. Physical therapy room and functional assessment room. A total of 72 adult patients with sub-acute post-stroke hemiplegia and plantar flexor spasticity. Patients received 30-minute sessions of neuromuscular electrical stimulation on the motor points of the extensor hallucis and digitorum longus twice a day, five days per week for four weeks. Composite Spasticity Scale, Ankle Active Dorsiflexion Score, and walking time in the Timed Up and Go Test were assessed at pretreatment, posttreatment, and at two-week follow-up. After four weeks of treatment, when comparing interclass pretreatment and posttreatment, only the full-movement neuromuscular electrical stimulation group had a significant reduction in the Composite Spasticity Scale (mean % reduction = 19.91(4.96)%, F = 3.878, p < 0.05) and improvement in the Ankle Active Dorsiflexion Score (mean scores = 3.29(0.91), F = 3.140, p < 0.05). Furthermore, these improvements were maintained two weeks after the treatment ended. However, there were no significant differences in the walking time after four weeks of treatment among the four groups (F = 1.861, p > 0.05). Full-movement neuromuscular electrical stimulation with a stimulus intensity capable of generating full movement can significantly reduce plantar flexor spasticity and improve ankle active dorsiflexion, but cannot decrease walking time in the Timed Up and Go Test in sub-acute stroke patients. © The Author(s) 2015.
St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.
2015-04-02
The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less
NASA Astrophysics Data System (ADS)
St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.
2015-04-01
The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.
High Performance Computing for Modeling Wind Farms and Their Impact
NASA Astrophysics Data System (ADS)
Mavriplis, D.; Naughton, J. W.; Stoellinger, M. K.
2016-12-01
As energy generated by wind penetrates further into our electrical system, modeling of power production, power distribution, and the economic impact of wind-generated electricity is growing in importance. The models used for this work can range in fidelity from simple codes that run on a single computer to those that require high performance computing capabilities. Over the past several years, high fidelity models have been developed and deployed on the NCAR-Wyoming Supercomputing Center's Yellowstone machine. One of the primary modeling efforts focuses on developing the capability to compute the behavior of a wind farm in complex terrain under realistic atmospheric conditions. Fully modeling this system requires the simulation of continental flows to modeling the flow over a wind turbine blade, including down to the blade boundary level, fully 10 orders of magnitude in scale. To accomplish this, the simulations are broken up by scale, with information from the larger scales being passed to the lower scale models. In the code being developed, four scale levels are included: the continental weather scale, the local atmospheric flow in complex terrain, the wind plant scale, and the turbine scale. The current state of the models in the latter three scales will be discussed. These simulations are based on a high-order accurate dynamic overset and adaptive mesh approach, which runs at large scale on the NWSC Yellowstone machine. A second effort on modeling the economic impact of new wind development as well as improvement in wind plant performance and enhancements to the transmission infrastructure will also be discussed.
Nuclear power in the 21st century: Challenges and possibilities.
Horvath, Akos; Rachlew, Elisabeth
2016-01-01
The current situation and possible future developments for nuclear power--including fission and fusion processes--is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields--from material sciences to safety demonstration--to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.
NASA Astrophysics Data System (ADS)
Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S.
2015-12-01
The field of `Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical, magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Why silicon is and will remain the dominant photovoltaic material
NASA Astrophysics Data System (ADS)
Singh, Rajendra
2009-07-01
Rising demands of energy in emerging economies, coupled with the green house gas emissions related problems around the globe have provided a unique opportunity of exploiting the advantages offered by photovoltaic (PV) systems for green energy electricity generation. Similar to cell phones, power generated by PV systems can reach over two billion people worldwide who have no access to clean energy. Only silicon based PV devices meet the low-cost manufacturing criterion of clean energy conversion (abundance of raw material and no environmental health and safety issues). The use of larger size glass substrates and manufacturing techniques similar to the ones used by the liquid crystal display industry and the large scale manufacturing of amorphous silicon thin films based modules (~ GW per year manufacturing at a single location) can lead to installed PV system cost of $3/Wp. This will open a huge market for grid connected PV systems and related markets. With further research and development, this approach can provide $2/Wp installed PV system costs in the next few years. At this cost level, PV electricity generation is competitive with any other technology, and PV power generation can be a dominant electricity generation technology in the 21st century.
Resonant wave energy harvester based on dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco
2018-03-01
Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.
Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity?
2012-01-01
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. PMID:22475003
Wind power electricity: the bigger the turbine, the greener the electricity?
Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Koehler, Annette; Hellweg, Stefanie
2012-05-01
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Curtis; Charles Forsberg; Humberto Garcia
2015-05-01
We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less
Wind Power Innovation Enables Shift to Utility-Scale - Continuum Magazine
the 1930s, a farmer in South Dakota built a small wind turbine on his farm, generating enough enough electricity to power thousands of homes. Aerial photo of large wind turbine with mountains in the background. Aerial view of the Siemens utility-scale wind turbine at the National Wind Technology Center
Ana, Godson R E E; Luqman, Yesufu A; Shendell, Derek G; Owoaje, Eme T
2014-11-01
Inadequate and erratic power supplies mean small businesses use electric generators for alternative power. The authors' goal in the study described here was to assess noise from electric generators and impacts in the commercial areas of Agbowo and Ajibode in Ibadan, Nigeria. Noise levels (A-weighted decibels [dBA]) were measured over 12 weeks, three times a day, during the 2010 dry season using a sound level meter. A questionnaire was administered (515 respondents; 304 in Agbowo, 211 in Ajibode) and audiometric measurements were conducted on 40% of respondents. Mean noise levels varied by source (104 ± 7.7 dBA [diesel], 94.0 ± 6.3 dBA [petrol]) and were highest midday (90.6 ± 5.3 dBA [Agbowo], 70.9 ± 6.2 dBA [Ajibode]). Mean noise levels in Agbowo (78.5 ± 3.9 dBA) and Ajibode (65.7 ± 4.4 dBA) exceeded World Health Organization guidelines (65 dBA) for outdoor commercial environments. Working and living in Agbowo was significantly associated with current evidence of hearing impairment (odds ratio: 6.8, 95% confidence interval: 3.4-13.7). Reducing exposure to noise from electric power generators serving urban small businesses and homes is warranted.
Consonni, S; Giugliano, M; Grosso, M
2005-01-01
This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.
ARPA-E: Advancing the Electric Grid
Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael
2018-06-07
The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.
NASA Technical Reports Server (NTRS)
Scheffler, R. L.
1979-01-01
To demonstrate the concept of utility scale electricity production from a high wind energy resource, a program was initiated to construct and test a 3 megawatt (3,000 kW) Schachle wind turbine generator near Palm Springs, California. The background and current status of this program are presented along with a summary of future planned program activities.
Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid
NASA Astrophysics Data System (ADS)
Kuwayama, Akira
The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.
Electric plant cost and power production expenses 1989. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-29
This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less
NASA Astrophysics Data System (ADS)
Mohammed, Touseef Ahmed Faisal
Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.
Power grid operation risk management: V2G deployment for sustainable development
NASA Astrophysics Data System (ADS)
Haddadian, Ghazale J.
The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems, it considers a two-stage model using the Benders Decomposition (BD). The numerical simulation demonstrate that the utilization of smart EV fleets in power grid systems would ensure a sustainable grid operation with lower carbon footprints, smoother integration of renewable sources, higher security, and lower power grid operation costs. The results, additionally, illustrate the effectiveness of the proposed MILP approach and its potentials as an optimization tool for sustainable operation of large scale electric power systems.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur
2015-01-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
NASA Astrophysics Data System (ADS)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur
2015-06-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.
Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.
2017-01-01
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654
NASA Astrophysics Data System (ADS)
Siler-Evans, Kyle
There is growing interest in reducing the environmental and human-health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly suggested solutions. Such interventions may provide health and environmental benefits by displacing emissions from conventional power plants. However, the generation mix varies considerably from region to region and emissions vary by the type and age of a generator. Thus, the benefits of an intervention will depend on the specific generators that are displaced, which vary depending on the timing and location of the intervention. Marginal emissions factors (MEFs) give a consistent measure of the avoided emissions per megawatt-hour of displaced electricity, which can be used to evaluate the change in emissions resulting from a variety of interventions. This thesis presents the first systematic calculation of MEFs for the U.S. electricity system. Using regressions of hourly generation and emissions data from 2006 through 2011, I estimate regional MEFs for CO2, NO x, and SO2, as well as the share of marginal generation from coal-, gas-, and oil-fired generators. This work highlights significant regional differences in the emissions benefits of displacing a unit of electricity: compared to the West, displacing one megawatt-hour of electricity in the Midwest is expected to avoid roughly 70% more CO2, 12 times more SO 2, and 3 times more NOx emissions. I go on to explore regional variations in the performance of wind turbines and solar panels, where performance is measured relative to three objectives: energy production, avoided CO2 emissions, and avoided health and environmental damages from criteria pollutants. For 22 regions of the United States, I use regressions of historic emissions and generation data to estimate marginal impact factors, a measure of the avoided health and environmental damages per megawatt-hour of displaced electricity. Marginal impact factors are used to evaluate the effects of an additional wind turbine or solar panel in the U.S. electricity system. I find that the most attractive sites for renewables depend strongly on one's objective. A solar panel in Iowa displaces 20% more CO2 emissions than a panel in Arizona, though energy production from the Iowa panel is 25% less. Similarly, despite a modest wind resource, a wind turbine in West Virginia is expected to displace 7 times more health and environmental damages than a wind turbine in Oklahoma. Finally, I shift focus and explore the economics of small-scale cogeneration, which has long been recognized as a more efficient alternative to central-station power. Although the benefits of distributed cogeneration are widely cited, adoption has been slow in the U.S. Adoption could be encouraged by making cogeneration more economically attractive, either by increasing the expected returns or decreasing the risks of such investments. I present a case study of a 300-kilowatt cogeneration unit and evaluate the expected returns from: demand response, capacity markets, regulation markets, accelerated depreciation, a price on CO2 emissions, and net metering. In addition, I explore the effectiveness of feed-in tariffs at mitigating the energy-price risks to cogeneration projects.
NASA Astrophysics Data System (ADS)
Newcomer, Adam
Increasing demand for electricity and an aging fleet of generators are the principal drivers behind an increasing need for a large amount of capital investments in the US electric power sector in the near term. The decisions (or lack thereof) by firms, regulators and policy makers in response to this challenge have long lasting consequences, incur large economic and environmental risks, and must be made despite large uncertainties about the future operating and business environment. Capital investment decisions are complex: rates of return are not guaranteed; significant uncertainties about future environmental legislation and regulations exist at both the state and national levels---particularly about carbon dioxide emissions; there is an increasing number of shareholder mandates requiring public utilities to reduce their exposure to potentially large losses from stricter environmental regulations; and there are significant concerns about electricity and fuel price levels, supplies, and security. Large scale, low carbon electricity generation facilities using coal, such as integrated gasification combined cycle (IGCC) facilities coupled with carbon capture and sequestration (CCS) technologies, have been technically proven but are unprofitable in the current regulatory and business environment where there is no explicit or implicit price on carbon dioxide emissions. The paper examines two separate scenarios that are actively discussed by policy and decision makers at corporate, state and national levels: a future US electricity system where coal plays a role; and one where the role of coal is limited or nonexistent. The thesis intends to provide guidance for firms and policy makers and outline applications and opportunities for public policies and for private investment decisions to limit financial risks of electricity generation capital investments under carbon constraints.
NASA Astrophysics Data System (ADS)
Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia
2012-02-01
Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.
Large-scale terrestrial solar cell power generation cost: A preliminary assessment
NASA Technical Reports Server (NTRS)
Spakowski, A. E.; Shure, L. I.
1972-01-01
A cost study was made to assess the potential of the large-scale use of solar cell power for terrestrial applications. The incentive is the attraction of a zero-pollution source of power for wide-scale use. Unlike many other concepts for low-pollution power generation, even thermal pollution is avoided since only the incident solar flux is utilized. To provide a basis for comparison and a perspective for evaluation, the pertinent technology was treated in two categories: current and optimistic. Factors considered were solar cells, array assembly, power conditioning, site preparation, buildings, maintenance, and operation. The capital investment was assumed to be amortized over 30 years. The useful life of the solar cell array was assumed to be 10 years, and the cases of zero and 50-percent performance deg-radation were considered. Land costs, taxes, and profits were not included in this study because it was found too difficult to provide good generalized estimates of these items. On the basis of the factors considered, it is shown that even for optimistic projections of technology, electric power from large-sclae terrestrial use of solar cells is approximately two to three orders of magnitude more costly than current electric power generation from either fossil or nuclear fuel powerplants. For solar cell power generation to be a viable competitor on a cost basis, technological breakthroughs would be required in both solar cell and array fabrication and in site preparation.
An Overlooked Source of Auroral Arc Field-Aligned Current
NASA Astrophysics Data System (ADS)
Knudsen, D. J.
2017-12-01
The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, N.; Kintner-Meyer, M.; Wu, D.
The 2016 SECURE Water Act report’s natural water availability benchmark, combined with the 2010 level of water demand from an integrated assessment model, is used as input to drive a large-scale water management model. The regulated flow at hydropower plants and thermoelectric plants in the Western U.S. electricity grid (WECC) is translated into potential hydropower generation and generation capacity constraints. The impact on reliability (unserved energy, reserve margin) and cost (production cost, carbon emissions) of water constraints on 2010-level WECC power system operations is assessed using an electricity production cost model (PCM). Use of the PCM reveals the changes inmore » generation dispatch that reflect the inter-regional interdependencies in water-constrained generation and the ability to use other generation resources to meet all electricity loads in the WECC. August grid operational benchmarks show a range of sensitivity in production cost (-8 to +11%) and carbon emissions (-7 to 11%). The reference reserve margin threshold of 15% above peak load is maintained in the scenarios analyzed, but in 5 out of 55 years unserved energy is observed when normal operations are maintained. There is 1 chance in 10 that a year will demonstrate unserved energy in August, which defines the system’s historical performance threshold to support impact, vulnerability, and adaptation analysis. For seasonal and longer term planning, i.e., multi-year drought, we demonstrate how the Water Scarcity Grid Impact Factor and climate oscillations (ENSO, PDO) can be used to plan for joint water-electricity management to maintain grid reliability.« less
NREL Establishes New Center for Distributed Power
Establishes New Center for Distributed Power Changing Electricity Market Demands Greater , smaller-scale generation facilities. That concept, known as "distributed power," will be Energy Laboratory (NREL). The Distributed Energy Resources Center at NREL will conduct research and
Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.
Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying
2015-03-01
To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xydis, George A; Liaros, Stelios; Botsis, Konstantinos
2017-09-01
The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities
NASA Astrophysics Data System (ADS)
Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.
2017-12-01
A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.
NASA Astrophysics Data System (ADS)
Kempton, Willett; Tomić, Jasna
Vehicle-to-grid power (V2G) uses electric-drive vehicles (battery, fuel cell, or hybrid) to provide power for specific electric markets. This article examines the systems and processes needed to tap energy in vehicles and implement V2G. It quantitatively compares today's light vehicle fleet with the electric power system. The vehicle fleet has 20 times the power capacity, less than one-tenth the utilization, and one-tenth the capital cost per prime mover kW. Conversely, utility generators have 10-50 times longer operating life and lower operating costs per kWh. To tap V2G is to synergistically use these complementary strengths and to reconcile the complementary needs of the driver and grid manager. This article suggests strategies and business models for doing so, and the steps necessary for the implementation of V2G. After the initial high-value, V2G markets saturate and production costs drop, V2G can provide storage for renewable energy generation. Our calculations suggest that V2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet dedicated to regulation for wind, plus 8-38% of the fleet providing operating reserves or storage for wind. Jurisdictions more likely to take the lead in adopting V2G are identified.
Self-heating and scaling of thin body transistors
NASA Astrophysics Data System (ADS)
Pop, Eric
The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems, especially with the transition towards geometrically confined device geometries (SOI, FinFET, nanowires), and new materials with poor thermal properties. This work examines the physics of heat generation in silicon, and in the context of nanoscale CMOS transistors. A new Monte Carlo code (MONET) is introduced which uses analytic descriptions of both the electron bands and the phonon dispersion. Detailed heat generation statistics are computed in bulk and strained silicon, and within simple device geometries. It is shown that non-stationary transport affects heat generation near strongly peaked electric fields, and that self-heating occurs almost entirely in the drain end of short, quasi-ballistic devices. The dissipated power is spectrally distributed between the (slow) optical and (fast) acoustic phonon modes approximately by a ratio of two to one. In addition, this work explores the limits of device design and scaling from an electrical and thermal point of view. A self-consistent electro-thermal compact model for thin-body (SOI, GOI) devices is introduced for calculating operating temperature, saturation current and intrinsic gate delay. Self-heating is sensitive to several device parameters, such as raised source/drain height and material boundary thermal resistance. An experimental method is developed for extracting via/contact thermal resistance from electrical measurements. The analysis suggests it is possible to optimize device geometry in order to simultaneously minimize operating temperature and intrinsic gate delay. Electro-thermal contact and device design are expected to become more important with continued scaling.
NASA Astrophysics Data System (ADS)
Dreißigacker, Volker
2018-04-01
The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.
The electric and thermoelectric properties of Cu(II)-Schiff base nano-complexes
NASA Astrophysics Data System (ADS)
Ibrahim, E. M. M.; Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Elshafaie, A.; Hamdan, Samar Kamel; Ahmed, A. M.
2018-05-01
The physical properties, such as electric and optical properties, of metal-Schiff base complexes have been widely investigated. However, their thermoelectric (TE) properties remain unreported. This work presents Cu(II)-Schiff base complexes as promising materials for TE power generation. Therefore, three Cu(II)-Schiff base complexes (namely, [Cu(C32H22N4O2)].3/2H2O, [Cu(C23H17N4O7Br)], and [Cu(C27H22N4O8)].H2O) have been synthesized in nanosized scale. The electric and TE properties have been studied and comprehensive discussions have been presented to promote the nano-complexes (NCs) practical applications in the field of TE power generation. The electrical measurements confirm that the NCs are semiconductors and the electrical conduction process is governed by intermolecular and intramolecular transfer of the charge carriers. The TE measurements reveal that the Cu(II)-Schiff base NCs are nondegenerate P-type semiconductors. The measured Seebeck coefficient values were higher compared to the values reported in previous works for other organic materials indicating that the complexes under study are promising candidates for theremoelectric applications if the electrical conductivity could be enhanced.
NASA Astrophysics Data System (ADS)
Taneja, Jayant Kumar
Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.
Tong, Yiran; He, Zhen
2013-11-15
This research aims to develop a new approach for in situ nitrate removal from groundwater by using a bioelectrochemical system (BES). The BES employs bioelectricity generated from organic compounds to drive nitrate moving from groundwater into the anode and reduces nitrate to nitrogen gas by heterotrophic denitrification. This laboratory study of a bench-scale BES demonstrated effective nitrate removal from both synthetic and actual groundwater. It was found that applying an electrical potential improved the nitrate removal and the highest nitrate removal rate of 208.2 ± 13.3g NO3(-)-Nm(-3) d(-1) was achieved at 0.8 V. Although the open circuit condition (no electricity generation) still resulted in a nitrate removal rate of 158.5 ± 4.2 gm(-3) d(-1) due to ion exchange, electricity production could inhibit ion exchange and prevent introducing other undesired ions into groundwater. The nitrate removal rate exhibited a linear relationship with the initial nitrate concentration in groundwater. The BES produced a higher current density of 33.4 Am(-3) and a higher total coulomb of 244.7 ± 9.1C from the actual groundwater than the synthetic groundwater, likely because other ions in the actual groundwater promoted ion movement to assist electricity generation. Further development of this BES will need to address several key challenges in anode feeding solution, ion competition, and long-term stability. Copyright © 2013 Elsevier B.V. All rights reserved.
Ishii, Shun'ichi; Shimoyama, Takefumi; Hotta, Yasuaki; Watanabe, Kazuya
2008-01-10
Microbial fuel cells (MFCs) are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. A laboratory-scale two-chamber microbial fuel cell (MFC) was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate) became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.
Ishii, Shun'ichi; Shimoyama, Takefumi; Hotta, Yasuaki; Watanabe, Kazuya
2008-01-01
Background Microbial fuel cells (MFCs) are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC) was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate) became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community. PMID:18186940
NASA Astrophysics Data System (ADS)
Liu, Zugang
Network systems, including transportation and logistic systems, electric power generation and distribution networks as well as financial networks, provide the critical infrastructure for the functioning of our societies and economies. The understanding of the dynamic behavior of such systems is also crucial to national security and prosperity. The identification of new connections between distinct network systems is the inspiration for the research in this dissertation. In particular, I answer two questions raised by Beckmann, McGuire, and Winsten (1956) and Copeland (1952) over half a century ago, which are, respectively, how are electric power flows related to transportation flows and does money flow like water or electricity? In addition, in this dissertation, I achieve the following: (1) I establish the relationships between transportation networks and three other classes of complex network systems: supply chain networks, electric power generation and transmission networks, and financial networks with intermediation. The establishment of such connections provides novel theoretical insights as well as new pricing mechanisms, and efficient computational methods. (2) I develop new modeling frameworks based on evolutionary variational inequality theory that capture the dynamics of such network systems in terms of the time-varying flows and incurred costs, prices, and, where applicable, profits. This dissertation studies the dynamics of such network systems by addressing both internal competition and/or cooperation, and external changes, such as varying costs and demands. (3) I focus, in depth, on electric power supply chains. By exploiting the relationships between transportation networks and electric power supply chains, I develop a large-scale network model that integrates electric power supply chains and fuel supply markets. The model captures both the economic transactions as well as the physical transmission constraints. The model is then applied to the New England electric power supply chain consisting of 6 states, 5 fuel types, 82 power generators, with a total of 573 generating units, and 10 demand markets. The empirical case study demonstrates that the regional electricity prices simulated by the model match very well the actual electricity prices in New England. I also utilize the model to study interactions between electric power supply chains and energy fuel markets.
Watering Graphene for Devices and Electricity
NASA Astrophysics Data System (ADS)
Guo, Wanlin; Yin, Jun; Li, Xuemei; Zhang, Zhuhua
2013-03-01
Graphene bring us into a fantastic two-dimensional (2D) age of nanotechnology, which can be fabricated and applied at wafer scale, visible at single layer but showing exceptional properties distinguished from its bulk form graphite, linking the properties of atomic layers with the engineering scale of our mankind. We shown that flow-induced-voltage in graphene can be 20 folds higher than in graphite, not only due to the giant Seebeck coefficient of single layer graphene, but also the exceptional interlayer interaction in few layer graphene. Extremely excitingly, water flow over graphene can generate electricity through unexpected interaction of the ions in the water with the graphene. We also find extraordinary mechanical-electric-magnetic coupling effects in graphene and BN systems. Such extraordinary multifield coupling effects in graphene and functional nanosystems open up new vistas in nanotechnology for efficient energy conversion, self-powering flexible devices and novel functional systems.
Wind power for the electric-utility industry: Policy incentives for fuel conservation
NASA Astrophysics Data System (ADS)
March, F.; Dlott, E. H.; Korn, D. H.; Madio, F. R.; McArthur, R. C.; Vachon, W. A.
1982-06-01
A systematic method for evaluating the economics of solar-electric/conservation technologies as fuel-savings investments for electric utilities in the presence of changing federal incentive policies is presented. The focus is on wind energy conversion systems (WECS) as the solar technology closest to near-term large scale implementation. Commercially available large WECS are described, along with computer models to calculate the economic impact of the inclusion of WECS as 10% of the base-load generating capacity on a grid. A guide to legal structures and relationships which impinge on large-scale WECS utilization is developed, together with a quantitative examination of the installation of 1000 MWe of WECS capacity by a utility in the northeast states. Engineering and financial analyses were performed, with results indicating government policy changes necessary to encourage the entrance of utilities into the field of windpower utilization.
NASA Astrophysics Data System (ADS)
Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario
2016-05-01
Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.
High-resolution behavioral mapping of electric fishes in Amazonian habitats.
Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J
2018-04-11
The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.
Material design and engineering of next-generation flow-battery technologies
NASA Astrophysics Data System (ADS)
Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil
2017-01-01
Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.
CaSO4 Scale Formation on Vibrated Piping System in the Presence Citric Acid
NASA Astrophysics Data System (ADS)
Mangestiyono, W.; Jamari, J.; Muryanto, S.; Bayuseno, A. P.
2018-02-01
Vibration in many industries commonly generated by the operation mechanical equipment such as extruder, mixer, blower, compressor, turbine, generator etc. Vibration propagates into the floor and attacks the pipe around those mechanical equipment. In this paper, the influence of vibration in a pipe on the CaSO4 scale formation was investigated to understand the effect of vibration on the kinetics, mass of scale, crystal phases and crystal polymorph. To generate vibration force, mechanical equipment was prepared consisted of electrical motor, crankshaft, connecting rod and a vibration table at where test pipe section mounted. Deposition rate increased significantly when the vibration affected to the system i.e. 0.5997 and 1.6705 gr/hr for vibration frequency 4.00 and 8.00 Hz. The addition 10.00 ppm of citric acid declined the deposition rate of 8 Hz experiment from 3.4599 gr/hr to 2.2865 gr/hr.
Comparison of Observations of Sporadic-E Layers in the Nighttime and Daytime Mid-Latitude Ionosphere
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Clemmons, J.; Larsen, M.; Kudeki, E.; Franke, S.; Urbina, J.; Bullett, T.
2012-01-01
A comparison of numerous rocket experiments to investigate mid-latitude sporadic-E layers is presented. Electric field and plasma density data gathered on sounding rockets launched in the presence of sporadic-E layers and QP radar echoes reveal a complex electrodynamics including both DC parameters and plasma waves detected over a large range of scales. We show both DC and wave electric fields and discuss their relationship to intense sporadic-E layers in both nighttime and daytime conditions. Where available, neutral wind observations provide the complete electrodynamic picture revealing an essential source of free energy that both sets up the layers and drives them unstable. Electric field data from the nighttime experiments reveal the presence of km-scale waves as well as well-defined packets of broadband (10's of meters to meters) irregularities. What is surprising is that in both the nighttime and daytime experiments, neither the large scale nor short scale waves appear to be distinctly organized by the sporadic-E density layer itself. The observations are discussed in the context of current theories regarding sporadic-E layer generation and quasi-periodic echoes.
Combined heat and power systems: economic and policy barriers to growth
2012-01-01
Background Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? Methods We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Results Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. Conclusion From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education. PMID:22540988
Hydrogen generation from biogenic and fossil fuels by autothermal reforming
NASA Astrophysics Data System (ADS)
Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard
Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.
Electricity generation from digitally printed cyanobacteria.
Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J
2017-11-06
Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.
NASA Astrophysics Data System (ADS)
Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin
2018-05-01
The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680
NASA Astrophysics Data System (ADS)
Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.
2011-12-01
Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.
Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid
NASA Astrophysics Data System (ADS)
Malozemoff, A. P.
2012-08-01
Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.
Ferroelectric nanostructure having switchable multi-stable vortex states
Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR
2009-09-22
A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.
NASA Technical Reports Server (NTRS)
1988-01-01
ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.
The impact of retail electricity tariff evolution on solar photovoltaic deployment
Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany; ...
2017-11-10
Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.
The impact of retail electricity tariff evolution on solar photovoltaic deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany
Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.
Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2009-01-05
In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Clark, Kara; O'Connell, Matt
Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As themore » deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.« less
Mao, Longfei; Verwoerd, Wynand S
2013-10-01
Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW⁻¹, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.
Compact Plasma Accelerator for Micropropulsion Applications
NASA Technical Reports Server (NTRS)
Foster, John E.
2001-01-01
There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.
Transmittance tuning by particle chain polarization in electrowetting-driven droplets
Fan, Shih-Kang; Chiu, Cheng-Pu; Huang, Po-Wen
2010-01-01
A tiny droplet containing nano∕microparticles commonly handled in digital microfluidic lab-on-a-chip is regarded as a micro-optical component with tunable transmittance at programmable positions for the application of micro-opto-fluidic-systems. Cross-scale electric manipulations of droplets on a millimeter scale as well as suspended particles on a micrometer scale are demonstrated by electrowetting-on-dielectric (EWOD) and particle chain polarization, respectively. By applying electric fields at proper frequency ranges, EWOD and polarization can be selectively achieved in designed and fabricated parallel plate devices. At low frequencies, the applied signal generates EWOD to pump suspension droplets. The evenly dispersed particles reflect and∕or absorb the incident light to exhibit a reflective or dark droplet. When sufficiently high frequencies are used on to the nonsegmented parallel electrodes, a uniform electric field is established across the liquid to polarize the dispersed neutral particles. The induced dipole moments attract the particles each other to form particle chains and increase the transmittance of the suspension, demonstrating a transmissive or bright droplet. In addition, the reflectance of the droplet is measured at various frequencies with different amplitudes. PMID:21267088
NASA Astrophysics Data System (ADS)
Farhad, Siamak; Yoo, Yeong; Hamdullahpur, Feridun
The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.
NASA Astrophysics Data System (ADS)
Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo
We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.
Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei
2015-05-19
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.; Arvesen, Anders; Heath, Garvin A.; Bergesen, Joseph D.; Ramirez, Andrea; Vega, Mabel I.; Shi, Lei
2015-01-01
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. PMID:25288741
Sandia and NJ TRANSIT Authority Developing Resilient Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, Charles J.; Ellis, Abraham
2014-11-01
Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.
Combined Power Generation and Carbon Sequestration Using Direct FuelCell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossein Ghezel-Ayagh
2006-03-01
The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based onmore » carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.« less
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.
2017-12-01
The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.
Standing wave tube electro active polymer wave energy converter
NASA Astrophysics Data System (ADS)
Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.
2012-04-01
Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.
Marginal Emissions Factors for Electricity Generation in the Midcontinent ISO.
Thind, Maninder P S; Wilson, Elizabeth J; Azevedo, Inês L; Marshall, Julian D
2017-12-19
Environmental consequences of electricity generation are often determined using average emission factors. However, as different interventions are incrementally pursued in electricity systems, the resulting marginal change in emissions may differ from what one would predict based on system-average conditions. Here, we estimate average emission factors and marginal emission factors for CO 2 , SO 2 , and NO x from fossil and nonfossil generators in the Midcontinent Independent System Operator (MISO) region during years 2007-2016. We analyze multiple spatial scales (all MISO; each of the 11 MISO states; each utility; each generator) and use MISO data to characterize differences between the two emission factors (average; marginal). We also explore temporal trends in emissions factors by hour, day, month, and year, as well as the differences that arise from including only fossil generators versus total generation. We find, for example, that marginal emission factors are generally higher during late-night and early morning compared to afternoons. Overall, in MISO, average emission factors are generally higher than marginal estimates (typical difference: ∼20%). This means that the true environmental benefit of an energy efficiency program may be ∼20% smaller than anticipated if one were to use average emissions factors. Our analysis can usefully be extended to other regions to support effective near-term technical, policy and investment decisions based on marginal rather than only average emission factors.
Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-31
The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary,more » as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.« less
Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.
Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor
2015-05-19
Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.
Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and landmore » use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.« less
Implications of water constraints for electricity capacity expansion in the United States
NASA Astrophysics Data System (ADS)
Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.
2017-12-01
U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water, some states flip from being net exporters of electricity to becoming net importers and vice versa. Our study demonstrates the impacts of water availability constraints on electricity capacity expansion in the U.S. and highlights the need to integrate such constraints into decision-making so as to better understand state-level challenges.
Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doris, E.; Lopez, A.; Beckley, D.
2013-02-01
This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... the emissions of hazardous air pollutants (HAPs) released from coal-burning electric generating units...-based standard for reducing HAP emissions. EPA is developing a draft risk assessment for mercury, entitled Technical Support Document: National- Scale Mercury Risk Assessment. This draft assessment...
Pesaran, Bijan; Vinck, Martin; Einevoll, Gaute T; Sirota, Anton; Fries, Pascal; Siegel, Markus; Truccolo, Wilson; Schroeder, Charles E; Srinivasan, Ramesh
2018-06-25
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.
NASA Astrophysics Data System (ADS)
Rudman, Justine; Gauché, Paul; Esler, Karen J.
2016-05-01
The Integrated Resource Plan (IRP) of 2010 and the IRP Update provide the most recent guidance to the electricity generation future of South Africa (SA) and both plans include an increased proportion of renewable energy generation capacity. Given that SA has abundant renewable energy resource potential, this inclusion is welcome. Only 600 MW of the capacity allocated to concentrating solar power (CSP) has been committed to projects in the Northern Cape and represents roughly a fifth of the capacity that has been included in the IRP. Although CSP is particularly new in the electricity generation system of the country, the abundant solar resources of the region with annual DNI values of above 2900 kWh/m2 across the arid Savannah and Nama-Karoo biomes offer a promising future for the development of CSP in South Africa. These areas have largely been left untouched by technological development activities and thus renewable energy projects present a variety of possible direct and indirect environmental, social and economic impacts. Environmental Impact Assessments do focus on local impacts, but given that ecological processes often extend to regional- and landscape scales, understanding this scaled context is important to the alignment of development- and conservation priorities. Given the capacities allocated to CSP for the future of SA's electricity generation system, impacts on land, air, water and biodiversity which are associated with CSP are expected to increase in distribution and the understanding thereof deems valuable already from this early point in CSP's future in SA. We provide a review of direct impacts of CSP on the natural environment and an overview of the anticipated specific significance thereof in the Northern Cape.
Applications of superconductor technologies to transportation
NASA Astrophysics Data System (ADS)
Rote, D. M.; Herring, J. S.; Sheahen, T. P.
1989-06-01
This report assesses transportation applications of superconducting devices, such as rotary motors and generators, linear synchronous motors, energy storage devices, and magnets. Among conventional vehicles, ships appear to have the greatest potential for maximizing the technical benefits of superconductivity, such as smaller, lighter, and more-efficient motors and, possibly, more-efficient generators. Smaller-scale applications include motors for pipeline pumps, all-electric and diesel-electric locomotives, self-propelled rail cars, and electric highway vehicles. For diesel-electric locomotives, superconducting units would eliminate space limitations on tractive power. Superconducting magnetic energy storage devices appear most suitable for regenerative braking or power assistance in grade climbing, rather than for long-term energy storage. With toroidal devices (especially for onboard temporary energy storage), external fields would be eliminated. With regard to new vehicle technologies, the use of superconducting devices would only marginally enhance the benefits of inductive-power-coupled vehicles over conventional electric vehicles, but could enable magnetically levitated (maglev) vehicles to obtain speeds of 520 km/h or more. This feature, together with the quiet, smooth ride, might make maglev vehicles an attractive alternative to intercity highway-vehicle or airlane trips in the range of 100 to 600 miles. Electromagnetic airport applications are not yet feasible.
Motionally-induced electromagnetic fields generated by idealized ocean currents
NASA Astrophysics Data System (ADS)
Tyler, R. H.; Mysak, L. A.
Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport of 100 Sv would have field magnitudes above the ocean of up to 23 nT and more typically between about 1 and 10 nT. The results also indicate that the decay scales for the magnetic field away from the ocean are of the same order as the horizontal scale of the flow. We calculated that flow features with scales of 100 km or more may retain magnitudes that are strong enough (a few nT) to be detected at satellite altitudes (300-500 km). Flows of smaller scale, however, would probably not be detected by current satellites. We have not explicitly solved for the magnetic fields that would be observed at magnetic observations on land since we have only treated cases of horizontally homogeneous conductivity. However, we conjecture that inland magnetic observations will also be affected by the ocean induction. The spatial decay inland from the ocean would again be set by the horizontal scale of the flow except when the electric currents involved in the induction are close to the coast. In this case there is a coastal effect, with the stronger fields decaying over a shorter scale. We have presented arguments which indicate that for uniform ocean conductivity s over a sediment layer of low conductivity, barotropic currents are efficient generators of electric fields but poor generators of electrical current and magnetic fields, while baroclinic currents are efficient generators of electrical current and magnetic fields, and (in our simple examples) poor generators of electric fields. When, however, s varies in the vertical, it appears that virtually all realistic forms of ocean circulation will be reasonably efficient generators of electrical current and magnetic fields. It is conceivable that the geomagnetic record from land and satellite observatories has captured oceanic signals. Another task before ocean and geomagnetic records can be linked, however, is to isolate the oceanic signal from the records which are known to be swarmed with magnetic signals from many other sources. How can we know that measured magnetic variations are due to variations in the ocean induction and not due to sources in the ionosphere or earth's core? This is a difficult problem, but there may be some ways to resolve it. Variations in ocean circulation or conductivity are rather slow compared to the rapid magnetic storms and most other variations due to external sources. Also the external effects at the earth's surface tend to have large spatial scales which allows removal using techniques such as 'remote referencing' as done by Lilley et al. (1993). With regard to sources in the earth's core, the geometric and electromagnetic filtering by the mantle are thought to prevent all but the lowest frequencies from reaching the earth's surface. Hence, it is conceivable that at the earth's surface, magnetic fields due to the earth's core can only appear as relatively smooth, slowly-varying fields with periods of decadal scale and longer. Hence, there is probably a fortuitous 'spectral window' through which we can view interannual variations in the ocean-induced fields. It is also important that the accuracy in measuring the time rate of change of the magnetic field on these time scales is greater than the accuracy of the field values (at least at the land observatories). This is because when differencing the magnetic series, errors in the baseline drift are reduced. Hence, it is probable that fluctuations in the ocean-induced magnetic fields would be easier to detect than the steady-state fields. The results presented here should also be helpful in designing future strategies for numerically modelling the ocean-induced electromagnetic fields. As we mentioned, (73) is similar in principle to the two-dimensional equation solved by Stephenson and Bryan (1992) but is more general, allowing for a more realistic description of conductivity and allowing for horizontal divergence in the conductivity transport. Other results in this paper may be helpful in finding new approaches to the problem of numerically modelling the oceanic induction. The flux form of the induction equation (18) could be a more convenient form to be used in established numerical algorithms using flux conservation. Also, (11) or (18) could be used with the Stokes or Divergence theorems to create a box-model description of global oceanic induction. When the scalar fluid property Λ described in Section 4.2.3 is taken to be a function of the conductivity, equation (76) is greatly simplified, suggesting that a three-dimensional numerical model using constant conductivity layers [similar in essence to the constant-density layer approach used in the OPYC ocean-circulation model written by Joseph Oberhuber (1993)] may be profitably exploited.
Electrical control of second-harmonic generation in a WSe 2 monolayer transistor
Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; ...
2015-04-20
Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe 2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an ordermore » of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less
NASA Technical Reports Server (NTRS)
Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan
2010-01-01
We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( < or = 10(exp 5) Ohms-sq cm). It can be used to leverage new advances in thin-film and nanostructured materials for the fabrication of new miniature thermoelectric devices. It may also enable monolithic integration of large devices or tandem arrays of devices on flexible or curved surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (<100 K) temperature differences. At higher, more realistic temperature differences, approx.500 K, where the efficiency of these materials greatly improves, this power density would scale to between 0.5 and 1 Watt/cm2. These results highlight the excellent potential for the generation and scavenging of electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.
Zhu, Feng; Wang, Wancheng; Zhang, Xiaoyan; Tao, Guanhong
2011-08-01
A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m(2). Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; ...
2015-06-16
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
Multiscale Analysis of Rapidly Rotating Dynamo Simulations
NASA Astrophysics Data System (ADS)
Orvedahl, R.; Calkins, M. A.; Featherstone, N. A.
2017-12-01
The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek=ν /Ω L2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.
Method for protecting an electric generator
Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.
2008-11-18
A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.
Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin
2013-10-01
The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-03-01
wind turbines from General Electric. China recognizes the issues with IPR but it is something that will take time to fix. It will be a significant...Large aircraft Large-scale oil and gas exploration Manned space, including lunar exploration Next-generation broadband wireless ...circuits, and building an innovation system for China’s integrated circuit (IC) manufacturing industry. 3. New generation broadband wireless mobile
NASA Astrophysics Data System (ADS)
Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.
2017-12-01
The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.
Simulation of load-sharing in standalone distributed generation system
NASA Astrophysics Data System (ADS)
Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.
2018-05-01
This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.
Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that wouldmore » be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.« less
Research on unit commitment with large-scale wind power connected power system
NASA Astrophysics Data System (ADS)
Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing
2017-01-01
Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.
Small-scale Geothermal Power Plants Using Hot Spring Water
NASA Astrophysics Data System (ADS)
Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.
2013-12-01
The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1965-04-30
The manual serves as a guide to the important factors to consider in establishing a small-scale community electric system. Financial requirements include labor costs, machinery, equipment, utilities and administrative costs, raw materials (for diesel fuel to run the generators). Tables on cost estimates are given, with a blank column for actual cost statements; the summary provides questions that will help the planner decide what is necessary for setting up the plant and whether the requirements can be met.
Eisenbach, Markus
2017-01-01
A major impediment to deploying next-generation high-performance computational systems is the required electrical power, often measured in units of megawatts. The solution to this problem is driving the introduction of novel machine architectures, such as those employing many-core processors and specialized accelerators. In this article, we describe the use of a hybrid accelerated architecture to achieve both reduced time to solution and the associated reduction in the electrical cost for a state-of-the-art materials science computation.
Nano-multiplication region avalanche photodiodes and arrays
NASA Technical Reports Server (NTRS)
Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)
2011-01-01
An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.
Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Yun; Lee, Ensang, E-mail: eslee@khu.ac.kr; Kim, Khan-Hyuk
2015-12-15
In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth ratemore » on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.« less
Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Jeff; Mohler, David; Gibson, Stuart
2015-11-01
Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increasesmore » the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.« less
1.5 MW turbine installation at NREL's NWTC on Aug. 21
None
2017-12-27
Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; Dudchenko, Alexander V; Duan, Wenyan; Turchi, Craig; Vanneste, Johann; Cath, Tzahi Y; Jassby, David
2017-11-08
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with the hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.
NASA Astrophysics Data System (ADS)
Kern, J.
2015-12-01
Electric power utilities are increasingly cognizant of the risks water scarcity and rising temperatures pose for generators that use water as a "fuel" (i.e., hydroelectric dams) and generators that use water for cooling (i.e., coal, natural gas and nuclear). At the same time, utilities are under increasing market and policy pressure to retire coal-fired generation, the primary source of carbon emissions in the electric power sector. Due to falling costs of renewables and low natural gas prices, retiring coal fired generation is mostly being replaced with combined cycle natural gas, wind and solar. An immediate benefit of this shift has been a reduction in water withdrawals per megawatt-hour and reduced thermal impacts in surface water systems. In the process of retiring older coal-fired power plants, many of which use water intensive open-loop cooling systems, utilities are making their systems less vulnerable to water scarcity and higher water temperatures. However, it is not clear whether financial risks from water scarcity will decrease as result of this change. In particular, the choice to replace coal with natural gas combined cycle plants leaves utilities financially exposed to natural gas prices, especially during droughts when natural gas generation is used to replace lost hydropower production. Utility-scale solar, while more expensive than natural gas combined cycle generation, gives utilities an opportunity to simultaneously reduce their exposure to water scarcity and fuel price risk. In this study, we assess how switching from coal to natural gas and solar changes a utility's financial exposure to drought. We model impacts on retail prices and a utility's rate of return under current conditions and non-stationarity in natural gas prices and temperature and streamflows to determine whether increased exposure to natural gas prices offsets corresponding gains in water use efficiency. We also evaluate whether utility scale solar is an effective hedge against the combined effects of drought and natural gas price volatility—one that increases costs on average but reduces exposure to large drought-related losses.
Numerical Simulation of Energy Conversion Mechanism in Electric Explosion
NASA Astrophysics Data System (ADS)
Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team
2017-06-01
Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.
Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters
NASA Technical Reports Server (NTRS)
Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.
1989-01-01
Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.
Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler
NASA Astrophysics Data System (ADS)
Brazdil, Marian; Pospisil, Jiri
2013-07-01
The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.
Apparatuses and methods for generating electric fields
Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L
2013-08-06
Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.
2016-08-25
Improvements’ and ‘ Wind Turbine and Photovoltaic Panels’ at Fort Wainwright, Alaska,” March 7, 2011 Army A-2015-0105-IEE, “Audit of Large-Scale...for renewable energy technologies and will purchase electricity generated from renewable sources—such as solar, wind , geothermal, and biomass3—when...title 10, United States Code states maintenance and repairs of property or facilities are types of IKC. REPO personnel also stated that they have
A Comparison of Film Cooling Techniques in a High Speed, True Scale, Fully Cooled Turbine Vane Ring
2007-06-01
configurations in a true scale turbine vane for three proprietary airfoil designs. The measurements for this study were taken at the United States Air...and Background Gas Turbine Film Cooling Gas turbine engines have become an integral part of our society as we use them to propel our aircraft ...and naval vessels as well as generate electricity. Ever since Frank Whittle first applied for a patent on his turbojet engine in 1929, turbine
[Study of emission spectroscopy of OH radicals in pulsed corona discharge].
Wei, Bo; Luo, Zhong-Yang; Xu, Fei; Zhao, Lei; Gao, Xiang; Cen, Ke-Fa
2010-02-01
In the present paper, OH radicals generated by pulsed corona discharge in humidified air, N2 and Ar in a needle-plate reactor were measured by emission spectra. With the analysis of the emission spectra, the influence of pulse peak voltage and frequency on OH radical generation was investigated in the three kinds of background gases. The influence of the gas humidity on the generation and the distribution of OH radicals in the electric field was also discussed in detail. The authors studied the influence of the gas humidity on the generation of OH radicals in the electric field by the control of accurate change in humidity, and we also studied the distribution of OH radicals in the electric field in different background gases including humidified air, N2 and Ar by the accurate change in scales. The experiment shows that the output of OH radicals grows as the pulse peak voltage and frequency grow, but the influence of gas humidity on the process of generating OH radicals by pulsed corona discharge depends on the discharge background. The rules of the generation change when the background gases change. As the humidity in the background gases grows, the amount of OH radicals grows in the air, but it grows at first and decreases at last in N2, while it decreases at first and grows at last in Ar. The distribution of OH radical shows a trend of decreasing from the needle-electrode to its circumambience.
Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors
NASA Astrophysics Data System (ADS)
Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.
2016-11-01
In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geothermal Development Associates; Don Michels Associates
1999-07-01
This program was instituted to quantify certain aspects of silica scaling deposition processes at the Miravalles Geothermal Field, Costa Rica. The program objective was to identify the highest temperature at which silica scale will develop from partially evaporated and significantly cooled geothermal liquid under operating conditions. Integral to the study objective was the quantification of certain aspects of silica deposition processes at the Miravalles Geothermal Field, Costa Rica. There, the objective was to reduce the scaling risk associated with adding a bottoming-cycle to generate more electricity from the liquids already being produced.
Penetration of Large Scale Electric Field to Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.
2015-12-01
The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI simulations reveal alternating penetration and shielding electric fields during the main phase of the geomagnetic storm, indicating an impulsive nature of the large scale penetrating electric field in regulating the gain and loss of radiation belt particles. We will present the statistical analysis and simulations results.
Control System Development for Power Generation from Small-Scale Compressed Air Energy Storage
2017-06-01
Gannon Co-Advisor: Andrea Holmes THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting...capable of a dark start. The term dark start refers to a power generation system that does not require electrical energy in the form of batteries or...Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii THIS PAGE
NASA Astrophysics Data System (ADS)
Johnson, Brian; Kendrick, Mark J.; Ostroverkhova, Oksana
2013-09-01
We present a model that describes nanosecond (ns) time-scale photocurrent dynamics in functionalized anthradithiophene (ADT) films and ADT-based donor-acceptor (D/A) composites. By fitting numerically simulated photocurrents to experimental data, we quantify contributions of multiple pathways of charge carrier photogeneration to the photocurrent, as well as extract parameters that characterize charge transport (CT) in organic films including charge carrier mobilities, trap densities, hole trap depth, and trapping and recombination rates. In pristine ADT films, simulations revealed two competing charge photogeneration pathways: fast, occurring on picosecond (ps) or sub-ps time scales with efficiencies below 10%, and slow, which proceeds at the time scale of tens of nanoseconds, with efficiencies of about 11%-12%, at the applied electric fields of 40-80 kV/cm. The relative contribution of these pathways to the photocurrent was electric field dependent, with the contribution of the fast process increasing with applied electric field. However, the total charge photogeneration efficiency was weakly electric field dependent exhibiting values of 14%-20% of the absorbed photons. The remaining 80%-86% of the photoexcitation did not contribute to charge carrier generation at these time scales. In ADT-based D/A composites with 2 wt.% acceptor concentration, an additional pathway of charge photogeneration that proceeds via CT exciton dissociation contributed to the total charge photogeneration. In the composite with the functionalized pentacene (Pn) acceptor, which exhibits strong exciplex emission from a tightly bound D/A CT exciton, the contribution of the CT state to charge generation was small, ˜8%-12% of the total number of photogenerated charge carriers, dependent on the electric field. In contrast, in the composite with PCBM acceptor, the CT state contributed about a half of all photogenerated charge carriers. In both D/A composites, the charge carrier mobilities were reduced and trap densities and average trap depths were increased, as compared to a pristine ADT donor film. A considerably slower recombination of free holes with trapped electrons was found in the composite with the PCBM acceptor, which led to slower decays of the transient photocurrent and considerably higher charge retention, as compared to a pristine ADT donor film and the composite with the functionalized Pn acceptor.
River Devices to Recover Energy with Advanced Materials (River DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Daniel P.
2013-07-03
The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less
H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark F; Jadun, Paige; Pivovar, Bryan S
The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energymore » production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of hydrogen production using steam methane reforming of natural gas, high temperature electrolysis coupled with nuclear power plants, and low temperature electrolysis are reported. To generate the estimates, supply curves for those technologies are used. They are compared to demand curves that describe the market size for hydrogen uses and willingness to pay for that hydrogen. Scenarios are developed at prices where supply meets demand and are used to estimate energy use, emissions, and economic impacts.« less
Potential Size of and Value Proposition for H2@Scale Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark F; Jadun, Paige; Pivovar, Bryan S
The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energymore » production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of hydrogen production using steam methane reforming of natural gas, high temperature electrolysis coupled with nuclear power plants, and low temperature electrolysis are reported. To generate the estimates, supply curves for those technologies are used. They are compared to demand curves that describe the market size for hydrogen uses and willingness to pay for that hydrogen. Scenarios are developed at prices where supply meets demand and are used to estimate energy use, emissions, and economic impacts.« less
Manipulating polymers and composites from the nanoscopic to microscopic length scales
NASA Astrophysics Data System (ADS)
Gupta, Suresh
2008-10-01
This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.
Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.
2017-12-01
The carbon and water intensity of US electricity generation has recently decreased due to the natural gas revolution and deployment of renewable technologies. Yet, power plants that require water for cooling still provide 80% of electricity generation and projected climate-water conditions may limit their power output and affect reliability. Understanding the connections and tradeoffs across water, electricity and climate systems is timely, as the nation tries to mitigate and adapt to a changing climate. Electricity expansion models are used to provide insight on power sector pathways given certain policy goals and economic conditions, but do not typically account for productivity limitations due to physical climate-water constraints. Here, we account for such constraints by coupling an electricity expansion model (Regional Energy Deployment System - ReEDS) with the combined Water Balance and Thermoelectric Power and Thermal Pollution Models (WBM-TP2M), which calculate the available capacity at power plants as a function of hydrologic flows, climate conditions, power plant technology and environmental regulations. To fully capture and incorporate climate-water impacts into ReEDS, a specific rule-set was designed for the temporal and spatial downscaling and up-scaling of ReEDS results into WBM-TP2M inputs and visa versa - required to achieve a modeling `loop' that will enable convergence on a feasible solution in the context of economic and geophysical constraints and opportunities. This novel modeling approach is the next phase of research for understanding electricity system vulnerabilities and adaptation measures using energy-water-climate modeling, which to-date has been limited by a focus on individual generators without analyzing power generation as a collective regional system. This study considers four energy policy/economic pathways under future climate-water resource conditions, designed under the National Energy Water System assessment framework. Results highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.
NASA Astrophysics Data System (ADS)
Wilcox, Douglas A., Jr.
Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta T-E=8.32%, corresponding to 14% of Carnot etac. The volumetric power density of this TaSEG is 8.9 kW/m3. While the demonstrated overall efficiency is modest (for reasons that are largely understood), this TaSEG has moved the technology away from laboratory prototypes toward a commercially viable power module having a design configuration suitable for implementation in a micro-CHP appliance. Based on the TaSEG's measured experimental performance results, recommendations for future work that might improve the overall efficiency of the TaSEG are also presented.
Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
Peer, Rebecca A M; Garrison, Jared B; Timms, Craig P; Sanders, Kelly T
2016-04-19
The US power sector is a leading contributor of emissions that affect air quality and climate. It also requires a lot of water for cooling thermoelectric power plants. Although these impacts affect ecosystems and human health unevenly in space and time, there has been very little quantification of these environmental trade-offs on decision-relevant scales. This work quantifies hourly water consumption, emissions (i.e., carbon dioxide, nitrogen oxides, and sulfur oxides), and marginal heat rates for 252 electricity generating units (EGUs) in the Electric Reliability Council of Texas (ERCOT) region in 2011 using a unit commitment and dispatch model (UC&D). Annual, seasonal, and daily variations, as well as spatial variability are assessed. When normalized over the grid, hourly average emissions and water consumption intensities (i.e., output per MWh) are found to be highest when electricity demand is the lowest, as baseload EGUs tend to be the most water and emissions intensive. Results suggest that a large fraction of emissions and water consumption are caused by a small number of power plants, mainly baseload coal-fired generators. Replacing 8-10 existing power plants with modern natural gas combined cycle units would result in reductions of 19-29%, 51-55%, 60-62%, and 13-27% in CO2 emissions, NOx emissions, SOx emissions, and water consumption, respectively, across the ERCOT region for two different conversion scenarios.
The energetic implications of curtailing versus storing wind- and solar-generated electricity
NASA Astrophysics Data System (ADS)
Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.
2013-12-01
Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10,000--18,000 (2-20 times present values) is required for pairing with wind (assuming liberal round-trip efficiency [90%] and liberal depth-of-discharge [80%] values). Reducing embodied energy costs, increasing efficiency and increasing depth of discharge will also further improve the energetic performance of batteries. While this paper focuses on only one benefit of energy storage, the value of not curtailing electricity generation during periods of excess production, similar analyses could be used to draw conclusions about other benefits as well.
Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air
NASA Astrophysics Data System (ADS)
Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.
2018-01-01
Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark
2017-07-12
'H2@Scale' is a concept based on the opportunity for hydrogen to act as an intermediate between energy sources and uses. Hydrogen has the potential to be used like the primary intermediate in use today, electricity, because it too is fungible. This presentation summarizes the H2@Scale analysis efforts performed during the first third of 2017. Results of technical potential uses and supply options are summarized and show that the technical potential demand for hydrogen is 60 million metric tons per year and that the U.S. has sufficient domestic resources to meet that demand. A high level infrastructure analysis is also presentedmore » that shows an 85% increase in energy on the grid if all hydrogen is produced from grid electricity. However, a preliminary spatial assessment shows that supply is sufficient in most counties across the U.S. The presentation also shows plans for analysis of the economic potential for the H2@Scale concept. Those plans involve developing supply and demand curves for potential hydrogen generation options and as compared to other options for use of that hydrogen.« less
NASA Astrophysics Data System (ADS)
Harris, Chioke B.; Webber, Michael E.
2012-09-01
With the emerging nationwide availability of battery electric vehicles (BEVs) at prices attainable for many consumers, electric utilities, system operators and researchers have been investigating the impact of this new source of energy demand. The presence of BEVs on the electric grid might offer benefits equivalent to dedicated utility-scale energy storage systems by leveraging vehicles’ grid-connected energy storage through vehicle-to-grid (V2G) enabled infrastructure. It is, however, unclear whether BEVs will be available to provide needed grid services when those services are in highest demand. In this work, a set of GPS vehicle travel data from the Puget Sound Regional Council (PSRC) is analyzed to assess temporal patterns in vehicle use. These results show that vehicle use does not vary significantly across months, but differs noticeably between weekdays and weekends, such that averaging the data together could lead to erroneous V2G modeling results. Combination of these trends with wind generation and electricity demand data from the Electric Reliability Council of Texas (ERCOT) indicates that BEV availability does not align well with electricity demand and wind generation during the summer months, limiting the quantity of ancillary services that could be provided with V2G. Vehicle availability aligns best between the hours of 9 pm and 8 am during cooler months of the year, when electricity demand is bimodal and brackets the hours of highest vehicle use.
Institute for Science and Engineering Simulation (ISES)
2015-12-18
performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation... joined with non-subject merchandise, such as nacelles or rotor blades, and whether or not they have... are nacelles and rotor blades, regardless of whether they are attached to the wind tower. Also...
Riva, C; Schievano, A; D'Imporzano, G; Adani, F
2014-08-01
The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul
2018-02-01
We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.
Economically Feasible Potentials for Wind Power in China and the US
NASA Astrophysics Data System (ADS)
Lu, X.; McElroy, M. B.; Chris, N. P.; Tchou, J.
2011-12-01
The present study is intended to explore the economic feasible potentials for wind energy in China and the U.S. subject to their policy systems for renewable energy. These two countries were chosen as subject locales for three reasons: first, they are the two largest countries responsible for energy consumption and CO2 emissions; second, these two countries have the largest installed capacities and the fastest annual growth of wind power in the world; third, China and the U.S. have adopted two distinct but representative incentive policies to accelerate exploitation of the renewable energy source from wind. Investments in large-scale wind farms in China gain privileges from the concession policy established under China's Renewable Energy Law. The electricity generated from wind can be sold at a guaranteed price for a concession period (typically the first ten operational years of a wind farm) to ensure the profitability of the wind farm development. The effectiveness of this policy has been evidenced by the swift growth of total installed capacities for wind power over the past five years in China. A spatial financial model was developed to evaluate the bus-bar prices of wind-generated electricity in China following this wind concession policy. The results indicated that wind could accommodate all of the demand for electricity projected for 2030 assuming a guaranteed bus-bar price of 7.6 U.S. Cents per kWh over the concession period. It is noteworthy that the prices of wind-generated electricity could be as cheap as conventional power generation in the years following the concession period. The power market in the U.S. is more deregulated and electricity is normally traded in a bidding process an hour to a day ahead of real time. Accordingly, the market-oriented policy instrument of PTC subsidies was instituted in the U.S. to ensure the competitiveness of wind power compared to the conventional power generation in the regional power markets. The spatial financial model developed for previous analysis of wind energy in China was tailored to simulate the relevant investment environments for U.S. wind projects. A particular problem was investigated as to how the profitability and competitiveness of onshore wind power in the U.S. would be influenced by PTC subsidy levels varying from 0 to 4 cents per kWh. The results suggested that the current PTC level (2.1 cent per kWh) is at a critical point in determining the competitiveness of wind-generated electricity under normal costs. Setting system integration challenges aside, the potential for profitable wind-generated electricity could accommodate more than seven times U.S. electricity demand at the current PTC subsidy. Similar to the concession policy adopted in China, PTC subsidies are only available for the first ten years following the initiation of wind farms; wind power would still offer a renewable energy source for profitable electricity generation during the post-PTC period.
Magnetic helicity generation in the frame of Kazantsev model
NASA Astrophysics Data System (ADS)
Yushkov, Egor V.; Lukin, Alexander S.
2017-11-01
Using a magnetic dynamo model, suggested by Kazantsev (J. Exp. Theor. Phys. 1968, vol. 26, p. 1031), we study the small-scale helicity generation in a turbulent electrically conducting fluid. We obtain the asymptotic dependencies of dynamo growth rate and magnetic correlation functions on magnetic Reynolds numbers. Special attention is devoted to the comparison of a longitudinal correlation function and a function of magnetic helicity for various conditions of asymmetric turbulent flows. We compare the analytical solutions on small scales with numerical results, calculated by an iterative algorithm on non-uniform grids. We show that the exponential growth of current helicity is simultaneous with the magnetic energy for Reynolds numbers larger than some critical value and estimate this value for various types of asymmetry.
NASA Astrophysics Data System (ADS)
Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo
We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
Buscheck, Thomas A.
2015-12-01
It’s the bane of renewable energy. No matter how efficient photovoltaic cells become or how much power a wind turbine can capture, someone will counter with, “What happens when the sun goes down and wind doesn’t blow?” And the person who poses that question uses it as an argument in favor of traditional baseload power. While it’s true that the way the electrical grid has developed in North America and Europe doesn’t lend itself to the start-and-stop, opportunistic nature of wind and solar, there are ways to meet the challenge. Electricity can be stored in batteries or water pumped uphillmore » into reservoirs when power generation exceeds demand, to be tapped when needed. Unfortunately, utility-scale battery storage is prohibitively expensive, and pumped hydro is possible only in particular geographic locations. What is needed is a large-scale, distributed, dispatchable energy storage system that can smooth out a renewable energy generation profile that changes by the minute as well as over the course of the day or the season. Colleagues from Lawrence Livermore National Laboratory, the Ohio State University (led by Jeffrey Bielicki), and the University of Minnesota (led by Jimmy Randolph), and I have developed a system that can do all that. What’s more, this system actually sequesters carbon dioxide—a gas implicated in global climate change—as part of its normal operation. Furthermore, we have modeled our system and found that, if it can be successfully demonstrated in the field, it could provide utility-scale diurnal and seasonal energy storage (many hundreds of MWe) and dispatchable power, while permanently sequestering CO 2 from industrial-scale fossil-energy power plants. Certainly, an energy storage system is only as clean or as green as the primary generation it’s working with. But it is going to be difficult to implement solar or wind power to a degree high enough to make a difference in global carbon dioxide emissions without utility-scale energy storage.« less
Surface patterning of soft polymer film-coated cylinders via an electric field.
Li, Bo; Li, Yue; Xu, Guang-Kui; Feng, Xi-Qiao
2009-11-04
Using the linear stability analysis method, we investigate the surface wrinkling of a thin polymer coating on a cylinder in an externally applied electric field. It is demonstrated that energy competition between surface energy, van der Waals interactive potential energy and electrostatic interaction energy may lead to ordered patterns on the film surface. The analytical solutions are derived for the critical conditions of both longitudinal and circumferential instabilities. The wavelengths of the generated surface patterns can be mediated by changing the magnitude of the electric field. Our analysis shows that the surface morphology is sensitive to the curvature radius of the fiber, especially in the micrometer and nanometer length scales. Furthermore, we suggest a potential approach for fabricating hierarchical patterns on curved surfaces.
Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections
NASA Technical Reports Server (NTRS)
Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)
2012-01-01
A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.
Space Weather Effects on the Dynamics of Equatorial F Region Irregularities
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Basu, S.; Groves, K.; Valladares, C.; Sheehan, R.
Space weather effects on transionospheric radio waves used for navigation and communication may be divided into two categories depending on the spatial scale size of the ionospheric perturbation produced by such effects. For large-scale (> 10 km) perturbations in the ionospheric plasma density, there are changes in the excess time delay for a radio wave signal, which propagates through the ionosphere, while small scale (< 1 m) structures or irregularities in the ionosphere may give rise tok amplitude and phase scintillations on UHF/L-band radio waves, resulting in loss of data, cycle slips and loss of phase lock for signals used in communication/navigation systems. In the equatorial region, where such effects may be severe, space weather effects on the dynamics of equatorial spread F (ESF) irregularities are studied from two different angles. The first one deals with the effect of magnetic activity on the generation of ESF irregularities by helping or hindering the growth of the Rayleigh Taylor (R-T) instability in the post-sunset equatorial F region. For this purpose, spaced receiver observations of scintillations on a UHF signal transmitted from a geostationary satellite and recorded near the dip equator, are used to establish the `age' of the irregularities. This is necessary because the occurrence of scintillations, particularly in the post midnight period, may also be due to irregularities which drift into the path of the radio wave signal, after having been generated more than 3 hours before the actual observation of scintillations. In order to associate the generation of irregularities with major changes in space weather, a parameter that is a measure of random variations in irregularity drift speed is computed from spaced receiver scintillation data. A large value of this parameter is usually a signature of random variations in irregularity drift due to polarization electric fields associated with freshly generated irregularities. Once these electric fields decay, the irregularities drift with the background plasma. This allows a study of the other effect of space weather on the dynamics of equatorial F region irregularities, viz. magnetically disturbed ionospheric drifts in the equatorial region. The drifts estimated for magnetically quiet days with ESF, within a period of a month, display far less variability than the quiet time variability for non-ESF days, thus making it possible to quantify perturbations in irregularity drift due to disturbance dynamo electric fields and/or prompt penetration of transient magnetospheric electric fields.
Mutel, Christopher L; Pfister, Stephan; Hellweg, Stefanie
2012-01-17
We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.
Chen, Quanpeng; Li, Jinhua; Li, Xuejin; Huang, Ke; Zhou, Baoxue; Cai, Weimin; Shangguan, Wenfeng
2012-10-16
A visible-light driven photocatalytic fuel cell (PFC) system comprised of WO(3)/W photoanode and Cu(2)O/Cu photocathode was established for organic compounds degradation with simultaneous electricity generation. The central idea for its operation is the mismatched Fermi levels between the two photoelectrodes. Under light illumination, the Fermi level of WO(3)/W photoanode is higher than that of Cu(2)O/Cu photocathode. An interior bias can be produced based on which the electrons of WO(3)/W photoanode can transfer from the external circuit to combine with the holes of Cu(2)O/Cu photocathode then generates the electricity. In this manner, the electron/hole pairs separations at two photoelectrodes are facilitated to release the holes of WO(3)/W photoanode and electrons of Cu(2)O/Cu photocathode. Organic compounds can be decomposed by the holes of WO(3)/W photoanode due to its high oxidation power (+3.1-3.2 V(NHE)). The results demonstrated that various model compounds including phenol, Rhodamine B, and Congo red can be successfully decomposed in this PFC system, with the degradation rate after 5 h operation were obtained to be 58%, 63%, and 74%, respectively. The consistent operation for continuous water treatment with the electricity generation at a long time scale was also confirmed from the result. The proposed PFC system provides a self-sustained and energy-saving way for simultaneous wastewater treatment and energy recovery.
Distributed Energy Systems: Security Implications of the Grid of the Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamber, Kevin L.; Kelic, Andjelka; Taylor, Robert A.
2017-01-01
Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective. This page intentionally left blank.
A test technique for measuring lightning-induced voltages on aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Walko, L. C.
1974-01-01
The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.
Hydrogen-based power generation from bioethanol steam reforming
NASA Astrophysics Data System (ADS)
Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.
2015-12-01
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.
Hydrogen-based power generation from bioethanol steam reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less
Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul
The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less
Engineering microbial fuels cells: recent patents and new directions.
Biffinger, Justin C; Ringeisen, Bradley R
2008-01-01
Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.
High-speed pulse-shape generator, pulse multiplexer
Burkhart, Scott C.
2002-01-01
The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.
Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser
NASA Astrophysics Data System (ADS)
Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan
2018-01-01
The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.
Post, R.F.; Taylor, C.E.
1963-05-21
A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)
Multiscale Analysis of Rapidly Rotating Dynamo Simulations
NASA Astrophysics Data System (ADS)
Orvedahl, Ryan; Calkins, Michael; Featherstone, Nicholas
2017-11-01
The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code
Water purification by electrical discharges
NASA Astrophysics Data System (ADS)
Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman
2001-02-01
There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}
Boosting CSP Production with Thermal Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2012-06-01
Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less
The Water-Use Implications of a Changing Power Sector
NASA Astrophysics Data System (ADS)
Peer, R.; Sanders, K.
2016-12-01
Changing policies, declining natural gas prices due to shale production and, growing pressure for cleaner energy sources are causing significant shifts in the fuels and technologies utilized for US electricity generation. These shifts have already impacted the volumes of water required for cooling thermal power plants, imposing consequences for watersheds that have yet to be quantified. This research investigates how these regulatory, economic, and socially-driven changes in the power sector have impacted cooling water usage across the US, which currently represents nearly half of US water withdrawals. This study uses plant-specific fuel consumption, generation, and cooling water data to assess water usage trends in the power sector from 2008 to 2014 across HUC-8 hydrologic units. Over this period, transitions from steam-cycle coal and nuclear units towards combined-cycle natural gas units and renewables, as well as transitions from once-through cooling towards wet recirculating tower and dry cooling systems resulted in large shifts in water usage. Trends towards non-traditional cooling water sources such as recycled water reduced freshwater consumption in some watersheds. Although US cooling water withdrawals and consumption increased from 2008 to 2014 largely due to electricity demand growth, the average water withdrawn and consumed per unit of electricity generated decreased and remained similar in magnitude, respectively. Changes at the watershed scale were not uniform, with some experiencing significant water use reductions and environmental benefits, especially due to coal-fired power plant retirements. Results highlight the importance of evaluating both water withdrawals and consumption at local spatial scales, as these shifts have varying consequences on water availability and quality for downstream users and ecosystems. This analysis underscores the importance of prioritizing local water security in global climate change adaptation and mitigation efforts.
Rule, Bridget M; Worth, Zeb J; Boyle, Carol A
2009-08-15
In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied.
Design of energy storage system to improve inertial response for large scale PV generation
Wang, Xiaoyu; Yue, Meng
2016-07-01
With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less
Evidence of Biot Slow Waves in Electroseismic Measurementss on Laboratory-Scale
NASA Astrophysics Data System (ADS)
Devi, M. S.
2015-12-01
Electroseismic methods which are the opposite of seismo-electric methods have only been little investigated up to now especially in the near surface scale. These methods can generate the solid-fluid relative movement induced by the electric potential in fluid-filled porous media. These methods are the response of electro-osmosis due to the presence of the electrical double layer. Laboratory experiments and numerical simulations of electroseismic studies have been performed. Electroseismic measurements conducted in micro glass beads saturated with demineralized water. Pair of 37 x 37 mm square aluminium grids with 2 mm of aperture and 4 mm of spacing is used as the electric dipole that connected to the electric power source with the voltage output 150 V. A laser doppler vibrometer is the system used to measure velocity of vibrating objects during measurements by placing a line of reflective paper on the surface of media that scattered back a helium-neon laser. The results in homogeneous media shows that the compressional waves induced by an electric signal. We confirm that the results are not the effects of thermal expansion. We also noticed that there are two kinds of the compressional waves are recorded: fast and slow P-waves. The latter, Biot slow waves, indicate the dominant amplitude. Moreover, we found that the transition frequency (ωc) of Biot slow waves depends on mechanical parameters such as porosity and permeability. The ωc is not affected when varying conductivity of the fluid from 25 - 320 μS/cm, although the amplitude slightly changed. For the results in two layer media by placing a sandstone as a top layer shows that a large amount of transmission seismic waves (apparently as Biot slow waves) rather than converted electromagnetic-to-seismic waves. These properties have also been simulated with full waveform numerical simulations relying on Pride's (1994) using our computer code (Garambois & Dietrich, 2002). If it is true that the electric source in the safe voltage range generates seismic waves dominantly, it may be a reason of electro-osmosis dewatering technique to transport liquids. And this source may be used an alternative as a seismic source in geophysical exploration.
Feasibility study of wind-generated electricity for rural applications in southwestern Ohio
NASA Astrophysics Data System (ADS)
Kohring, G. W.
The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-09-01
Appendix A, Utility Plant Characteristics, contains information describing the characteristics of seven utility plants that were considered during the final site selection process. The plants are: Valley Electric Generating Plant, downtown Milwaukee; Manitowoc Electric Generating Plant, downtown Manitowoc; Blount Street Electric Generating Plant, downtown Madison; Pulliam Electric Generating Plant, downtown Green Bay; Edgewater Electric Generating Plant, downtown Sheboygan; Rock River Electric Generating Plant, near Janesville and Beloit; and Black Hawk Electric Generating Plant, downtown Beloit. Additional appendices are: Future Loads; hvac Inventory; Load Calculations; Factors to Induce Potential Users; Turbine Retrofit/Distribution System Data; and Detailed Economic Analysis Results/Data.
Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics
NASA Astrophysics Data System (ADS)
Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.
2013-12-01
In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.
The Future of Electricity Resource Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahrl, Fredrich; Mills, Andrew; Lavin, Luke
Electricity resource planning is the process of identifying longer-term investments to meet electricity reliability requirements and public policy goals at a reasonable cost. Resource planning processes provide a forum for regulators, electric utilities, and electricity industry stakeholders to evaluate the economic, environmental, and social benefits and costs of different investment options. By facilitating a discussion on future goals, challenges and strategies, resource planning processes often play an important role in shaping utility business decisions. Resource planning emerged more than three decades ago in an era of transition, where declining electricity demand and rising costs spurred fundamental changes in electricity industrymore » regulation and structure. Despite significant changes in the industry, resource planning continues to play an important role in supporting investment decision making. Over the next two decades, the electricity industry will again undergo a period of transition, driven by technological change, shifting customer preferences and public policy goals. This transition will bring about a gradual paradigm shift in resource planning, requiring changes in scope, approaches and methods. Even as it changes, resource planning will continue to be a central feature of the electricity industry. Its functions — ensuring the reliability of high voltage (“bulk”) power systems, enabling oversight of regulated utilities and facilitating low-cost compliance with public policy goals — are likely to grow in importance as the electricity industry enters a new period of technological, economic and regulatory change. This report examines the future of electricity resource planning in the context of a changing electricity industry. The report examines emerging issues and evolving practices in five key areas that will shape the future of resource planning: (1) central-scale generation, (2) distributed generation, (3) demand-side resources, (4) transmission and (5) uncertainty and risk management. The analysis draws on a review of recent resource plans for 10 utilities that reflect some of the U.S. electricity industry’s extensive diversity.« less
NASA Astrophysics Data System (ADS)
Formosa, F.; Fréchette, L. G.
2015-12-01
An electrical circuit equivalent (ECE) approach has been set up allowing elementary oscillatory microengine components to be modelled. They cover gas channel/chamber thermodynamics, viscosity and thermal effects, mechanical structure and electromechanical transducers. The proposed tool has been validated on a centimeter scale Free Piston membrane Stirling engine [1]. We propose here new developments taking into account scaling effects to establish models suitable for any microengines. They are based on simplifications derived from the comparison of the hydraulic radius with respect to the viscous and thermal penetration depths respectively).
Solar energy thermally powered electrical generating system
NASA Technical Reports Server (NTRS)
Owens, William R. (Inventor)
1989-01-01
A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Energy Operation Model (EOM) simulates the operation of the electric grid at the zonal scale, including inter-zonal transmission constraints. It generates the production cost, power generation by plant and category, fuel usage, and locational marginal price (LMP) with a flexible way to constrain the power production by environmental constraints, e.g. heat waves, drought conditions). Different from commercial software such as PROMOD IV where generator capacity and heat rate efficiency can only be adjusted on a monthly basis, EOM calculates capacity impacts and plant efficiencies based on hourly ambient conditions (air temperature and humidity) and cooling water availability for thermal plants.more » What is missing is a hydro power dispatch.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
..., whether or not tapered, and sections thereof. Certain wind towers are designed to support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in excess of... joined with nonsubject merchandise, such as nacelles or rotor blades, and whether or not they have...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
..., whether or not tapered, and sections thereof. Certain wind towers are designed to support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in excess of... part of a wind turbine (i.e., accompanying nacelles and/or rotor blades). Amendment to the Final...
Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.
Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E
2017-03-03
We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara
2012-01-01
In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; ...
2017-10-13
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Li; Iddya, Arpita; Zhu, Xiaobo
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
NASA Astrophysics Data System (ADS)
Önel, Hakan
2008-08-01
The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies. The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources.
NASA Astrophysics Data System (ADS)
Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda
2016-07-01
In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option for off-grid electrification of small and remote communities.
A cycle timer for testing electric vehicles
NASA Technical Reports Server (NTRS)
Soltis, R. F.
1978-01-01
A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
Wind Generator & Biomass No-draft Gasification Hybrid
NASA Astrophysics Data System (ADS)
Hein, Matthew R.
The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHenry, Mark P.; Johnson, Jay; Hightower, Mike
The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less
McHenry, Mark P.; Johnson, Jay; Hightower, Mike
2016-01-01
The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less
Short run effects of a price on carbon dioxide emissions from U.S. electric generators.
Newcomer, Adam; Blumsack, Seth A; Apt, Jay; Lave, Lester B; Morgan, M Granger
2008-05-01
The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO2 emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO2 emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO2 emissions would lead to a 10% reduction in CO2 emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO2 emissions that has been shown in earlier workto stimulate investment in new generation technology also provides significant CO2 reductions before new technology is deployed at large scale.
The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.
2015-02-01
Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retailmore » prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.« less
Room temperature micro-hydrogen-generator
NASA Astrophysics Data System (ADS)
Gervasio, Don; Tasic, Sonja; Zenhausern, Frederic
A new compact and cost-effective hydrogen-gas generator has been made that is well suited for supplying hydrogen to a fuel-cell for providing base electrical power to hand-carried appliances. This hydrogen-generator operates at room temperature, ambient pressure and is orientation-independent. The hydrogen-gas is generated by the heterogeneous catalytic hydrolysis of aqueous alkaline borohydride solution as it flows into a micro-reactor. This reactor has a membrane as one wall. Using the membrane keeps the liquid in the reactor, but allows the hydrogen-gas to pass out of the reactor to a fuel-cell anode. Aqueous alkaline 30 wt% borohydride solution is safe and promotes long application life, because this solution is non-toxic, non-flammable, and is a high energy-density (≥2200 W-h per liter or per kilogram) hydrogen-storage solution. The hydrogen is released from this storage-solution only when it passes over the solid catalyst surface in the reactor, so controlling the flow of the solution over the catalyst controls the rate of hydrogen-gas generation. This allows hydrogen generation to be matched to hydrogen consumption in the fuel-cell, so there is virtually no free hydrogen-gas during power generation. A hydrogen-generator scaled for a system to provide about 10 W electrical power is described here. However, the technology is expected to be scalable for systems providing power spanning from 1 W to kW levels.
Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Frew, Bethany; Mai, Trieu
Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treatingmore » VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.« less
University of Arizona Compressed Air Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Joseph; Muralidharan, Krishna
2012-12-31
Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the costmore » of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.« less
Optimal Output of Distributed Generation Based On Complex Power Increment
NASA Astrophysics Data System (ADS)
Wu, D.; Bao, H.
2017-12-01
In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.
Wang, Ranran; Zimmerman, Julie B; Wang, Chunyan; Font Vivanco, David; Hertwich, Edgar G
2017-09-05
Human health and economic prosperity are vulnerable to freshwater shortage in many parts of the world. Despite a growing literature that examines the freshwater vulnerability in various spatiotemporal contexts, existing knowledge has been conventionally constrained by a territorial perspective. On the basis of spatial analyses of monthly water and electricity flows across 2110 watersheds and three interconnected power systems, this study investigates the water-electricity nexus (WEN)'s transboundary effects on freshwater vulnerability in the continental United States in 2014. The effects are shown to be considerable and heterogeneous across time and space. For at least one month a year, 58 million people living in water-abundant watersheds were exposed to additional freshwater vulnerability by relying on electricity generated by freshwater-cooled thermal energy conversion cycles in highly stressed watersheds; for 72 million people living in highly stressed watersheds, their freshwater vulnerability was mitigated by using imported electricity generated in water-abundant watersheds or power plants running dry cooling or using nonfreshwater for cooling purposes. On the country scale, the mitigation effects were the most significant during September and October, while the additional freshwater vulnerability was more significant in February, March, and December. Due to the WEN's transboundary effects, overall, the freshwater vulnerability was slightly worsened within the Eastern Interconnection, substantially improved within the Western Interconnection, and least affected within the ERCOT Interconnection.
NASA Astrophysics Data System (ADS)
Helseth, L. E.; Guo, X. D.
2016-04-01
Water contact electric harvesting has a great potential as a new energy technology for powering small-scale electronics, but a better understanding of the dynamics governing the conversion from mechanical to electrical energy on the polymer surfaces is needed. Important questions are how current correlates with droplet kinetic energy and what happens to the charge dynamics when a large number of droplets are incident on the polymer simultaneously. Here we address these questions by studying the current that is generated in an external electrical circuit when water droplets impinge on hydrophobic fluorinated ethylene propylene film containing a grating electrode on the back side. Droplets moving down an inclined polymer plane exhibit a characteristic periodic current time trace, and it is found that the peak current scales with sine of the inclination angle. For single droplets in free fall impinging onto the polymer, it is found that the initial peak current scales with the height of the free fall. The transition from individual droplets to a nearly continuous stream was investigated using the spectral density of the current signal. In both regimes, the high frequency content of the spectral density scales as f -2. For low frequencies, the low frequency content at low volume rates was noisy but nearly constant, whereas for high volume rates an increase with frequency is observed. It is demonstrated that the output signal from the system exposed to water droplets from a garden hose can be rectified and harvested by a 33 μF capacitor, where the stored energy increases at a rate of about 20 μJ in 100 s.
NASA Astrophysics Data System (ADS)
Kjelstrup, S.; Bedeaux, D.
1997-02-01
The electric potential profile and the temperature profile across a formation cell have been derived for the first time, using irreversible thermodynamics for bulk and surface systems. The method was demonstrated with the solid oxide fuel cell. The expression for the cell potential reduces to the classical formula when we assume equilibrium for polarized oxygen atoms across the electrolyte. Using data from the literature, we show for some likely assumptions, how the cell potential is generated at the anode, and how the energy is dissipated throughout the cell. The thermal gradient amounts to 5 × 10 8 Km -1 when the current density is 10 4 Am -2 and the thermal resistance of the surface scales like the electrical resistance.
Design Study: Rocket Based MHD Generator
NASA Technical Reports Server (NTRS)
1997-01-01
This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.
Ultrafast Manipulation of Magnetic Order with Electrical Pulses
NASA Astrophysics Data System (ADS)
Yang, Yang
During the last 30 years spintronics has been a very rapidly expanding field leading to lots of new interesting physics and applications. As with most technology-oriented fields, spintronics strives to control devices with very low energy consumption and high speed. The combination of spin and electronics inherent to spintronics directly tackles energy efficiency, due to the non-volatility of magnetism. However, speed of operation of spintronic devices is still rather limited ( nanoseconds), due to slow magnetization precessional frequencies. Ultrafast magnetism (or opto-magnetism) is a relatively new field that has been very active in the last 20 years. The main idea is that intense femtosecond laser pulses can be used in order to manipulate the magnetization at very fast time-scales ( 100 femtoseconds). However, the use of femtosecond lasers poses great application challenges such as diffraction limited optical spot sizes which hinders device density, and bulky and expensive integration of femtosecond lasers into devices. In this thesis, our efforts to combine ultrafast magnetism and spintronics are presented. First, we show that the magnetization of ferrimagnetic GdFeCo films can be switched by picosecond electronic heat current pulses. This result shows that a non-thermal distribution of electrons directly excited by laser is not necessary for inducing ultrafast magnetic dynamics. Then, we fabricate photoconductive switch devices on a LT-GaAs substrate, to generate picosecond electrical pulses. Intense electrical pulses with 10ps (FWHM) duration and peak current up to 3A can be generated and delivered into magnetic films. Distinct magnetic dynamics in CoPt films are found between direct optical heating and electrical heating. More importantly, by delivering picosecond electrical pulses into GdFeCo films, we are able to deterministically reverse the magnetization of GdFeCo within 10ps. This is more than one order of magnitude faster than any other electrically controlled magnetic switching. Our results present a fundamentally new switching mechanism electrically, without requirement for any spin polarized current or spin transfer/orbit torques. Our discovery that ultrafast magnetization switching can be achieved with electrical pulses will launch a new frontier of spintronics science and herald a new generation of spintronic devices that operate at high speed with low energy consumption. At last, to push ultrafast spintronics to practical use, ultrafast switching of a ferromagnetic film is desired. By exploiting the exchange interaction between GdFeCo and ferromagnetic Co/Pt layer, we achieved ultrafast (sub 10ps) switching of ferromagnetic film with a single laser pulse. This result will open up the possibility to control ferromagnetic materials at ultrafast time scale, critical for practical applications.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China.
Hu, Yuanan; Cheng, Hefa
2017-02-17
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
NASA Astrophysics Data System (ADS)
Hu, Yuanan; Cheng, Hefa
2017-02-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
40 CFR 98.40 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...
40 CFR 98.40 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...
40 CFR 98.40 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...
40 CFR 98.40 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...
40 CFR 98.40 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...
Is It Better to Burn or Bury Waste for Clean Electricity Generation?
The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
Target charging in short-pulse-laser-plasma experiments.
Dubois, J-L; Lubrano-Lavaderci, F; Raffestin, D; Ribolzi, J; Gazave, J; Compant La Fontaine, A; d'Humières, E; Hulin, S; Nicolaï, Ph; Poyé, A; Tikhonchuk, V T
2014-01-01
Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of these electrons are escaping the target, leaving behind a significant positive electric charge and creating a strong electromagnetic pulse long after the end of the laser pulse. We propose here a detailed model of the target electric polarization induced by a short and intense laser pulse and an escaping electron bunch. A specially designed experiment provides direct measurements of the target polarization and the discharge current in the function of the laser energy, pulse duration, and target size. Large-scale numerical simulations describe the energetic electron generation and their emission from the target. The model, experiment, and numerical simulations demonstrate that the hot-electron ejection may continue long after the laser pulse ends, enhancing significantly the polarization charge.
NASA Technical Reports Server (NTRS)
Cohen, B. M.; Rice, R. E.; Rowny, P. E.
1978-01-01
A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.
Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.
2015-12-01
The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.
NASA Astrophysics Data System (ADS)
Carman, Gregory P.
2015-09-01
Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.
Hydro-economic modeling of integrated solutions for the water-energy-land nexus in Africa
NASA Astrophysics Data System (ADS)
Parkinson, S.; Kahil, M.; Wada, Y.; Krey, V.; Byers, E.; Johnson, N. A.; Burek, P.; Satoh, Y.; Willaarts, B.; Langan, S.; Riahi, K.
2017-12-01
This study focused on the development of the Extended Continental-scale Hydro-economic Optimization model (ECHO) and its application to the analysis of long-term water, energy and land use pathways for Africa. The framework is important because it integrates multi-decadal decisions surrounding investments into new water infrastructure, electric power generation and irrigation technologies. The improved linkages in ECHO reveal synergies between water allocation strategies across sectors and the greenhouse gas emissions resulting from electricity supply. The African case study features a reduced-form transboundary river network and associated environmental flow constraints covering surface and groundwater withdrawals. Interactions between local water constraints and the continental-scale economy are captured in the model through the combination of regional electricity markets. Spatially-explicit analysis of land availability is used to restrict future reservoir expansion. The analysis demonstrates the massive investments required to ensure rapidly expanding water, energy and food demands in Africa aligned with human development objectives are met in a sustainable way. Modeled constraints on environmental flows in line with presumptive ecological guidelines trigger diffusion of energy-intensive water supply technologies in water-stressed regions, with implications for the cost and speed of the electricity sector decarbonization required to achieve climate targets.
Development of energy-harvesting system using deformation of magnetic elastomer
NASA Astrophysics Data System (ADS)
Shinoda, Hayato; Tsumori, Fujio
2018-06-01
In this paper, we propose a power generation method using the deformation of a magnetic elastomer for vibration energy harvesting. The magnetic flux lines in the structure of the magnetic elastomer could be markedly changed if the properly designed structure was expanded and contracted in a static magnetic field. We set a coil on the magnetic elastomer to generate electricity by capturing this change in magnetic flux flow. We fabricated a centimeter-scale device and demonstrated that it generated 10.5 mV of maximum voltage by 10 Hz vibration. We also simulated the change in the magnetic flux flow using finite element analysis, and compared the result with the experimental data. Furthermore, we evaluated the power generation of a miniaturized device.
Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java
NASA Astrophysics Data System (ADS)
Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.
2018-04-01
Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.
40 CFR 98.42 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...
40 CFR 98.42 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...
40 CFR 98.42 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...
40 CFR 98.42 - GHGs to report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...
40 CFR 98.42 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...
Method and apparatus for characterizing reflected ultrasonic pulses
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
1991-01-01
The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.
Heating the sun's lower transition region with fine-scale electric currents
NASA Technical Reports Server (NTRS)
Rabin, D.; Moore, R.
1984-01-01
Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.
Entropy, pumped-storage and energy system finance
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios
2015-04-01
Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)
NASA Astrophysics Data System (ADS)
Yang, Junnan; Li, Xiaoyuan; Peng, Wei; Wagner, Fabian; Mauzerall, Denise L.
2018-06-01
Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.
Regional Renewable Energy Cooperatives
NASA Astrophysics Data System (ADS)
Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.
2014-12-01
We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and infrastructure that is highly inefficient due to overall low utilization.
Uniform electric field generation in circular multi-well culture plates using polymeric inserts
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Fu; Cheng, Ji-Yen; Chang, Hui-Fang; Yamamoto, Tadashi; Shen, Amy Q.
2016-05-01
Applying uniform electric field (EF) in vitro in the physiological range has been achieved in rectangular shaped microchannels. However, in a circular-shaped device, it is difficult to create uniform EF from two electric potentials due to different electrical resistances originated from the length difference between the diameter of the circle and the length of any parallel chord of the bottom circular chamber where cells are cultured. To address this challenge, we develop a three-dimensional (3D) computer-aided designed (CAD) polymeric insert to create uniform EF in circular shaped multi-well culture plates. A uniform EF with a coefficient of variation (CV) of 1.2% in the 6-well plate can be generated with an effective stimulation area percentage of 69.5%. In particular, NIH/3T3 mouse embryonic fibroblast cells are used to validate the performance of the 3D designed Poly(methyl methacrylate) (PMMA) inserts in a circular-shaped 6-well plate. The CAD based inserts can be easily scaled up (i.e., 100 mm dishes) to further increase effective stimulation area percentages, and also be implemented in commercially available cultureware for a wide variety of EF-related research such as EF-cell interaction and tissue regeneration studies.
Gasification of yeast industry treatment plant sludge using downdraft Gasifier.
Ayol, Azize; Tezer, Ozgun; Gurgen, Alim
2018-01-01
Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH 4 , H 2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals - ash, glassy material - were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost,more » high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauss, Sven, E-mail: sven.stauss@plasma.k.u-tokyo.ac.jp; Terashima, Kazuo, E-mail: kazuo@plasma.k.u-tokyo.ac.jp; Muneoka, Hitoshi
2015-05-15
Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdownmore » voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors.« less
High-Performance Multi-Fuel AMTEC Power System
2000-12-01
AMTEC technology has demonstrated thermal to electric conversion efficiencies and power densities which make it an attractive option for meso-scaic...power generation. This report details development of an integrated, logistics-fueled, 500 W AMTEC power supply. The development targeted 2O% AMTEC ...cylindrical multi-tube/single cell AMTEC configuration with effective management of alkali metal flow; scaling down and integrating a multi-fuel micro-combustor
A CMOS Compatible, Forming Free TaO x ReRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohn, A. J.; Stevens, J. E.; Mickel, P. R.
2013-08-31
Resistive random access memory (ReRAM) has become a promising candidate for next-generation high-performance non-volatile memory that operates by electrically tuning resistance states via modulating vacancy concentrations. Here, we demonstrate a wafer-scale process for resistive switching in tantalum oxide that is completely CMOS compatible. The resulting devices are forming-free and with greater than 1x10 5 cycle endurance.
Stationary diesel engines for use with generators to supply electric power
NASA Technical Reports Server (NTRS)
1977-01-01
The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.
Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes
NASA Astrophysics Data System (ADS)
Mitra, Sumit
With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with novel Lagrangean-type and subset-type cuts to strengthen the relaxation. Second, an enhanced cross-decomposition scheme that integrates Benders decomposition and Lagrangean decomposition on a scenario basis. To demonstrate the effectiveness of our developed methodology, we provide several industrial case studies throughout the thesis.
Economic implications of climate-driven trends in global hydropower generation
NASA Astrophysics Data System (ADS)
Turner, S. W. D.; Galelli, S.; Hejazi, M. I.; Clarke, L.; Edmonds, J.; Kim, S. H.
2017-12-01
Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore how these impacts could affect the composition of global electricity supply, and what those changes could mean for power sector emissions and investment needs in the 21st century. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model (1593 major hydropower dams; 54% global installed capacity) with downscaled, bias-corrected climate realizations derived from sixteen General Circulation Models (GCMs). To incorporate possible non-linearity in hydropower response to climate change, dam simulations incorporate plant specifications (e.g., maximum turbine flow), reservoir storage dynamics, reservoir bathymetry, evaporation losses and bespoke, site specific operations. Consequent impacts on regional and global-level electricity generation and associated emissions and investment costs are examined using the Global Change Assessment Model (GCAM). We show that changes in hydropower generation resulting from climate change can shift power demands onto and away from carbon intensive technologies, resulting in significant impacts on CO2 emissions for several regions. Many of these countries are also highly vulnerable to investment impacts (costs of new electricity generating facilities to make up for shortfalls in hydro), which in some cases amount to tens of billions of dollars by 2100. The Balkans region—typified by weak economies in a drying region that relies heavily on hydropower—emerges as the most vulnerable. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity (low emissions requires greater uptake of clean generating technologies, which are more expensive). This means impacts on power sector investment costs are similar for high and low emissions scenarios.
Pulse Detonation Rocket Magnetohydrodynamic Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.
2003-01-01
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.
Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models
2014-01-01
The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.
Comparing catchment hydrologic response to a regional storm using specific conductivity sensors
Inserillo, Ashley; Green, Mark B.; Shanley, James B.; Boyer, Joseph
2017-01-01
A better understanding of stormwater generation and solute sources is needed to improve the protection of aquatic ecosystems, infrastructure, and human health from large runoff events. Much of our understanding of water and solutes produced during stormflow comes from studies of individual, small headwater catchments. This study compared many different types of catchments during a single large event to help isolate landscape controls on streamwater and solute generation, including human-impacted land cover. We used a distributed network of specific electrical conductivity sensors to trace storm response during the post-tropical cyclone Sandy event of October 2012 at 29 catchments across the state of New Hampshire. A citizen science sensor network, Lotic Volunteer for Temperature, Electrical Conductivity, and Stage, provided a unique opportunity to investigate high-temporal resolution stream behavior at a broad spatial scale. Three storm response metrics were analyzed in this study: (a) fraction of new water contributing to the hydrograph; (b) presence of first flush (mobilization of solutes during the beginning of the rain event); and (c) magnitude of first flush. We compared new water and first flush to 64 predictor attributes related to land cover, soil, topography, and precipitation. The new water fraction was positively correlated with low and medium intensity development in the catchment and riparian buffers and with the precipitation from a rain event 9 days prior to Sandy. The presence of first flush was most closely related (positively) to soil organic matter. Magnitude of first flush was not strongly related to any of the catchment variables. Our results highlight the potentially important role of human landscape modification in runoff generation at multiple spatial scales and the lack of a clear role in solute flushing. Further development of regional-scale in situ sensor networks will provide better understanding of stormflow and solute generation across a wide range of landscape conditions.
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
NASA Astrophysics Data System (ADS)
Chavez, Ruben; Angst, Sebastian; Hall, Joseph; Maculewicz, Franziska; Stoetzel, Julia; Wiggers, Hartmut; Thanh Hung, Le; Van Nong, Ngo; Pryds, Nini; Span, Gerhard; Wolf, Dietrich E.; Schmechel, Roland; Schierning, Gabi
2018-01-01
In many industrial processes, a large proportion of energy is lost in the form of heat. Thermoelectric generators can convert this waste heat into electricity by means of the Seebeck effect. However, the use of thermoelectric generators in practical applications on an industrial scale is limited in part because electrical, thermal, and mechanical bonding contacts between the semiconductor materials and the metal electrodes in current designs are not capable of withstanding thermal-mechanical stress and alloying of the metal-semiconductor interface when exposed to the high temperatures occurring in many real-world applications. Here we demonstrate a concept for thermoelectric generators that can address this issue by replacing the metallization and electrode bonding on the hot side of the device by a p-n junction between the two semiconductor materials, making the device robust against temperature induced failure. In our proof-of-principle demonstration, a p-n junction device made from nanocrystalline silicon is at least comparable in its efficiency and power output to conventional devices of the same material and fabrication process, but with the advantage of sustaining high hot side temperatures and oxidative atmosphere.
Modeling complex dispersed energy and clean water systems for the United States/Mexico border
NASA Astrophysics Data System (ADS)
Herrera, Hugo Francisco Lopez
As world population grows, and its technology evolves, the demand for electricity inexorably increases. Until now most of this electricity has been produced via fossil fuels, non-renewable energy resources that are irreversibly deteriorating our environment. On the economical aspect it does not get any better. Let's not forget market rules, the higher the demand and lower the offer, the higher the price we will have to pay. Oil is an excellent example. Some countries try to solve this situation with Pharaohnic projects, i.e. investing absurd amounts of money in 'green electricity' building monstrous dams to power equally monstrous hydroelectric power plants. The only problem with this is that it is not green at all---it does have an enormous environmental impact---it is extremely complicated and expensive to implement. It is important to point out, that this research project does not try to solve world's thirst for electricity. It is rather aimed to help solve this problematic at a much lower scale---it should be considered as an extremely small step in the right direction. It focuses on satisfying the local electricity needs with renewable, non-contaminating and locally available resources. More concisely, this project focuses on the attainment and use of hydrogen as an alternate energy source in El Paso/Juarez region. Clean technology is nowadays available to produce hydrogen and oxygen, i.e. the photoelectrolysis process. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. In this research, simulation models of hybrid systems were designed and developed. They were capable to compare, predict and evaluate different options for hydrogen generation. On the other hand, with the produced hydrogen from the electrolysis process it was possible to generate electricity through fuel cells. The main objectives of the proposed research were to define how to use the resources for the attainment of hydrogen and distribution of it in El Paso/Juarez region. More precisely, the goals were the conversion of brines and waste-waters to hydrogen via electrolysis, and the generation of electricity through fuel cells. Thereafter, the specific objectives were to (1) design a simulation model for hydrogen generation, (2) design and simulate a model of photovoltaic (PV) array capable to generate the required energy for the process, (3) simulate fuel cells in order to be used as electricity power supply in remote houses, and (4) simulate a complete remote house hybrid system. The results of this research gave us information about the feasibility of high-volume hydrogen generation with the diverse resources of the region. On the other hand, this research has shown the alternatives of local energy generation, and efficiency of a remote house hybrid system located in El Paso/Juarez area. Experiences obtained from this research will also provide information for future investigations in the field of alternate energy sources, in order to get a clean environment through sustainable development.
Modeling of GIC Impacts in Different Time Scales, and Validation with Measurement Data
NASA Astrophysics Data System (ADS)
Shetye, K.; Birchfield, A.; Overbye, T. J.; Gannon, J. L.
2016-12-01
Geomagnetically induced currents (GICs) have mostly been associated with geomagnetic disturbances (GMDs) originating from natural events such as solar coronal mass ejections. There is another, man-made, phenomenon that can induce GICs in the bulk power grid. Detonation of nuclear devices at high altitudes can give rise to electromagnetic pulses (EMPs) that induce electric fields at the earth's surface. EMPs cause three types of waves on different time scales, the slowest of which, E3, can induce GICs similar to the way GMDs do. The key difference between GMDs and EMPs is the rise time of the associated electric field. E3 electric fields are in the msec. to sec. range, whereas GMD electric fields are slower (sec. to min.). Similarly, the power grid and its components also operate and respond to disturbances in various time frames, right from electromagnetic transients (eg. lightning propagation) in the micro second range to steady state power flow ( hours). Hence, different power system component models need to be used to analyze the impacts of GICs caused by GMDs, and EMPs. For instance, for the slower GMD based GICs, a steady-state (static) analysis of the system is sufficient. That is, one does not need to model the dynamic components of a power system, such as the rotating machine of a generator, or generator controls such as exciters, etc. The latter become important in the case of an E3 EMP wave, which falls in the power system transient stability time frame of msec. to sec. This talk will first give an overview of the different time scales and models associated with power system operations, and where GMD and EMPs fit in. This is helpful to develop appropriate system models and test systems for analyzing impacts of GICs from various sources, and developing mitigation measures. Example test systems developed for GMD and EMP analysis, and their key modeling and analysis differences will be presented. After the modeling is discussed, results of validating simulated GICs with GIC measurements from a utility for a recent moderate GMD event will be shown, using NSF Earthscope derived electric fields. The end goal is to validate 1) power system models used for GICs, and 2) ground models to see whether 3D ground models provide better results than the hitherto-used 1D ground models.
Electrical power generation by mechanically modulating electrical double layers.
Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu
2013-01-01
Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.
NASA Astrophysics Data System (ADS)
Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep
2017-04-01
In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-01-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467
NASA Astrophysics Data System (ADS)
Tomsic, Z.; Rajsl, I.; Filipovic, M.
2017-11-01
Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market), and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.
NASA Astrophysics Data System (ADS)
Kressig, A.
2017-12-01
BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per unit of electricity produced across a grid region, companies can measure their water demand from facilities in that region. WRI is now developing a global dataset of grid level water consumption rates and developing a guidance for companies to report water demand across their supply chain and measure their reductions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, David; Holloway, Tracey; Harkey, Monica
We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a fullmore » accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.« less
NASA Technical Reports Server (NTRS)
Schindler, K.; Birn, J.; Hesse, M.
2012-01-01
Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as "U" or "S" shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.
Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong
2018-04-01
A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Lin; Choi, Seokheun
2017-04-01
Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.
Tehachapi Wind Energy Storage Project - Technology Performance Report #3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsky, Naum; O'Neill, Lori
The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing systemmore » capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.« less
NASA Astrophysics Data System (ADS)
Gregori, G.; Reville, B.; Miniati, F.
2015-11-01
The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.
Combined heat and power supply using Carnot engines
NASA Astrophysics Data System (ADS)
Horlock, J. H.
The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.
Thermophotovoltaic potential applications for civilian and industrial use in Japan
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiromi; Yamaguchi, Masafumi
1999-03-01
Investigative research on potential market for TPV power sources in Japan has been focused on how TPV can contribute to energy conservation and environmental protection and harmony. The application needs for TPV were surveyed in comparison with conventional engine or turbine generators and developing power generation technologies such as fuel cells or chemical batteries, etc. The investigation on the performance of commercial generators shows that regarding system efficiency, TPV can compete with conventional generators in the output power class of tens of kW. According to the sales for small scale generators in Japan, most of the generators below 10 kW class are utilized mainly for construction, communication, leisure, and that 10-100 kW class generators are for cogeneration in small buildings. Waste heat recovery in dispersed furnaces is another potential application of compact TPV cells. Exhaust heat from small scale incinerators and industrial furnaces is undesirable to be recorded into electricity due to excessive heat loss of the smaller steam turbine generators. Solar powered TPV is also of our concern as a natural energy use. From the viewpoint of applicability for TPV, portable generators cogeneration systems, and solar power plants were selected for our system consideration. Intermediate report on the feasibility study concerning such TPV systems is given as well as the review of the current status of competing power generation technologies in Japan.
A review on battery thermal management in electric vehicle application
NASA Astrophysics Data System (ADS)
Xia, Guodong; Cao, Lei; Bi, Guanglong
2017-11-01
The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.
Effects of California's Climate Policy in Facilitating CCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Elizabeth
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
Effects of California's Climate Policy in Facilitating CCUS
Burton, Elizabeth
2014-12-31
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
Design and development of hybrid energy generator (photovoltaics) with solar tracker
NASA Astrophysics Data System (ADS)
Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany
2017-03-01
This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.
Investigation of microscale dielectric barrier discharge plasma devices
NASA Astrophysics Data System (ADS)
Zito, Justin C.
This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power consumption with the mass and volume of the actuator design. The small size and of microscale DBD actuators reduces its weight and power requirements, making them attractive for portable or battery-powered applications (e.g., on UAVs).
Preionization Techniques in a kJ-Scale Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea
2016-10-01
A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1980-01-01
Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.
NASA Astrophysics Data System (ADS)
Rogers, J. H.; Frumhoff, P. C.; Averyt, K.; Newmark, R. L.
2012-12-01
In 2011, nearly 90 percent of U.S. electricity came from thermoelectric (steam-producing) power plants that use water for cooling. These water demands can tax rivers and aquifers, threaten fish and wildlife, and spark conflicts between power plants and other water users. Climate change, driven by in large part by emissions from fossil fuel-based electricity generation, is adding to the strain. Higher temperatures raise electricity demand and lower cooling-system efficiency, while drought and changes in precipitation patterns may make freshwater supplies less reliable. Here we report new findings on the impacts, present and projected, of power-plant water use on local water stress across the United States, and its implications for understanding what constitutes "water-smart" energy decision making. This work was carried out under the auspices of the Energy and Water in a Warming World initiative (EW3), a research and outreach collaboration designed to inform and motivate U.S. public awareness and science-based public policy at the energy-water nexus. The research has involved cataloguing the water use characteristics of virtually every U.S. power generator in the nation to develop a robust assessment of the water resource implications of cooling the nation's power plants. By analyzing local water supply and demand conditions across the nation, we identified water basins where current power plant water use appears to contribute strongly to local water supply stress, and where water-intensive electricity choices could substantially exacerbate water stress. We also identified other potential approaches to considering stress, particularly related to water temperature. The research has also involved analyzing the water implications of different electricity pathways in the United States over the next 40 years. We used a high-resolution electricity model to generate a range of electricity mixes, particularly in the context of a carbon budget, and assessed the water implications of the mixes at water-relevant scales. We then examined how the different scenarios fared under changing water conditions, particular in the face of droughts and increases in water temperature. Our findings help enhance understanding within the general public, electricity-sector decision makers, and elected officials, and provide science-based information to inform decisions about new power plants, plant retirements, and cooling technology choices. We discuss the results of outreach to date around these findings, and opportunities to inform and motivate a more sustainable energy, water, and climate future.
Japanese RDF-fired power generation system and fundamental research on RDF combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narukawa, Kimihito; Goto, Hidenori; Chen, Y.
1997-12-31
Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even inmore » small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.« less
The economics and environmental impacts of large-scale wind power in a carbon constrained world
NASA Astrophysics Data System (ADS)
Decarolis, Joseph Frank
Serious climate change mitigation aimed at stabilizing atmospheric concentrations of CO2 will require a radical shift to a decarbonized energy supply. The electric power sector will be a primary target for deep reductions in CO2 emissions because electric power plants are among the largest and most manageable point sources of emissions. With respect to new capacity, wind power is currently one of the most inexpensive ways to produce electricity without CO2 emissions and it may have a significant role to play in a carbon constrained world. Yet most research in the wind industry remains focused on near term issues, while energy system models that focus on century-long time horizons undervalue wind by imposing exogenous limits on growth. This thesis fills a critical gap in the literature by taking a closer look at the cost and environmental impacts of large-scale wind. Estimates of the average cost of wind generation---now roughly 4¢/kWh---do not address the cons arising from the spatial distribution and intermittency of wind. This thesis develops a theoretical framework for assessing the intermittency cost of wind. In addition, an economic characterization of a wind system is provided in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. With somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds ˜1--2¢/kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. This thesis also explores the environmental impacts posed by large-scale wind. Though avian mortality and noise caused controversy in the early years of wind development, improved technology and exhaustive siting assessments have minimized their impact. The aesthetic valuation of wind farms can be improved significantly with better design, siting, construction, and maintenance procedures, but opposition may increase as wind is developed on a large scale. Finally, this thesis summarizes collaborative work utilizing general circulation models to determine whether wind turbines have an impact of climate. The results suggest that the climatic impact is non-negligible at continental scales, but further research is warranted.
Power systems locational marginal pricing in deregulated markets
NASA Astrophysics Data System (ADS)
Wang, Hui-Fung Francis
Since the beginning of the 1990s, the electricity business is transforming from a vertical integrating business to a competitive market operations. The generation, transmission, distribution subsystem of an electricity utility are operated independently as Genco (generation subsystem), Transco (transmission subsystem), and Distco (distribution subsystem). This trend promotes more economical inter- and intra regional transactions to be made by the participating companies and the users of electricity to achieve the intended objectives of deregulation. There are various types of electricity markets that are implemented in the North America in the past few years. However, transmission congestion management becomes a key issue in the electricity market design as more bilateral transactions are traded across long distances competing for scarce transmission resources. It directly alters the traditional concept of energy pricing and impacts the bottom line, revenue and cost of electricity, of both suppliers and buyers. In this research, transmission congestion problem in a deregulated market environment is elucidated by implementing by the Locational Marginal Pricing (LMP) method. With a comprehensive understanding of the LMP method, new mathematical tools will aid electric utilities in exploring new business opportunities are developed and presented in this dissertation. The dissertation focuses on the development of concept of (LMP) forecasting and its implication to the market participants in deregulated market. Specifically, we explore methods of developing fast LMP calculation techniques that are differ from existing LMPs. We also explore and document the usefulness of the proposed LMP in determining electricity pricing of a large scale power system. The developed mathematical tools use of well-known optimization techniques such as linear programming that are support by several flow charts. The fast and practical security constrained unit commitment methods are the integral parts of the LMP algorithms. Different components of optimization techniques, unit commitment, power flow analysis, and matrix manipulations for large scale power systems are integrated and represented by several new flow charts. The LMP concept and processes, mathematical models, and their corresponding algorithms has been implemented to study a small six bus test power system/market and also the real size New York power system/market where the transmission congestion is high and electricity market is deregulated. The simulated results documented in the dissertation are satisfactory and produce very encouraging result when compared to the actual Located Based Marginal Price (LMP) results posted by the New York Independent System Operator (ISO). The further research opportunities inspired by this dissertation are also elaborated.
Micro-Thermoelectric Generation Modules Fabricated with Low-Cost Mechanical Machining Processes
NASA Astrophysics Data System (ADS)
Liu, Dawei; Jin, A. J.; Peng, Wenbo; Li, Qiming; Gao, Hu; Zhu, Lianjun; Li, Fu; Zhu, Zhixiang
2017-05-01
Micro/small-scale thermoelectric generation modules are able to produce continuous, noise-free and reliable electricity power using low temperature differences that widely exist in nature or industry. These advantages bring them great application prospects in the fields of remote monitoring, microelectronics/micro-electromechanical systems (MEMS), medical apparatus and smart management system, which often require a power source free of maintenance and vibration. In this work, a prototypical thermoelectric module (12 mm × 12 mm × 0.8 mm) with 15 pairs of micro-scale thermoelectric legs (0.2 mm in width and 0.6 mm in height for each leg) is fabricated using a low-cost mechanical machining process. In this process, cutting and polishing are the main methods for the preparation of thermoelectric pairs from commercial polycrystalline materials and for the fabrication of electrode patterns. The as-fabricated module is tested for its power generation properties with the hot side heated by an electrical heater and the cold side by cold air. With the heater temperature of 375 K, the thermoelectric potential is about 9.1 mV, the short circuit current is about 14.5 mA, and the maximum output power is about 32.8 μW. The finite element method is applied to analyze the heat transfer of the module during our test. The temperature difference and heat flux are simulated, according to which the output powers at different temperatures are calculated, and the result is relatively consistent compared to the test results.
2D laser-collision induced fluorescence in low-pressure argon discharges
Barnat, E. V.; Weatherford, B. R.
2015-09-25
Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields ( E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 10 9 e cm –3 to 10 12 e cm –3 and reducedmore » electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less
NASA Astrophysics Data System (ADS)
Millstein, D.; Zhai, P.; Menon, S.
2011-12-01
Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.
Integrated engine-generator concept for aircraft electric secondary power
NASA Technical Reports Server (NTRS)
Secunde, R. R.; Macosko, R. P.; Repas, D. S.
1972-01-01
The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.
Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Meg
This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of themore » discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.« less
Comparison of two U.S. power-plant carbon dioxide emissions data sets
Ackerman, K.V.; Sundquist, E.T.
2008-01-01
Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.
Catalytically induced electrokinetics for motors and micropumps.
Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman
2006-11-22
We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.
Ion-driven wind: Aerodynamics, performance limits, and optimization
NASA Astrophysics Data System (ADS)
Rickard, Matthew James Alan
When a strong electric field is generated between a sharp, charged object and a grounded electrode in a gas medium, ions that are generated via a corona discharge near the tip of the sharp object migrate to the electrical ground, setting the neutral hulk gas in motion. The strength of the flow generated from such a process; known as a "corona", "ionic", or "ion-driven" wind, increases with electric field until electrical breakdown is reached. Previous studies have found an upper bound on the velocity of the ion-driven wind, even when a series of electrode stages are aggregated. With the intent of maximizing the gas flow front such devices, this dissertation describes a series of experiments that have been conducted and a numerical model that has been employed. Although typical hardware configurations include a wire parallel to a plate, a wire placed concentrically within a cylinder, or a needle facing a perpendicular plate or mesh, the chosen setup for this study is a needle facing a concentric ring. Using multiple experimental techniques and numerical simulation, velocity profiles have been observed at the ring exit and are sensitive to the design of the mounting hardware. The numerical model predicts the ideal electrode geometry for maximizing flow through a single unit. A modular, multi-staged system has been constructed and, when loaded with an exit nozzle, the exit velocity can be substantially increased. Further, if a small-scale (sub-millimeter) system is created, it is expected that the velocity will increase with multi-staging, even in the absence of an exit nozzle.
Diversity of fuel sources for electricity generation in an evolving U.S. power sector
NASA Astrophysics Data System (ADS)
DiLuccia, Janelle G.
Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.
78 FR 77343 - Small Business Size Standards: Utilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348
78 FR 36277 - Vogtle Electric Generating Plant, Unit 3
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... NUCLEAR REGULATORY COMMISSION [Docket No. 52-025; NRC-2008-0252] Vogtle Electric Generating Plant....01, for the Vogtle Electric Generating Plant, Unit 3. ADDRESSES: Please refer to Docket ID NRC-2008... Generating Plant, Unit 3 [[Page 36278
NASA Astrophysics Data System (ADS)
Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.
1995-01-01
An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.
Generation of scale invariant magnetic fields in bouncing universes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar, E-mail: sriram@physics.iitm.ac.in, E-mail: katmjeet@physics.du.ac.in, E-mail: jain@cp3.dias.sdu.dk
2015-09-01
We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for themore » Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.« less
Evaluating groundwater flow using passive electrical measurements
NASA Astrophysics Data System (ADS)
Voytek, E.; Revil, A.; Singha, K.
2016-12-01
Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.
Laser-pulse shape effects on magnetic field generation in underdense plasmas
NASA Astrophysics Data System (ADS)
Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.
2018-07-01
Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.
Energy from wood biomass: The experience of the Brazilian forest sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, L.; Graca, L.R.; Betters, D.R.
Wood biomass is one of the most significant renewable sources of energy in Brazil. Fuelwood and charcoal play a very important role not only for household energy consumption but also for the cement, iron and steel industries. Wood is used as an energy source by the pulp and paper, composite board and other industries of the country, mainly for steam and electricity generation. Ethanol, lignin-based coke and methanol from wood were produced at experimental units in Brazil but were not implemented on a commercial scale. Currently, a new experimental plant using a technology developed in the US is being builtmore » in the state of Bahia to generate electricity from Eucalyptus. This technology is a Biomass Integrated Gasification/Gas Turbine process which is expected to make the use of wood biomass economically feasible for electricity generation. Forest plantations are the main source of wood biomass for energy consumption by the Brazilian industrial sector. Fiscal incentives in the 1960s helped the country to begin a massive reforestation program mainly using Eucalyptus and Pinus species. A native species, bracatinga (Mimosa scabrella) has also been used extensively for wood energy plantations in southern Brazil. Technical, economic, social and environmental impacts of these plantation forests are discussed along with a forecast of the future wood energy utilization in Brazil.« less
Sumiyoshi, Tomiki; Higuchi, Yuko; Kawasaki, Yasuhiro; Matsui, Mie; Kato, Kanade; Yuuki, Hiromi; Arai, Hirofumi; Kurachi, Masayoshi
2006-09-30
The aim of this study was to evaluate the change in the distribution for the P300 generator, as demonstrated by Low Resolution Electromagnetic Tomography (LORETA) images, in patients with schizophrenia during treatment with olanzapine. Data were obtained from five right-handed patients treated with olanzapine for 6 months. Five right-handed normal volunteers also participated in the study. LORETA images of P300 in response to the odd-ball auditory discrimination task revealed a left dominant lateralized high current source density in the temporal lobes in all control subjects. Although this pattern of brain activation was not evident in patients at baseline, 6-month treatment with olanzapine recovered the left dominant pattern of the electrical density in the temporal regions, such as the Heschl gyrus, and improved performance on a test of verbal learning and memory. Scores of the Brief Psychiatric Rating Scale and the Global Assessment of Functioning Scale also improved during treatment. These results provide the first suggestion that enhancement of verbal memory and the functional status by treatment with some antipsychotic drugs may be associated with modulations of the anatomical configuration of electrical brain activity in patients with schizophrenia.
Methods and apparatus of analyzing electrical power grid data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.
Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less
Realizing the geothermal electricity potential—water use and consequences
NASA Astrophysics Data System (ADS)
Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia
2011-07-01
Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.
Integrated nanoscale tools for interrogating living cells
NASA Astrophysics Data System (ADS)
Jorgolli, Marsela
The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waliyo
Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less
Electrical switching of an antiferromagnet
NASA Astrophysics Data System (ADS)
Jungwirth, Tomas
Louis Néel pointed out in his Nobel lecture that while abundant and interesting from theoretical viewpoint, antiferromagnets did not seem to have any applications. Indeed, the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization make antiferromagnets hard to control by tools common in ferromagnets. Strong coupling would be achieved if the externally generated field had a sign alternating on the scale of a lattice constant at which moments alternate in AFMs. However, generating such a field has been regarded unfeasible, hindering the research and applications of these abundant magnetic materials. We have recently predicted that relativistic quantum mechanics may offer staggered current induced fields with the sign alternating within the magnetic unit cell which can facilitate a reversible switching of an antiferromagnet by applying electrical currents with comparable efficiency to ferromagnets. Among suitable materials is a high Néel temperature antiferromagnet, tetragonal-phase CuMnAs, which we have recently synthesized in the form of single-crystal epilayers structurally compatible with common semiconductors. We demonstrate electrical writing and read-out, combined with the insensitivity to magnetic field perturbations, in a proof-of-concept antiferromagnetic memory device. We acknowledge support from European Research Council Advanced Grant No. 268066.
Environmentally sustainable production of food, feed and fuel from natural resources in the tropics.
Preston, T Reg
2009-08-01
Responding to the challenges posed by global warming, peak oil and biofuels will require a paradigm shift in the practice of agriculture and in the role of live stock within the farming system. Farming systems should aim at maximizing plant biomass production from locally available diversified resources, processing of the biomass on farm to provide food, feed and energy and recycling of all waste materials. The approach that is the subject of this paper is that the generation of electricity can be a by-product of food/feed production. The concept is the fractionation of biomass into inedible cell wall material that can be converted to an inflammable gas by gasification, the gas in turn being the source of fuel for internal combustion engines driving electrical generators. The cell contents and related structures such as tree leaves are used as human food or animal feed. As well as providing food and feed the model is highly appropriate for decentralized small scale production of electricity in rural areas. It also offers opportunities for sequestration of carbon in the form of biochar the solid residue remaining after gasification of the biomass.
Study of Charge Build Up in UCN Storage Cell
NASA Astrophysics Data System (ADS)
Broering, Mark; Abney, Josh; Swank, Christopher; Filippone, Bradley; Yao, Weijun; Korsch, Wolfgang
2017-09-01
The neutron EDM collaboration at the Spallation Neutron Source(ORNL) is using ultra-cold neutrons in superfluid helium to improve the nEDM limit by about two orders of magnitude. These neutrons will be stored in target cells located in a strong, stable electric field. Local radiation will generate charged particles which may build up on the target cell walls reducing field strength over time. The field changes need to be kept below 1%, making it necessary to study this cell charging behavior, determine its effect on the experiment and find ways to mitigate this. In order to study this cell charging effect, a compact test setup was designed. Using this scaled down model, charged particles are generated by a 137Cs source and the electric field is monitored via the electo-optic Kerr effect. Liquid nitrogen has a much stronger response to electric fields than helium, making it an ideal candidate for first tests. Cell charging effects have been observed in liquid nitrogen. These results along with the experimental technique and progress toward a superfluid helium measurement will also be presented. This research is supported by DOE Grants: DE-FG02-99ER41101, DE-AC05-00OR22725.
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi
2016-06-08
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.
Batteries for electric and hybrid-electric vehicles.
Cairns, Elton J; Albertus, Paul
2010-01-01
Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.
Observations of ionospheric electric fields above atmospheric weather systems
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.
1994-01-01
We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.
NASA Astrophysics Data System (ADS)
Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.
2017-12-01
Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may dominate at regional level.
2016-01-01
The Electric Power Annual 2015 presents 11 years (2005-15) of national-level data on electricity generating capacity, electricity generation and useful thermal output, fuel receipts, consumption, and emissions.
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-07-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
Nanomaterials for renewable energy production and storage.
Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S
2012-12-07
Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.
Liu, Gang; Bao, Jie
2017-11-01
This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.
1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, ...
1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, LOOKING SOUTH; IN THE CENTER, BEHIND THE STACK IS THE GENERATING STATION BUILT IN 1959; THE TALL METAL-CLAD BUILDING CONTAINS A COAL BUNKER, COAL PULVERIZER, FURNACE, BOILER, SUPER-HEATER, STEAM PIPES, AND HOT-AIR DUCTS. TO THE RIGHT OF THIS 1959 GENERATING STATION IS THE ORIGINAL POWERHOUSE. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL
Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad
2017-05-01
Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mesoscale Effective Property Simulations Incorporating Conductive Binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.
Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less
Mesoscale Effective Property Simulations Incorporating Conductive Binder
Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...
2017-07-26
Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less
NASA Astrophysics Data System (ADS)
Lin, Yung-Hsu
The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... operating the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity... the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity on... generates electricity on Maui. The Service listed the Hawaiian petrel as endangered on March 11, 1967 (32 FR...
Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea
2015-03-01
The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.
1994-06-01
Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system hasmore » been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.« less
The relativistic feedback discharge model of terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, Joseph R.
2012-02-01
As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.
NREL Updates Baseline Cost and Performance Data for Electricity Generation
Technologies | News | NREL Updates Baseline Cost and Performance Data for Electricity Generation Technologies News Release: NREL Updates Baseline Cost and Performance Data for Electricity generation technology cost and performance data used to support and inform electric sector analysis in the
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...
18 CFR 801.12 - Electric power generation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...
18 CFR 801.12 - Electric power generation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...
18 CFR 801.12 - Electric power generation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...
18 CFR 801.12 - Electric power generation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...
18 CFR 801.12 - Electric power generation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...
Analyzing interaction of electricity markets and environmental policies using equilibrium models
NASA Astrophysics Data System (ADS)
Chen, Yihsu
Around the world, the electric sector is evolving from a system of regulated vertically-integrated monopolies to a complex system of competing generation companies, unregulated traders, and regulated transmission and distribution. One emerging challenge faced by environmental policymakers and electricity industry is the interaction between electricity markets and environmental policies. The objective of this dissertation is to examine these interactions using large-scale computational models of electricity markets based on noncooperative game theory. In particular, this dissertation is comprised of four essays. The first essay studies the interaction of the United States Environmental Protection Agency NOx Budget Program and the mid-Atlantic electricity market. This research quantifies emissions, economic inefficiencies, price distortions, and overall social welfare under various market assumptions using engineering-economic models. The models calculate equilibria for imperfectly competitive markets---Cournot oligopoly---considering the actual landscape of power plants and transmission lines, and including the possibility of market power in the NOx allowances market. The second essay extends the results from first essay and models imperfectly competitive markets using a Stackelberg or leader-follower formulation. A leader in the power and NO x markets is assumed to have perfect foresight of its rivals' responses. The rivals' best response functions are explicitly embedded in the leader's constraints. The solutions quantify the extent to which a leader in the markets can extract economic rents on the expense of its followers. The third essay investigates the effect of implementing the European Union (EU) CO2 Emissions Trading Scheme (ETS) on wholesale power prices in the Western European electricity market. This research uses theoretical and computational modeling approaches to quantify the degree to which CO2 costs were passed on to power prices, and quantifies the windfall profits earned by generators under the current EU allowances allocation method. The results show that the generators in EU could earn substantial windfall profits from two sources: free emissions allowances and increased gross margin among inframarginal generating units. The fourth essay examines effect of climate change on future pollution emissions from regional electricity markets, accounting for how climate influences demand profiles and generation efficiencies. This research illustrates that even when seasonal/annual pollution emissions are limited by regulatory caps, significant increases in emissions during high-demand hours could potentially lead to an increase in the occurrences of acute ozone episodes, which worsen public health during summer months. The major contributions of this dissertation are two fold. First, the methodological and computational framework developed in the research provides a basis for understanding complex interactions among several oligopolistic markets and climate policies. Second, the outcomes of the research reinforce the need for careful monitoring of market interactions and a thorough examination of the design of allowances and power markets.
Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae
2016-09-01
The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle pollution is challenging when fossil-fuel-based electricity production is increasing. We show that an air quality forecasting system based on a photochemical model can be utilized to efficiently estimate PM2.5 contributions from and health impacts of domestic power plants. We derived PM2.5 concentrations per unit amount of electricity production from existing fossil-fuel power plants in South Korea. We assessed the health impacts of existing fossil-fuel power plants and the PM2.5 concentrations per unit electricity production to quantify the significance of existing and future fossil-fuel power plants with respect to the planned PM2.5 reduction target.
Potential for deserts to supply reliable renewable electric power
NASA Astrophysics Data System (ADS)
Labordena, Mercè; Lilliestam, Johan
2015-04-01
To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify transmission corridors from the generation areas to the demand centers in the target regions, using a GIS-based transmission algorithm that minimizes economic, social and environmental costs. Third, we use the multi-scale energy system model Calliope to specify the optimal configuration and operation of the CSP fleet to reliably follow the demand every hour of the year in the target regions, and to calculate the levelized cost of doing so, including both generation and transmission costs. The final output will show whether and how much reliable renewable electricity can be supplied from CSP fleets in deserts to demand centers in adjacent regions, at which costs this is possible, as well as a detailed description of the routes of HVDC transmission links. We expect to find that the potential for deserts to supply reliable CSP to the regions in focus is very large in all cases, despite the long distances.
A Framework for Assessing the Commercialization of Photovoltaic Power Generation
NASA Astrophysics Data System (ADS)
Yaqub, Mahdi
An effective framework does not currently exist with which to assess the viability of commercializing photovoltaic (PV) power generation in the US energy market. Adopting a new technology, such as utility-scale PV power generation, requires a commercialization assessment framework. The framework developed here assesses the economic viability of a set of alternatives of identified factors. Economic viability focuses on simulating the levelized cost of electricity (LCOE) as a key performance measure to realize `grid parity', or the equivalence between the PV electricity prices and grid electricity prices for established energy technologies. Simulation results confirm that `grid parity' could be achieved without the current federal 30% investment tax credit (ITC) via a combination of three strategies: 1) using economies of scale to reduce the LCOE by 30% from its current value of 3.6 cents/kWh to 2.5 cents/kWh, 2) employing a longer power purchase agreement (PPA) over 30 years at a 4% interest rate, and 3) improving by 15% the "capacity factor", which is the ratio of the total annual generated energy to the full potential annual generation when the utility is continuously operating at its rated output. The lower than commercial-market interest rate of 4% that is needed to realize `grid parity' is intended to replace the current federal 30% ITC subsidy, which does not have a cash inflow to offset the outflow of subsidy payments. The 4% interest rate can be realized through two proposed finance plans: The first plan involves the implementation of carbon fees on polluting power plants to produce the capital needed to lower the utility PPA loan term interest rate from its current 7% to the necessary 4% rate. The second plan entails a proposed public debt finance plan. Under this plan, the US Government leverages its guarantee power to issue bonds and uses the proceeds to finance the construction and operation of PV power plants with PPA loan with a 4% interest rate for a 30-year term instead of the current 15-year average term. Such government-financed PV utilities will sell electricity to the US Government at a lower than retail electricity price as compensation for a favorable interest rate (4% instead of 7%) and a longer PPA term (30 years instead of 15). The life-cycle cash flow simulation of this proposed financial plan ascertains a 20% reduction in PV LCOE. Such cost reduction could be applied as credit to the US government electricity bills with 20% saving. The government could also realize a second compensation from the replaced 30% ITC subsidy because such expenditures would no longer be needed. A comparison between the engineering economy cash flow simulation results of the current utility power PPA practice and the proposed financial plan suggests that the proposed plan would be viable. The simulation results also show that the proposed public debt financial plan does not reach grid parity on its own; rather, it needs to be an integral part of the PV commercialization framework developed in this dissertation. The outcome of this research demonstrates that the effective implementation of the developed framework could facilitate the realization of a commercially successful PV power generation industry.
Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices
NASA Technical Reports Server (NTRS)
Khusid, Boris; Acrivos, Andreas
2004-01-01
Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.
A Novel SPM Probe with MOS Transistor and Nano Tip for Surface Electric Properties
NASA Astrophysics Data System (ADS)
Lee, Sang H.; Lim, Geunbae; Moon, Wonkyu
2007-03-01
In this paper, the novel SPM (Scanning Probe Microscope) probe with the planar MOS (Metal-Oxide-Semiconductor) transistor and the FIB (Focused Ion Beam) nano tip is fabricated for the surface electric properties. Since the MOS transistor has high working frequency, the device can overcome the speed limitation of EFM (Electrostatic Force Microscope) system. The sensitivity is also high, and no bulky device such as lock-in-amplifier is required. Moreover, the nano tip with nanometer scale tip radius is fabricated with FIB system, and the resolution can be improved. Therefore, the probe can rapidly detect small localized electric properties with high sensitivity and high resolution. The MOS transistor is fabricated with the common semiconductor process, and the nano tip is grown by the FIB system. The planar structure of the MOS transistor makes the fabrication process easier, which is the advantage on the commercial production. Various electric signals are applied using the function generator, and the measured data represent the well-established electric properties of the device. It shows the promising aspect of the local surface electric property detection with high sensitivity and high resolution.
NASA Astrophysics Data System (ADS)
Pham, V.-N.; Boyer, D.; Chouliaras, G.; Savvaidis, A.; Stavrakakis, G.; Le Mouël, J.-L.
2002-04-01
Anomalous transient electric signals (ATESs) in the ultra low frequency (ULF) band have been often observed during magnetotelluric (MT) investigations [Nature 319 (1986) 310; Phys. Earth Planet. Int. 114 (1999) 141; Geophys. J. Int. 142 (2000) 948], but their origin was unknown until now. They have the same characteristics as the so-called seismic electric signals (SES) claimed to be earthquake precursors by the VAN group (e.g. [Tectonophysics 110 (1984) 73] and later works by this group). Our analysis suggests that the so-called SES could be of anthropic origin. Following the devastating 7 September 1999 Athens earthquake, the VAN group claimed that a SES had been recorded at LAM station (Lamia, central Greece) some days prior to the main shock and that a second SES, which might correspond to an impending even larger earthquake, had been observed after the main shock. In the 2 years after the Athens main shock, no subsequent large earthquakes have occurred near Athens. We conducted a campaign of measurement in the Lamia region in May and June 2001. The results show that ATESs, which look like SES, have several different sources: pump-stations for ground-water, high power electric lines, and factories located to the SE of Lamia city. The ATESs can be generated by two electrochemical mechanisms of metallic electrode polarization: the "galvanic cell" and the "ac electrolytic cell" which are studied by simulated field experiments and discussed in detail in Appendix A. These two mechanisms can occur over a wide range of length scales in the field. Any isolation failure in buried metallic conductors, such as electrical and telecommunication networks, oil, water and gas pipes, railways, high power electric lines, factories and so on, can produce a galvanic cell or an ac electrolytic cell, or both, which could generate, under some circumstances, an "overvoltage", the ATES. Finally, the absence of a magnetic signal has been observed during ATES and does not constitute a firm criterion for SES [Acta Geophys. Pol. 44 (1996b) 301]. Thus, great care must be taken when claiming the existence of electric precursors of seismic or volcanic events.
Hiller, Daniel; López-Vidrier, Julian; Gutsch, Sebastian; Zacharias, Margit; Nomoto, Keita; König, Dirk
2017-04-13
Phosphorus doping of silicon nanostructures is a non-trivial task due to problems with confinement, self-purification and statistics of small numbers. Although P-atoms incorporated in Si nanostructures influence their optical and electrical properties, the existence of free majority carriers, as required to control electronic properties, is controversial. Here, we correlate structural, optical and electrical results of size-controlled, P-incorporating Si nanocrystals with simulation data to address the role of interstitial and substitutional P-atoms. Whereas atom probe tomography proves that P-incorporation scales with nanocrystal size, luminescence spectra indicate that even nanocrystals with several P-atoms still emit light. Current-voltage measurements demonstrate that majority carriers must be generated by field emission to overcome the P-ionization energies of 110-260 meV. In absence of electrical fields at room temperature, no significant free carrier densities are present, which disproves the concept of luminescence quenching via Auger recombination. Instead, we propose non-radiative recombination via interstitial-P induced states as quenching mechanism. Since only substitutional-P provides occupied states near the Si conduction band, we use the electrically measured carrier density to derive formation energies of ~400 meV for P-atoms on Si nanocrystal lattice sites. Based on these results we conclude that ultrasmall Si nanovolumes cannot be efficiently P-doped.
Powertrain system for a hybrid electric vehicle
Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.
Powertrain system for a hybrid electric vehicle
Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.
Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whyatt, Greg A.; Chick, Lawrence A.
This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electricalmore » generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 7878 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.« less