Sample records for scale electronic devices

  1. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  2. Molecular and nanoscale materials and devices in electronics.

    PubMed

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  3. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  4. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work. PMID:20396650

  5. Preface: Special Topic on Frontiers in Molecular Scale Electronics

    NASA Astrophysics Data System (ADS)

    Evers, Ferdinand; Venkataraman, Latha

    2017-03-01

    The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.

  6. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  7. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  8. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    DOEpatents

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  9. Issues of nanoelectronics: a possible roadmap.

    PubMed

    Wang, Kang L

    2002-01-01

    In this review, we will discuss a possible roadmap in scaling a nanoelectronic device from today's CMOS technology to the ultimate limit when the device fails. In other words, at the limit, CMOS will have a severe short channel effect, significant power dissipation in its quiescent (standby) state, and problems related to other essential characteristics. Efforts to use structures such as the double gate, vertical surround gate, and SOI to improve the gate control have continually been made. Other types of structures using SiGe source/drain, asymmetric Schottky source/drain, and the like will be investigated as viable structures to achieve ultimate CMOS. In reaching its scaling limit, tunneling will be an issue for CMOS. The tunneling current through the gate oxide and between the source and drain will limit the device operation. When tunneling becomes significant, circuits may incorporate tunneling devices with CMOS to further increase the functionality per device count. We will discuss both the top-down and bottom-up approaches in attaining the nanometer scale and eventually the atomic scale. Self-assembly is used as a bottom-up approach. The state of the art is reviewed, and the challenges of the multiple-step processing in using the self-assembly approach are outlined. Another facet of the scaling trend is to decrease the number of electrons in devices, ultimately leading to single electrons. If the size of a single-electron device is scaled in such a way that the Coulomb self-energy is higher than the thermal energy (at room temperature), a single-electron device will be able to operate at room temperature. In principle, the speed of the device will be fast as long as the capacitance of the load is also scaled accordingly. The single-electron device will have a small drive current, and thus the load capacitance, including those of interconnects and fanouts, must be small to achieve a reasonable speed. However, because the increase in the density (and/or functionality) of integrated circuits is the principal driver, the wiring or interconnects will increase and become the bottleneck for the design of future high-density and high-functionality circuits, particularly for single-electron devices. Furthermore, the massive interconnects needed in the architecture used today will result in an increase in load capacitance. Thus for single-electron device circuits, it is critical to have minimal interconnect loads. And new types of architectures with minimal numbers of global interconnects will be needed. Cellular automata, which need only nearest-neighbor interconnects, are discussed as a plausible example. Other architectures such as neural networks are also possible. Examples of signal processing using cellular automata are discussed. Quantum computing and information processing are based on quantum mechanical descriptions of individual particles correlated among each other. A quantum bit or qubit is described as a linear superposition of the wave functions of a two-state system, for example, the spin of a particle. With the interaction of two qubits, they are connected in a "wireless fashion" using wave functions via quantum mechanical interaction, referred to as entanglement. The interconnection by the nonlocality of wave functions affords a massive parallel nature for computing or so-called quantum parallelism. We will describe the potential and solid-state implementations of quantum computing and information, using electron spin and/or nuclear spin in Si and Ge. Group IV elements have a long coherent time and other advantages. The example of using SiGe for g factor engineering will be described.

  10. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  11. Multi-scale predictive modeling of nano-material and realistic electron devices

    NASA Astrophysics Data System (ADS)

    Palaria, Amritanshu

    Among the challenges faced in further miniaturization of electronic devices, heavy influence of the detailed atomic configuration of the material(s) involved, which often differs significantly from that of the bulk material(s), is prominent. Device design has therefore become highly interrelated with material engineering at the atomic level. This thesis aims at outlining, with examples, a multi-scale simulation procedure that allows one to integrate material and device aspects of nano-electronic design to predict behavior of novel devices with novel material. This is followed in four parts: (1) An approach that combines a higher time scale reactive force field analysis with density functional theory to predict structure of new material is demonstrated for the first time for nanowires. Novel stable structures for very small diameter silicon nanowires are predicted. (2) Density functional theory is used to show that the new nanowire structures derived in 1 above have properties different from diamond core wires even though the surface bonds in some may be similar to the surface of bulk silicon. (3) Electronic structure of relatively large-scale germanium sections of realistically strained Si/strained Ge/ strained Si nanowire heterostructures is computed using empirical tight binding and it is shown that the average non-homogeneous strain in these structures drives their interesting non-conventional electronic characteristics such as hole effective masses which decrease as the wire cross-section is reduced. (4) It is shown that tight binding, though empirical in nature, is not necessarily limited to the material and atomic structure for which the parameters have been empirically derived, but that simple changes may adapt the derived parameters to new bond environments. Si (100) surface electronic structure is obtained from bulk Si parameters.

  12. Evaluation of a Silicon 90Sr Betavoltaic Power Source.

    PubMed

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  13. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    PubMed Central

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-01-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521

  14. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    NASA Astrophysics Data System (ADS)

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  15. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  16. Inverted organic electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Small, Cephas E.

    The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.

  17. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    NASA Astrophysics Data System (ADS)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.

  18. Sketched oxide single-electron transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy

    2011-06-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  19. Photoemission-based microelectronic devices

    PubMed Central

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-01-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946

  20. Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems

    NASA Astrophysics Data System (ADS)

    Babaei, Saman

    This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.

  1. Sketched Oxide Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei

    2012-02-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  2. Experimental investigation of 4 K pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Gao, J. L.; Matsubara, Y.

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching time. Nowadays it offers small losses, high speed and the potential for large scale integration and is superior to semiconducting devices in many ways — apart from the need for cooling by liquid helium for devices based on classical superconductors like niobium, or cooling by liquid nitrogen or cryocoolers (40K to 77K) for high-T c superconductors like YBa 2Cu 3O 7. This article gives a short overview over the current state of the art on typical devices out of the main application areas of superconducting electronics.

  3. Wafer-Scale Integration of Graphene-based Electronic, Optoelectronic and Electroacoustic Devices

    PubMed Central

    Tian, He; Yang, Yi; Xie, Dan; Cui, Ya-Long; Mi, Wen-Tian; Zhang, Yuegang; Ren, Tian-Ling

    2014-01-01

    In virtue of its superior properties, the graphene-based device has enormous potential to be a supplement or an alternative to the conventional silicon-based device in varies applications. However, the functionality of the graphene devices is still limited due to the restriction of the high cost, the low efficiency and the low quality of the graphene growth and patterning techniques. We proposed a simple one-step laser scribing fabrication method to integrate wafer-scale high-performance graphene-based in-plane transistors, photodetectors, and loudspeakers. The in-plane graphene transistors have a large on/off ratio up to 5.34. And the graphene photodetector arrays were achieved with photo responsivity as high as 0.32 A/W. The graphene loudspeakers realize wide-band sound generation from 1 to 50 kHz. These results demonstrated that the laser scribed graphene could be used for wafer-scale integration of a variety of graphene-based electronic, optoelectronic and electroacoustic devices. PMID:24398542

  4. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  5. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazawa, K.; Shakouri, A.

    2016-07-25

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The powermore » generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.« less

  6. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.

    PubMed

    Long, Yun-Ze; Yu, Miao; Sun, Bin; Gu, Chang-Zhi; Fan, Zhiyong

    2012-06-21

    Semiconducting inorganic nanowires (NWs), nanotubes and nanofibers have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics, chemical/biological/optical sensing, and energy harvesting, storage and conversion, etc. Besides the top-down approaches such as conventional lithography technologies, nanowires are commonly grown by the bottom-up approaches such as solution growth, template-guided synthesis, and vapor-liquid-solid process at a relatively low cost. Superior performance has been demonstrated using nanowires devices. However, most of the nanowire devices are limited to the demonstration of single devices, an initial step toward nanoelectronic circuits, not adequate for production on a large scale at low cost. Controlled and uniform assembly of nanowires with high scalability is still one of the major bottleneck challenges towards the materials and device integration for electronics. In this review, we aim to present recent progress toward nanowire device assembly technologies, including flow-assisted alignment, Langmuir-Blodgett assembly, bubble-blown technique, electric/magnetic- field-directed assembly, contact/roll printing, planar growth, bridging method, and electrospinning, etc. And their applications in high-performance, flexible electronics, sensors, photovoltaics, bioelectronic interfaces and nano-resonators are also presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, Scot

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  8. Electronics from the Bottom up: Strategies for Teaching Nanoelectronics at the Undergraduate Level

    ERIC Educational Resources Information Center

    Vaidyanathan, M.

    2011-01-01

    Nanoelectronics is an emerging area of electrical and computer engineering that deals with the current-voltage behavior of atomic-scale electronic devices. As the trend toward ever smaller devices continues, there is a need to update traditional undergraduate curricula to introduce electrical engineers to the fundamentals of the field. These…

  9. Nanometric holograms based on a topological insulator material.

    PubMed

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  10. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  11. Ultrafast and nanoscale diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lau, Y. Y.

    2016-10-01

    Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.

  12. Self-correcting electronically scanned pressure sensor

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  13. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  14. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions.

    PubMed

    Barrett, N; Gottlob, D M; Mathieu, C; Lubin, C; Passicousset, J; Renault, O; Martinez, E

    2016-05-01

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  15. Nanometric holograms based on a topological insulator material

    PubMed Central

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-01-01

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security. PMID:28516906

  16. Users Guide on Scaled CMOS Reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    White, Mark; Cooper, Mark; Johnston, Allan

    2011-01-01

    Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.

  17. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  18. Understanding the scaling of electron kinetics in the transition from collisional to collisionless conditions in microscale gas discharges

    NASA Astrophysics Data System (ADS)

    Tan, Xi; Go, David B.

    2018-02-01

    When gas discharge and plasma devices shrink to the microscale, the electrode distance in the device approaches the mean free path of electrons and they experience few collisions. As microscale gas discharge and plasma devices become more prevalent, the behavior of discharges at these collisionless and near-collisionless conditions need to be understood. In conditions where the characteristic length d is much greater than the mean free path λ (i.e., macroscopic conditions), electron energy distributions (EEDs) and rate coefficients scale with the reduced electric field E/p. However, when d is comparable with or much lower than λ, this E/p scaling breaks. In this work, particle-in-cell/Monte Carlo collision simulations are used to explore the behavior of the EED and subsequent reaction rate coefficients in microscale field emission-driven Townsend discharges for both an atomic (argon) and a molecular (hydrogen) gas. To understand the behavior, a pseudo-analytical model is developed for the spatially integrated EED and rate coefficients in the collisional to collisionless transition regime based on the weighted sum of a fully collisional, two-temperature Maxwellian EED and the ballistic EED. The theory helps clarify the relative contribution of ballistic electrons in these extreme conditions and can be used to more accurately predict when macroscopic E/p scaling fails at the microscale.

  19. Fundamental Scaling Laws in Nanophotonics

    PubMed Central

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159

  20. Fundamental Scaling Laws in Nanophotonics.

    PubMed

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  1. Fundamental Scaling Laws in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  2. Electrospinning for nano- to mesoscale photonic structures

    NASA Astrophysics Data System (ADS)

    Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.

    2017-08-01

    The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this process can be expected to grow rapidly and provide an alternative to traditional resource-intensive fabrication techniques.

  3. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  4. Nonlinear Ballistic Transport in an Atomically Thin Material.

    PubMed

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  5. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  6. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  7. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  8. Flexible Organic Electronics for Use in Neural Sensing

    PubMed Central

    Bink, Hank; Lai, Yuming; Saudari, Sangameshwar R.; Helfer, Brian; Viventi, Jonathan; Van der Spiegel, Jan; Litt, Brian; Kagan, Cherie

    2016-01-01

    Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires. Active electrode arrays have been demonstrated using flexible, inorganic silicon transistors. However, these approaches may be limited in their ability to be cost-effectively scaled to large array sizes (8×8 cm). Here we show amplifiers built using flexible organic transistors with sufficient performance for neural signal recording. We also demonstrate a pathway for a fully integrated, amplified and multiplexed electrode array built from these devices. PMID:22255558

  9. Advanced Electronic Structure Calculations For Nanoelectronics Using Finite Element Bases and Effective Mass Theory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, John King; Nielsen, Erik; Baczewski, Andrew David

    This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.

  10. Atomically Thin Femtojoule Memristive Device

    DOE PAGES

    Zhao, Huan; Dong, Zhipeng; Tian, He; ...

    2017-10-25

    The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical toward reducing the operating current, voltage, and energy consumption in filamentary-type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on-state current and the switching voltage. In this paper, the formation of conductive filaments in a material medium with sub-nanometer thickness formed through the oxidation of atomically thin two-dimensionalmore » boron nitride is studied. The resulting memristive device exhibits sub-nanometer filamentary switching with sub-pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, current switching characteristics are observed that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. Finally, these ultralow energy devices are promising for realizing femtojoule and sub-femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultralow power operation.« less

  11. Progress Report for the Joint Services Electronics Program

    DTIC Science & Technology

    1991-06-30

    AIGaAs MODFET layers. Both wet etching and reactive ion etching have been used to fabricate the channels. The CAIBE method will also be investigated in...potential for fabricating nanometer scale device structures through surface modification of various types. Using this JSEP research as a foundation...Kerkhoven, "Calculation of velocity overshoot in submicron devices using an augmented drift-diffusion model," Solid-State Electron. (to appear). (JSEP/NSF

  12. HED-TIE: A wafer-scale approach for fabricating hybrid electronic devices with trench isolated electrodes

    NASA Astrophysics Data System (ADS)

    Banerjee, Sreetama; Bülz, Daniel; Solonenko, Dmytro; Reuter, Danny; Deibel, Carsten; Hiller, Karla; Zahn, Dietrich R. T.; Salvan, Georgeta

    2017-05-01

    Organic-inorganic hybrid electronic devices (HEDs) offer opportunities for functionalities that are not easily obtainable with either organic or inorganic materials individually. In the strive for down-scaling the channel length in planar geometry HEDs, the best results were achieved with electron beam lithography or nanoimprint lithography. Their application on the wafer level is, however, cost intensive and time consuming. Here, we propose trench isolated electrode (TIE) technology as a fast, cost effective, wafer-level approach for the fabrication of planar HEDs with electrode gaps in the range of 100 nm. We demonstrate that the formation of the organic channel can be realized by deposition from solution as well as by the thermal evaporation of organic molecules. To underline one key feature of planar HED-TIEs, namely full accessibility of the active area of the devices by external stimuli such as light, 6,13-bis (triisopropylsilylethynyl) (TIPS)-pentacene/Au HED-TIEs are successfully tested for possible application as hybrid photodetectors in the visible spectral range.

  13. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics.

    PubMed

    Lee, Kang Hyuck; Shin, Hyeon-Jin; Lee, Jinyeong; Lee, In-yeal; Kim, Gil-Ho; Choi, Jae-Young; Kim, Sang-Woo

    2012-02-08

    Hexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (CVD) process by controlling the surface morphologies of the copper (Cu) catalysts. It was found that morphology control of the Cu foil is much critical for the formation of the pure h-BN nanosheets as well as the improvement of their crystallinity. For the first time, we demonstrate the performance enhancement of CVD-based graphene devices with large-scale h-BN nanosheets. The mobility of the graphene device on the h-BN nanosheets was increased 3 times compared to that without the h-BN nanosheets. The on-off ratio of the drain current is 2 times higher than that of the graphene device without h-BN. This work suggests that high-quality h-BN nanosheets based on CVD are very promising for high-performance large-area graphene electronics. © 2012 American Chemical Society

  14. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    PubMed

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  15. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  16. Imaging interfacial electrical transport in graphene–MoS{sub 2} heterostructures with electron-beam-induced-currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E. R., E-mail: ewhite@physics.ucla.edu; Kerelsky, Alexander; Hubbard, William A.

    2015-11-30

    Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS{sub 2} heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrentmore » collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.« less

  17. High power beta electron device - Beyond betavoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, William M.; Gentile, Charles A.

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  18. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  19. High power beta electron device - Beyond betavoltaics

    DOE PAGES

    Ayers, William M.; Gentile, Charles A.

    2017-11-10

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  20. High power beta electron device - Beyond betavoltaics.

    PubMed

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  1. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  2. A General Method for the Chemical Synthesis of Large-Scale, Seamless Transition Metal Dichalcogenide Electronics.

    PubMed

    Li, Li; Guo, Yichuan; Sun, Yuping; Yang, Long; Qin, Liang; Guan, Shouliang; Wang, Jinfen; Qiu, Xiaohui; Li, Hongbian; Shang, Yuanyuan; Fang, Ying

    2018-03-01

    The capability to directly build atomically thin transition metal dichalcogenide (TMD) devices by chemical synthesis offers important opportunities to achieve large-scale electronics and optoelectronics with seamless interfaces. Here, a general approach for the chemical synthesis of a variety of TMD (e.g., MoS 2 , WS 2 , and MoSe 2 ) device arrays over large areas is reported. During chemical vapor deposition, semiconducting TMD channels and metallic TMD/carbon nanotube (CNT) hybrid electrodes are simultaneously formed on CNT-patterned substrate, and then coalesce into seamless devices. Chemically synthesized TMD devices exhibit attractive electrical and mechanical properties. It is demonstrated that chemically synthesized MoS 2 -MoS 2 /CNT devices have Ohmic contacts between MoS 2 /CNT hybrid electrodes and MoS 2 channels. In addition, MoS 2 -MoS 2 /CNT devices show greatly enhanced mechanical stability and photoresponsivity compared with conventional gold-contacted devices, which makes them suitable for flexible optoelectronics. Accordingly, a highly flexible pixel array based on chemically synthesized MoS 2 -MoS 2 /CNT photodetectors is applied for image sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)

    1999-01-01

    We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.

  4. Bio-fabrication of nanomesh channels of single-walled carbon nanotubes for locally gated field-effect transistors

    NASA Astrophysics Data System (ADS)

    Byeon, Hye-Hyeon; Lee, Woo Chul; Kim, Wonbin; Kim, Seong Keun; Kim, Woong; Yi, Hyunjung

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) are one of the promising electronic components for nanoscale electronic devices such as field-effect transistors (FETs) owing to their excellent device characteristics such as high conductivity, high carrier mobility and mechanical flexibility. Localized gating gemometry of FETs enables individual addressing of active channels and allows for better electrostatics via thinner dielectric layer of high k-value. For localized gating of SWNTs, it becomes critical to define SWNTs of controlled nanostructures and functionality onto desired locations in high precision. Here, we demonstrate that a biologically templated approach in combination of microfabrication processes can successfully produce a nanostructured channels of SWNTs for localized active devices such as local bottom-gated FETs. A large-scale nanostructured network, nanomesh, of SWNTs were assembled in solution using an M13 phage with strong binding affinity toward SWNTs and micrometer-scale nanomesh channels were defined using negative photolithography and plasma-etching processes. The bio-fabrication approach produced local bottom-gated FETs with remarkably controllable nanostructures and successfully enabled semiconducting behavior out of unsorted SWNTs. In addition, the localized gating scheme enhanced the device performances such as operation voltage and I on/I off ratio. We believe that our approach provides a useful and integrative method for fabricating electronic devices out of nanoscale electronic materials for applications in which tunable electrical properties, mechanical flexibility, ambient stability, and chemical stability are of crucial importance.

  5. Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

    PubMed Central

    Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.

    2016-01-01

    Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and –690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded. PMID:27095505

  6. Development of Scanning Ultrafast Electron Microscope Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less

  7. Opto-Electronic Characterization CdTe Solar Cells from TCO to Back Contact with Nano-Scale CL Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, John; Al-Jassim, Mowafak M.; Paudel, Naba

    2015-06-14

    We used cathodoluminescence (CL) (spectrum-per-pixel) imaging on beveled CdTe solar cell sections to investigate the opto-electronic properties of these devices from the TCO to the back contact. We used a nano-scale CL probe to resolve luminescence from grain boundary (GB) and grain interior (GI) locations near the CdS/CdTe interface where the grains are very small. As-deposited, CdCl2-treated, Cu-treated, and (CdCl2+Cu)-treated cells were analyzed. Color-coded CL spectrum imaging maps on bevels illustrate the distribution of the T=6 K luminescence transitions through the depth of devices with unprecedented spatial resolution. The CL at the GBs and GIs is shown to vary significantlymore » from the front to the back of devices and is a sensitive function of processing. Supporting D-SIMS depth profile, TRPL lifetime, and C-V measurements are used to link the CL data to the J-V performance of devices.« less

  8. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    NASA Astrophysics Data System (ADS)

    Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.

    2013-05-01

    Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).

  9. Compliant energy and momentum conservation in NEGF simulation of electron-phonon scattering in semiconductor nano-wire transistors

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Martinez, A.; Aldegunde, M.

    2012-05-01

    The modelling of spatially inhomogeneous silicon nanowire field-effect transistors has benefited from powerful simulation tools built around the Keldysh formulation of non-equilibrium Green function (NEGF) theory. The methodology is highly efficient for situations where the self-energies are diagonal (local) in space coordinates. It has thus been common practice to adopt diagonality (locality) approximations. We demonstrate here that the scattering kernel that controls the self-energies for electron-phonon interactions is generally non-local on the scale of at least a few lattice spacings (and thus within the spatial scale of features in extreme nano-transistors) and for polar optical phonon-electron interactions may be very much longer. It is shown that the diagonality approximation strongly under-estimates the scattering rates for scattering on polar optical phonons. This is an unexpected problem in silicon devices but occurs due to strong polar SO phonon-electron interactions extending into a narrow silicon channel surrounded by high kappa dielectric in wrap-round gate devices. Since dissipative inelastic scattering is already a serious problem for highly confined devices it is concluded that new algorithms need to be forthcoming to provide appropriate and efficient NEGF tools.

  10. Probing and Manipulating the Interfacial Defects of InGaAs Dual-Layer Metal Oxides at the Atomic Scale.

    PubMed

    Wu, Xing; Luo, Chen; Hao, Peng; Sun, Tao; Wang, Runsheng; Wang, Chaolun; Hu, Zhigao; Li, Yawei; Zhang, Jian; Bersuker, Gennadi; Sun, Litao; Pey, Kinleong

    2018-01-01

    The interface between III-V and metal-oxide-semiconductor materials plays a central role in the operation of high-speed electronic devices, such as transistors and light-emitting diodes. The high-speed property gives the light-emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high-performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures. Herein, in situ transmission electron microscopy is used to probe and manipulate the structural and electrical properties of ZrO 2 films on Al 2 O 3 and InGaAs substrate at the atomic scale. Interfacial defects resulting from the spillover of the oxygen-atom conduction-band wavefunctions are resolved. This study unearths the fundamental defect-driven interfacial electric structure of III-V semiconductor materials and paves the way to future high-speed and high-reliability devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-01

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  12. Electronic components embedded in a single graphene nanoribbon.

    PubMed

    Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I

    2017-07-25

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.

  13. EDITORIAL: Design and function of molecular and bioelectronics devices

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers from NGC2007. The NGC2007 meeting, which included two days of tutorials (Spring School) and a three day symposium, attracted approximately 400 participants from academic, industrial and governmental research institutions from 41 countries, and covered recent developments in the fabrication and functionality of nano-scale materials, devices and system architecture from advanced CMOS to molecular electronics, photonics, optoelectronics and magnetic materials and devices. The success of the conference would not have been possible without generous support from many sponsors and research institutions, especially from Arizona State University (conference host and co-organizer), International Science and Technology Center (ISTC), National Science Foundation (NSFT), Defense Advanced Research Agency (DARPA), Office of Naval Research, Army Research Office, Computational Chemistry List (CCL), Springer Publisher, City of Tempe, STMicroelectronics, Quarles & Brady LLP, Oak Ridge National Laboratory, Canadian Consulate in Phoenix, Salt River Project (SRP) and many other local, national and international and individual supporters. We would like to acknowledge the shared responsibility for this special issue of Nanotechnology on molecular and bioelectronics, and the highly professional support from Dr Nina Couzin, Dr Alex Wotherspoon and the Nanotechnology team from the IOP Publishing. We also acknowledge the exception made in allowing the publication of some material that is outside the normal scope of Nanotechnology.

  14. Design and function of molecular and bioelectronics devices.

    PubMed

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-24

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers from NGC2007. The NGC2007 meeting, which included two days of tutorials (Spring School) and a three day symposium, attracted approximately 400 participants from academic, industrial and governmental research institutions from 41 countries, and covered recent developments in the fabrication and functionality of nano-scale materials, devices and system architecture from advanced CMOS to molecular electronics, photonics, optoelectronics and magnetic materials and devices. The success of the conference would not have been possible without generous support from many sponsors and research institutions, especially from Arizona State University (conference host and co-organizer), International Science and Technology Center (ISTC), National Science Foundation (NSFT), Defense Advanced Research Agency (DARPA), Office of Naval Research, Army Research Office, Computational Chemistry List (CCL), Springer Publisher, City of Tempe, STMicroelectronics, Quarles & Brady LLP, Oak Ridge National Laboratory, Canadian Consulate in Phoenix, Salt River Project (SRP) and many other local, national and international and individual supporters. We would like to acknowledge the shared responsibility for this special issue of Nanotechnology on molecular and bioelectronics, and the highly professional support from Dr Nina Couzin, Dr Alex Wotherspoon and the Nanotechnology team from the IOP Publishing. We also acknowledge the exception made in allowing the publication of some material that is outside the normal scope of Nanotechnology.

  15. Giant electron-hole transport asymmetry in ultra-short quantum transistors.

    PubMed

    McRae, A C; Tayari, V; Porter, J M; Champagne, A R

    2017-05-31

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  16. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  17. Tuning charge and correlation effects for a single molecule on a graphene device

    DOE PAGES

    Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; ...

    2016-11-25

    The ability to understand and control the electronic properties of individual molecules in a device environment is crucial for developing future technologies at the nanometre scale and below. Achieving this, however, requires the creation of three-terminal devices that allow single molecules to be both gated and imaged at the atomic scale. We have accomplished this by integrating a graphene field effect transistor with a scanning tunnelling microscope, thus allowing gate-controlled charging and spectroscopic interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We observe a non-rigid shift in the molecule’s lowest unoccupied molecular orbital energy (relative to the Dirac point) as a function ofmore » gate voltage due to graphene polarization effects. Our results show that electron–electron interactions play an important role in how molecular energy levels align to the graphene Dirac point, and may significantly influence charge transport through individual molecules incorporated in graphene-based nanodevices.« less

  18. A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp. PCC6803

    PubMed Central

    Cereda, Angelo; Hitchcock, Andrew; Symes, Mark D.; Cronin, Leroy; Bibby, Thomas S.; Jones, Anne K.

    2014-01-01

    Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport. PMID:24637387

  19. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  20. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  1. Toward single-chirality carbon nanotube device arrays.

    PubMed

    Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph

    2010-05-25

    The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.

  2. Microfabricated Bulk Piezoelectric Transformers

    NASA Astrophysics Data System (ADS)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0.1)% and output power density of 51.3 (+/- 4.0)W cm. -3 (for output power of80 (+/- 6)mW) at 1M? load, for an input voltage range of 3V-6V (+/- one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm. 3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application.

  3. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.

    PubMed

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-12-20

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  4. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device

    NASA Astrophysics Data System (ADS)

    Lambropoulos, Nicholas A.; Reimers, Jeffrey R.; Crossley, Maxwell J.; Hush, Noel S.; Silverbrook, Kia

    2013-12-01

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  5. Wafer-scale design of lightweight and transparent electronics that wraps around hairs

    NASA Astrophysics Data System (ADS)

    Salvatore, Giovanni A.; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Zysset, Christoph; Strebel, Ivo; Büthe, Lars; Tröster, Gerhard

    2014-01-01

    Electronics on very thin substrates have shown remarkable bendability, conformability and lightness, which are important attributes for biological tissues sensing, wearable or implantable devices. Here we propose a wafer-scale process scheme to realize ultra flexible, lightweight and transparent electronics on top of a 1-μm thick parylene film that is released from the carrier substrate after the dissolution in water of a polyvinyl- alcohol layer. The thin substrate ensures extreme flexibility, which is demonstrated by transistors that continue to work when wrapped around human hairs. In parallel, the use of amorphous oxide semiconductor and high-K dielectric enables the realization of analogue amplifiers operating at 12 V and above 1 MHz. Electronics can be transferred on any object, surface and on biological tissues like human skin and plant leaves. We foresee a potential application as smart contact lenses, covered with light, transparent and flexible devices, which could serve to monitor intraocular pressure for glaucoma disease.

  6. Self-heating and scaling of thin body transistors

    NASA Astrophysics Data System (ADS)

    Pop, Eric

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems, especially with the transition towards geometrically confined device geometries (SOI, FinFET, nanowires), and new materials with poor thermal properties. This work examines the physics of heat generation in silicon, and in the context of nanoscale CMOS transistors. A new Monte Carlo code (MONET) is introduced which uses analytic descriptions of both the electron bands and the phonon dispersion. Detailed heat generation statistics are computed in bulk and strained silicon, and within simple device geometries. It is shown that non-stationary transport affects heat generation near strongly peaked electric fields, and that self-heating occurs almost entirely in the drain end of short, quasi-ballistic devices. The dissipated power is spectrally distributed between the (slow) optical and (fast) acoustic phonon modes approximately by a ratio of two to one. In addition, this work explores the limits of device design and scaling from an electrical and thermal point of view. A self-consistent electro-thermal compact model for thin-body (SOI, GOI) devices is introduced for calculating operating temperature, saturation current and intrinsic gate delay. Self-heating is sensitive to several device parameters, such as raised source/drain height and material boundary thermal resistance. An experimental method is developed for extracting via/contact thermal resistance from electrical measurements. The analysis suggests it is possible to optimize device geometry in order to simultaneously minimize operating temperature and intrinsic gate delay. Electro-thermal contact and device design are expected to become more important with continued scaling.

  7. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    PubMed

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

  8. Organic photovoltaic devices comprising solution-processed substituted metal-phthalocyanines and exhibiting near-IR photo-sensitivity

    DOEpatents

    McGrath, Dominic V.; Mayukh, Mayank; Placencia, Diogenes; Armstrong, Neal R.

    2016-11-29

    Organic photovoltaic (OPV) devices are disclosed. An exemplary device has first and second electrodes and an organic, photovoltaically active zone located between the first and second electrodes. The photovoltaically active zone includes an organic electron-donor material and an organic electron-acceptor material. The electron-donor material includes one or more trivalent- or tetravalent-metal phthalocyanines with alkylchalcogenide ring substituents, and is soluble in at least one organic solvent. This solubility facilitates liquid-processability of the donor material, including formation of thin-films, on an unlimited scale to form planar and bulk heterojunctions in organic OPVs. These donor materials are photovoltaically active in both visible and near-IR wavelengths of light, enabling more of the solar spectrum, for example, to be applied to producing electricity. Also disclosed are methods for producing the metalated phthalocyanines and actual devices.

  9. Logarithmic singularities and quantum oscillations in magnetically doped topological insulators

    NASA Astrophysics Data System (ADS)

    Nandi, D.; Sodemann, Inti; Shain, K.; Lee, G. H.; Huang, K.-F.; Chang, Cui-Zu; Ou, Yunbo; Lee, S. P.; Ward, J.; Moodera, J. S.; Kim, P.; Yacoby, A.

    2018-02-01

    We report magnetotransport measurements on magnetically doped (Bi,Sb ) 2Te3 films grown by molecular beam epitaxy. In Hall bar devices, we observe logarithmic dependence of transport coefficients in temperature and bias voltage which can be understood to arise from electron-electron interaction corrections to the conductivity and self-heating. Submicron scale devices exhibit intriguing quantum oscillations at high magnetic fields with dependence on bias voltage. The observed quantum oscillations can be attributed to bulk and surface transport.

  10. FLARE: a New User Facility for Studies of Magnetic Reconnection Through Simultaneous, in-situ Measurements on MHD Scales, Ion Scales and Electron Scales

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W. S.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S. E.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-12-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. The whole device has been successfully assembled with rough leak check completed. The first plasmas are expected in the fall to winter. The main diagnostic is an extensive set of magnetic probe arrays to cover multiple scales from local electron scales ( ˜2 mm), to intermediate ion scales ( ˜10 cm), and global MHD scales ( ˜1 m), simultaneously providing in-situ measurements over all these relevant scales. By using these laboratory data, not only the detailed spatial profiles around each reconnecting X-line are available for direct comparisons with spacecraft data, but also the global conditions and consequences of magnetic reconnection, which are often difficult to quantify in space, can be controlled or studied systematically. The planned procedures and example topics as a user facility will be discussed in detail.

  11. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE PAGES

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...

    2017-07-05

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  12. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  13. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  14. Measuring the orbital angular momentum spectrum of an electron beam

    PubMed Central

    Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim

    2017-01-01

    Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy. PMID:28537248

  15. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.

  16. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  17. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  18. Beam Conditioning and Harmonic Generation in Free ElectronLasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charman, A.E.; Penn, G.; Wolski, A.

    2004-07-05

    The next generation of large-scale free-electron lasers (FELs) such as Euro-XFEL and LCLS are to be devices which produce coherent X-rays using Self-Amplified Spontaneous Emission (SASE). The performance of these devices is limited by the spread in longitudinal velocities of the beam. In the case where this spread arises primarily from large transverse oscillation amplitudes, beam conditioning can significantly enhance FEL performance. Future X-ray sources may also exploit harmonic generation starting from laser-seeded modulation. Preliminary analysis of such devices is discussed, based on a novel trial-function/variational-principle approach, which shows good agreement with more lengthy numerical simulations.

  19. First-principles electron transport with phonon coupling: Large scale at low cost

    NASA Astrophysics Data System (ADS)

    Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.; Stokbro, Kurt; Brandbyge, Mads

    2017-10-01

    Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates at almost the same cost as elastic transport calculations, by extending the recent method of Zacharias et al. [Phys. Rev. B 94, 075125 (2016), 10.1103/PhysRevB.94.075125] to the important case of Landauer conductance. We apply the method to ultrascaled silicon devices and demonstrate the importance of phonon-assisted band-to-band and source-to-drain tunneling. In a diode the phonons lead to a rectification ratio suppression in good agreement with experiments, while in an ultrathin body transistor the phonons increase off currents by four orders of magnitude, and the subthreshold swing by a factor of 4, in agreement with perturbation theory.

  20. Negative capacitance in a ferroelectric-dielectric heterostructure for ultra low-power computing

    NASA Astrophysics Data System (ADS)

    Salahuddin, Sayeef

    2012-10-01

    Introduction: It is now well recognized that energy dissipation in microchips may ultimately restrict device scaling - the downsizing of physical dimensions that has fuelled the fantastic growth of microchip industry so far. However, energy dissipation in electronic devices has even bigger consequences. Use of electronic equipments in our daily life is increasing exponentially. As a result, energy dissipation in electronic devices is expected to play an increasingly significant role in terms of national energy needs [1-6]. But there is a fundamental limit to how much the dissipation can be reduced in transistors that is in the heart of almost all electronic devices. Conventional transistors are thermally activated. A barrier is created that blocks the current and then the barrier height is modulated to control the current flow. This modulation of the barrier changes the number of electrons exponentially following the Boltzmann factor exp(qV/kT). This in turn means that to change the current by one order of magnitude at least a voltage of 2.3kT/q (that translates into 60 mV at room temperature) is necessary. In practice, a voltage many times this limit of 60 mV has to be applied to obtain a good ON current to OFF current ratio. Because this comes from the Boltzmann factor that is a fundamental nature of how electrons are distributed in energy, it is not possible to reduce the supply voltage in conventional transistors below a certain point, while still maintaining a healthy ON/OFF ratio that is necessary for robust operation. On the other hand, continuous down scaling is putting even larger number of devices in the same area thus increasing the energy dissipation density beyond controllable and sustainable limits. This has been termed as the Boltzmann's Tyranny [2] and it has been predicted that unless new principles are found based on fundamentally new physics, the transistors will die a thermal death [4].

  1. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.

  2. Effectiveness of mobile electronic devices in weight loss among overweight and obese populations: a systematic review and meta-analysis.

    PubMed

    Khokhar, Bushra; Jones, Jessica; Ronksley, Paul E; Armstrong, Marni J; Caird, Jeff; Rabi, Doreen

    2014-01-01

    Mobile electronic devices, such as mobile phones and PDAs, have emerged as potentially useful tools in the facilitation and maintenance of weight loss. While RCTs have demonstrated a positive impact of mobile interventions, the extent to which mobile electronic devices are more effective than usual care methods is still being debated. Electronic databases were systematically searched for RCTs evaluating the effectiveness of mobile electronic device interventions among overweight and obese adults. Weighted mean difference for change in body weight was the primary outcome. The search strategy yielded 559 citations and of the 108 potentially relevant studies, six met the criteria. A total of 632 participants were included in the six studies reporting a mean change in body weight. Using a random-effects model, the WMD for the effect of using mobile electronic devices on reduction in body weight was -1.09 kg (95% CI -2.12, -0.05). When stratified by the type of mobile electronic device used, it suggests that interventions using mobile phones were effective at achieving weight loss, WMD = -1.78 kg (95% CI -2.92, -0.63). This systematic review and meta-analysis suggests that mobile electronic devices have the potential to facilitate weight loss in overweight and obese populations, but further work is needed to understand if these interventions have sustained benefit and how we can make these mHealth tools most effective on a large scale. As the field of healthcare increasingly utilizes novel mobile technologies, the focus must not be on any one specific device but on the best possible use of these tools to measure and understand behavior. As mobile electronic devices continue to increase in popularity and the associated technology continues to advance, the potential for the use of mobile devices in global healthcare is enormous. More RCTs with larger sample sizes need to be conducted to look at the cost-effectiveness, technical and financial feasibility of adapting such mHealth interventions in a real clinical setting.

  3. Electronic physiologic and subjective data acquisition in home-dwelling heart failure patients: An assessment of patient use and perception of usability.

    PubMed

    Gardner, Cubby L; Flanagan, Michael C; Franklin, Cathy; John-Swayers, Cherly; Walsh-Pouch, Stacy; Bryant, F Joyce; Romano, Carol A; Gibbons, Susanne; De Jong, Marla; Hoang, Albert; Becher, Dorothy; Burke, Harry B

    2016-09-01

    The current approach to the outpatient management of heart failure involves patients recollecting what has happened to them since their last clinic visit. But patients' recollection of their symptoms may not be sufficiently accurate to optimally manage their disease. Most of what is known about heart failure is related to patients' diurnal symptoms and activities. Some mobile electronic technologies can operate continuously to collect data from the time patients go to bed until they get up in the morning. We were therefore interested to evaluate if patients would use a system of selected patient-facing devices to collect physiologic and subjective state data in and around the patients' period of sleep, and if there were differences in device use and perceptions of usability at the device level This descriptive observational study of home-dwelling patients with heart failure, between 21 and 90 years of age, enrolled in an outpatient heart failure clinic was conducted between December 2014 and June 2015. Patients received five devices, namely, body weight scale, blood pressure device, an iPad-based subjective states assessment, pulse oximeter, and actigraph, to collect their physiologic (body weight, blood pressure, heart rate, blood oxygen saturation, and physical activity) and subjective state data (symptoms and subjective states) at home for the next six consecutive nights. Use was defined as the ratio of observed use over expected use, where 1.0 is observed equals expected. Usability was determined by the overall System Usability Scale score. Participants were 39 clinical heart failure patients, mean age 68.1 (SD, 12.3), 72% male, 62% African American. The ratio of observed over expected use for the body weight scale, blood pressure device, iPad application, pulse oximeter and actigraph was 0.8, 1.0, 1.1, 0.9, and 1.9, respectively. The mean overall System Usability Scale score for each device were 84.5, 89.7, 85.7, 87.6, and 85.2, respectively. Patients were able to use all of the devices and they rated the usability of all the devices higher than expected. Our study provides support for at-home patient-collected physiologic and subjective state data. To our knowledge, this is the first study to assess the use and usability of electronic objective and subjective data collection devices in heart failure patients' homes overnight. Published by Elsevier Ireland Ltd.

  4. NASA Electronic Parts and Packaging (NEPP) Program - Update

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    This slide presentation reviews the goals and mission of the NASA Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. The program has been supporting NASA for over 20 years. The focus is on the reliability aspects of electronic devices. In this work the program also supports the electronics industry. There are several areas that the program is involved in: Memories, systems on a chip (SOCs), data conversion devices, power MOSFETS, power converters, scaled CMOS, capacitors, linear devices, fiber optics, and other electronics such as sensors, cryogenic and SiGe that are used in space systems. Each of these area are reviewed with the work that is being done in reliability and effects of radiation on these technologies.

  5. Photoisomerization-induced manipulation of single-electron tunneling for novel Si-based optical memory.

    PubMed

    Hayakawa, Ryoma; Higashiguchi, Kenji; Matsuda, Kenji; Chikyow, Toyohiro; Wakayama, Yutaka

    2013-11-13

    We demonstrated optical manipulation of single-electron tunneling (SET) by photoisomerization of diarylethene molecules in a metal-insulator-semiconductor (MIS) structure. Stress is placed on the fact that device operation is realized in the practical device configuration of MIS structure and that it is not achieved in structures based on nanogap electrodes and scanning probe techniques. Namely, this is a basic memory device configuration that has the potential for large-scale integration. In our device, the threshold voltage of SET was clearly modulated as a reversible change in the molecular orbital induced by photoisomerization, indicating that diarylethene molecules worked as optically controllable quantum dots. These findings will allow the integration of photonic functionality into current Si-based memory devices, which is a unique feature of organic molecules that is unobtainable with inorganic materials. Our proposed device therefore has enormous potential for providing a breakthrough in Si technology.

  6. Computational Nanotechnology of Molecular Materials, Electronics, and Actuators with Carbon Nanotubes and Fullerenes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The role of computational nanotechnology in developing next generation of multifunctional materials, molecular scale electronic and computing devices, sensors, actuators, and machines is described through a brief review of enabling computational techniques and few recent examples derived from computer simulations of carbon nanotube based molecular nanotechnology.

  7. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    PubMed Central

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  8. Modeling quantum cascade lasers: Coupled electron and phonon transport far from equilibrium and across disparate spatial scales

    DOE PAGES

    Shi, Y. B.; Mei, S.; Jonasson, O.; ...

    2016-12-28

    Quantum cascade lasers (QCLs) are high-power coherent light sources in the midinfrared and terahertz parts of the electromagnetic spectrum. They are devices in which the electronic and lattice systems are far from equilibrium, strongly coupled to one another, and the problem bridges disparate spatial scales. Here, we present our ongoing work on the multiphysics and multiscale simulation of far-from-equilibrium transport of charge and heat in midinfrared QCLs.

  9. Open problems of magnetic island control by electron cyclotron current drive

    DOE PAGES

    Grasso, Daniela; Lazzaro, E.; Borgogno, D.; ...

    2016-11-17

    This study reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.

  10. Nanoelectronics: Opportunities for future space applications

    NASA Technical Reports Server (NTRS)

    Frazier, Gary

    1995-01-01

    Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.

  11. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  12. Silicon Carbide Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2006-01-01

    Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.

  13. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    NASA Astrophysics Data System (ADS)

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers with a large intramolecular twist, which suppresses both nucleation and crystal growth. The generic design concept of rotationally symmetrical aromatic small molecules with extended π orbital delocalization, including polyaromatic hydrocarbons, phthalocyanines, etc., has also provided some excellent small molecule acceptors. In most cases, additional electron withdrawing functionality, such as imide or ester groups, can be incorporated to stabilize the LUMO and improve properties. New calamitic acceptors have been developed, where molecular orbital hybridization of electron rich and poor segments can be judiciously employed to precisely control energy levels. Conformation and intermolecular associations can be controlled by peripheral functionalization leading to optimization of crystallization length scales. In particular, the use of rhodanine end groups, coupled electronically through short bridged aromatic chains, has been a successful strategy, with promising device efficiencies attributed to high lying LUMO energy levels and subsequently large open circuit voltages. PMID:26505279

  15. Electron transport in nano-scaled piezoelectronic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  16. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    PubMed

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CHAIRMAN'S FOREWORD: First International Symposium on Advanced Nanodevices and Nanotechnology

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yoshinobu; Goodnick, Stephen M.

    2008-03-01

    This volume of Journal of Physics: Conference Series contains selected papers from the First International Symposium on Advanced Nanodevices and Nanotechnology. This conference is a merging of the two previous series New Phenomena in Mesoscopic Structures and the Surfaces and Interfaces of Mesoscopic Devices. This year's conference was held 2-7 December 2007 at the Waikoloa Beach Marriott on the Kohala coast of the big island of Hawaii. The scope of ISANN spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest included: Nano-scale fabrication (high-resolution electron lithography, FIB nano-patterning SFM lithography, SFM stimulated growth, novel patterning, nano-imprint lithography, special etching, and SAMs) Nano-characterization (SFM characterization, BEEM, optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, electro-luminescence in small structures) Nano-devices (ultra-scaled FETs, quantum SETs, RTDs, ferromagnetic, and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, nano-magnetics) Quantum coherent transport (quantum Hall effect, ballistic quantum systems, quantum computing implementations and theory, magnetic spin systems, quantum NEMs) Mesoscopic structures (quantum wires and dots, chaos, non-equilibrium transport, instabilities, nano-electro-mechanical systems, mesoscopic Josephson effects, phase coherence and breaking, Kondo effect) Systems of nano-devices (QCAs, systolic SET processors, quantum neural nets, adaptive effects in circuits, molecular circuits, NEMs) Nanomaterials (nanotubes, nanowires, organic and molecular materials, self-assembled nanowires, organic devices) Nano-bio-electronics (electronic properties of biological structures on the nanoscale) We were very pleased and honored to have the opportunity to organize the first International Symposium on Advanced Nanodevices and Nanotechnology. The conference benefited from 14 invited speakers, whose topics spanned the above list, and a total of 90 registered attendees. The largest contingent was from Japan, followed closely by the USA. We wish to particularly thank the sponsors for the meeting: Arizona State University on the US side, and the Japan Society for the Promotion of Science, through their 151 Committee, on the Japanese side. We would also like to thank Dr Koji Ishibashi, of RIKEN, for his assistance in the organization of the conference, and Professor David K Ferry for serving as the Editor for the ISANN Proceedings. Yoshinobu Aoyagi and Stephen M Goodnick Conference Co-Chairs

  18. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  19. FLARE: A New User Facility for Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena Through in-situ Measurements

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram. The whole device have been assembled with first plasmas expected in the fall of 2017. The main diagnostics is an extensive set of magnetic probe arrays, currently under construction, to cover multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m), simultaneously providing in-situ measurements over all these relevant scales. The planned procedures and example topics as a user facility will be discussed.

  20. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  1. High-Throughput Printing Process for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  2. Large scale electromechanical transistor with application in mass sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Leisheng; Li, Lijie, E-mail: L.Li@swansea.ac.uk

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to bemore » used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.« less

  3. Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-based Solar Cells. Time-Resolved Microwave Conductivity and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, Jordan C.; Arntsen, Christopher D.; Hernandez, Samuel

    2013-09-23

    The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility inmore » conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.« less

  4. Do surveys with paper and electronic devices differ in quality and cost? Experience from the Rufiji Health and demographic surveillance system in Tanzania.

    PubMed

    Mukasa, Oscar; Mushi, Hildegalda P; Maire, Nicolas; Ross, Amanda; de Savigny, Don

    2017-01-01

    Data entry at the point of collection using mobile electronic devices may make data-handling processes more efficient and cost-effective, but there is little literature to document and quantify gains, especially for longitudinal surveillance systems. To examine the potential of mobile electronic devices compared with paper-based tools in health data collection. Using data from 961 households from the Rufiji Household and Demographic Survey in Tanzania, the quality and costs of data collected on paper forms and electronic devices were compared. We also documented, using qualitative approaches, field workers, whom we called 'enumerators', and households' members on the use of both methods. Existing administrative records were combined with logistics expenditure measured directly from comparison households to approximate annual costs per 1,000 households surveyed. Errors were detected in 17% (166) of households for the paper records and 2% (15) for the electronic records (p < 0.001). There were differences in the types of errors (p = 0.03). Of the errors occurring, a higher proportion were due to accuracy in paper surveys (79%, 95% CI: 72%, 86%) compared with electronic surveys (58%, 95% CI: 29%, 87%). Errors in electronic surveys were more likely to be related to completeness (32%, 95% CI 12%, 56%) than in paper surveys (11%, 95% CI: 7%, 17%).The median duration of the interviews ('enumeration'), per household was 9.4 minutes (90% central range 6.4, 12.2) for paper and 8.3 (6.1, 12.0) for electronic surveys (p = 0.001). Surveys using electronic tools, compared with paper-based tools, were less costly by 28% for recurrent and 19% for total costs. Although there were technical problems with electronic devices, there was good acceptance of both methods by enumerators and members of the community. Our findings support the use of mobile electronic devices for large-scale longitudinal surveys in resource-limited settings.

  5. Applications and research on nano power electronics: an adventure beyond quantum electronics

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arindam; Emadi, Ali

    2005-06-01

    This paper is a roadmap to the exhaustive role of the newly emerging field of nanotechnology in various application and research areas. Some of the today's important topics are plasma, dielectric layer semiconductor, and carbon nanoparticle based technologies. Carbon nanotubes are very useful for the purpose of fabricating nano opto power devices. The basic concept behind tunneling of electrons has been utilized to define another scope of this technology, and thus came many quantum scale tunneling devices and elements. Fabrication of crystal semiconductors of high quality along with oxides of nano aspect would give rise to superior device performance and find applications such as LEDs, LASER, VLSI technology and also in highly efficient solar cells. Many nano-research based organizations are fully devoted to develop nano power cells, which would give birth to new battery cells, tunneling devises, with high power quality, longer lives, and higher activation rates. Different electronics industries as well as the military organizations would be largely benefited due to this major component and system design ideas of 'Smart Power' technologies. The contribution of nano scale power electronics would be realized in various fields like switching devices, electromechanical systems and quantum science. Such a sophisticated technology will have great impact on the modernization of robotics; space systems, automotive systems and many other fields. The highly emerging field of nanomedicine according to specialists would bring a dramatic revolution in the present century. However nanomedicine is nothing but an integration of biology, medicine and technology. Thermoelectric materials as been referred earlier also are used in case of implantable medical equipments for generation of electric power sufficient for those equipments.

  6. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence

    NASA Astrophysics Data System (ADS)

    Cho, Chang-Hee; Aspetti, Carlos O.; Park, Joohee; Agarwal, Ritesh

    2013-04-01

    To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated, there are difficulties in integrating quantum structures with conventional electronics. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in `bulk-sized' silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.

  7. Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template.

    PubMed

    Yang, Xia; Hu, Xiaotian; Wang, Qingxia; Xiong, Jian; Yang, Hanjun; Meng, Xiangchuan; Tan, Licheng; Chen, Lie; Chen, Yiwang

    2017-08-09

    With recent emergence of wearable electronic devices, flexible and stretchable transparent electrodes are the core components to realize innovative devices. The copper nanowire (CuNW) network is commonly chosen because of its high conductivity and transparency. However, the junction resistances and low aspect ratios still limit its further stretchable performance. Herein, a large-scale stretchable semiembedded CuNW transparent conductive film (TCF) was fabricated by electrolessly depositing Cu on the electrospun poly(4-vinylpyridine) polymer template semiembedded in polydimethylsiloxane. Compared with traditional CuNWs, which are as-coated on the flexible substrate, the semiembedded CuNW TCFs showed low sheet resistance (15.6 Ω·sq -1 at ∼82% transmittance) as well as outstanding stretchability and mechanical stability. The light-emitting diode connected the stretchable semiembedded CuNW TCFs in the electric circuit still lighted up even after stretching with 25% strain. Moreover, this semiembedded CuNW TCF was successfully applied in polymer solar cells as a stretchable conductive electrode, which yielded a power conversion efficiency of 4.6% with 0.1 cm 2 effective area. The large-scale stretchable CuNW TCFs show potential for the development of wearable electronic devices.

  8. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  9. Flexible piezoelectric energy harvesting from jaw movements

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2014-10-01

    Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.

  10. Theory and simulation of ion noise in microwave tubes

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Freund, H. P.; Levush, B.; Antonsen, T. M.

    2001-01-01

    Since there is always some ambient gas in electron beam devices, background ionization is ubiquitous. For long pulse times, the electrostatic potentials associated with this ionization can reach significant levels and give rise to such observed phenomena as phase noise in microwave tubes. This noise is usually associated with the motion of ions in the device; therefore, it is called ion noise. It often manifests itself as a slow phase fluctuation on the output signal. Observations of noise in microwave tubes such as coupled-cavity traveling wave tubes (CC-TWTs) and klystrons have been discussed in the literature. In this paper, a hybrid model is discussed in which the electron beam is described by the beam envelope equation, and the ions generated by beam ionization are treated as discrete particles using the one-dimensional equations of motion. The theoretical model provides good qualitative as well as reasonable quantitative insight into the origin of ion noise phenomena. The numerical results indicate that the model reproduces the salient features of the phase oscillations observed experimentally. That is, the scaling of the frequency of the phase oscillations with gas pressure in the device and the sensitive dependence of the phase oscillations on the focusing magnetic field. Two distinct time scales are observed in simulation. The fastest time scale oscillation is related to the bounce motion of ions in the axial potential wells formed by the scalloping of the electron beam. Slower sawtooth oscillations are observed to correlate with the well-to-well interactions induced by the ion coupling to the electron equilibrium. These oscillations are also correlated with ion dumping to the cathode or collector. As a practical matter, simulations indicate that the low frequency oscillations can be reduced significantly by using a well-matched electron beam propagating from the electron gun into the interaction circuit.

  11. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements. Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

  12. Novel scanning electron microscope bulge test technique integrated with loading function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less

  13. Full-scale characterization of UVLED Al(x)Ga(1-x)N nanowires via advanced electron microscopy.

    PubMed

    Phillips, Patrick J; Carnevale, Santino D; Kumar, Rajan; Myers, Roberto C; Klie, Robert F

    2013-06-25

    III-Nitride semiconductor heterostructures continue to attract a great deal of attention due to the wide range of wavelengths at which they can emit light, and the subsequent desire to employ them in optoelectronic applications. Recently, a new type of pn-junction which relies on polarization-induced doping has shown promise for use as an ultraviolet light emitting diode (UVLED); nanowire growth of this device has been successfully demonstrated. However, as these devices are still in their infancy, in order to more fully understand their physical and electronic properties, they require a multitude of characterization techniques. Specifically, the present contribution will discuss the application of advanced scanning transmission electron microscopy (STEM) to AlxGa1-xN UVLED nanowires. In addition to structural data, chemical and electronic properties will also be probed through various spectroscopy techniques, with the focus remaining on practically applying the knowledge gained via STEM to the growth procedures in order to optimize device peformance.

  14. Computational imaging of defects in commercial substrates for electronic and photonic devices

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kashiwagi, Ryo; Yamada, Masayoshi

    2012-03-01

    Computational defect imaging has been performed in commercial substrates for electronic and photonic devices by combining the transmission profile acquired with an imaging type of linear polariscope and the computational algorithm to extract a small amount of birefringence. The computational images of phase retardation δ exhibited spatial inhomogeneity of defect-induced birefringence in GaP, LiNbO3, and SiC substrates, which were not detected by conventional 'visual inspection' based on simple optical refraction or transmission because of poor sensitivity. The typical imaging time was less than 30 seconds for 3-inch diameter substrate with the spatial resolution of 200 μm, while that by scanning polariscope was 2 hours to get the same spatial resolution. Since our proposed technique have been achieved high sensitivity, short imaging time, and wide coverage of substrate materials, which are practical advantages over the laboratory-scale apparatus such as X-ray topography and electron microscope, it is useful for nondestructive inspection of various commercial substrates in production of electronic and photonic devices.

  15. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors

    NASA Astrophysics Data System (ADS)

    Weber, Walter M.; Mikolajick, Thomas

    2017-06-01

    Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.

  16. Tuning the Direction of Intramolecular Charge Transfer and the Nature of the Fluorescent State in a T-Shaped Molecular Dyad.

    PubMed

    Felouat, Abdellah; D'Aléo, Anthony; Charaf-Eddin, Azzam; Jacquemin, Denis; Le Guennic, Boris; Kim, Eunsun; Lee, Kwang Jin; Woo, Jae Heun; Ribierre, Jean-Charles; Wu, Jeong Weon; Fages, Frédéric

    2015-06-18

    Controlling photoinduced intramolecular charge transfer at the molecular scale is key to the development of molecular devices for nanooptoelectronics. Here, we describe the design, synthesis, electronic characterization, and photophysical properties of two electron donor-acceptor molecular systems that consist of tolane and BF2-containing curcuminoid chromophoric subunits connected in a T-shaped arrangement. The two π-conjugated segments intersect at the electron acceptor dioxaborine core. From steady-state electronic absorption and fluorescence emission, we find that the photophysics of the dialkylamino-substituted analogue is governed by the occurrence of two closely lying excited states. From DFT calculations, we show that excitation in either of these two states results in a distinct shift of the electron density, whether it occurs along the curcuminoid or tolane moiety. Femtosecond transient absorption spectroscopy confirmed these findings. As a consequence, the nature of the emitting state and the photophysical properties are strongly dependent on solvent polarity. Moreover, these characteristics can also be switched by protonation or complexation at the nitrogen atom of the amino group. These features set new approaches toward the construction of a three-terminal molecular system in which the lateral branch would transduce a change of electronic state and ultimately control charge transport in a molecular-scale device.

  17. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  18. MEASUREMENT OF PHONON TRANSPORT IN GaN-ON-SiC AND GaN-ON-DIAMOND HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) DEVICES

    DTIC Science & Technology

    2017-10-16

    DARPA) or the U.S. Government. Report contains color. 14. ABSTRACT The objective of this project is to experimentally study the transient non ...the Metal Thin Film in TDTR ........................................ 14 4.3 Experimental Observation of the Frequency Filtering Effect...scale of the device layers and the high density of interfaces, non -diffusive heat conduction plays a critical role in thermal transport of GaN devices

  19. Evaluating average and atypical response in radiation effects simulations

    NASA Astrophysics Data System (ADS)

    Weller, R. A.; Sternberg, A. L.; Massengill, L. W.; Schrimpf, R. D.; Fleetwood, D. M.

    2003-12-01

    We examine the limits of performing single-event simulations using pre-averaged radiation events. Geant4 simulations show the necessity, for future devices, to supplement current methods with ensemble averaging of device-level responses to physically realistic radiation events. Initial Monte Carlo simulations have generated a significant number of extremal events in local energy deposition. These simulations strongly suggest that proton strikes of sufficient energy, even those that initiate purely electronic interactions, can initiate device response capable in principle of producing single event upset or microdose damage in highly scaled devices.

  20. Micro-Scale Thermoacoustics

    NASA Astrophysics Data System (ADS)

    Offner, Avshalom; Ramon, Guy Z.

    2016-11-01

    Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  1. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  2. New Computational Approach to Electron Transport in Irregular Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Mason, Douglas; Heller, Eric; Prendergast, David; Neaton, Jeffrey

    2009-03-01

    For novel graphene devices of nanoscale-to-macroscopic scale, many aspects of their transport properties are not easily understood due to difficulties in fabricating devices with regular edges. Here we develop a framework to efficiently calculate and potentially screen electronic transport properties of arbitrary nanoscale graphene device structures. A generalization of the established recursive Green's function method is presented, providing access to arbitrary device and lead geometries with substantial computer-time savings. Using single-orbital nearest-neighbor tight-binding models and the Green's function-Landauer scattering formalism, we will explore the transmission function of irregular two-dimensional graphene-based nanostructures with arbitrary lead orientation. Prepared by LBNL under contract DE-AC02-05CH11231 and supported by the U.S. Dept. of Energy Computer Science Graduate Fellowship under grant DE-FG02-97ER25308.

  3. A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology

    PubMed Central

    Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D.; Kim, Yun-Soung; Blanco, Justin A.; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J.; Rogers, John A.; Litt, Brian

    2011-01-01

    The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices. [Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.] PMID:20375008

  4. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  5. Self-Assembly of Nanostructured Electronic Devices (454th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Charles

    2009-12-16

    Given suitable atmospheric conditions, water vapor from the air will crystallize into beautiful structures: snowflakes. Nature provides many other examples of spontaneous organization of materials into regular patterns, which is a process known as self-assembly. Since self-assembly works at all levels, it can be a useful tool for organizing materials on the nanometer scale. In particular, self-assembly provides a precise method for designing materials with improved electronic properties, thereby enabling advances in semiconductor electronics and solar devices. On Wednesday, December 16, at 4 p.m. in Berkner Hall, Charles Black of the Center for Functional Nanomaterials (CFN) will explore this topicmore » during the 454th Brookhaven Lecture, entitled “Self-Assembly of Nanostructured Electronic Devices.” Refreshments will be offered before and after the lecture. To attend this open-to-the-public event, visitors to the Lab ages 16 and older must present photo ID at the Main Gate. During this talk, Dr. Black will discuss examples of how self-assembly is being integrated into semiconductor microelectronics, as advances in the ability to define circuit elements at higher resolution have fueled more than 40 years of performance improvements. Self-assembly also promises advances in the performance of solar devices; thus he will describe his group’s recent results with nanostructured photovoltaic devices.« less

  6. Investigation of Electronic Generation of Visual Images for Air Force Technical Training. Interim Report for Period May 1974-October 1975.

    ERIC Educational Resources Information Center

    Filinger, Ronald H.; Hall, Paul W.

    Because large scale individualized learning systems place excessive demands on conventional means of producing audiovisual software, electronic image generation has been investigated as an alternative. A prototype, experimental device, Scanimate-500, was designed and built by the Computer Image Corporation. It uses photographic, television, and…

  7. Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team

    2017-10-01

    Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.

  8. Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao

    2017-06-01

    Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.

  9. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device

    PubMed Central

    Tangen, Uwe; Sharma, Abhishek

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library. PMID:25759752

  10. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.

    PubMed

    Tangen, Uwe; Sharma, Abhishek; Wagler, Patrick; McCaskill, John S

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s-1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.

  11. Calculation of the figure of merit for carbon nanotubes based devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2004-03-01

    The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.

  12. Nanotubule and Tour Molecule Based Molecular Electronics: Suggestion for a Hybrid Approach

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Recent experimental and theoretical attempts and results indicate two distinct broad pathways towards future molecular electronic devices and architectures. The first is the approach via Tour type ladder molecules and their junctions which can be fabricated with solution phase chemical approaches. Second are fullerenes or nanotubules and their junctions which may have better conductance, switching and amplifying characteristics but can not be made through well controlled and defined chemical means. A hybrid approach combining the two pathways to take advantage of the characteristics of both is suggested. Dimension and scale of such devices would be somewhere in between isolated molecule and nanotubule based devices but it maybe possible to use self-assembly towards larger functional and logicalunits.

  13. Adhesion and the Lamination/Failure of Stretchable Organic and Composite Organic/Inorganic Electronic Structures

    NASA Astrophysics Data System (ADS)

    Yu, Deying

    Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  14. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were imaged. Away from local defects, step bunching was observed to yield step heights of hundreds of angstroms, with possible implications for the uniformity of dopants incorporated in SiC devices during fabrication. The quantitative topographic data from the AFM allow the relevant defect information to be extracted, such as the size and distribution of step bunching and the Burgers vector of screw dislocations. These atomic force microscopy results have furthered the understanding of the dynamic epitaxial SiC growth process. A model describing the observed hillock step bunching has been proposed. This cooperation between researchers involved in crystal growth, electronic device fabrication, and surface structural characterization is likely to continue as atomic force microscopy is used to improve SiC films for high-temperature electronic devices for NASA's advanced turbine engines and space power devices, as well as for future applications in the automotive industry.

  15. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2015-06-01

    We report a simple, versatile, and wafer-scale water-assisted transfer printing method (WTP) that enables the transfer of nanowire devices onto diverse nonconventional substrates that were not easily accessible before, such as paper, plastics, tapes, glass, polydimethylsiloxane (PDMS), aluminum foil, and ultrathin polymer substrates. The WTP method relies on the phenomenon of water penetrating into the interface between Ni and SiO2. The transfer yield is nearly 100%, and the transferred devices, including NW resistors, diodes, and field effect transistors, maintain their original geometries and electronic properties with high fidelity.

  16. Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, C.R.; Hobson, W.S.; Hong, J.

    1998-11-04

    Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunctionmore » bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.« less

  17. Sleep, anxiety and electronic device use by athletes in the training and competition environments.

    PubMed

    Romyn, Georgia; Robey, Elisa; Dimmock, James A; Halson, Shona L; Peeling, Peter

    2016-01-01

    This study subjectively assessed sleep quality and quantity, state anxiety and electronic device use during a 7-day training week (TRAIN) and a 7-day competitive tournament (COMP). Eight state-level netball players used wrist-watch actigraphy to provide indirect sleep measures of bedtime, wake time, sleep duration, sleep onset latency, sleep efficiency, wake after sleep onset and fragmentation index. State anxiety was reported using the anxiety sub-scale in the Profile of Mood States-Adolescents. Before bed duration of electronic device use and the estimated time to sleep after finishing electronic device use was also recorded. Significant main effects showed that sleep efficiency (p = 0.03) was greater in COMP as compared to TRAIN. Furthermore, the bedtime and wake time were earlier (p = 0.01) during COMP. No further differences existed between conditions (p > 0.05). However, strong negative associations were seen between state anxiety and the sleep quality rating. Here, sleep efficiency was likely greater in COMP due to the homeostatic need for recovery sleep, resulting from the change in environment from training to competition. Furthermore, an increased anxiety before bed seems to influence sleep quality and should be considered in athletes portraying poor sleep habits.

  18. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  19. Continuous System-Level Scale for Comparing Laser Gain Media

    DTIC Science & Technology

    2008-12-01

    thickness in Yb3+-doped microchip lasers . J. Opt. Soc. Am. B October 2003, 20, 2061–2067. 29. Liu, Q.; Gong, M.; Lu, F.; Gong, W.; Li, C. 520-W...Continuous “System-Level” Scale for Comparing Laser Gain Media by Jeffrey O. White ARL-TR-4682 December 2008...System-Level” Scale for Comparing Laser Gain Media Jeffrey O. White Sensors and Electron Devices Directorate, ARL

  20. Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond

    NASA Astrophysics Data System (ADS)

    Wiesenhütter, Katarzyna; Skorupa, Wolfgang

    In the following chapter, the authors conduct a literature survey of current advances in state-of-the-art low-cost, flexible electronics. A new emerging trend in the design of modern semiconductor devices dedicated to scaling-up, rather than reducing, their dimensions is presented. To realize volume manufacturing, alternative semiconductor materials with superior performance, fabricated by innovative processing methods, are essential. This review provides readers with a general overview of the material and technology evolution in the area of macroelectronics. Herein, the term macroelectronics (MEs) refers to electronic systems that can cover a large area of flexible media. In stark contrast to well-established micro- and nano-scale semiconductor devices, where property improvement is associated with downscaling the dimensions of the functional elements, in macroelectronic systems their overall size defines the ultimate performance (Sun and Rogers in Adv. Mater. 19:1897-1916, 2007). The major challenges of large-scale production are discussed. Particular attention has been focused on describing advanced, short-term heat treatment approaches, which offer a range of advantages compared to conventional annealing methods. There is no doubt that large-area, flexible electronic systems constitute an important research topic for the semiconductor industry. The ability to fabricate highly efficient macroelectronics by inexpensive processes will have a significant impact on a range of diverse technology sectors. A new era "towards semiconductor volume manufacturing…" has begun.

  1. From nanoelectronics to nano-spintronics.

    PubMed

    Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming

    2011-01-01

    Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.

  2. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  3. Writing time estimation of EB mask writer EBM-9000 for hp16nm/logic11nm node generation

    NASA Astrophysics Data System (ADS)

    Kamikubo, Takashi; Takekoshi, Hidekazu; Ogasawara, Munehiro; Yamada, Hirokazu; Hattori, Kiyoshi

    2014-10-01

    The scaling of semiconductor devices is slowing down because of the difficulty in establishing their functionality at the nano-size level and also because of the limitations in fabrications, mainly the delay of EUV lithography. While multigate devices (FinFET) are currently the main driver for scalability, other types of devices, such as 3D devices, are being realized to relax the scaling of the node. In lithography, double or multiple patterning using ArF immersion scanners is still a realistic solution offered for the hp16nm node fabrication. Other lithography candidates are those called NGL (Next Generation Lithography), such as DSA (Directed-Self-Assembling) or nanoimprint. In such situations, shot count for mask making by electron beam writers will not increase. Except for some layers, it is not increasing as previously predicted. On the other hand, there is another aspect that increases writing time. The exposure dose for mask writing is getting higher to meet tighter specifications of CD uniformity, in other words, reduce LER. To satisfy these requirements, a new electron beam mask writer, EBM-9000, has been developed for hp16nm/logic11nm generation. Electron optical system, which has the immersion lens system, was evolved from EBM-8000 to achieve higher current density of 800A/cm2. In this paper, recent shot count and dose trend are discussed. Also, writing time is estimated for the requirements in EBM-9000.

  4. Printed Electronics

    NASA Astrophysics Data System (ADS)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  5. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of complementary electron-wave Fabry-Perot quantum interference filters which included both a half- and a quarter-electron-wavelength resonant device. High-resolution, low noise, BEES spectra obtained on these devices at low-temperature were used to measure the zero-bias electron transmittance as a function of injected energy for these resonant devices. Finally, by analyzing BEES spectra taken at various spatial locations, one monolayer variations in the thickness of a buried quantum well have been detected.

  6. Atomic-scale etching of hexagonal boron nitride for device integration based on two-dimensional materials.

    PubMed

    Park, Hamin; Shin, Gwang Hyuk; Lee, Khang June; Choi, Sung-Yool

    2018-05-29

    Hexagonal boron nitride (h-BN) is considered an ideal template for electronics based on two-dimensional (2D) materials, owing to its unique properties as a dielectric film. Most studies involving h-BN and its application to electronics have focused on its synthesis using techniques such as chemical vapor deposition, the electrical analysis of its surface state, and the evaluation of its performance. Meanwhile, processing techniques including etching methods have not been widely studied despite their necessity for device fabrication processes. In this study, we propose the atomic-scale etching of h-BN for integration into devices based on 2D materials, using Ar plasma at room temperature. A controllable etching rate, less than 1 nm min-1, was achieved and the low reactivity of the Ar plasma enabled the atomic-scale etching of h-BN down to a monolayer in this top-down approach. Based on the h-BN etching technique for achieving electrical contact with the underlying molybdenum disulfide (MoS2) layer of an h-BN/MoS2 heterostructure, a top-gate MoS2 field-effect transistor (FET) with h-BN gate dielectric was fabricated and characterized by high electrical performance based on the on/off current ratio and carrier mobility.

  7. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

    PubMed

    Illing, Lucas; Gauthier, Daniel J

    2006-09-01

    We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

  8. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.

  9. Face classification using electronic synapses

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He

    2017-05-01

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  10. Single-ion adsorption and switching in carbon nanotubes

    DOE PAGES

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...

    2016-01-25

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less

  11. Face classification using electronic synapses.

    PubMed

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H-S Philip; Qian, He

    2017-05-12

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  12. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    NASA Astrophysics Data System (ADS)

    Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-01

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  13. Nanoimprint-Assisted Shear Exfoliation (NASE) for Producing Multilayer MoS2 Structures as Field-Effect Transistor Channel Arrays.

    PubMed

    Chen, Mikai; Nam, Hongsuk; Rokni, Hossein; Wi, Sungjin; Yoon, Jeong Seop; Chen, Pengyu; Kurabayashi, Katsuo; Lu, Wei; Liang, Xiaogan

    2015-09-22

    MoS2 and other semiconducting transition metal dichalcogenides (TMDCs) are of great interest due to their excellent physical properties and versatile chemistry. Although many recent research efforts have been directed to explore attractive properties associated with MoS2 monolayers, multilayer/few-layer MoS2 structures are indeed demanded by many practical scale-up device applications, because multilayer structures can provide sizable electronic/photonic state densities for driving upscalable electrical/optical signals. Currently there is a lack of processes capable of producing ordered, pristine multilayer structures of MoS2 (or other relevant TMDCs) with manufacturing-grade uniformity of thicknesses and electronic/photonic properties. In this article, we present a nanoimprint-based approach toward addressing this challenge. In this approach, termed as nanoimprint-assisted shear exfoliation (NASE), a prepatterned bulk MoS2 stamp is pressed into a polymeric fixing layer, and the imprinted MoS2 features are exfoliated along a shear direction. This shear exfoliation can significantly enhance the exfoliation efficiency and thickness uniformity of exfoliated flakes in comparison with previously reported exfoliation processes. Furthermore, we have preliminarily demonstrated the fabrication of multiple transistors and biosensors exhibiting excellent device-to-device performance consistency. Finally, we present a molecular dynamics modeling analysis of the scaling behavior of NASE. This work holds significant potential to leverage the superior properties of MoS2 and other emerging TMDCs for practical scale-up device applications.

  14. Ultrafast electronic dynamics in unipolar n-doped indium gallium arsenide/gallium arsenide self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Zong-Kwei J.

    2006-12-01

    Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.

  15. First- versus second-generation electronic cigarettes: predictors of choice and effects on urge to smoke and withdrawal symptoms.

    PubMed

    Dawkins, Lynne; Kimber, Catherine; Puwanesarasa, Yasothani; Soar, Kirstie

    2015-04-01

    To (1) estimate predictors of first- versus second-generation electronic cigarette (e-cigarette) choice; and (2) determine whether a second-generation device was (i) superior for reducing urge to smoke and withdrawal symptoms (WS) and (ii) associated with enhanced positive subjective effects. Mixed-effects experimental design. Phase 1: reason for e-cigarette choice was assessed via questionnaire. Phase 2: participants were allocated randomly to first- or second-generation e-cigarette condition. Urge to smoke and WS were measured before and 10 minutes after taking 10 e-cigarette puffs. University of East London, UK. A total of 97 smokers (mean age 26; standard deviation 8.7; 54% female). Single-item urge to smoke scale to assess craving and the Mood and Physical Symptoms Scale (MPSS) to assess WS. Subjective effects included: satisfaction, hit, 'felt like smoking' and 'would use to stop smoking' (yes versus no response). Equal numbers chose each device, but none of the predictor variables (gender, age, tobacco dependence, previous e-cigarette use) accounted for choice. Only baseline urge to smoke/WS predicted urge to smoke/WS 10 minutes after use (B =0.38; P <0.001 and B =0.53; P <0.001). E-cigarette device was not a significant predictor. Those using the second-generation device were more likely to report satisfaction and use in a quit attempt (χ(2)  = 12.10, P =0.001 and χ(2)  = 5.53, P =0.02). First- and second-generation electronic cigarettes appear to be similarly effective in reducing urges to smoke during abstinence, but second-generation devices appear to be more satisfying to users. © 2014 Society for the Study of Addiction.

  16. Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors.

    PubMed

    Kang, Dae Y; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P

    2015-09-16

    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach.

  17. Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors

    PubMed Central

    Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.

    2015-01-01

    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915

  18. Carbon Based Transistors and Nanoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Rouhi, Nima

    Carbon based materials (carbon nanotube and graphene) has been extensively researched during the past decade as one of the promising materials to be used in high performance device technology. In long term it is thought that they may replace digital and/or analog electronic devices, due to their size, near-ballistic transport, and high stability. However, a more realistic point of insertion into market may be the printed nanoelectronic circuits and sensors. These applications include printed circuits for flexible electronics and displays, large-scale bendable electrical contacts, bio-membranes and bio sensors, RFID tags, etc. In order to obtain high performance thin film transistors (as the basic building block of electronic circuits) one should be able to manufacture dense arrays of all semiconducting nanotubes. Besides, graphene synthesize and transfer technology is in its infancy and there is plenty of room to improve the current techniques. To realize the performance of nanotube and graphene films in such systems, we need to economically fabricate large-scale devices based on these materials. Following that the performance control over such devices should also be considered for future design variations for broad range of applications. Here we have first investigated carbon nanotube ink as the base material for our devices. The primary ink used consisted of both metallic and semiconducting nanotubes which resulted in networks suitable for moderate-resistivity electrical connections (such as interconnects) and rfmatching circuits. Next, purified all-semiconducting nanotube ink was used to fabricate waferscale, high performance (high mobility, and high on/off ratio) thin film transistors for printed electronic applications. The parameters affecting device performance were studied in detail to establish a roadmap for the future of purified nanotube ink printed thin film transistors. The trade of between mobility and on/off ratio of such devices was studied and the effect of nanotube network density was explained in detail. On the other hand, graphene transfer technology was explored here as well. Annealing techniques were utilized to deposit clean graphene on arbitrary substrates. Raman spectroscopy and Raman data analysis was used to confirm the clean process. Furthermore, suspended graphene membrane was fabricated using single and multi-layer graphene films. This can make a major impact on graphene based transistors and bio-nano sensors technology.

  19. Ultrafast Electron Dynamics in Solar Energy Conversion.

    PubMed

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  20. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S. K.; Lustbader, J.; Musselman, M.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  1. Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod K.; Jariwala, Deep; Everaerts, Ken; McMorrow, Julian J.; He, Jianting; Grayson, Matthew; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.

    2014-02-01

    Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation with intrinsic gain >1.0 in vacuum (pressure < 2 × 10-5 Torr), and overall improved performance compared to control devices on conventional SiO2 gate dielectrics. Statistical analysis of the field-effect mobility and residual carrier concentration demonstrate high spatial uniformity of the dielectric interfacial properties and graphene transistor characteristics over full 3 in. wafers. This work thus establishes SANDs as an effective platform for large-area, high-performance graphene electronics.

  2. Recent progress of carbon nanotube field emitters and their application.

    PubMed

    Seelaboyina, Raghunandan; Choi, Wonbong

    2007-01-01

    The potential of utilizing carbon nanotube field emission properties is an attractive feature for future vacuum electronic devices including: high power microwave, miniature x-ray, backlight for liquid crystal displays and flat panel displays. Their high emission current, nano scale geometry, chemical inertness and low threshold voltage for emission are attractive features for the field emission applications. In this paper we review the recent developments of carbon nanotube field emitters and their device applications. We also discuss the latest results on field emission current amplification achieved with an electron multiplier microchannel plate, and emission performance of multistage field emitter based on oxide nanowire operated in poor vacuum.

  3. Co-Doped ZnO nanoparticles: minireview.

    PubMed

    Djerdj, Igor; Jaglicić, Zvonko; Arcon, Denis; Niederberger, Markus

    2010-07-01

    Diluted magnetic semiconductors with a Curie temperature exceeding 300 K are promising candidates for spintronic devices and spin-based electronic technologies. We review recent achievements in the field of one of them: Co-doped ZnO at the nanoparticulate scale.

  4. Here's how to shop for in-home DM devices.

    PubMed

    2000-05-01

    High-tech home devices like weight scales, glucometers, and peak flow meters that send information to clinicians electronically are becoming increasingly popular disease management tools. But whether or not these gadgets can deliver improved quality of care--and a decent return on investment--depends largely on knowing what to look for when selecting the equipment, and figuring out whether your choice will be easy enough for patients to use.

  5. Towards end to end technology modeling: Carbon nanotube and thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Salamat, Shuaib

    The goal of this work is to demonstrate the feasibility of end-to-end ("atoms to applications") technology modeling. Two different technologies were selected to drive this work. The first technology is carbon nanotube field-effect transistors (CNTFETs), and the goal is to model device level variability and identify the origin of variations in these devices. Recently, there has been significant progress in understanding the physics of carbon nanotube electronic devices and in identifying their potential applications. For nanotubes, the carrier mobility is high, so low bias transport across several hundred nanometers is nearly ballistic, and the deposition of high-k gate dielectrics does not degrade the carrier mobility. The conduction and valence bands are symmetric (useful for complimentary application) and the bandstructure is direct (enables optical emission). Because of these striking features, carbon nanotubes (CNTs) have received much attention. Carbon nanotubes field-effect transistors (CNTFETs) are one of the main potential candidates for large-area electronics. In this research model, systematic simulation approaches are applied to understand the intrinsic performance variability in CNTFETs. It is shown that control over diameter distribution is critically important process parameter for attaining high performance transistors and circuits with characteristics rivaling those of state-of-the-art Si technology. The second technology driver concerns the development of a multi-scale framework for thermoelectric device design. An essential step in the development of new materials and devices for thermoelectrics is to develop accurate, efficient, and realistic models. The ready availability of user friendly ab-initio codes and the ever-increasing computing power have made the band structure calculations routine. Thermoelectric device design, however, is still largely done at the effective mass level. Tools that allow device designers to make use of sophisticated electronic structure and phonon dispersion calculations are needed. We have developed a proof-of-concept, integrated, multi-scale design framework for TE technology. Beginning from full electronic and phonon dispersions, Landauer approach is used to evaluate the temperature-dependent thermoelectric transport parameters needed for device simulation. A comprehensive SPICE-based model for electro-thermal transport has also been developed to serve as a bridge between the materials and device level descriptions and the system level simulations. This prototype framework has been used to design a thermoelectric cooler for managing hot spots in the integrated circuit chips. What's more, as a byproduct of this research a suite of educational and simulation resources have been developed and deployed, on the nanoHUB.org science gateway to serve as a resource for the TE community.

  6. Organic-based molecular switches for molecular electronics.

    PubMed

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  7. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.

    PubMed

    Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying

    2015-03-01

    To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fabrication and characterization of sub-micron scale hall devices from 2-dimensional electron gas at the heterostrutcure of GaAs/AlGaAs

    NASA Astrophysics Data System (ADS)

    Keswani, Neeti; Nakajima, Yoshikata; Chauhan, Neha; Kumar, Sakthi; Ohno, H.; Das, Pintu

    2018-05-01

    In this work, we report the fabrication and transport properties of sub-micron Hall devices to be used for nanomagnetic studies. Hall bars were fabricated using electron-beam lithography followed by wet etching of GaAs/AlGaAs heterostructures containing two-dimensional electron gas (2-DEG). Metallization using multiple metallic layers were used to achieve ohmic contacts with the 2-DEG which is about 240 nm below the surface. Detailed characterization of the metallic layers using X-ray Photoelectron Spectroscopy (XPS) demonstrate the role of alloy formation and diffusion to form ohmic contacts with the 2-DEG. Electronic transport measurements show the metallic character of the 2-DEG. Hall effect and magnetoresistance were measured to estimate the carrier mobility of 4.2×104 cm2/V-s at 5 K in dark.

  9. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.

    2016-01-01

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286

  11. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  12. Behavior of a chemically doped graphene junction

    NASA Astrophysics Data System (ADS)

    Farmer, Damon B.; Lin, Yu-Ming; Afzali-Ardakani, Ali; Avouris, Phaedon

    2009-05-01

    Polyethylene imine and diazonium salts are used as complementary molecular dopants to engineer a doping profile in a graphene transistor. Electronic transport in this device reveals the presence of two distinct resistance maxima, alluding to neutrality point separation and subsequent formation of a spatially abrupt junction. Carrier mobility in this device is not significantly affected by molecular doping or junction formation, and carrier transmission is found to scale inversely with the effective channel length of the device. Chemical dilutions are used to modify the dopant concentration and, in effect, alter the properties of the junction.

  13. The RFET—a reconfigurable nanowire transistor and its application to novel electronic circuits and systems

    NASA Astrophysics Data System (ADS)

    Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.

    2017-04-01

    With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.

  14. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  15. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Anh Khoa Augustin; IMEC, 75 Kapeldreef, B-3001 Leuven; Pourtois, Geoffrey

    2016-01-25

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, andmore » sets the limit of the scaling in future transistor designs.« less

  16. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less

  17. Radiation Testing Electronics with Heavy Ions-The Best Way to Hit a Target Moving Ever Exponentially Faster

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2018-01-01

    In 1972, when engineers at Hughes Aircraft Corporation discovered that errors in their satellite avionics were being caused by cosmic rays (so-called single-event effects, or SEE), Moore's Law was only 7 years old. Now, more than 45 years on, the scaling that drove Moore's Law for its first 35 years has reached its limits. However, electronics technology continues to evolve exponentially and SEE remain a formidable issue for use of electronics in space. SEE occur when a single ionizing particle passes through a sensitive volume in an active semiconductor device and generates sufficient charge to cause anomalous behavior or failure in the device. Because SEE can occur at any time during the mission, the emphasis of SEE risk management methodologies is ensuring that all SEE modes in a device under test are detected by the test. Because a particle's probability of causing an SEE generally increases as the particle becomes more ionizing, heavy-ion beams have been and remain the preferred tools for elucidating SEE vulnerabilities. In this talk we briefly discuss space radiation environments and SEE mechanisms, describe SEE test methodologies and discuss current and future challenges for use of heavy-ion beams for SEE testing in an era when the continued validity of Moore's law depends on innovation rather than CMOS scaling.

  18. Moisture-triggered physically transient electronics

    PubMed Central

    Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang

    2017-01-01

    Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237

  19. All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor.

    PubMed

    Lim, Lucas; Liu, Yangshuai; Liu, Wenwen; Tjandra, Ricky; Rasenthiram, Lathankan; Chen, Zhongwei; Yu, Aiping

    2017-11-15

    Graphene fibers (GF) have aroused great interest in wearable electronics applications because of their excellent mechanical flexibility and superior electrical conductivity. Herein, an all-in-one graphene and MnO 2 composite hybrid supercapacitor fiber device has been developed. The unique coaxial design of this device facilitates large-scale production while avoiding the risk of short circuiting. The core backbone of the device consists of GF that not only provides mechanical stability but also ensures fast electron transfer during charge-discharge. The introduction of a MnO 2 (200 nm in length) hierarchical nanostructured film enhanced the pseudocapacitance dramatically compared to the graphene-only device in part because of the abundant number of active sites in contact with the poly(vinyl alcohol) (PVA)/H 3 PO 4 electrolyte. The entire device exhibits outstanding mechanical strength as well as good electrocapacitive performance with a volumetric capacitance of 29.6 F cm -3 at 2 mv s -1 . The capacitance of the device did not fade under bending from 0° to 150°, while the capacitance retention of 93% was observed after 1000 cycles. These unique features make this device a promising candidate for applications in wearable fabric supercapacitors.

  20. Biotechnology

    NASA Image and Video Library

    2000-12-15

    NASA is looking to biological techniques that are millions of years old to help it develop new materials and nanotechnology for the 21st century. Sponsored by NASA, Jerzy Bernholc, a principal investigator in the microgravity materials science program and a physics professor at North Carolina State University, Bernholc works with very large-scale computations to model carbon molecules as they assemble themselves to form nanotubes. The strongest confirmed material known, nanotubes are much stronger than graphite, a more common material made of carbon, and weigh six times less than steel. Nanotubes have potential uses such as strain gauges, advanced electronic devices, amd batteries. The strength, light weight, and conductive qualities of nanotubes, shown in light blue in this computed electron distribution, make them excellent components of nanoscale devices. One way to conduct electricity to such devices is through contact with aluminum, shown in dark blue.

  1. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  2. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    NASA Astrophysics Data System (ADS)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  3. Structures and Techniques For Implementing and Packaging Complex, Large Scale Microelectromechanical Systems Using Foundry Fabrication Processes.

    DTIC Science & Technology

    1996-06-01

    switches 5-43 Figure 5-27. Mechanical interference between ’Pull Spring’ devices 5-45 Figure 5-28. Array of LIGA mechanical relay switches 5-49...like coating DM Direct metal interconnect technique DMD ™ Digital Micromirror Device EDP Ethylene, diamine, pyrocatechol and water; silicon anisotropic...mechanical systems MOSIS MOS Implementation Service PGA Pin grid array, an electronic die package PZT Lead-zirconate-titanate LIGA Lithographie

  4. Organic printed photonics: From microring lasers to integrated circuits

    PubMed Central

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-01-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 105, which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices. PMID:26601256

  5. Organic printed photonics: From microring lasers to integrated circuits.

    PubMed

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  6. Quantum Dots Based Rad-Hard Computing and Sensors

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.

    2001-01-01

    Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.

  7. Surface-related phase noise in SAW resonators.

    PubMed

    Enguang, Dai

    2002-05-01

    With the advent of nanotechnologies, electronic devices are shrinking in thickness and width to reduce mass and, thereby, increase frequency and spe Lithographic approaches are capable of creating metal connections with thickness and lateral dimensions down to about 20 nm, approaching the molecular scale. As a result, the dimensions of outer particles are comparable with, or even larger than, those of active or passive regions in electronics devices. Therefore, directing our attention toward the effect of surface fluctuations is of practical significance. In fact, electronic device surface-related phenomena have already received more and more attention as device size decreases. In connection with surface phase noise, selection of a suitable device with high surface sensitivity is important. In this paper, high Q-value surface acoustic wave resonators were employed because of their strong sensitivity to surface perturbation. Phase noise in SAW resonators related to surface particle motion has been examined both theoretically and experimentally. This kind of noise has been studied from the point of view of a stochastic process resulting from particle molecular adsorption and desorption. Experimental results suggest that some volatile vapors can change flicker noise 1/f and random walk noise 1/f2. An analysis has been made indicating that these effects are not associated with Q value variation, but are generated by the change in the dynamic rate of adsorption and desorption of surface particles. Research on particle motion above the device substrate might explain the differences observed from the model based only on the substrate itself. Results might lead to a better understanding of the phase noise mechanism in micro-electronic devices and help us to build oscillators with improved performance.

  8. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  9. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.

    PubMed

    Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G

    2018-05-09

    Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

  10. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.

  11. Multiscale examination and modeling of electron transport in nanoscale materials and devices

    NASA Astrophysics Data System (ADS)

    Banyai, Douglas R.

    For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device---sometimes consisting of hundreds of individual particles---and watch as a device 'turns on' and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

  12. Mesoscopic features of charge generation in organic semiconductors.

    PubMed

    Savoie, Brett M; Jackson, Nicholas E; Chen, Lin X; Marks, Tobin J; Ratner, Mark A

    2014-11-18

    CONSPECTUS: In the past two decades, organic materials have been extensively investigated by numerous research groups worldwide for implementation in organic photovoltaic (OPV) devices. The interest in organic semiconductors is spurred by their potential low cost and facile tunability, making OPV devices a potentially disruptive technology. To study OPV operating mechanisms is also to explore a knowledge gap in our general understanding of materials, because both the time scales (femtosecond to microsecond) and length scales (nanometer to micrometer) relevant to OPV functionality occupy a challenging and fascinating space between the traditional regimes of quantum chemistry and solid-state physics. New theoretical frameworks and computational tools are needed to bridge the aforementioned length and time scales, and they must satisfy the criteria of computational tractability for systems involving 10(4)-10(6) atoms, while also maintaining predictive utility. While this challenge is far from solved, advances in density functional theory (DFT) have allowed researchers to investigate the ground- and excited-state properties of many intermediate sized systems (10(2)-10(3) atoms) that provide the outlines of the larger problem. Results on these smaller systems are already sufficient to predict optical gaps and trends in valence band energies, correct erroneous interpretations of experimental data, and develop models for charge generation and transport in OPV devices. The active films of high-efficiency OPV devices are comprised of mesoscopic mixtures of electron donor (D) and electron acceptor (A) species, a "bulk-heterojunction" (BHJ) device, subject to variable degrees of structural disorder. Depending on the degree of intermolecular electronic coupling and energy level alignment, the spatial delocalization of photoexcitations and charge carriers can affect the dynamics of the solar cell. In this Account, we provide an overview of three pivotal characteristics of solar cells that possess strong delocalization dependence: (1) the exciton binding energy, (2) charge transfer at the D-A heterojunction, and (3) the energy landscape in the vicinity of the D-A heterojunction. In each case, the length scale dependence can be assessed through DFT calculations on reference systems, with a view to establishing general trends. Throughout the discussion, we draw from the experimental and theoretical literature to provide a consistent view of what is known about these properties in actual BHJ blends. A consistent interpretation of the results to date affords the following view: transient delocalization effects and resonant charge transfer at the heterojunction are capable of funneling excitations away from trap states and mediating exciton dissociation; these factors alone are capable of explaining the remarkably good charge generation currently achieved in OPV devices. The exciton binding energy likely plays a minimal role in modern OPV devices, since the presence of the heterojunction serves to bypass the costly exciton-to-free-charge transition state.

  13. The quest for the next information processing technology

    NASA Astrophysics Data System (ADS)

    Welser, Jeffrey J.; Bourianoff, George I.; Zhirnov, Victor V.; Cavin, Ralph Keary

    2008-01-01

    Fundamental physical considerations indicate that the scaling of devices that use electron charge as the information carrier will limit within the next one to two decades. The Nanoelectronics Research Initiative (NRI), a joint industry-government program, has been developed to fund university research seeking devices that utilize alternative physical information carriers or non-equilibrium switching mechanisms to continue the historical cost and performance trends of information technology. Three research centers have been established to pursue five research vectors that have been identified as critical to the effort to replace the electronic switch. A brief history and rationale for NRI is given and the projects currently underway are described in the context of the five research vectors.

  14. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Boyuan; Liang, Xuelei, E-mail: liangxl@pku.edu.cn, E-mail: ssxie@iphy.ac.cn; Yan, Qiuping

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratiomore » (>10{sup 5}), and high mobility (>30 cm{sup 2}/V·s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.« less

  15. Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure.

    PubMed

    Tapio, Kosti; Leppiniemi, Jenni; Shen, Boxuan; Hytönen, Vesa P; Fritzsche, Wolfgang; Toppari, J Jussi

    2016-11-09

    DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.

  16. The feasibility of using 'bring your own device' (BYOD) technology for electronic data capture in multicentre medical audit and research.

    PubMed

    Faulds, M C; Bauchmuller, K; Miller, D; Rosser, J H; Shuker, K; Wrench, I; Wilson, P; Mills, G H

    2016-01-01

    Large-scale audit and research projects demand robust, efficient systems for accurate data collection, handling and analysis. We utilised a multiplatform 'bring your own device' (BYOD) electronic data collection app to capture observational audit data on theatre efficiency across seven hospital Trusts in South Yorkshire in June-August 2013. None of the participating hospitals had a dedicated information governance policy for bring your own device. Data were collected by 17 investigators for 392 individual theatre lists, capturing 14,148 individual data points, 12, 852 (91%) of which were transmitted to a central database on the day of collection without any loss of data. BYOD technology enabled accurate collection of a large volume of secure data across multiple NHS organisations over a short period of time. Bring your own device technology provides a method for collecting real-time audit, research and quality improvement data within healthcare systems without compromising patient data protection. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  17. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  18. Strategies to use tablet computers for collection of electronic patient-reported outcomes.

    PubMed

    Schick-Makaroff, Kara; Molzahn, Anita

    2015-01-22

    Mobile devices are increasingly being used for data collection in research. However, many researchers do not have experience in collecting data electronically. Hence, the purpose of this short report was to identify issues that emerged in a study that incorporated electronic capture of patient-reported outcomes in clinical settings, and strategies used to address the issues. The issues pertaining to electronic patient-reported outcome data collection were captured qualitatively during a study on use of electronic patient-reported outcomes in two home dialysis units. Fifty-six patients completed three surveys on tablet computers, including the Kidney Disease Quality of Life-36, the Edmonton Symptom Assessment Scale, and a satisfaction measure. Issues that arose throughout the research process were recorded during ethics reviews, implementation process, and data collection. Four core issues emerged including logistics of technology, security, institutional and financial support, and electronic design. Although use of mobile devices for data collection has many benefits, it also poses new challenges for researchers. Advance consideration of possible issues that emerge in the process, and strategies that can help address these issues, may prevent disruption and enhance validity of findings.

  19. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixà, Xavier; Miranda, Enrique

    2014-06-28

    We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFsmore » allows revealing significant structural differences in the CF of these two types of devices and RS modes.« less

  20. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor

    PubMed Central

    Maria, Iuliana Petruta; Uguz, Ilke

    2018-01-01

    The inherent specificity and electrochemical reversibility of enzymes poise them as the biorecognition element of choice for a wide range of metabolites. To use enzymes efficiently in biosensors, the redox centers of the protein should have good electrical communication with the transducing electrode, which requires either the use of mediators or tedious biofunctionalization approaches. We report an all-polymer micrometer-scale transistor platform for the detection of lactate, a significant metabolite in cellular metabolic pathways associated with critical health care conditions. The device embodies a new concept in metabolite sensing where we take advantage of the ion-to-electron transducing qualities of an electron-transporting (n-type) organic semiconductor and the inherent amplification properties of an ion-to-electron converting device, the organic electrochemical transistor. The n-type polymer incorporates hydrophilic side chains to enhance ion transport/injection, as well as to facilitate enzyme conjugation. The material is capable of accepting electrons of the enzymatic reaction and acts as a series of redox centers capable of switching between the neutral and reduced state. The result is a fast, selective, and sensitive metabolite sensor. The advantage of this device compared to traditional amperometric sensors is the amplification of the input signal endowed by the electrochemical transistor circuit and the design simplicity obviating the need for a reference electrode. The combination of redox enzymes and electron-transporting polymers will open up an avenue not only for the field of biosensors but also for the development of enzyme-based electrocatalytic energy generation/storage devices.

  1. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor.

    PubMed

    Pappa, Anna Maria; Ohayon, David; Giovannitti, Alexander; Maria, Iuliana Petruta; Savva, Achilleas; Uguz, Ilke; Rivnay, Jonathan; McCulloch, Iain; Owens, Róisín M; Inal, Sahika

    2018-06-01

    The inherent specificity and electrochemical reversibility of enzymes poise them as the biorecognition element of choice for a wide range of metabolites. To use enzymes efficiently in biosensors, the redox centers of the protein should have good electrical communication with the transducing electrode, which requires either the use of mediators or tedious biofunctionalization approaches. We report an all-polymer micrometer-scale transistor platform for the detection of lactate, a significant metabolite in cellular metabolic pathways associated with critical health care conditions. The device embodies a new concept in metabolite sensing where we take advantage of the ion-to-electron transducing qualities of an electron-transporting (n-type) organic semiconductor and the inherent amplification properties of an ion-to-electron converting device, the organic electrochemical transistor. The n-type polymer incorporates hydrophilic side chains to enhance ion transport/injection, as well as to facilitate enzyme conjugation. The material is capable of accepting electrons of the enzymatic reaction and acts as a series of redox centers capable of switching between the neutral and reduced state. The result is a fast, selective, and sensitive metabolite sensor. The advantage of this device compared to traditional amperometric sensors is the amplification of the input signal endowed by the electrochemical transistor circuit and the design simplicity obviating the need for a reference electrode. The combination of redox enzymes and electron-transporting polymers will open up an avenue not only for the field of biosensors but also for the development of enzyme-based electrocatalytic energy generation/storage devices.

  2. Inelastic transport theory from first principles: Methodology and application to nanoscale devices

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-05-01

    We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.

  3. Impact of geometric, thermal and tunneling effects on nano-transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Langhua; Chen, Duan, E-mail: dchen10@uncc.edu; Wei, Guo-Wei

    Electronic transistors are fundamental building blocks of large scale integrated circuits in modern advanced electronic equipments, and their sizes have been down-scaled to nanometers. Modeling and simulations in the framework of quantum dynamics have emerged as important tools to study functional characteristics of these nano-devices. This work explores the effects of geometric shapes of semiconductor–insulator interfaces, phonon–electron interactions, and quantum tunneling of three-dimensional (3D) nano-transistors. First, we propose a two-scale energy functional to describe the electron dynamics in a dielectric continuum of device material. Coupled governing equations, i.e., Poisson–Kohn–Sham (PKS) equations, are derived by the variational principle. Additionally, it ismore » found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section offers the largest channel current, which indicates that ultra-thin nanotransistors may not be very efficient in practical applications. Moreover, we introduce a new method to evaluate quantum tunneling effects in nanotransistors without invoking the comparison of classical and quantum predictions. It is found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section has the smallest quantum tunneling ratio, which indicates that geometric defects can lead to higher geometric confinement and larger quantum tunneling effect. Furthermore, although an increase in the phonon–electron interaction strength reduces channel current, it does not have much impact to the quantum tunneling ratio. Finally, advanced numerical techniques, including second order elliptic interface methods, have been applied to ensure computational accuracy and reliability of the present PKS simulation.« less

  4. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  5. Improved soldering iron tip

    NASA Technical Reports Server (NTRS)

    Vanasse, M. A.

    1976-01-01

    Nickel-plated device, with machined recesses matching the multipin pattern of particular circuit module, facilitates repairs to electronic systems and reduces chance of damage to adjacent components. Nickel-plating reduces oxidation and scaling. Recesses retain sufficient amount of molten solder to uniformly wet pins for simultaneous heating and extraction.

  6. Impact of electronic aids to daily living on the lives of persons with cervical spinal cord injuries.

    PubMed

    Rigby, Patricia; Ryan, Stephen; Joos, Shone; Cooper, Barbara; Jutai, Jeffrey W; Steggles, Iielizabeth

    2005-01-01

    Structured interviews were used to evaluate the impact of electronic aids to daily living (EADL) on functional abilities and psychosocial well-being. The participants included 32 adults (26 men, 6 women; mean age of 39 years) with cervical spinal cord injuries. The experiences of 16 EADL users were compared with a control group of 16 nonusers, using the Functional Autonomy Measuring Scale, the Lincoln Outcome Measures for Environmental Controls, and the Psychosocial Impact of Assistive Devices Scale. Results show EADL users had significantly better performance (p < .05) than nonusers for instrumental activities of daily living and for 75% of 12 daily tasks. Many non-users had hands-free control of phones only, whereas EADL users had control over many other household devices, which optimized their independence. The psychosocial impact of this technology was very positive for competence, adaptability, and self-esteem. In conclusion, functional abilities were greater for a variety of daily tasks, and psychosocial impact was positive when EADLs were used.

  7. Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.

    PubMed

    Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin

    2017-11-01

    Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of aligned magnetic nanoparticles using tobamoviruses.

    PubMed

    Kobayashi, Mime; Seki, Munetoshi; Tabata, Hitoshi; Watanabe, Yuichiro; Yamashita, Ichiro

    2010-03-10

    We used genetically modified tube-shaped tobamoviruses to produce 3 nm aligned magnetic nanoparticles. Amino acid residues facing the central channel of the virus were modified to increase the number of nucleation sites. Energy dispersive X-ray spectroscopy and superconducting quantum interference device analysis suggest that the particles consisted of Co-Pt alloy. The use of tobamovirus mutants is a promising approach to making a variety of components that can be applied to fabricate nanometer-scaled electronic devices.

  9. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films.

    PubMed

    Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro

    2016-04-29

    Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

  10. Preface of 16th International conference on Defects, Recognition, Imaging and Physics in Semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Deren; Xu, Ke

    2016-11-01

    The 16th International conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP-XVI) was held at the Worldhotel Grand Dushulake in Suzhou, China from 6th to 10th September 2015, around the 30th anniversary of the first DRIP conference. It was hosted by the Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences. On this occasion, about one hundred participants from nineteen countries attended the event. And a wide range of subjects were addressed during the conference: physics of point and extended defects in semiconductors: origin, electrical, optical and magnetic properties of defects; diagnostics techniques of crystal growth and processing of semiconductor materials (in-situ and process control); device imaging and mapping to evaluate performance and reliability; defect analysis in degraded optoelectronic and electronic devices; imaging techniques and instruments (proximity probe, x-ray, electron beam, non-contact electrical, optical and thermal imaging techniques, etc.); new frontiers of atomic-scale-defect assessment (STM, AFM, SNOM, ballistic electron energy microscopy, TEM, etc.); new approaches for multi-physic-parameter characterization with Nano-scale space resolution. Within these subjects, there were 58 talks, of which 18 invited, and 50 posters.

  11. Computational Nanotechnology of Materials, Electronics and Machines: Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2001-01-01

    This report presents the goals and research of the Integrated Product Team (IPT) on Devices and Nanotechnology. NASA's needs for this technology are discussed and then related to the research focus of the team. The two areas of focus for technique development are: 1) large scale classical molecular dynamics on a shared memory architecture machine; and 2) quantum molecular dynamics methodology. The areas of focus for research are: 1) nanomechanics/materials; 2) carbon based electronics; 3) BxCyNz composite nanotubes and junctions; 4) nano mechano-electronics; and 5) nano mechano-chemistry.

  12. Cumulative Interference to Aircraft Radios from Multiple Portable Electronic Devices

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2005-01-01

    Cumulative interference effects from portable electronic devices (PEDs) located inside a passenger cabin are conservatively estimated for aircraft radio receivers. PEDs' emission powers in an aircraft radio frequency band are first scaled according to their locations' interference path loss (IPL) values, and the results are summed to determine the total interference power. The multiple-equipment-factor (MEF) is determined by normalizing the result against the worst case contribution from a single device. Conservative assumptions were made and MEF calculations were performed for Boeing 737's Localizer, Glide-slope, Traffic Collision Avoidance System, and Very High Frequency Communication radio systems where full-aircraft IPL data were available. The results show MEF for the systems to vary between 10 and 14 dB. The same process was also used on the more popular window/door IPL data, and the comparison show the multiple-equipment-factor results came within one decibel (dB) of each other.

  13. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature,more » and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.« less

  14. "Genetically Engineered" Nanoelectronics

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  15. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyewole, O. K.; Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State; Yu, D.

    This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussedmore » for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices.« less

  16. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    NASA Astrophysics Data System (ADS)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  17. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    PubMed

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  18. Noise Reduction to Reduce Patient Anxiety During Cast Removal: Can We Decrease Patient Anxiety With Cast Removal by Wearing Noise Reduction Headphones During Cast Saw Use?

    PubMed

    Mahan, Susan T; Harris, Marie S; Lierhaus, Anneliese M; Miller, Patricia E; DiFazio, Rachel L

    Noise reduction headphones decrease the sound during cast removal. Their effectiveness in decreasing anxiety has not been studied. Compare pediatric patients' anxiety levels during cast removal with and without utilization of noise reduction headphones combined with use of a personal electronic device. Quality improvement project. Patients randomly assigned to noise reduction headphone group or standard care group during cast removal. Faces, Legs, Activity, Cry, and Consolability Scale and heart rate were evaluated prior to, during, and after cast removal. Data were compared across groups. Fifty patients were included; 25 per group. No difference detected between the 2 groups in Faces, Legs, Activity, Cry, and Consolability Scale score prior to (p = .05) or after cast removal (p = .30). During cast removal, the headphone group had lower FLACC Scale scores (p = .03). Baseline heart rate was lower in the headphone group prior to (p = .02) and after (p = .005) cast removal with no difference during cast removal (p = .24). Utilizing noise reduction headphones and a personal electronic device during the cast removal process decreases patient anxiety.

  19. Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide.

    PubMed

    Dey, Avishek; Krishnamurthy, Satheesh; Bowen, James; Nordlund, Dennis; Meyyappan, M; Gandhiraman, Ram P

    2018-05-23

    Miniaturization of electronic devices and the advancement of Internet of Things pose exciting challenges to develop technologies for patterned deposition of functional nanomaterials. Printed and flexible electronic devices and energy storage devices can be embedded onto clothing or other flexible surfaces. Graphene oxide (GO) has gained much attention in printed electronics due its solution processability, robustness, and high electrical conductivity in the reduced state. Here, we introduce an approach to print GO films from highly acidic suspensions with in situ reduction using an atmospheric pressure plasma jet. Low-temperature plasma of a He and H 2 mixture was used successfully to reduce a highly acidic GO suspension (pH < 2) in situ during deposition. This technique overcomes the multiple intermediate steps required to increase the conductivity of deposited GO. X-ray spectroscopic studies confirmed that the reaction intermediates and the concentration of oxygen functionalities bonded to GO have been reduced significantly by this approach without any additional steps. Moreover, the reduced GO films showed enhanced conductivity. Hence, this technique has a strong potential for printing conducting patterns of GO for a range of large-scale applications.

  20. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  1. CarbAl Heat Transfer Material

    NASA Technical Reports Server (NTRS)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  2. Colossal permittivity materials: Doping for superior dielectrics

    NASA Astrophysics Data System (ADS)

    Homes, Christopher C.; Vogt, Thomas

    2013-09-01

    The search for materials with colossal permittivity for use in capacitors has been met with limited success. A newly discovered co-doped titanium oxide material has an extremely high permittivity and negligible dielectric losses, and is likely to enable further scaling in electronic and energy-storage devices.

  3. The molecular electronic device and the biochip computer: present status.

    PubMed

    Haddon, R C; Lamola, A A

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization.

  4. The molecular electronic device and the biochip computer: present status.

    PubMed Central

    Haddon, R C; Lamola, A A

    1985-01-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization. PMID:3856865

  5. Molecular electronics: The technology of sixth generation computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, M.T.; Miller, R.K.

    1987-01-01

    In February 1986, Japan began the 6th Generation project. At the 1987 Economic Summit in Venice, Prime Minister Yashuhiro Makasone opened the project to world collaboration. A project director suggests that the 6th Generation ''may just be a turning point for human society.'' The major rationale for building molecular electronic devices is to achieve advances in computational densities and speeds. Proposed chromophore chains for molecular-scale chips, for example, could be spaced closer than today's silicone elements by a factor of almost 100. This book describes the research and proposed designs for molecular electronic devices and computers. It examines specific potentialmore » applications and the relationship to molecular electronics to silicon technology and presents the first published survey of experts on research issues, applications, and forecast of future developments and also includes market forecast. An interesting suggestion of the survey is that the chemical industry may become a significant factor in the computer industry as the sixth generation unfolds.« less

  6. Computer simulation of heterogeneous polymer photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Kodali, Hari K.; Ganapathysubramanian, Baskar

    2012-04-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.

  7. A polymer/semiconductor write-once read-many-times memory

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Perlov, Craig; Jackson, Warren; Taussig, Carl; Forrest, Stephen R.

    2003-11-01

    Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

  8. Direct Growth of High Mobility and Low-Noise Lateral MoS2 -Graphene Heterostructure Electronics.

    PubMed

    Behranginia, Amirhossein; Yasaei, Poya; Majee, Arnab K; Sangwan, Vinod K; Long, Fei; Foss, Cameron J; Foroozan, Tara; Fuladi, Shadi; Hantehzadeh, Mohammad Reza; Shahbazian-Yassar, Reza; Hersam, Mark C; Aksamija, Zlatan; Salehi-Khojin, Amin

    2017-08-01

    Reliable fabrication of lateral interfaces between conducting and semiconducting 2D materials is considered a major technological advancement for the next generation of highly packed all-2D electronic circuitry. This study employs seed-free consecutive chemical vapor deposition processes to synthesize high-quality lateral MoS 2 -graphene heterostructures and comprehensively investigated their electronic properties through a combination of various experimental techniques and theoretical modeling. These results show that the MoS 2 -graphene devices exhibit an order of magnitude higher mobility and lower noise metrics compared to conventional MoS 2 -metal devices as a result of energy band rearrangement and smaller Schottky barrier height at the contacts. These findings suggest that MoS 2 -graphene in-plane heterostructures are promising materials for the scale-up of all-2D circuitry with superlative electrical performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Finite element analysis of a micromechanical deformable mirror device

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.; Nelson, W. E.; Hornbeck, L. J.

    1989-01-01

    A monolithic spatial light modulator chip was developed consisting of a large number of micrometer-scale mirror cells which can be rotated through an angle by application of an electrostatic field. The field is generated by electronics integral to the chip. The chip has application in photoreceptor based non-impact printing technologies. Chips containing over 16000 cells were fabricated, and were tested to several billions of cycles. Finite Element Analysis (FEA) of the device was used to model both the electrical and mechanical characteristics.

  10. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  11. Optimizing surface defects for atomic-scale electronics: Si dangling bonds

    NASA Astrophysics Data System (ADS)

    Scherpelz, Peter; Galli, Giulia

    2017-07-01

    Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.

  12. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    PubMed

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitablymore » influencing the dielectric loss while invariably upholding the CP value.« less

  14. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  15. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  16. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE PAGES

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; ...

    2016-04-19

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  17. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    PubMed

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

    NASA Technical Reports Server (NTRS)

    Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum corrections do not have a large effect on the IN characteristics of electronic devices without heteroj unction s. On the other hand, ultra-small MOSFETs certainly exhibit important quantum effects that the DG model will include: quantum repulsion of the inversion and gate charges from the oxide interfaces, and quantum tunneling through thin gate oxides. We present initial results of 2-D DG simulations of ultra-small MOSFETs. Subtle but important issues involving the specification of the model, boundary conditions, and interface constraints for DG simulation of MOSFETs will also be illuminated.

  19. DNA-Based Single-Molecule Electronics: From Concept to Function.

    PubMed

    Wang, Kun

    2018-01-17

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I-V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.

  20. DNA-Based Single-Molecule Electronics: From Concept to Function

    PubMed Central

    2018-01-01

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed. PMID:29342091

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu

    The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competitionmore » can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not enough to disrupt charge transport pathways. The aim of this review is to provide a bridge between the fields interested in electronic properties and mechanical properties of conjugated polymers. We provide a high-level introduction to some of the important electronic and mechanical properties and measurement techniques for organic electronic devices, demonstrate an apparent competition between good electronic performance and mechanical deformability, and highlight potential strategies for overcoming this undesirable competition. A marriage of these two fields would allow for rational design of materials for applications requiring large-area, low-cost, printable devices that are ultra-flexible or stretchable, such as organic photovoltaic devices and wearable, conformable, or implantable sensors.« less

  2. The linearly scaling 3D fragment method for large scale electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less

  3. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less

  4. Energy Efficient Digital Logic Using Nanoscale Magnetic Devices

    NASA Astrophysics Data System (ADS)

    Lambson, Brian James

    Increasing demand for information processing in the last 50 years has been largely satisfied by the steadily declining price and improving performance of microelectronic devices. Much of this progress has been made by aggressively scaling the size of semiconductor transistors and metal interconnects that microprocessors are built from. As devices shrink to the size regime in which quantum effects pose significant challenges, new physics may be required in order to continue historical scaling trends. A variety of new devices and physics are currently under investigation throughout the scientific and engineering community to meet these challenges. One of the more drastic proposals on the table is to replace the electronic components of information processors with magnetic components. Magnetic components are already commonplace in computers for their information storage capability. Unlike most electronic devices, magnetic materials can store data in the absence of a power supply. Today's magnetic hard disk drives can routinely hold billions of bits of information and are in widespread commercial use. Their ability to function without a constant power source hints at an intrinsic energy efficiency. The question we investigate in this dissertation is whether or not this advantage can be extended from information storage to the notoriously energy intensive task of information processing. Several proof-of-concept magnetic logic devices were proposed and tested in the past decade. In this dissertation, we build on the prior work by answering fundamental questions about how magnetic devices achieve such high energy efficiency and how they can best function in digital logic applications. The results of this analysis are used to suggest and test improvements to nanomagnetic computing devices. Two of our results are seen as especially important to the field of nanomagnetic computing: (1) we show that it is possible to operate nanomagnetic computers at the fundamental thermodyanimic limits of computation and (2) we develop a nanomagnet with a unique shape that is engineered to significantly improve the reliability of nanomagnetic logic.

  5. Charge collection and SEU mechanisms

    NASA Astrophysics Data System (ADS)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.

  6. Numerical characterization of the edge transport conditions and limiter fluxes of the HIDRA stellarator

    NASA Astrophysics Data System (ADS)

    Marcinko, Steven; Curreli, Davide

    2018-02-01

    The Hybrid Illinois Device for Research and Applications (HIDRA) is a new device for education and Plasma-Material Interaction research at the University of Illinois at Urbana-Champaign. In advance of its first operational campaign, EMC3-EIRENE simulations have been run on the device. EMC3-EIRENE has been modified to calculate a per-plasma-cell relaxed Bohm-like diffusivity simultaneously with the electron temperature at each iteration. In our characterization, the electron temperature, diffusivity, heat fluxes, and particle fluxes have been obtained for varying power levels on a HIDRA magnetic grid, and scaling laws have been extracted, using constraints from previous experimental data taken when the device was operated in Germany (WEGA facility). Peak electron temperatures and heat fluxes were seen to follow a power-law dependence on the deposited radiofrequency (RF) power of type f (PR F)∝a PRF b , with typical exponents in the range of b ˜0.55 to 0.60. Higher magnetic fields have the tendency to linearize the heat flux dependence on the RF power, with exponents in the range of b ˜ 0.75. Particle fluxes are seen to saturate first, and then slightly decline for RF powers above 120 kW in the low-field case and 180 kW in the high-field case.

  7. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  8. Growth and Characterisation of GaAs/AlGaAs Core-shell Nanowires for Optoelectronic Device Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nian

    III-V semiconductor nanowires have been investigated as key components for future electronic and optoelectronic devices and systems due to their direct band gap and high electron mobility. Amongst the III-V semiconductors, the planar GaAs material system has been extensively studied and used in industries. Accordingly, GaAs nanowires are the prime candidates for nano-scale devices. However, the electronic performance of GaAs nanowires has yet to match that of state-of-the-art planar GaAs devices. The present deficiency of GaAs nanowires is typically attributed to the large surface-to- volume ratio and the tendency for non-radiative recombination centres to form at the surface. The favoured solution of this problem is by coating GaAs nanowires with AlGaAs shells, which replaces the GaAs surface with GaAs/AlGaAs interface. This thesis presents a systematic study of GaAs/AlGaAs core-shell nanowires grown by metal organic chemical vapour deposition (MOCVD), including understanding the growth, and characterisation of their structural and optical properties. The structures of the nanowires were mainly studied by scanning electron microscopy and transmis- sion electron microscopy (TEM). A procedure of microtomy was developed to prepare the cross-sectional samples for the TEM studies. The optical properties were charac- terised by photoluminescence (PL) spectroscopy. Carrier lifetimes were measured by time-resolved PL. The growth of AlGaAs shell was optimised to obtain the best optical properties, e.g. the strongest PL emission and the longest minority carrier lifetimes. (Abstract shortened by ProQuest.).

  9. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  10. DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Fulco, U. L.; Freire, V. N.; Caetano, E. W. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2014-02-01

    The purpose of this review is to present a comprehensive and up-to-date account of the main physical properties of DNA-based nanobiostructured devices, stressing the role played by their quasi-periodicity arrangement and correlation effects. Although the DNA-like molecule is usually described as a short-ranged correlated random ladder, artificial segments can be grown following quasiperiodic sequences as, for instance, the Fibonacci and Rudin-Shapiro ones. They have interesting properties like a complex fractal spectra of energy, which can be considered as their indelible mark, and collective properties that are not shared by their constituents. These collective properties are due to the presence of long-range correlations, which are expected to be reflected somehow in their various spectra (electronic transmission, density of states, etc.) defining another description of disorder. Although long-range correlations are responsible for the effective electronic transport at specific resonant energies of finite DNA segments, much of the anomalous spread of an initially localized electron wave-packet can be accounted by short-range pair correlations, suggesting that an approach based on the inclusion of further short-range correlations on the nucleotide distribution leads to an adequate description of the electronic properties of DNA segments. The introduction of defects may generate states within the gap, and substantially improves the conductance, specially of finite branches. They usually become exponentially localized for any amount of disorder, and have the property to tailor the electronic transport properties of DNA-based nanoelectronic devices. In particular, symmetric and antisymmetric correlations have quite distinct influence on the nature of the electronic states, and a diluted distribution of defects lead to an anomalous diffusion of the electronic wave-packet. Nonlinear contributions, arising from the coupling between electrons and the molecular vibrations, promote an electronic self-trapping, thus opening up the possibility of controlling the spreading of the electronic density by an external field. The main features of DNA-based nanobiostructured devices presented in this review will include their electronic density of states, energy profiles, thermodynamic properties, localization, correlation effects, scale laws, fractal and multifractal analysis, and anhydrous crystals of their bases, among others. New features, like other nanobiostructured devices, as well as the future directions in this field are also presented and discussed.

  11. Review on the dynamics of semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Röder, Robert; Ronning, Carsten

    2018-03-01

    Semiconductor optoelectronic devices have contributed tremendously to the technological progress in the past 50-60 years. Today, they also play a key role in nanophotonics stimulated by the inherent limitations of electronic integrated circuits and the growing demand for faster communications on chip. In particular, the field of ‘nanowire photonics’ has emerged including the search for coherent light sources with a nano-scaled footprint. The past decade has been dedicated to find suitable semiconductor nanowire (NW) materials for such nanolasers. Nowadays, such NW lasers consistently work at room temperature covering a huge spectral range from the ultraviolet down to the mid-infrared depending on the band gap of the NW material. Furthermore, first approaches towards the modification and optimization of such NW laser devices have been demonstrated. The underlying dynamics of the electronic and photonic NW systems have also been studied very recently, as they need to be understood in order to push the technological relevance of nano-scaled coherent light sources. Therefore, this review will first present novel measurement approaches in order to study the ultrafast temporal and optical mode dynamics of individual NW laser devices. Furthermore, these fundamental new insights are reviewed and deeply discussed towards the efficient control and adjustment of the dynamics in semiconductor NW lasers.

  12. A cloud on the horizon-a survey into the use of electronic vaping devices for recreational drug and new psychoactive substance (NPS) administration.

    PubMed

    Blundell, M; Dargan, P; Wood, D

    2018-01-01

    There is limited published scientific data on vaping recreational drugs other than cannabis. A recent review suggested that 15% of people vaping cannabis have also vaped a synthetic cannabinoid receptor agonist (SCRA) and identified over 300 Internet reports of e-liquid manufacture of recreational drugs and/or new psychoactive substances (NPS). To determine the prevalence of use of electronic vaping devices for recreational drug and NPS delivery in the UK. A voluntary online survey using a convenience sample of UK adult participants (aged 16 years old and over) identified by a market research company. Data was collected regarding demographics, smoking history, electronic vaping device history and recreational drug/NPS use and route of administration. There were 2501 respondents. The mean (±SD) age was 46.2 ± 16.8 years old. The commonest lifetime recreational drug used was Cannabis (818, 32.7%). The majority of respondents had smoked (1545, 61.8%) with 731 (29.2%) being current smokers. The most commonly used SCRA product was 'Spice Gold' (173, 6.9%) and SCRA compound was ADB-CHMICA (48, 1.9%). 861 (34.4%) had used an electronic vaping device; 340 (13.6%) having used them for recreational drug administration; 236 (9.4%) reporting current use. The commonest lifetime recreational drug to be vaped was cannabis (155, 65.7%), with electronic cigarettes (230, 48.2%) being the commonest reported route of SCRA compound administration. 9.4% of respondents currently use electronic vaping devices for recreational drug administration with 6.2% reporting lifetime cannabis vaping use. Further larger scale studies are required to help inform the appropriate treatment and primary prevention strategies. © The Author 2017. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  14. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.

    PubMed

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F

    2018-02-02

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.

  15. Probing the electrical switching of a memristive optical antenna by STEM EELS

    PubMed Central

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-01-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052

  16. Skin-Inspired Electronics: An Emerging Paradigm.

    PubMed

    Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan

    2018-05-15

    Future electronics will take on more important roles in people's lives. They need to allow more intimate contact with human beings to enable advanced health monitoring, disease detection, medical therapies, and human-machine interfacing. However, current electronics are rigid, nondegradable and cannot self-repair, while the human body is soft, dynamic, stretchable, biodegradable, and self-healing. Therefore, it is critical to develop a new class of electronic materials that incorporate skinlike properties, including stretchability for conformable integration, minimal discomfort and suppressed invasive reactions; self-healing for long-term durability under harsh mechanical conditions; and biodegradability for reducing environmental impact and obviating the need for secondary device removal for medical implants. These demands have fueled the development of a new generation of electronic materials, primarily composed of polymers and polymer composites with both high electrical performance and skinlike properties, and consequently led to a new paradigm of electronics, termed "skin-inspired electronics". This Account covers recent important advances in skin-inspired electronics, from basic material developments to device components and proof-of-concept demonstrations for integrated bioelectronics applications. To date, stretchability has been the most prominent focus in this field. In contrast to strain-engineering approaches that extrinsically impart stretchability into inorganic electronics, intrinsically stretchable materials provide a direct route to achieve higher mechanical robustness, higher device density, and scalable fabrication. The key is the introduction of strain-dissipation mechanisms into the material design, which has been realized through molecular engineering (e.g., soft molecular segments, dynamic bonds) and physical engineering (e.g., nanoconfinement effect, geometric design). The material design concepts have led to the successful demonstrations of stretchable conductors, semiconductors, and dielectrics without sacrificing their electrical performance. Employing such materials, innovative device design coupled with fabrication method development has enabled stretchable sensors and displays as input/output components and large-scale transistor arrays for circuits and active matrixes. Strategies to incorporate self-healing into electronic materials are the second focus of this Account. To date, dynamic intermolecular interactions have been the most effective approach for imparting self-healing properties onto polymeric electronic materials, which have been utilized to fabricate self-healing sensors and actuators. Moreover, biodegradability has emerged as an important feature in skin-inspired electronics. The incorporation of degradable moieties along the polymer backbone allows for degradable conducting polymers and the use of bioderived materials has led to the demonstration of biodegradable functional devices, such as sensors and transistors. Finally, we highlight examples of skin-inspired electronics for three major applications: prosthetic e-skins, wearable electronics, and implantable electronics.

  17. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    PubMed

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  18. An ignition key for atomic-scale engines

    NASA Astrophysics Data System (ADS)

    Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T.; Todorov, Tchavdar N.

    2012-10-01

    A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.

  19. Subsurface to substrate: dual-scale micro/nanofluidic networks for investigating transport anomalies in tight porous media.

    PubMed

    Kelly, Shaina A; Torres-Verdín, Carlos; Balhoff, Matthew T

    2016-08-07

    Micro/nanofluidic experiments in synthetic representations of tight porous media, often referred to as "reservoir-on-a-chip" devices, are an emerging approach to researching anomalous fluid transport trends in energy-bearing and fluid-sequestering geologic porous media. We detail, for the first time, the construction of dual-scale micro/nanofluidic devices that are relatively large-scale, two-dimensional network representations of granular and fractured nanoporous media. The fabrication scheme used in the development of the networks on quartz substrates (master patterns) is facile and replicable: transmission electron microscopy (TEM) grids with lacey carbon support film were used as shadow masks in thermal evaporation/deposition and reactive ion etch (RIE) was used for hardmask pattern transfer. The reported nanoscale network geometries are heterogeneous and composed of hydraulically resistive paths (throats) meeting at junctures (pores) to mimic the low topological connectivity of nanoporous sedimentary rocks such as shale. The geometry also includes homogenous microscale grid patterns that border the nanoscale networks and represent microfracture pathways. Master patterns were successfully replicated with a sequence of polydimethylsiloxane (PDMS) and Norland Optical Adhesive (NOA) 63 polymers. The functionality of the fabricated quartz and polymer nanofluidic devices was validated with aqueous imbibition experiments and differential interference contrast microscopy. These dual-scale fluidic devices are promising predictive tools for hypothesis testing and calibration against bulk fluid measurements in tight geologic, biologic, and synthetic porous material of similar dual-scale pore structure. Applications to shale/mudrock transport studies in particular are focused on herein.

  20. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  1. Expansion Rate Scaling and Energy Evolution in the Electron Diffusion Gauge Experiment.

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle; Davidson, Ronald; Paul, Stephen; Jenkins, Thomas

    2001-10-01

    The expansion of the Electron Diffusion Gauge (EDG) pure electron plasma resulting from collisions with background neutral gas atoms is characterized by the pressure and magnetic field scalings of the profile expansion rate (d/dt) < r^2 >. The measured expansion rate in the higher pressure regime is found to be in good agreement with the classical estimate [ fracddt< r^2 > = frac2 NL e^2 ν_enm ω_c^2 (1+frac2TNL e^2). ] Expansion rate data is obtained for smaller initial plasmas (with outer diameter 1/4 of the trap wall diameter) generated with an improved filament installed in the EDG device, and the data is compared with previous results for larger-filament plasmas. The dynamic energy evolution of the plasma, including electrostatic energy and inferred temperature evolution for several of the measurements, is discussed.

  2. 3D gate-all-around bandgap-engineered SONOS flash memory in vertical silicon pillar with metal gate

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Sub; Yang, Seong-Dong; Lee, Sang-Youl; Kim, Young-Su; Kang, Min-Ho; Lim, Sung-Kyu; Lee, Hi-Deok; Lee, Ga-Won

    2013-08-01

    In this paper, a gate-all-around bandgap-engineered silicon-oxide-nitride-oxide-silicon device with a vertical silicon pillar structure and a Ti metal gate are demonstrated for a potential solution to overcome the scaling-down of flash memory device. The devices were fabricated using CMOS-compatible technology and exhibited well-behaved memory characteristics in terms of the program/erase window, retention, and endurance properties. Moreover, the integration of the Ti metal gate demonstrated a significant improvement in the erase characteristics due to the efficient suppression of the electron back tunneling through the blocking oxide.

  3. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  4. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  5. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    NASA Astrophysics Data System (ADS)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  6. Total-dose radiation effects data for semiconductor devices, volume 3

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1982-01-01

    Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.

  7. Ultrahigh Performance C60 Nanorod Large Area Flexible Photoconductor Devices via Ultralow Organic and Inorganic Photodoping

    PubMed Central

    Saran, Rinku; Stolojan, Vlad; Curry, Richard J.

    2014-01-01

    One dimensional single-crystal nanorods of C60 possess unique optoelectronic properties including high electron mobility, high photosensitivity and an excellent electron accepting nature. In addition, their rapid large scale synthesis at room temperature makes these organic semiconducting nanorods highly attractive for advanced optoelectronic device applications. Here, we report low-cost large-area flexible photoconductor devices fabricated using C60 nanorods. We demonstrate that the photosensitivity of the C60 nanorods can be enhanced ~400-fold via an ultralow photodoping mechanism. The photodoped devices offer broadband UV-vis-NIR spectral tuneability, exhibit a detectivitiy >109 Jones, an external quantum efficiency of ~100%, a linear dynamic range of 80 dB, a rise time 60 µs and the ability to measure ac signals up to ~250 kHz. These figures of merit combined are among the highest reported for one dimensional organic and inorganic large-area planar photoconductors and are competitive with commercially available inorganic photoconductors and photoconductive cells. With the additional processing benefits providing compatibility with large-area flexible platforms, these devices represent significant advances and make C60 nanorods a promising candidate for advanced photodetector technologies. PMID:24853479

  8. Direct laser writing of graphene electronics.

    PubMed

    El-Kady, Maher F; Kaner, Richard B

    2014-09-23

    One of the fundamental issues with graphene for logic applications is its lack of a band gap. In this issue of ACS Nano, Shim and colleagues introduce an effective approach for modulating the current flow in graphene by forming p-n junctions using lasers. The findings could lead to a new route for controlling the electronic properties of graphene-based devices. We highlight recent progress in the direct laser synthesis and patterning of graphene for numerous applications. We also discuss the challenges and opportunities in translating this remarkable progress toward the direct laser writing of graphene electronics at large scales.

  9. Large-scale atomistic simulations demonstrate dominant alloy disorder effects in GaBixAs1 -x/GaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    2018-04-01

    Bismide semiconductor materials and heterostructures are considered a promising candidate for the design and implementation of photonic, thermoelectric, photovoltaic, and spintronic devices. This work presents a detailed theoretical study of the electronic and optical properties of strongly coupled GaBixAs1 -x /GaAs multiple quantum well (MQW) structures. Based on a systematic set of large-scale atomistic tight-binding calculations, our results reveal that the impact of atomic-scale fluctuations in alloy composition is stronger than the interwell coupling effect, and plays an important role in the electronic and optical properties of the investigated MQW structures. Independent of QW geometry parameters, alloy disorder leads to a strong confinement of charge carriers, a large broadening of the hole energies, and a red-shift in the ground-state transition wavelength. Polarization-resolved optical transition strengths exhibit a striking effect of disorder, where the inhomogeneous broadening could exceed an order of magnitude for MQWs, in comparison to a factor of about 3 for single QWs. The strong influence of alloy disorder effects persists when small variations in the size and composition of MQWs typically expected in a realistic experimental environment are considered. The presented results highlight the limited scope of continuum methods and emphasize on the need for large-scale atomistic approaches to design devices with tailored functionalities based on the novel properties of bismide materials.

  10. Miniature thermoacoustic cryocooler driven by a vertical comb-drive

    NASA Astrophysics Data System (ADS)

    Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David

    2003-01-01

    In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.

  11. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  12. Non-Volatile High Speed & Low Power Charge Trapping Devices

    NASA Astrophysics Data System (ADS)

    Kim, Moon Kyung; Tiwari, Sandip

    2007-06-01

    We report the operational characteristics of ultra-small-scaled SONOS (below 50 nm gate width and length) and SiO2/SiO2 structural devices with 0.5 um gate width and length where trapping occurs in a very narrow region. The experimental work summarizes the memory characteristics of retention time, endurance cycles, and speed in SONOS and SiO2/SiO2 structures. Silicon nitride has many defects to hold electrons as charge storage media in SONOS memory. Defects are also incorporated during growth and deposition in device processing. Our experiments show that the interface between two oxides, one grown and one deposited, provides a remarkable media for electron storage with a smaller gate stack and thus lower operating voltage. The exponential dependence of the time on the voltage is reflected in the characteristic energy. It is ˜0.44 eV for the write process and ˜0.47 eV for the erase process in SiO2/SiO2 structural device which is somewhat more efficient than those of SONOS structure memory.

  13. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    PubMed

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nanometer-scale oxide thin film transistor with potential for high-density image sensor applications.

    PubMed

    Jeon, Sanghun; Park, Sungho; Song, Ihun; Hur, Ji-Hyun; Park, Jaechul; Kim, Hojung; Kim, Sunil; Kim, Sangwook; Yin, Huaxiang; Chung, U-In; Lee, Eunha; Kim, Changjung

    2011-01-01

    The integration of electronically active oxide components onto silicon circuits represents an innovative approach to improving the functionality of novel devices. Like most semiconductor devices, complementary-metal-oxide-semiconductor image sensors (CISs) have physical limitations when progressively scaled down to extremely small dimensions. In this paper, we propose a novel hybrid CIS architecture that is based on the combination of nanometer-scale amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) and a conventional Si photo diode (PD). With this approach, we aim to overcome the loss of quantum efficiency and image quality due to the continuous miniaturization of PDs. Specifically, the a-IGZO TFT with 180 nm gate length is probed to exhibit remarkable performance including low 1/f noise and high output gain, despite fabrication temperatures as low as 200 °C. In particular, excellent device performance is achieved using a double-layer gate dielectric (Al₂O₃/SiO₂) combined with a trapezoidal active region formed by a tailored etching process. A self-aligned top gate structure is adopted to ensure low parasitic capacitance. Lastly, three-dimensional (3D) process simulation tools are employed to optimize the four-pixel CIS structure. The results demonstrate how our stacked hybrid device could be the starting point for new device strategies in image sensor architectures. Furthermore, we expect the proposed approach to be applicable to a wide range of micro- and nanoelectronic devices and systems.

  15. Multi-scale theory-assisted nano-engineering of plasmonic-organic hybrid electro-optic device performance

    NASA Astrophysics Data System (ADS)

    Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.

    2018-02-01

    Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.

  16. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  17. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  18. Motion of Fullerenes around Topological Defects on Metals: Implications for the Progress of Molecular Scale Devices.

    PubMed

    Nirmalraj, Peter; Daly, Ronan; Martin, Nazario; Thompson, Damien

    2017-03-08

    Research on motion of molecules in the presence of thermal noise is central for progress in two-terminal molecular scale electronic devices. However, it is still unclear what influence imperfections in bottom metal electrode surface can have on molecular motion. Here, we report a two-layer crowding study, detailing the early stages of surface motion of fullerene molecules on Au(111) with nanoscale pores in a n-tetradecane chemical environment. The motion of the fullerenes is directed by crowding of the underlying n-tetradecane molecules around the pore fringes at the liquid-solid interface. We observe in real-space the growth of molecular populations around different pore geometries. Supported by atomic-scale modeling, our findings extend the established picture of molecular crowding by revealing that trapped solvent molecules serve as prime nucleation sites at nanopore fringes.

  19. Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy.

    PubMed

    Lietard, Aude; Hsieh, Cho-Shuen; Rhee, Hanju; Cho, Minhaeng

    2018-03-01

    To elucidate the complex interplay between the size and shape of gold nanorods and their electronic, photothermal, and optical properties for molecular imaging, photothermal therapy, and optoelectronic devices, it is a prerequisite to characterize ultrafast electron dynamics in gold nanorods. Time-resolved transient absorption (TA) studies of plasmonic electrons in various nanostructures have revealed the time scales for electron heating, lattice vibrational excitation, and phonon relaxation processes in condensed phases. However, because linear spectroscopic and time-resolved TA signals are vulnerable to inhomogeneous line-broadening, pure dephasing and direct electron heating effects are difficult to observe. Here we show that femtosecond two-dimensional electronic spectroscopy, with its unprecedented time resolution and phase sensitivity, can be used to collect direct experimental evidence for ultrafast electron heating, anomalously strong coherent and transient electronic plasmonic responses, and homogenous dephasing processes resulting from electron-vibration couplings even for polydisperse gold nanorods.

  20. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  1. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  2. Atomic-scale epitaxial aluminum film on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di

    2017-07-01

    Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  3. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305...

  4. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  5. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  6. Even the Odd Numbers Help: Failure Modes of SAM-Based Tunnel Junctions Probed via Odd-Even Effects Revealed in Synchrotrons and Supercomputers.

    PubMed

    Thompson, Damien; Nijhuis, Christian A

    2016-10-18

    This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.

  7. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    NASA Astrophysics Data System (ADS)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  8. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...

  9. Zero-static power radio-frequency switches based on MoS2 atomristors.

    PubMed

    Kim, Myungsoo; Ge, Ruijing; Wu, Xiaohan; Lan, Xing; Tice, Jesse; Lee, Jack C; Akinwande, Deji

    2018-06-28

    Recently, non-volatile resistance switching or memristor (equivalently, atomristor in atomic layers) effect was discovered in transitional metal dichalcogenides (TMD) vertical devices. Owing to the monolayer-thin transport and high crystalline quality, ON-state resistances below 10 Ω are achievable, making MoS 2 atomristors suitable as energy-efficient radio-frequency (RF) switches. MoS 2 RF switches afford zero-hold voltage, hence, zero-static power dissipation, overcoming the limitation of transistor and mechanical switches. Furthermore, MoS 2 switches are fully electronic and can be integrated on arbitrary substrates unlike phase-change RF switches. High-frequency results reveal that a key figure of merit, the cutoff frequency (f c ), is about 10 THz for sub-μm 2 switches with favorable scaling that can afford f c above 100 THz for nanoscale devices, exceeding the performance of contemporary switches that suffer from an area-invariant scaling. These results indicate a new electronic application of TMDs as non-volatile switches for communication platforms, including mobile systems, low-power internet-of-things, and THz beam steering.

  10. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section...

  11. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  12. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  13. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid

    2016-08-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  14. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology

    PubMed Central

    Kumar, Rajiv B; Goren, Nira D; Stark, David E; Wall, Dennis P; Longhurst, Christopher A

    2016-01-01

    The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for 10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient’s/parent’s smartphone enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare provider workflow. PMID:27018263

  15. Current at Metal-Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Kern, Klaus

    2012-02-01

    Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.

  16. Electron-beam lithography for micro and nano-optical applications

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W.; Muller, Richard E.; Echternach, Pierre M.

    2005-01-01

    Direct-write electron-beam lithography has proven to be a powerful technique for fabricating a variety of micro- and nano-optical devices. Binary E-beam lithography is the workhorse technique for fabricating optical devices that require complicated precision nano-scale features. We describe a bi-layer resist system and virtual-mark height measurement for improving the reliability of fabricating binary patterns. Analog E-beam lithography is a newer technique that has found significant application in the fabrication of diffractive optical elements. We describe our techniques for fabricating analog surface-relief profiles in E-beam resist, including some discussion regarding overcoming the problems of resist heating and charging. We also describe a multiple-field-size exposure scheme for suppression of field-stitch induced ghost diffraction orders produced by blazed diffraction gratings on non-flat substrates.

  17. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    PubMed

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  18. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    PubMed

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within gas-sensing devices and has enabled stable sensor operation within aqueous media. Furthermore, careful tuning of the chemical composition of the dielectric layer has provided a means to operate the sensor in real time within an aqueous environment and without the need for encapsulation layers. The integration of such devices as electronic mimics of skin will require the incorporation of biocompatible or biodegradable components. Toward this goal, OFETs may be fabricated with >99% biodegradable components by weight, and the devices are robust and stable, even in aqueous environments. Collectively, progress to date suggests that OFETs may be integrated within a single substrate to function as an electronic mimic of human skin, which could enable a large range of sensing-related applications from novel prosthetics to robotic surgery.

  19. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgiamore » Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.« less

  20. Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range

    NASA Astrophysics Data System (ADS)

    Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio

    2005-07-01

    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.

  1. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  2. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  3. Self-assembled phase-change nanowire for nonvolatile electronic memory

    NASA Astrophysics Data System (ADS)

    Jung, Yeonwoong

    One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.

  4. Tungsten Contact and Line Resistance Reduction with Advanced Pulsed Nucleation Layer and Low Resistivity Tungsten Treatment

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi

    2010-09-01

    This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.

  5. On-chip cooling by superlattice-based thin-film thermoelectrics.

    PubMed

    Chowdhury, Ihtesham; Prasher, Ravi; Lofgreen, Kelly; Chrysler, Gregory; Narasimhan, Sridhar; Mahajan, Ravi; Koester, David; Alley, Randall; Venkatasubramanian, Rama

    2009-04-01

    There is a significant need for site-specific and on-demand cooling in electronic, optoelectronic and bioanalytical devices, where cooling is currently achieved by the use of bulky and/or over-designed system-level solutions. Thermoelectric devices can address these limitations while also enabling energy-efficient solutions, and significant progress has been made in the development of nanostructured thermoelectric materials with enhanced figures-of-merit. However, fully functional practical thermoelectric coolers have not been made from these nanomaterials due to the enormous difficulties in integrating nanoscale materials into microscale devices and packaged macroscale systems. Here, we show the integration of thermoelectric coolers fabricated from nanostructured Bi2Te3-based thin-film superlattices into state-of-the-art electronic packages. We report cooling of as much as 15 degrees C at the targeted region on a silicon chip with a high ( approximately 1,300 W cm-2) heat flux. This is the first demonstration of viable chip-scale refrigeration technology and has the potential to enable a wide range of currently thermally limited applications.

  6. Functional carbon nitride materials — design strategies for electrochemical devices

    NASA Astrophysics Data System (ADS)

    Kessler, Fabian K.; Zheng, Yun; Schwarz, Dana; Merschjann, Christoph; Schnick, Wolfgang; Wang, Xinchen; Bojdys, Michael J.

    2017-06-01

    In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of 'post-silicon electronics'.

  7. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  8. Three-dimensional minority-carrier collection channels at shunt locations in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrey, Harvey; Johnston, Steve; Weiss, Dirk N.

    2016-10-01

    In this contribution, we demonstrate the value of using a multiscale multi-technique characterization approach to study the performance-limiting defects in multi-crystalline silicon (mc-Si) photovoltaic devices. The combination of dark lock-in thermography (DLIT) imaging, electron beam induced current imaging, and both transmission and scanning transmission electron microscopy (TEM/STEM) on the same location revealed the nanoscale origin of the optoelectronic properties of shunts visible at the device scale. Our site-specific correlative approach identified the shunt behavior to be a result of three-dimensional inversion channels around structural defects decorated with oxide precipitates. These inversion channels facilitate enhanced minority-carrier transport that results in themore » increased heating observed through DLIT imaging. The definitive connection between the nanoscale structure and chemistry of the type of shunt investigated here allows photovoltaic device manufacturers to immediately address the oxygen content of their mc-Si absorber material when such features are present, instead of engaging in costly characterization.« less

  9. Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors

    NASA Technical Reports Server (NTRS)

    Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.

    1985-01-01

    Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.

  10. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-09-19

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  11. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    NASA Astrophysics Data System (ADS)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  12. Plasmonic hole arrays for combined photon and electron management

    DOE PAGES

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-11-14

    Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. In this paper, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate onmore » their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Finally, prototypical photovoltaic devices constructed with perforated metal contacts convert ~18% of the incident photons, compared to <1% for identical devices having contacts without the hole array.« less

  13. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    NASA Astrophysics Data System (ADS)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  14. Atomistic- and Meso-Scale Computational Simulations for Developing Multi-Timescale Theory for Radiation Degradation in Electronic and Optoelectronic Devices

    DTIC Science & Technology

    2017-02-13

    3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2016-0161 12. DISTRIBUTION / AVAILABILITY...RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy 22 Approved for public release; distribution is unlimited. ... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0161 TR-2016-0161 ATOMISTIC- AND MESO-SCALE COMPUTATIONAL SIMULATIONS FOR DEVELOPING MULTI-TIMESCALE THEORY FOR

  15. Proceedings of the International Workshop on Computational Electronics (3rd), Held in Portland, Oregon on May 18-20, 1994

    DTIC Science & Technology

    1994-05-20

    bias ( power supply ) as the relaxation time, field dependence of the average and channel length were chosen. energy and velocity, amount of heat flux... power supply voltage has been scaled less aggressively than device geometries. In deep submi- cron MOSFETs, the number of hot carriers is expected to...special attention given to versus field relation. Each of the HD models is cast issues related to power supply scaling.- into a generalized form allowing

  16. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  17. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.

    PubMed

    Bao, Wenzhong; Miao, Feng; Chen, Zhen; Zhang, Hang; Jang, Wanyoung; Dames, Chris; Lau, Chun Ning

    2009-09-01

    Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties. Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials. The ability to control ripple structure in graphene could allow device design based on local strain and selective bandgap engineering. Here, we report the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains. We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and making use of graphene's negative thermal expansion coefficient (TEC), which we measure to be much larger than that of graphite. These results elucidate the ripple formation process, which can be understood in terms of classical thin-film elasticity theory. This should lead to an improved understanding of suspended graphene devices, a controlled engineering of thermal stress in large-scale graphene electronics, and a systematic investigation of the effect of ripples on the electronic properties of graphene.

  18. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices. Electronic supplementary information (ESI) available: FE-SEM images of ZnO NFs grown on textile and FTO/glass substrates, XRD patterns of synthesized ZnO NFs, nitrogen adsorption isotherms for ZnO NWs and ZnO NFs, effect of different coating layers on ZnO NFNGs, P(VDF-TrFE) coating on ZnO NFs, output open-circuit voltages of a textile electrostatic NG based on P(VDF-TrFE) coated on ZnO NFs and a textile ZnO NFNG without an insulating layer generated by a sonic wave, NG-based triboelectric effects and PDMS-coated ZnO NF-based NGs grown on an ITO/PET substrate. See DOI: 10.1039/c5nr08324a

  19. QDIP vs. QWIP: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    2004-03-01

    The conquest of the nano-world is occurring simultaneously in almost every field with a strong interdisciplinary character. The mechanical, electrical, optical, magnetic and chemical properties of materials are beginning to be exploited on nano-scale. This enables the fabrication of devices that rely on effects on the nano-scale. Specially the creation of nanostructures by self-assembly has become very important part towards the development of the new nano-scale devices such as quantum dot laser and Quantum Dot Infrared Photodetector (QDIP). Self-assembled quantum dots (SAQD) are based on the Stranski-Krastanow growth mode by Metal Organic Vapor Deposition (MOCVD) or Molecular Beam Epitaxy (MBE). SAQDs appeal by the lack of non-radiative recombination due to epitaxial interfaces, typical dimensions in the 10 nm to a few 10 nm region providing for strong quantum confinement, as well as the compatibility with monolithic device integration. One of the emerging nano-devices, QDIP will be presented and analyzed. Their advantages and limitation by comparison to QWIP will be presented.. QDIPs are important device application for the detection of mid- (MIR) and far-infrared (FIR) radiation utilizing optical inter-sublevel transition (ISL). Specially QDIPs can have better performances compared to other detection technologies such as sensitivity to normal incidence photoexcitation, larger phonon scattering times (phonon bottleneck) which lead to increased carrier capture and relaxation times. Since ISL transitions are observable also in absence of spectator charges in QDs, results may differ substantially from those obtained by interband experiments such as photoluminescence and PL Excitation. Optical properties of such QDIPs depend critically on the structural properties such as the size, composition and shape, giving potentially unprecedented control on the optical properties. In order to understand the correlations between the structural and optical properties, in this work the single-band, constant-potential model was developed. These calculations can be applied to interpret the effect on the electronic energy levels in the size, composition and shape, the cut-off wavelength of the device, the interaction of electron or hole with electric field, photons, and phonons, the polarization behavior, LO-phonon interaction. The purpose of the theory is not only for better understanding the physics but also for the improvement of the device performance toward the Focal Plane Array (FPA) of QDIP which is necessary to obtain the high detectivity ( 1010 cmHz1/2/W) and low dark current. The investigations of physics underlying the quantum dot are still under the intense research and need to be much more studied and enhance the performances of devices and open new possibilities for the development of new nano-devices.

  20. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  1. The role of nanotechnology and nano and micro-electronics in monitoring and control of cardiovascular diseases and neurological disorders

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2007-04-01

    Nanotechnology has been broadly defined as the one for not only the creation of functional materials and devices as well as systems through control of matter at the scale of 1-100 nm, but also the exploitation of novel properties and phenomena at the same scale. Growing needs in the point-of-care (POC) that is an increasing market for improving patient's quality of life, are driving the development of nanotechnologies for diagnosis and treatment of various life threatening diseases. This paper addresses the recent development of nanodiagnostic sensors and nanotherapeutic devices with functionalized carbon nanotube and/or nanowire on a flexible organic thin film electronics to monitor and control of the three leading diseases namely 1) neurodegenerative diseases, 2) cardiovascular diseases, and 3) diabetes and metabolic diseases. The sensors developed include implantable and biocompatible devices, light weight wearable devices in wrist-watches, hats, shoes and clothes. The nanotherapeutics devices include nanobased drug delivery system. Many of these sensors are integrated with the wireless systems for the remote physiological monitoring. The author's research team has also developed a wireless neural probe using nanowires and nanotubes for monitoring and control of Parkinson's disease. Light weight and compact EEG, EOG and EMG monitoring system in a hat developed is capable of monitoring real time epileptic patients and patients with neurological and movement disorders using the Internet and cellular network. Physicians could be able to monitor these signals in realtime using portable computers or cell phones and will give early warning signal if these signals cross a pre-determined threshold level. In addition the potential impact of nanotechnology for applications in medicine is that, the devices can be designed to interact with cells and tissues at the molecular level, which allows high degree of functionality. Devices engineered at nanometer scale imply a controlled manipulation of individual molecules and atoms that can interact with the human body at sub-cellular level. The recent progress in microelectronics and nanosensors crates very powerful tools for the early detection and diagnosis. The nanowire integrated potassium and dopamine sensors are ideal for the monitoring and control of many cardiovascular diseases and neurological disorders. Selected movies illustrating the applications of nanodevices to patients will be shown at the talk.

  2. Direct Laser Writing-Based Programmable Transfer Printing via Bioinspired Shape Memory Reversible Adhesive.

    PubMed

    Huang, Yin; Zheng, Ning; Cheng, Zhiqiang; Chen, Ying; Lu, Bingwei; Xie, Tao; Feng, Xue

    2016-12-28

    Flexible and stretchable electronics offer a wide range of unprecedented opportunities beyond conventional rigid electronics. Despite their vast promise, a significant bottleneck lies in the availability of a transfer printing technique to manufacture such devices in a highly controllable and scalable manner. Current technologies usually rely on manual stick-and-place and do not offer feasible mechanisms for precise and quantitative process control, especially when scalability is taken into account. Here, we demonstrate a spatioselective and programmable transfer strategy to print electronic microelements onto a soft substrate. The method takes advantage of automated direct laser writing to trigger localized heating of a micropatterned shape memory polymer adhesive stamp, allowing highly controlled and spatioselective switching of the interfacial adhesion. This, coupled to the proper tuning of the stamp properties, enables printing with perfect yield. The wide range adhesion switchability further allows printing of hybrid electronic elements, which is otherwise challenging given the complex interfacial manipulation involved. Our temperature-controlled transfer printing technique shows its critical importance and obvious advantages in the potential scale-up of device manufacturing. Our strategy opens a route to manufacturing flexible electronics with exceptional versatility and potential scalability.

  3. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths

    PubMed Central

    Gül, O. Tolga; Pugliese, Kaitlin M.; Choi, Yongki; Sims, Patrick C.; Pan, Deng; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    2016-01-01

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures. PMID:27348011

  4. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths.

    PubMed

    Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G

    2016-06-24

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  5. Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices.

    PubMed

    Kim, Hyungjun; Goddard, William A; Jang, Seung Soon; Dichtel, William R; Heath, James R; Stoddart, J Fraser

    2009-03-12

    Donor-acceptor binding of the pi-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)) with the pi-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519-525; Nature 2007, 445, 414-417) and nanoelectromechanical systems. The rate of CBPQT(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT(4+) ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of approximately 10(-7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments.

  6. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO₄ laser patterned rutile TiO₂ nanorods.

    PubMed

    Fakharuddin, Azhar; Palma, Alessandro L; Di Giacomo, Francesco; Casaluci, Simone; Matteocci, Fabio; Wali, Qamar; Rauf, Muhammad; Di Carlo, Aldo; Brown, Thomas M; Jose, Rajan

    2015-12-11

    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH3NH3PbX3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs' patterning over substrates is resolved by using precise Nd:YVO4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH3NH3PbI3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices.

  7. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  8. GaN Initiative for Grid Applications (GIGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -evenmore » for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.« less

  9. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA

    PubMed Central

    Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.

    2009-01-01

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949

  10. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.

    PubMed

    Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D

    2008-06-16

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.

  11. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues.

    PubMed

    Duan, Xiaojie; Lieber, Charles M

    2013-10-01

    High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  13. Perovskite Materials: Solar Cell and Optoelectronic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Geohegan, David B; Xiao, Kai

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less

  14. Crystallization-driven assembly of conjugated-polymer-based nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayward, Ryan C.

    2016-10-15

    The goal of this project has been to improve our ability to simultaneously control the organization, and therefore the opto-electronic properties, of conjugated-polymer based materials across three different length-scales: 1) the molecular scale, in the sense of controlling growth and functionalization of highly crystalline semiconducting organic materials capable of efficient charge transport, 2) the nanoscale, in terms of positioning n- and p-type materials with domain sizes comparable to exciton diffusion lengths (~ 10 nm) to facilitate charge separation, and 3) the colloidal scale, such that well-defined crystalline nanoscale building blocks can be hierarchically organized into device layers. As described inmore » more detail below, the project was successful in generating powerful new approaches to, and improved fundamental understanding of, processing and self-assembly of organic and hybrid semiconducting materials across all three length-scales. Although the goals of the project were formulated with primarily photovoltaic architectures in mind, the outcomes of the project have significant implications for a variety of conjugated-polymer-based devices including field-effect-transistors for sensors and logic devices, as well as potentially thermoelectrics and battery electrode materials. The project has resulted in 10 peer-reviewed publications to date [1-10], with several additional manuscripts currently in preparation.« less

  15. Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECT

    PubMed Central

    Park, Steve; Giri, Gaurav; Shaw, Leo; Pitner, Gregory; Ha, Jewook; Koo, Ja Hoon; Gu, Xiaodan; Park, Joonsuk; Lee, Tae Hoon; Nam, Ji Hyun; Hong, Yongtaek; Bao, Zhenan

    2015-01-01

    The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed “controlled OSC nucleation and extension for circuits” (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication. PMID:25902502

  16. Wafer-scale growth of VO2 thin films using a combinatorial approach

    PubMed Central

    Zhang, Hai-Tian; Zhang, Lei; Mukherjee, Debangshu; Zheng, Yuan-Xia; Haislmaier, Ryan C.; Alem, Nasim; Engel-Herbert, Roman

    2015-01-01

    Transition metal oxides offer functional properties beyond conventional semiconductors. Bridging the gap between the fundamental research frontier in oxide electronics and their realization in commercial devices demands a wafer-scale growth approach for high-quality transition metal oxide thin films. Such a method requires excellent control over the transition metal valence state to avoid performance deterioration, which has been proved challenging. Here we present a scalable growth approach that enables a precise valence state control. By creating an oxygen activity gradient across the wafer, a continuous valence state library is established to directly identify the optimal growth condition. Single-crystalline VO2 thin films have been grown on wafer scale, exhibiting more than four orders of magnitude change in resistivity across the metal-to-insulator transition. It is demonstrated that ‘electronic grade' transition metal oxide films can be realized on a large scale using a combinatorial growth approach, which can be extended to other multivalent oxide systems. PMID:26450653

  17. A 17 GHz molecular rectifier

    PubMed Central

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-01-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833

  18. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    NASA Astrophysics Data System (ADS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-04-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  19. EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics

    NASA Astrophysics Data System (ADS)

    Subramanian, Vivek; Lee, Takhee

    2012-08-01

    Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit nanomaterials as building blocks. Developments in the field will help to leverage the power of these materials to realize novel functionalities in flexible form factors. This special issue provides a view of the state of the art in these technologies, and gives a vision of the coming innovations that will make flexible electronics a reality. References [1] Gelinck G H et al 2004 Flexible active-matrix displays and shift registers based on solution-processed organic transistors Nature Mater. 3 106-10 [2] Zhou L, Wanga A, Wu S C, Sun J, Park S and Jackson T N 2006 All-organic active matrix flexible display Appl. Phys. Lett. 88 083502 [3] Fan Z, Ho J C, Jacobson Z A, Razavi H and Javey A 2008 Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry Proc. Natl Acad. Sci. 105 11066 [4] Sekitani T et al 2009 Organic nonvolatile memory transistors for flexible sensor arrays Science 326 1516-9 [5] Mannsfeld S C B et al 2010 Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers Nature Mater. 9 859-64 [6]Subramanian V, Frechet J M J, Chang P C, Huang D C, Lee J B, Molesa S E, Murphy A R, Redinger D R and Volkman S K 2005 Progress toward development of all-printed RFID tags: materials, processes, and devices Proc. IEEE 93 1330-8 [7] Jung M et al 2010 All-printed and roll-to-roll-printable 13.56 MHz-operated 1 bit RF tag on plastic foils IEEE Trans. Electron. Devices 57 571-80 [8] Kim D-H et al 2011 Epidermal electronics Science 333 838-43 [9] Wagner S and Bauer S 2012 Materials for stretchable electronics MRS Bull. 37 207 [10] Grouchko M, Kamyshny A and Magdassi S 2009 Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing J. Mater. Chem. 19 3057-62 [11] Takei K et al 2010 Nanowire active-matrix circuitry for low-voltage macroscale artificial skin Nature Mater. 9 821-6 [12] Sekitani T, Zschieschang U, Klauk H and Someya T 2010 Flexible organic transistors and circuits with extreme bending stability Nature Mater. 9 1015-22 [13] Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon M and Lee T 2012 Flexible molecular-scale electronic devices Nature Nanotechnol. 7 438-42

  20. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.

  1. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  2. DEVELOPMENT AND EVALUATION OF ADAPTIVE COMMUNICATION DEVICES FOR THE SEVERELY HANDICAPPED CHILD. FINAL REPORT.

    ERIC Educational Resources Information Center

    MCCANN, CAIRBRE; AND OTHERS

    A SAMPLE OF THIRTEEN, SEVERELY INVOLVED, CEREBRAL PALSIED CLIENTS (12 CHILDREN, ONE ADULT) PARTICIPATED IN THIS STUDY. DEGREE OF NEUROMOTOR DISABILITY WAS DETERMINED BY A SCALE BASED ON ACTIVITIES OF DAILY LIVING. A PSYCHOLOGICAL EVALUATION WAS MADE OF ALL SUBJECTS IN THE STUDY. SUBJECTS WERE EVALUATED IN THEIR USE OF ELECTRONIC SWITCHES CONNECTED…

  3. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.

    PubMed

    Wan, Xiangjian; Huang, Yi; Chen, Yongsheng

    2012-04-17

    Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated "free" and "perfect" graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity. In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the most important production method for electronic applications. The chemical exfoliation method offers the advantages of easy scale up and easy solution processing but also produces graphene oxide (GO), which leads to defects and the introduction of heavy functional groups. However, most of these additional functional groups and defects can be removed by chemical reduction or thermal annealing. Because solution processing is required for many film and device applications, including transparent electrodes for touch screens, light-emitting devices (LED), field-effect transistors (FET), and photovoltaic devices (OPV), flexible electronics, and composite applications, the use of GO is important for the production of graphene. Because graphene has an intrinsic zero band gap, this issue needs to be tackled for its FET applications. The studies for transparent electrode related applications have made great progress, but researchers need to improve sheet resistance while maintaining reasonable transparency. Proposals for solving these issues include doping or controlling the sheet size and defects, and theory indicates that graphene can match the overall performance of indium tin oxide (ITO). We have significantly improved the specific capacitance in graphene supercapacitor devices, though our results do not yet approach theoretical values. For composite applications, the key issue is to prevent the restacking of graphene sheets, which we achieved by adding blocking molecules. The continued success of graphene studies will require further development in two areas: (1) the large scale and controlled synthesis of graphene, producing different structures and quantities that are needed for a variety of applications and (2) on table applications, such as transparent electrodes and energy storage devices. Overall, graphene has demonstrated performance that equals or surpasses that of other new carbon allotropes. These features, combined with its easier access and better processing ability, offer the potential basis for truly revolutionary applications and as a future fundamental technological material beyond the silicon age.

  4. The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures

    NASA Astrophysics Data System (ADS)

    Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.

    2007-12-01

    nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.

  5. Nondestructive imaging of atomically thin nanostructures buried in silicon

    PubMed Central

    Gramse, Georg; Kölker, Alexander; Lim, Tingbin; Stock, Taylor J. Z.; Solanki, Hari; Schofield, Steven R.; Brinciotti, Enrico; Aeppli, Gabriel; Kienberger, Ferry; Curson, Neil J.

    2017-01-01

    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers. PMID:28782006

  6. Methods for synchronizing a countdown routine of a timer key and electronic device

    DOEpatents

    Condit, Reston A.; Daniels, Michael A.; Clemens, Gregory P.; Tomberlin, Eric S.; Johnson, Joel A.

    2015-06-02

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  7. Characterising the material properties at the interface between skin and a skin vaccination microprojection device.

    PubMed

    Crichton, Michael L; Archer-Jones, Cameron; Meliga, Stefano; Edwards, Grant; Martin, Darren; Huang, Han; Kendall, Mark A F

    2016-05-01

    The rapid emergence of micro-devices for biomedical applications over the past two decades has introduced new challenges for the materials used in the devices. Devices like microneedles and the Nanopatch, require sufficient strength to puncture skin often with sharp-slender micro-scale profiles, while maintaining mechanical integrity. For these technologies we sought to address two important questions: 1) On the scale at which the device operates, what forces are required to puncture the skin? And 2) What loads can the projections/microneedles withstand prior to failure. First, we used custom fabricated nanoindentation micro-probes to puncture skin at the micrometre scale, and show that puncture forces are ∼0.25-1.75mN for fresh mouse skin, in agreement with finite element simulations for our device. Then, we used two methods to perform strength tests of Nanopatch projections with varied aspect ratios. The first method used a nanoindenter to apply a force directly on the top or on the side of individual silicon projections (110μm in length, 10μm base radius), to measure the force of fracture. Our second method used an Instron to fracture full rows of projections and characterise a range of projection designs (with the method verified against previous nanoindentation experiments). Finally, we used Cryo-Scanning Electron Microscopy to visualise projections in situ in the skin to confirm the behaviour we quantified, qualitatively. Micro-device development has proliferated in the past decade, including devices that interact with tissues for biomedical outcomes. The field of microneedles for vaccine delivery to skin has opened new material challenges both in understanding tissue material properties and device material. In this work we characterise both the biomaterial properties of skin and the material properties of our microprojection vaccine delivery device. This study directly measures the micro-scale puncture properties of skin, whilst demonstrating clearly how these relate to device design. This will be of strong interest to those in the field of biomedical microdevices. This includes work in the field of wearable and semi-implantable devices, which will require clear understanding of tissue behaviour and material characterisation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Medical free-electron laser: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Bell, James P.; Ponikvar, Donald R.

    1994-07-01

    The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.

  9. Fabrication and independent control of patterned polymer gate for a few-layer WSe{sub 2} field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sung Ju; Park, Min; Kang, Hojin

    We report the fabrication of a patterned polymer electrolyte for a two-dimensional (2D) semiconductor, few-layer tungsten diselenide (WSe{sub 2}) field-effect transistor (FET). We expose an electron-beam in a desirable region to form the patterned structure. The WSe{sub 2} FET acts as a p-type semiconductor in both bare and polymer-covered devices. We observe a highly efficient gating effect in the polymer-patterned device with independent gate control. The patterned polymer gate operates successfully in a molybdenum disulfide (MoS{sub 2}) FET, indicating the potential for general applications to 2D semiconductors. The results of this study can contribute to large-scale integration and better flexibilitymore » in transition metal dichalcogenide (TMD)-based electronics.« less

  10. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj

    2016-09-05

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route ofmore » high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.« less

  11. Charge retention in scaled SONOS nonvolatile semiconductor memory devices—Modeling and characterization

    NASA Astrophysics Data System (ADS)

    Hu, Yin; White, Marvin H.

    1993-10-01

    A new analytical model is developed to investigate the influence of the charge loss processes in the retention mode of the SONOS NVSM device. The model considers charge loss by the following processes: (1) electron back-tunneling from the nitride traps to the Si conduction band, (2) electron back-tunneling from the nitride traps to the Si/SiO 2 interface traps and (3) hole injection from the Si valence band to the nitride traps. An amphoteric trap charge distribution is used in this model. The new charge retention model predicts that process (1) determines the short term retention, while processes (2) and (3) determine the long term retention. Good agreement has been reached between the results of analytical calculations and the experimental retention data on both surface channel and buried channel SONOS devices.

  12. Spin caloritronic nano-oscillator

    DOE PAGES

    Safranski, C.; Barsukov, I.; Lee, H. K.; ...

    2017-07-18

    Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y 3Fe 5O 12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y 3Fe 5O 12 layer. This leads to excitation of auto-oscillations of the Ymore » 3Fe 5O 12 magnetization and generation of coherent microwave radiation. Thus, our work paves the way towards spin caloritronic devices for microwave and magnonic applications.« less

  13. Spin caloritronic nano-oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safranski, C.; Barsukov, I.; Lee, H. K.

    Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y 3Fe 5O 12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y 3Fe 5O 12 layer. This leads to excitation of auto-oscillations of the Ymore » 3Fe 5O 12 magnetization and generation of coherent microwave radiation. Thus, our work paves the way towards spin caloritronic devices for microwave and magnonic applications.« less

  14. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures.

    PubMed

    Didiot, Clement; Pons, Stephane; Kierren, Bertrand; Fagot-Revurat, Yannick; Malterre, Daniel

    2007-10-01

    The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity, as does the shape of the nanoparticles. The electronic properties of surfaces also influence the growth and decay of nanostructures such as dimers, chains and superlattices of atoms or noble metal islands. Controlling these properties on length scales shorter than the diffusion lengths of the electrons and spins (some tens of nanometres for metals) is a major goal in electronics and spintronics. However, to date, there have been few studies of the electronic properties of self-organized nanostructures. Here we report the self-organized growth of macroscopic superlattices of Ag or Cu nanostructures on Au vicinal surfaces, and demonstrate that the electronic properties of these systems depend on the balance between the confinement and the perturbation of the surface states caused by the steps and the nanostructures' superlattice. We also show that the local density of states can be modified in a controlled way by adjusting simple parameters such as the type of metal deposited and the degree of coverage.

  15. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  16. Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device

    PubMed Central

    Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting; Lin, Tzu-Ping; Hou, Tuo-Hung

    2015-01-01

    A two-terminal analog synaptic device that precisely emulates biological synaptic features is expected to be a critical component for future hardware-based neuromorphic computing. Typical synaptic devices based on filamentary resistive switching face severe limitations on the implementation of concurrent inhibitory and excitatory synapses with low conductance and state fluctuation. For overcoming these limitations, we propose a Ta/TaOx/TiO2/Ti device with superior analog synaptic features. A physical simulation based on the homogeneous (nonfilamentary) barrier modulation induced by oxygen ion migration accurately reproduces various DC and AC evolutions of synaptic states, including the spike-timing-dependent plasticity and paired-pulse facilitation. Furthermore, a physics-based compact model for facilitating circuit-level design is proposed on the basis of the general definition of memristor devices. This comprehensive experimental and theoretical study of the promising electronic synapse can facilitate realizing large-scale neuromorphic systems. PMID:25955658

  17. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  18. High-Resolution Structural and Electronic Properties of Epitaxial Topological Crystalline Insulator Films

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric

    Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.

  19. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  20. Computational Nanotechnology of Materials, Devices, and Machines: Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dolhan (Technical Monitor)

    2000-01-01

    The mechanics and chemistry of carbon nanotubes have relevance for their numerous electronic applications. Mechanical deformations such as bending and twisting affect the nanotube's conductive properties, and at the same time they possess high strength and elasticity. Two principal techniques were utilized including the analysis of large scale classical molecular dynamics on a shared memory architecture machine and a quantum molecular dynamics methodology. In carbon based electronics, nanotubes are used as molecular wires with topological defects which are mediated through various means. Nanotubes can be connected to form junctions.

  1. Technical note: Evaluation of odor from vaginal discharge of cows in the first 10 days after calving by olfactory cognition and an electronic device.

    PubMed

    Sannmann, I; Burfeind, O; Suthar, V; Bos, A; Bruins, M; Heuwieser, W

    2013-09-01

    The objective of this study was to determine test characteristics (i.e., intra- and interobserver variability, intraassay variability, sensitivity, and specificity) of an evaluation of odor from vaginal discharge (VD) of cows in the first 10 d postpartum conducted by olfactory cognition and an electronic device, respectively. In experiment 1, 16 investigators (9 veterinary students and 7 licensed veterinarians) evaluated 5 VD samples each on 10 different days. The kappa test revealed an agreement between investigators (interobserver) of κ=0.43 with a Fleiss adjusted standard error of 0.0061. The overall agreement was the same for students (κ=0.28) and veterinarians (κ=0.28). Mean agreement within observers (intraobserver) was κ=0.52 for all observers, and 0.49 and 0.62 for students and veterinarians, respectively. In experiment 2, the repeatability of an electronic device (DiagNose; C-it, Zutphen, the Netherlands) was tested. Therefore, 5 samples of VD from 5 cows were evaluated 10 times each. The repeatability was 0.97, determined by Cronbach's α. In experiment 3, 20 samples collected from healthy cows and 20 of cows with acute puerperal metritis were evaluated by the 16 investigators and the DiagNose using a dichotomous scale (1=cow with acute puerperal metritis; 0=healthy cow). Sensitivity and specificity of olfactory evaluation was 75.0 and 60.1% compared with 92.0 and 100%, respectively, for the electronic nose device. The study revealed a considerable subjectivity of the human nose concerning the classification into healthy and sick animals based on the assessment of vaginal discharge. The repeatability of the electronic nose was higher. In conclusion, the DiagNose system, although imperfect, is a reasonable tool to improve odor assessment of VD. The current system, however, is not suitable as a screening tool in the field. Further research is warranted to adapt such electronic devices to practical on-farm screening tools. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of individual nanowire properties. We observe nanowire-to-nanowire variations in the temperature dependence of GaN nanowire resonance frequency and in the observed mechanical dissipation. We also use this ensemble measurement technique to demonstrate unique, very low-loss resonance behavior at low temperatures. The low dissipation (and corresponding large Q values) observed in as-grown GaN nanowires also provides a unique opportunity for studying fundamental energy loss mechanisms in nano-scale objects. With estimated mass sensitivities on the level of zeptograms (10-21 g) in a one second averaging time, GaN nanowires may be a significant addition to the field of resonant sensors and worthy of future research and device integration.

  3. Electronic shift register memory based on molecular electron-transfer reactions

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  4. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.

    PubMed

    Andrew, Trisha L; Zhang, Lushuai; Cheng, Nongyi; Baima, Morgan; Kim, Jae Joon; Allison, Linden; Hoxie, Steven

    2018-04-17

    Body-mountable electronics and electronically active garments are the future of portable, interactive devices. However, wearable devices and electronic garments are demanding technology platforms because of the large, varied mechanical stresses to which they are routinely subjected, which can easily abrade or damage microelectronic components and electronic interconnects. Furthermore, aesthetics and tactile perception (or feel) can make or break a nascent wearable technology, irrespective of device metrics. The breathability and comfort of commercial fabrics is unmatched. There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics, and clothes, and imperceptibly adapt it to a new technological application. (24) Especially for smart garments, the intrinsic breathability, comfort, and feel of familiar fabrics cannot be replicated by devices built on metalized synthetic fabrics or cladded, often-heavy designer fibers. We propose that the strongest strategy to create long-lasting and impactful electronic garments is to start with a mass-produced article of clothing, fabric, or thread/yarn and coat it with conjugated polymers to yield various textile circuit components. Commonly available, mass-produced fabrics, yarns/threads, and premade garments can in theory be transformed into a plethora of comfortably wearable electronic devices upon being coated with films of electronically active conjugated polymers. The definitive hurdle is that premade garments, threads, and fabrics have densely textured, three-dimensional surfaces that display roughness over a large range of length scales, from microns to millimeters. Tremendous variation in the surface morphology of conjugated-polymer-coated fibers and fabrics can be observed with different coating or processing conditions. In turn, the morphology of the conjugated polymer active layer determines the electrical performance and, most importantly, the device ruggedness and lifetime. Reactive vapor coating methods allow a conjugated polymer film to be directly formed on the surface of any premade garment, prewoven fabric, or fiber/yarn substrate without the need for specialized processing conditions, surface pretreatments, detergents, or fixing agents. This feature allows electronic coatings to be applied at the end of existing, high-throughput textile and garment manufacturing routines, irrespective of dye content or surface finish of the final textile. Furthermore, reactive vapor coating produces conductive materials without any insulating moieties and yields uniform and conformal films on fiber/fabric surfaces that are notably wash- and wear-stable and can withstand mechanically demanding textile manufacturing routines. These unique features mean that rugged and practical textile electronic devices can be created using sewing, weaving, or knitting procedures without compromising or otherwise affecting the surface electronic coating. In this Account, we highlight selected electronic fabrics and garments created by melding reactive vapor deposition with traditional textile manipulation processes, including electrically heated gloves that are lightweight, breathable, and sweat-resistant; surface-coated cotton, silk, and bast fiber threads capable of carrying large current densities and acting as sewable circuit interconnects; and surface-coated nylon threads woven together to form triboelectric textiles that can convert surface charge created during small body movements into usable and storable power.

  5. Multilevel Investigation of Charge Transport in Conjugated Polymers.

    PubMed

    Dong, Huanli; Hu, Wenping

    2016-11-15

    Conjugated polymers have attracted the world's attentions since their discovery due to their great promise for optoelectronic devices. However, the fundamental understanding of charge transport in conjugated polymers remains far from clear. The origin of this challenge is the natural disorder of polymers with complex molecular structures in the solid state. Moreover, an effective way to examine the intrinsic properties of conjugated polymers is absent. Optoelectronic devices are always based on spin-coated films. In films, polymers tend to form highly disordered structures at nanometer to micrometer length scales due to the high degree of conformational freedom of macromolecular chains and the irregular interchain entanglement, thus typically resulting in much lower charge transport properties than their intrinsic performance. Furthermore, a subtle change of processing conditions may dramatically affect the film formation-inducing large variations in the morphology, crystallinity, microstructure, molecular packing, and alignment, and finally varying the effective charge transport significantly and leading to great inconsistency over an order of magnitude even for devices based on the same polymer semiconductor. Meanwhile, the charge transport mechanism in conjugated polymers is still unclear and its investigation is challenging based on such complex microstructures of polymers in films. Therefore, how to objectively evaluate the charge transport and probe the charge transport mechanism of conjugated polymers has confronted the world for decades. In this Account, we present our recent progress on multilevel charge transport in conjugated polymers, from disordered films, uniaxially aligned thin films, and single crystalline micro- or nanowires to molecular scale, where a derivative of poly(para-phenylene ethynylene) with thioacetyl end groups (TA-PPE) is selected as the candidate for investigation, which could also be extended to other conjugated polymer systems. Our systematic investigations demonstrated that 3-4 orders higher charge transport properties could be achieved with the improvement of polymer chain order and confirmed efficient charge transport along the conjugated polymer backbones. Moreover, with downscaling to molecular scale, many novel phenomena were observed such as the largely quantized electronic structure for an 18 nm-long TA-PPE and the modulation of the redox center of tetrathiafulvalene (TTF) units on tunneling charge transport, which opens the door for conjugated polymers used in nanometer quantum devices. We hope the understanding of charge transport in PPE and its related conjugated polymer at multilevel scale in this Account will provide a new method to sketch the charge transport properties of conjugated polymers, and new insights into the combination of more conjugated polymer materials in the multilevel optoelectronic and other related functional devices, which will offer great promise for the next generation of electronic devices.

  6. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  7. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles.

    PubMed

    Petrini, Paula A; Silva, Ricardo M L; de Oliveira, Rafael F; Merces, Leandro; Bof Bufon, Carlos C

    2018-06-29

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc ) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al 2 O 3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al 2 O 3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc  = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  8. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles

    NASA Astrophysics Data System (ADS)

    Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.

    2018-06-01

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  9. Graphene-Based Flexible and Stretchable Electronics.

    PubMed

    Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-06-01

    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating employee... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220...

  11. Improving device performance of perovskite solar cells by micro-nanoscale composite mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Ting, Hungkit; Zhang, Danfei; He, Yihao; Wei, Shiyuan; Li, Tieyi; Sun, Weihai; Wu, Cuncun; Chen, Zhijian; Wang, Qi; Zhang, Guoyi; Xiao, Lixin

    2018-02-01

    In perovskite solar cells, the morphology of the porous TiO2 electron transport layer (ETL) largely determines the quality of the perovskites. Here, we chose micro-scale TiO2 (0.2 µm) and compared it with the conventional nanoscale TiO2 (20 nm) in relation to the crystallinity of perovskites. The results show that the micro-scale TiO2 is favorable for increasing the grain size of the perovskites and enhancing the light scattering. However, the oversized TiO2 results in an uneven surface. The evenness of the perovskites can be improved by nanoscale TiO2, while the crystallinity and compactness are not as good as those of the films based on micro-scale TiO2. To combine the advantages of both micro-scale and nanoscale TiO2, by mixing 0.2 µm/20 nm TiO2 with a ratio of 1:2 as the composite ETL, the device average power conversion efficiency was increased to 11.2% from 9.9% in the case of only 20 nm TiO2.

  12. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  13. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  14. Design, fabrication, and characterization of high density silicon photonic components

    NASA Astrophysics Data System (ADS)

    Jones, Adam Michael

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve eciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satised by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which ecient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modied racetrack resonator is then presented enabling extraction of insertion loss data for highly ecient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  15. Design Fabrication and Characterization of High Density Silicon Photonic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Adam

    2015-02-01

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve e ciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satis ed by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which e cient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling onmore » a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modi ed racetrack resonator is then presented enabling extraction of insertion loss data for highly e cient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.« less

  16. Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices.

    PubMed

    Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong

    2018-04-01

    A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  18. Energy harvesting: small scale energy production from ambient sources

    NASA Astrophysics Data System (ADS)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  19. Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET.

    PubMed

    Dutta, Sangya; Kumar, Vinay; Shukla, Aditya; Mohapatra, Nihar R; Ganguly, Udayan

    2017-08-15

    Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in area and power compared to conventional analog circuit implementations was observed. In this paper, we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted (PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization (II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate spiking frequency dependence on input. MHz operation enables attractive hardware acceleration compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-integration (VLSI) which is essential for biology scale (~10 11 neuron based) large neural networks.

  20. Large-scale synthesis of a novel tri(8-hydroxyquioline) aluminum nanostructure.

    PubMed

    Tian, Xike; Fei, Jinbo; Pi, Zhenbang; Yang, Chao; Xiao, Zhidong; Zhang, Lide

    2006-08-01

    A novel tri(8-hydroxyquioline) aluminum (AlQ3) nanostructure was prepared on large scale at low cost by low-temperature physical vapor deposition (PVD). The morphologies, the chemical bondings, and photoluminescence of the AlQ3 nanostructure were investigated by environmental scanning electronic microscopy (ESEM), Fourier transform infrared spectrum (FT-IR), and photoluminescence (PL) spectra, respectively. The AlQ3 nanostructure was composed of micro-sphere with nanowire-cluster growing on the surface. The diameter of micro-sphere and nanowire were about 5 microm and 80 nm, respectively. FT-IR results indicated that the AlQ3 molecule had a strong thermal stability under research conditions. The growth mechanism of the novel nanostructure was discussed. The novel organic nanostructure would be believed to attractive building field-emission devices and other optical devices.

  1. The future of computing

    NASA Astrophysics Data System (ADS)

    Simmons, Michelle

    2016-05-01

    Down-scaling has been the leading paradigm of the semiconductor industry since the invention of the first transistor in 1947. However miniaturization will soon reach the ultimate limit, set by the discreteness of matter, leading to intensified research in alternative approaches for creating logic devices. This talk will discuss the development of a radical new technology for creating atomic-scale devices which is opening a new frontier of research in electronics globally. We will introduce single atom transistors where we can measure both the charge and spin of individual dopants with unique capabilities in controlling the quantum world. To this end, we will discuss how we are now demonstrating atom by atom, the best way to build a quantum computer - a new type of computer that exploits the laws of physics at very small dimensions in order to provide an exponential speed up in computational processing power.

  2. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Scott; Poeppelmeier, Ken; Mason, Tom

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less

  3. Imaging Atomic-Scale Clustering in III–V Semiconductor Alloys

    DOE PAGES

    Hirst, Louise C.; Kotulak, Nicole A.; Tomasulo, Stephanie; ...

    2017-03-13

    Quaternary alloys are essential for the development of high-performance optoelectronic devices. However, immiscibility of the constituent elements can make these materials vulnerable to phase segregation, which degrades the optical and electrical properties of the solid. High-efficiency III–V photovoltaic cells are particularly sensitive to this degradation. InAlAsSb lattice matched to InP is a promising candidate material for high-bandgap subcells of a multijunction photovoltaic device. However, previous studies of this material have identified characteristic signatures of compositional variation, including anomalous low-energy photoluminescence. In this paper, atomic-scale clustering is observed in InAlAsSb via quantitative scanning transmission electron microscopy. Finally, image quantification of atomicmore » column intensity ratios enables the comparison with simulated images, confirming the presence of nonrandom compositional variation in this multispecies alloy.« less

  4. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  5. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  6. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  7. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  8. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  9. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  10. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  11. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  12. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  13. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  14. Template directed fabrication and characterization of one-dimensional nanostructures for nanoelectronics

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Ibrahim

    Limitation of near future scaling down of conventional silicon technology stimulated the quest for alternative technologies in nanometer-scale materials and devices in recent years. Since the discovery of carbon nanotubes, there has been great interest in the synthesis and characterization of other one-dimensional materials. Nanorods, wires, belts, and tubes make up one particular class of anisotropic nanomaterials, which are considered quasi one-dimensional structures. Nanowires are promising materials for many novel applications, ranging from chemical and biological sensors to optical and electronic devices. This is not only because of their unique geometry, but also because they possess many unique physical properties, including electrical, magnetic, optical, as well as mechanical properties. In this dissertation, we describe the synthesis, structure and properties of nanowires of various inorganic materials fabricated simply by filling up pores or via in a template by means of electrochemical deposition (ECD). The architecture of the porous template defines the wire shape, direction and size. Because of the extreme aspect ratios of these 3D porous membranes, most physical and chemical vapor deposition techniques are ill suited for this template-directed growth technique and template directed fabrication is found to be superior in terms of low cost, high throughput, high volume, and ease of production. Also multicomponent nanowires can be grown simply by switching the solution composition or in some cases even in the same solution by switching the deposition potential. The nanowires can be released from the template matrix by chemical dissolution of the template. Based on the successful fabrication of elemental and multicomponent nanowires we have designed and fabricated InSb nanowire based field effect transistor (FET) devices on Si substrate. InSb is well known for its direct narrow band gap (0.18 eV at 300 K) with a very high electron mobility (8x10 4 cm2 V-1 s-1 at 300 K), electron velocity, and ballistic length (up to 0.7 mum at 300 K) of any known semiconductor. We demonstrated InSb nanowire devices at different diameter range from 30nm to 200nm using template directed technique which promises smaller feature sizes and an alternate, more economical path to atomic-scale computing structures than top-down lithography.

  15. Technical instrumentation R&D for ILD SiW ECAL large scale device

    NASA Astrophysics Data System (ADS)

    Balagura, V.

    2018-03-01

    Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.

  16. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB.

    PubMed

    Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens

    2017-01-01

    In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.

  17. Atomic-scale characterization of hydrogenated amorphous-silicon films and devices. Annual subcontract report, 14 February 1994--14 April 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, A.; Tanenbaum, D.; Laracuente, A.

    1995-08-01

    Properties of the hydrogenated amorphous silicon (a-Si:H) films used in photovoltaic (PV) panels are reported. The atomic-scale topology of the surface of intrinsic a-Si:H films, measured by scanning tunneling microscopy (STM) as a function of film thickness, are reported and diagnosed. For 1-500-nm-thick films deposited under normal device-quality conditions from silane discharges, most portions of these surfaces are uniformly hilly without indications of void regions. However, the STM images indicate that 2-6-nm silicon particulates are continuously deposited into the growing film from the discharge and fill approximately 0.01% of the film volume. Although the STM data are not sensitive tomore » the local electronic properties near these particulates, it is very likely that the void regions grow around them and have a deleterious effect on a-Si:H photovoltaics. Preliminary observations of particulates in the discharge, based on light scattering, confirm that particulates are present in the discharge and that many collect and agglomerate immediately downstream of the electrodes. Progress toward STM measurements of the electronic properties of cross-sectioned a-Si:H PV cells is also reported.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulauskas, Tadas; Buurma, Christopher; Colegrove, Eric

    Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work-hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair-rods, are studied in this paper. More specifically, using atomic resolution high-angle annular dark-field imaging and atomic-column-resolved X-ray spectrum imaging in an aberration-corrected scanningmore » transmission electron microscope, dislocation core structures are examined in zinc-blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc-blende solids. Strain fields associated with the dislocations calculatedviageometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure-edge stair-rods.« less

  19. Heavy-ion induced single-event upset in integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1991-01-01

    The cosmic ray environment in space can affect the operation of Integrated Circuit (IC) devices via the phenomenon of Single Event Upset (SEU). In particular, heavy ions passing through an IC can induce sufficient integrated current (charge) to alter the state of a bistable circuit, for example a memory cell. The SEU effect is studied in great detail in both static and dynamic memory devices, as well as microprocessors fabricated from bipolar, Complementary Metal Oxide Semiconductor (CMOS) and N channel Metal Oxide Semiconductor (NMOS) technologies. Each device/process reflects its individual characteristics (minimum scale geometry/process parameters) via a unique response to the direct ionization of electron hole pairs by heavy ion tracks. A summary of these analytical and experimental SEU investigations is presented.

  20. Programmable synaptic devices for electronic neural nets

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Thakoor, A. P.

    1990-01-01

    The architecture, design, and operational characteristics of custom VLSI and thin film synaptic devices are described. The devices include CMOS-based synaptic chips containing 1024 reprogrammable synapses with a 6-bit dynamic range, and nonvolatile, write-once, binary synaptic arrays based on memory switching in hydrogenated amorphous silicon films. Their suitability for embodiment of fully parallel and analog neural hardware is discussed. Specifically, a neural network solution to an assignment problem of combinatorial global optimization, implemented in fully parallel hardware using the synaptic chips, is described. The network's ability to provide optimal and near optimal solutions over a time scale of few neuron time constants has been demonstrated and suggests a speedup improvement of several orders of magnitude over conventional search methods.

  1. Ferroelectric Material Application: Modeling Ferroelectric Field Effect Transistor Characteristics from Micro to Nano

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd, C.; Ho, Fat Duen

    2006-01-01

    All present ferroelectric transistors have been made on the micrometer scale. Existing models of these devices do not take into account effects of nanoscale ferroelectric transistors. Understanding the characteristics of these nanoscale devices is important in developing a strategy for building and using future devices. This paper takes an existing microscale ferroelectric field effect transistor (FFET) model and adds effects that become important at a nanoscale level, including electron velocity saturation and direct tunneling. The new model analyzed FFETs ranging in length from 40,000 nanometers to 4 nanometers and ferroelectric thickness form 200 nanometers to 1 nanometer. The results show that FFETs can operate on the nanoscale but have some undesirable characteristics at very small dimensions.

  2. Optical printed circuit board (O-PCB) and VLSI photonic integrated circuits: visions, challenges, and progresses

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.

    2006-09-01

    A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.

  3. Final report for the DOE Early Career Award #DE-SC0003912

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Arthi

    This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less

  4. Progress in neuromorphic photonics

    NASA Astrophysics Data System (ADS)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  5. Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.

    PubMed

    Das, Tanmoy; Chen, Xiang; Jang, Houk; Oh, Il-Kwon; Kim, Hyungjun; Ahn, Jong-Hyun

    2016-11-01

    2D semiconductor materials are being considered for next generation electronic device application such as thin-film transistors and complementary metal-oxide-semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS 2 n-type transistor and a Si nanomembrane p-type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition-metal dichalcogenide materials. The fabricated hetero-CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air-stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub-nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermal electron-tunneling devices as coolers and amplifiers

    NASA Astrophysics Data System (ADS)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  7. Thermal electron-tunneling devices as coolers and amplifiers

    PubMed Central

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  8. Bringing order to the world of nanowire devices by phase shift lithography.

    PubMed

    Subannajui, Kittitat; Güder, Firat; Zacharias, Margit

    2011-09-14

    Semiconductor nanowire devices have several properties which match future requirements of scaling down the size of electronics. In typical microelectronics production, a number of microstructures are aligned precisely on top of each other during the fabrication process. In the case of nanowires, this mandatory condition is still hard to achieve. A technological breakthrough is needed to accurately place nanowires at any specific position and then form devices in mass production. In this article, an upscalable process combining conventional micromachining with phase shift lithography will be demonstrated as a suitable tool for nanowire device technology. Vertical Si and ZnO nanowires are demonstrated on very large (several cm(2)) areas. We demonstrate how the nanowire positions can be controlled, and the resulting nanowires are used for device fabrication. As an example Si/ZnO heterojunction diode arrays are fabricated. The electrical characterization of the produced devices has also been performed to confirm the functionality of the fabricated diodes.

  9. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Yi-Siang; Chen, Jui-Yuan; Huang, Chun-Wei

    Recently, the mechanism of resistive random access memory (RRAM) has been partly clarified and determined to be controlled by the forming and erasing of conducting filaments (CF). However, the size of the CF may restrict the application and development as devices are scaled down. In this work, we synthesized CuO nanowires (NW) (∼150 nm in diameter) to fabricate a CuO NW RRAM nanodevice that was much smaller than the filament (∼2 μm) observed in a bulk CuO RRAM device in a previous study. HRTEM indicated that the Cu{sub 2}O phase was generated after operation, which demonstrated that the filament could be minimizemore » to as small as 3.8 nm when the device is scaled down. In addition, energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) show the resistive switching of the dielectric layer resulted from the aggregated oxygen vacancies, which also match with the I-V fitting results. Those results not only verify the switching mechanism of CuO RRAM but also show RRAM has the potential to shrink in size, which will be beneficial to the practical application of RRAM devices.« less

  11. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties

    PubMed Central

    Park, Won Il; Zheng, Gengfeng; Jiang, Xiaocheng; Tian, Bozhi; Lieber, Charles M.

    2009-01-01

    We report the nanocluster-catalyzed growth of ultra-long and highly-uniform single-crystalline silicon nanowires (SiNWs) with millimeter-scale lengths and aspect ratios up to ca. 100,000. The average SiNW growth rate using disilane (Si2H6) at 400 °C was 31 µm/min, while the growth rate determined for silane (SiH4) reactant under similar growth conditions was 130 times lower. Transmission electron microscopy studies of millimeter-long SiNWs with diameters of 20–80 nm show that the nanowires grow preferentially along the <110> direction independent of diameter. In addition, ultra-long SiNWs were used as building blocks to fabricate one-dimensional arrays of field-effect transistors (FETs) consisting of ca. 100 independent devices per nanowire. Significantly, electrical transport measurements demonstrated that the millimeter-long SiNWs had uniform electrical properties along the entire length of wires, and each device can behave as a reliable FET with an on-state current, threshold voltage, and transconductance values (average ± 1 standard deviation) of 1.8 ± 0.3 µA, 6.0 ± 1.1 V, 210 ± 60 nS, respectively. Electronically-uniform millimeter-long SiNWs were also functionalized with monoclonal antibody receptors, and used to demonstrate multiplexed detection of cancer marker proteins with a single nanowire. The synthesis of structurally- and electronically-uniform ultra-long SiNWs may open up new opportunities for integrated nanoelectronics, and could serve as unique building blocks linking integrated structures from the nanometer through millimeter length scales. PMID:18710294

  12. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    PubMed

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  13. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  14. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  15. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  16. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  17. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  18. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  19. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  20. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  1. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  2. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  3. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  4. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  5. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  6. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  7. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  8. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  9. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  10. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  11. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  12. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  13. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  14. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  15. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  16. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  17. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  18. Doping Scheme in Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada

    1997-01-01

    Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of pant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  19. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.

    PubMed

    Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L

    2018-06-13

    The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishnoi, Dimple

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate bandmore » setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.« less

  1. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    2018-04-01

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λDe, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρe and λDe, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τs, versus fast-ion charge are in agreement with unmagnetized slowing-down theory; with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. The implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.

  2. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics.

    PubMed

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-18

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics.

  3. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip.

  4. Implementation of neuromorphic systems: from discrete components to analog VLSI chips (testing and communication issues).

    PubMed

    Dante, V; Del Giudice, P; Mattia, M

    2001-01-01

    We review a series of implementations of electronic devices aiming at imitating to some extent structure and function of simple neural systems, with particular emphasis on communication issues. We first provide a short overview of general features of such "neuromorphic" devices and the implications of setting up "tests" for them. We then review the developments directly related to our work at the Istituto Superiore di Sanità (ISS): a pilot electronic neural network implementing a simple classifier, autonomously developing internal representations of incoming stimuli; an output network, collecting information from the previous classifier and extracting the relevant part to be forwarded to the observer; an analog, VLSI (very large scale integration) neural chip implementing a recurrent network of spiking neurons and plastic synapses, and the test setup for it; a board designed to interface the standard PCI (peripheral component interconnect) bus of a PC with a special purpose, asynchronous bus for communication among neuromorphic chips; a short and preliminary account of an application-oriented device, taking advantage of the above communication infrastructure.

  5. Veselago focusing of anisotropic massless Dirac fermions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.

    2018-05-01

    Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.

  6. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  7. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.

  8. Lifting of Spin Blockade by Charged Impurities in Si-MOS Double Quantum Dot Devices

    NASA Astrophysics Data System (ADS)

    King, Cameron; Schoenfield, Joshua; Calderón, M. J.; Koiller, Belita; Saraiva, André; Hu, Xuedong; Jiang, Hong-Wen; Friesen, Mark; Coppersmith, S. N.

    Fabricating quantum dots in silicon metal-oxide-semiconductor (MOS) for quantum information processing applications is attractive because of the long spin coherence times in silicon and the potential for leveraging the massive investments that have been made for scaling of the technology for classical electronics. One obstacle that has impeded the development of electrically gated MOS singlet-triplet qubits is the lack of observed spin blockade, where the tunneling of a second electron into a dot is fast when the two-electron state is a singlet and slow when the two-electron state is a triplet, even in samples with large singlet-triplet energy splittings. We show that this is a commonly exhibited problem in MOS double quantum dots, and present evidence that the cause is stray positive charges in the oxide layer inducing accidental dots near the device's active region that allow spin blockade lifting. This work was supported by ARO (W911NF-12-1-0607), NSF (IIA-1132804), the Department of Defense under Contract No. H98230-15-C 0453, ARO (W911NF-14-1-0346), NSF (OISE-1132804), ONR (N00014-15-1-0029), and ARO (W911NF-12-R-0012).

  9. Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, Eric J.; Yousefi, Hamid R.

    2014-10-15

    Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less

  10. Recent lab-on-chip developments for novel drug discovery.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Nakajima, Mitsutoshi

    2017-07-01

    Microelectromechanical systems (MEMS) and micro total analysis systems (μTAS) revolutionized the biochemical and electronic industries, and this miniaturization process became a key driver for many markets. Now, it is a driving force for innovations in life sciences, diagnostics, analytical sciences, and chemistry, which are called 'lab-on-a-chip, (LOC)' devices. The use of these devices allows the development of fast, portable, and easy-to-use systems with a high level of functional integration for applications such as point-of-care diagnostics, forensics, the analysis of biomolecules, environmental or food analysis, and drug development. In this review, we report on the latest developments in fabrication methods and production methodologies to tailor LOC devices. A brief overview of scale-up strategies is also presented together with their potential applications in drug delivery and discovery. The impact of LOC devices on drug development and discovery has been extensively reviewed in the past. The current research focuses on fast and accurate detection of genomics, cell mutations and analysis, drug delivery, and discovery. The current research also differentiates the LOC devices into new terminology of microengineering, like organ-on-a-chip, stem cells-on-a-chip, human-on-a-chip, and body-on-a-chip. Key challenges will be the transfer of fabricated LOC devices from lab-scale to industrial large-scale production. Moreover, extensive toxicological studies are needed to justify the use of microfabricated drug delivery vehicles in biological systems. It will also be challenging to transfer the in vitro findings to suitable and promising in vivo models. WIREs Syst Biol Med 2017, 9:e1381. doi: 10.1002/wsbm.1381 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  11. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  12. Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jongsu; Kwon, Seung-Gab; Back, Seunghyun; Kang, Bongchul

    2018-03-01

    We present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Lishev, Stiliyan; Shivarova, Antonia P.

    The study combines experiments on probe diagnostics with laser-photodetachment-technique and Faraday-cup measurements directed towards determination of the position of the extraction device and its influence on the discharge structure. The measurements have been carried out in the second chamber of an inductively-driven tandem plasma source performed as small scale arrangements, with a magnetic filter located just after the transition between the two chambers of the source. Results for the axial profiles of the plasma parameters display the correlation of the ratio n lowbar /n{sub e} of the densities of the negative hydrogen ions and of the electrons and of themore » concentration of the negative ions with the electron density and temperature: The maxima of the (n lowbar /n{sub e})-ratio and of the density of the negative ions obtained are located at the position of maximum of the electron density behind the filter, in the region of the low electron temperature. Results from probe diagnostics and laser photodetachment measurements at a given axial position for different positions of the Faraday cup show the changes in the spatial distribution of the electron density and temperature and the reduction of the (n lowbar /n{sub e})-ratio and of the density of the negative ions caused by the extraction device.« less

  14. Apparatus, system, and method for synchronizing a timer key

    DOEpatents

    Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A

    2014-04-22

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  15. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    DOE PAGES

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO 2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy ofmore » the order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO 2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less

  16. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology.

    PubMed

    Kumar, Rajiv B; Goren, Nira D; Stark, David E; Wall, Dennis P; Longhurst, Christopher A

    2016-05-01

    The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for 10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient's/parent's smartphone enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare provider workflow. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  17. Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids

    PubMed Central

    Hu, Xiao; Dong, Chenbo; Su, Rigu; Xu, Quan; Dinu, Cerasela Zoica

    2016-01-01

    The next generation of nanowires that could advance the integration of functional nanosystems into synthetic applications from photocatalysis to optical devices need to demonstrate increased ability to promote electron transfer at their interfaces while ensuring optimum quantum confinement. Herein we used the biological recognition and the self-assembly properties of tubulin, a protein involved in building the filaments of cellular microtubules, to create stable, free standing and conductive sulfur-doped carbon nanodots-based conductive bio-hybrids. The physical and chemical properties (e.g., composition, morphology, diameter etc.) of such user-synthesized hybrids were investigated using atomic and spectroscopic techniques, while the electron transfer rate was estimated using peak currents formed during voltammetry scanning. Our results demonstrate the ability to create individually hybrid nanowires capable to reduce energy losses; such hybrids could possibly be used in the future for the advancement and implementation into nanometer-scale functional devices. PMID:27922059

  18. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz ₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  19. Ultralow-power electronics for biomedical applications.

    PubMed

    Chandrakasan, Anantha P; Verma, Naveen; Daly, Denis C

    2008-01-01

    The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.

  20. Polarity control in WSe2 double-gate transistors

    NASA Astrophysics Data System (ADS)

    Resta, Giovanni V.; Sutar, Surajit; Balaji, Yashwanth; Lin, Dennis; Raghavan, Praveen; Radu, Iuliana; Catthoor, Francky; Thean, Aaron; Gaillardon, Pierre-Emmanuel; de Micheli, Giovanni

    2016-07-01

    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.

  1. The Physics of Tokamak Start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Mueller

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-upmore » techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.« less

  2. The physics of tokamak start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, D.

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in themore » solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.« less

  3. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...

  4. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  5. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  6. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  7. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  8. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  9. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  10. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  11. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  12. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  13. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  14. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  15. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  16. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  17. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  18. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  19. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters

    NASA Astrophysics Data System (ADS)

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N.; Long, De-Liang; Georgiev, Vihar P.; Asenov, Asen; Pedersen, Rasmus H.; Gadegaard, Nikolaj; Mirza, Muhammad M.; Paul, Douglas J.; Poblet, Josep M.; Cronin, Leroy

    2014-11-01

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2]4- as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(V)2O6]2- moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call `write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  20. Validation of two novel electronic devices to time-link transcutaneous electrical nerve stimulation and pain report in patients with chronic back pain.

    PubMed

    Pallett, Edward J; Rentowl, Patricia; Watson, Paul J

    2013-01-01

    The analgesic effectiveness of transcutaneous electrical nerve stimulation (TENS) is uncertain. Negative findings, interpreted as ineffectiveness, might be due to poor methodological quality. Monitoring is necessary to differentiate between ineffectiveness and low implementation fidelity. Electronic data-logging devices, "TLOG" and "TSCORE," were developed to monitor and time-link TENS and pain report. TLOG records the time and duration of TENS use and output parameters; TSCORE records time-stamped pain scores. The purpose was to determine the accuracy, reliability, and acceptability of the devices. Forty-two outpatients with chronic back pain consented to use TENS daily for 2 weeks. Treatment times and durations were recorded in paper diaries and compared with TLOG data. Using TSCORE, patients reported pain before, during, and after TENS. Pain scores, reported using TSCORE or paper numerical rating scale at the beginning and end of 2 study visits, were compared using Bland-Altman methodology. The mean (SD) difference between paper and TSCORE pain scores was -0.05 (0.81). Limits of agreement (mean difference ± 1.96 SD) were -1.65 to 1.55. Test-retest reliabilities of paper and TSCORE were comparable: Paper mean (SD) difference was -0.33 (0.66), limits of agreement were -1.62 to 0.96; TSCORE mean (SD) difference was -0.10 (0.31), limits were -0.7 to 0.5. TLOG recorded TENS use accurately and worked reliably for 2 weeks in 84% of cases. An overall 79% of participants preferred TSCORE to paper numerical rating scale. TLOG and TSCORE are accurate, reliable, and acceptable devices for monitoring TENS implementation fidelity and pain outcome, with potential for improving TENS research methodology and clinical application.

Top