Science.gov

Sample records for scale fabrication final

  1. Exploring the Feasibility of Fabricating Micron-Scale Components Using Microcontact Printing LDRD Final Report

    SciTech Connect

    MYERS, RAMONA L.; RITCHEY, M. BARRY; STOKES, ROBERT N.; CASIAS, ADRIAN L.; ADAMS, DAVID P.; OLIVER, ANDREW D.; EMERSON, JOHN A.

    2003-06-01

    Many microfabrication techniques are being developed for applications in microelectronics, microsensors, and micro-optics. Since the advent of microcomponents, designers have been forced to modify their designs to include limitations of current technology, such as the inability to make three-dimensional structures and the need for piece-part assembly. Many groups have successfully transferred a wide variety of patterns to both two-dimensional and three-dimensional substrates using microcontact printing. Microcontact printing is a technique in which a self-assembled monolayer (SAM) is patterned onto a substrate by transfer printing. The patterned layer can act as an etch resist or a foundation upon which to build new types of microstructures. We created a gold pattern with features as small as 1.2 {micro}m using microcontact printing and subsequent processing. This approach looks promising for constructing single-level structures such as microelectrode arrays and sensors. It can be a viable technique for creating three-dimensional structures such as microcoils and microsprings if the right equipment is available to achieve proper alignment, and if a means is available to connect the final parts to other components in subsequent assembly operations. Microcontact printing provides a wide variety of new opportunities in the fabrication of microcomponents, and increases the options of designers.

  2. PRSEUS Panel Fabrication Final Report

    NASA Technical Reports Server (NTRS)

    Linton, Kim A.; Velicki, Alexander; Hoffman, Krishna; Thrash, Patrick; Pickell, Robert; Turley, Robert

    2014-01-01

    NASA and the Boeing Company have been working together under the Environmentally Responsible Aviation Project to develop stitched unitized structure for reduced weight, reduced fuel burn and reduced pollutants in the next generation of commercial aircraft. The structural concept being evaluated is PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure). In the PRSEUS concept, dry carbon fabric, pultruded carbon rods, and foam are stitched together into large preforms. Then these preforms are infused with an epoxy resin into large panels in an out-of-autoclave process. These panels have stiffeners in the length-wise and width-wise directions but contain no fasteners because all stiffeners are stitched to the panel skin. This document contains a description of the fabrication of panels for use in the 30-foot-long Multi-Bay Box test article to be evaluated at NASA LaRC.

  3. Spacecraft fabrication and test MODIL. Final report

    SciTech Connect

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  4. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  5. Fabrication of full-scale fiber-reinforced hot-gas filters by chemical vapor depostion. Final report, November 1, 1994 -- December 32, 1995

    SciTech Connect

    Smith, R.G.; Eaton, J.H.; Pysher, D.J.; Leitheiser, M.A.

    1996-01-01

    The overall goal of this contract and its extensions has been to develop a hot gas candle filter which is light weight, has a thin wall, resists mechanical and thermal shock, and is resistive to alkali attack. A ceramic fiber reinforced, ceramic matrix composite approach has been followed to fabricate this new candle filter. Past reports covered the first test results of two ceramic composite candle filters at the Westinghouse Science and Technology Center in March of 1993, subsequent improvements made in the filters construction and fabrication processing, and the testing of six improved full size, 60 mm diameter by 1575 mm length, filters that met or exceeded performance requirements set for them. Completion of the 172 hours of simulated PFBC testing and thermal transients plus maintaining less than 4 ppm clean side ash concentration provided a basis for moving to the next step of testing in the Tidd PFBCC Demonstration Project. In this contract extension 3M fabricated 110 filters to be used for tests in demonstration power plant facilities and other tests that become available. The filters were tested to meet all quality assurance specifications and inventoried for Oak Ridge National Laboratory, ORNL. The filters are being shipped to various industrial, university, and national laboratory test facilities as requested by ORNL. Ten ceramic composite filters were installed in December, 1994 in the Tidd PFBC Demonstration Project filter vessel for their test period No. 5. Five filters were installed in a top cluster and five in a bottom cluster. The filters were removed in May 1995 after operating for 1 1 1 0 hours in a temperature range of 760{degrees}C to 843{degrees}C, with 80% of the run above 815{degrees}C.

  6. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  7. Superconducting-wire fabrication. Final report

    SciTech Connect

    Glad, W.E.; Chase, G.G.

    1990-05-01

    Experiments were done leading to the fabrication of high-temperature superconducting composite wire. Bulk superconductor was characterized by using optical microscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The chemical compatibility of superconducting materials with a number of metal sheathing candidates was tested, with silver offering the best compatibility. Wire was fabricated by drawing 0.250-inch-diameter silver tubing packed with superconducting powder. Single core wires were drawn to 0.037-inch diameter. The best critical current performance (660 A/cm2) for leaded bismuth 2-2-2-3 material was achieved by flattening single-core wire before heat treatment.

  8. Composite material fabrication techniques. CRADA final report

    SciTech Connect

    Frame, B J; Paulauskas, F L; Miller, J; Parzych, W

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  9. Fabrication for precision mechanisms. Final report

    SciTech Connect

    Gillespie, L.K.

    1980-03-01

    The fabrication of components and assemblies for miniature precision mechanisms provides a variety of exacting manufacturing challenges. Size alone makes many parts hard to pick up, handle, measure, and install. This same small size causes more distortion or bending during machining, assembly, and welding. Some parts even float on the cleaning and deburring solutions. Tools break easily in very small holes, and surface finishes play an important role in part operation. Twenty-five manufacturing operations were studied to improve the precision of existing machining and assembly techniques. The study included the machining of metals and plastics using techniques new to the manufacture of miniature switches, timers, and actuators. Drilling, tapping, and press-fitting miniature features were evaluated. Fixturing and handling techniques, friction reduction, and the forming of ceramic parts were also studied. Many of the new approaches from this study have been incorporated into existing processes and further refined. Detailed observations have been reported in 33 other Bendix reports and the highlights of those observations are summarized in this study.

  10. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    SciTech Connect

    NIKROO,A; PONTELANDOLFO,JM; CASTILLO,ER

    2002-04-01

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 {micro}m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 {micro}m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard.

  11. Method for producing fabrication material for constructing micrometer-scaled machines, fabrication material for micrometer-scaled machines

    SciTech Connect

    Stevens, F.J.

    1995-12-31

    A method for producing fabrication material for use in the construction of nanometer-scaled machines is provided whereby similar protein molecules are isolated and manipulated at predetermined residue positions so as to facilitate noncovalent interaction, but without compromising the folding configuration or native structure of the original protein biomodules. A fabrication material is also provided consisting of biomodules systematically constructed and arranged at specific solution parameters.

  12. Scaling silicon photonic switch fabrics for data center interconnection networks.

    PubMed

    Nikolova, Dessislava; Rumley, Sébastien; Calhoun, David; Li, Qi; Hendry, Robert; Samadi, Payman; Bergman, Keren

    2015-01-26

    With the rapidly increasing aggregate bandwidth requirements of data centers there is a growing interest in the insertion of optically interconnected networks with high-radix transparent optical switch fabrics. Silicon photonics is a particularly promising and applicable technology due to its small footprint, CMOS compatibility, high bandwidth density, and the potential for nanosecond scale dynamic connectivity. In this paper we analyze the feasibility of building silicon photonic microring based switch fabrics for data center scale optical interconnection networks. We evaluate the scalability of a microring based switch fabric for WDM signals. Critical parameters including crosstalk, insertion loss and switching speed are analyzed, and their sensitivity with respect to device parameters is examined. We show that optimization of physical layer parameters can reduce crosstalk and increase switch fabric scalability. Our analysis indicates that with current state-of-the-art devices, a high radix 128 × 128 silicon photonic single chip switch fabric with tolerable power penalty is feasible. The applicability of silicon photonic microrings for data center switching is further supported via review of microring operations and control demonstrations. The challenges and opportunities for this technology platform are discussed.

  13. Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly.

    PubMed

    Park, Jae Hoon; Sun, Qijun; Choi, Yongsuk; Lee, Seungwoo; Lee, Dong Yun; Kim, Yong Hoon; Cho, Jeong Ho

    2016-06-22

    One-dimensional (1D) nano/microwires have attracted significant attention as promising building blocks for various electronic and optical device applications. The integration of these elements into functional device networks with controlled alignment and density presents a significant challenge for practical device applications. Here, we demonstrated the fabrication of wafer-scale microwire field-effect transistor (FET) arrays based on well-aligned inorganic semiconductor microwires (indium-gallium-zinc-oxide (IGZO)) and organic polymeric insulator microwires fabricated via a simple and large-area evaporative assembly technique. This microwire fabrication method offers a facile approach to precisely manipulating the channel dimensions of the FETs. The resulting solution-processed monolithic IGZO microwire FETs exhibited a maximum electron mobility of 1.02 cm(2) V(-1) s(-1) and an on/off current ratio of 1 × 10(6). The appropriate choice of the polymeric microwires used to define the channel lengths enabled fine control over the threshold voltages of the devices, which were employed to fabricate high-performance depletion-load inverters. Low-voltage-operated microwire FETs were successfully fabricated on a plastic substrate using a high-capacitance ion gel gate dielectric. The microwire fabrication technique involving evaporative assembly provided a facile, effective, and reliable method for preparing flexible large-area electronics.

  14. Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly.

    PubMed

    Park, Jae Hoon; Sun, Qijun; Choi, Yongsuk; Lee, Seungwoo; Lee, Dong Yun; Kim, Yong Hoon; Cho, Jeong Ho

    2016-06-22

    One-dimensional (1D) nano/microwires have attracted significant attention as promising building blocks for various electronic and optical device applications. The integration of these elements into functional device networks with controlled alignment and density presents a significant challenge for practical device applications. Here, we demonstrated the fabrication of wafer-scale microwire field-effect transistor (FET) arrays based on well-aligned inorganic semiconductor microwires (indium-gallium-zinc-oxide (IGZO)) and organic polymeric insulator microwires fabricated via a simple and large-area evaporative assembly technique. This microwire fabrication method offers a facile approach to precisely manipulating the channel dimensions of the FETs. The resulting solution-processed monolithic IGZO microwire FETs exhibited a maximum electron mobility of 1.02 cm(2) V(-1) s(-1) and an on/off current ratio of 1 × 10(6). The appropriate choice of the polymeric microwires used to define the channel lengths enabled fine control over the threshold voltages of the devices, which were employed to fabricate high-performance depletion-load inverters. Low-voltage-operated microwire FETs were successfully fabricated on a plastic substrate using a high-capacitance ion gel gate dielectric. The microwire fabrication technique involving evaporative assembly provided a facile, effective, and reliable method for preparing flexible large-area electronics. PMID:27228025

  15. Fabrication of toroidal composite pressure vessels. Final report

    SciTech Connect

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  16. Wafer-scale fabrication of nanoapertures using corner lithography

    NASA Astrophysics Data System (ADS)

    Burouni, Narges; Berenschot, Erwin; Elwenspoek, Miko; Sarajlic, Edin; Leussink, Pele; Jansen, Henri; Tas, Niels

    2013-07-01

    Several submicron probe technologies require the use of apertures to serve as electrical, optical or fluidic probes; for example, writing precisely using an atomic force microscope or near-field sensing of light reflecting from a biological surface. Controlling the size of such apertures below 100 nm is a challenge in fabrication. One way to accomplish this scale is to use high resolution tools such as deep UV or e-beam. However, these tools are wafer-scale and expensive, or only provide series fabrication. For this reason, in this study a versatile method adapted from conventional micromachining is investigated to fabricate protruding apertures on wafer-scale. This approach is called corner lithography and offers control of the size of the aperture with diameter less than 50 nm using a low-budget lithography tool. For example, by tuning the process parameters, an estimated mean size of 44.5 nm and an estimated standard deviation of 2.3 nm are found. The technique is demonstrated—based on a theoretical foundation including a statistical analysis—with the nanofabrication of apertures at the apexes of micromachined pyramids. Besides apertures, the technique enables the construction of wires, slits and dots into versatile three-dimensional structures.

  17. Wafer-scale fabrication of penetrating neural microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Bhandari, Rajmohan

    In order to have an efficient neural interface, uniformity and predictability of electrodes electrical, and mechanical characteristics are desired. Furthermore, the electrodes should have small active sites to selectively record or stimulate neural signals. Also, there should be close geometrical match between the electrode array and the targeted tissue for long-term stability. Currently the Utah electrode array (UEA) is in either constant electrode length (UEA) or varying length configurations (Utah slant electrode array: USEA). The current processes used to fabricate the UEAs impose limitations in the tolerances of the electrode array geometry. Furthermore, the flat architecture of the UEA and convoluted geometry of the targeted tissue results in poor coupling between the two "mating" surfaces, leading in active electrode tips that are not in proximity to the neuronal tissue. Therefore, a robust, flexible and high precision fabrication technology is needed that can produce (a) uniformly shaped microelectrodes (b) small and uniformly exposed active tip sites and (c) convoluted electrode arrays for better geometrical match. This dissertation presents a wafer-scale fabrication process for both the UEA and the USEA. A wafer-scale etching method has been developed and optimum etching conditions are established to achieve uniform shape electrode arrays. Also, the etching rate of silicon columns, produced by dicing, is studied as a function of temperature, etching time and stirring rate in the acid solution. Furthermore, a novel photoresist based masking technique for procuring extremely small active area has been developed on wafer-scale. In this technique, the tip exposure is controlled by varying the spin speed during photoresist coating. The technique allows fabrication of uniformly exposed tip lengths, over a range of 30 to 350 microm in length. Lastly, a novel array fabrication technique is developed for building a variety of neural interface devices having

  18. Fabrication of whisker-toughened alumina tubes. Final report

    SciTech Connect

    Loutfy, R.O.

    1993-09-01

    A process has been developed to fabricate whisker toughened alumina composites by slip casting dense colloidal suspensions of Al{sub 2}O{sub 3}-15% SiC{sub w}. Optimum processing parameters for slip casting we developed with slip viscosity of 60--70 centipoise and solids content 78--79 wt %. Slip-cast parts with green densities 65 to 68% theoretical were achieved. Composite parts were pressureless sintered to 96--97% theoretical density with <1% open porosity. The composites exhibited strengths of 500 MPa, toughness of 6.5 MPa m{sup 1/2}, and hardness of 17.26 GPa (1765 kg/mm{sup 2}). High temperature strength retention was maintained up to 1200C. Good thermal shock resistance with {Delta}T{sub cr} = 500C was also achieved. The process technology was transferred into pilot scale for producing prototype heat exchanger tubing up to 4 inches in diameter at the facilities of Vesuvius/McDanel.

  19. Large-Scale Graphene Film Deposition for Monolithic Device Fabrication

    NASA Astrophysics Data System (ADS)

    Al-shurman, Khaled

    Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors. The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need for a new platform material to replace Si. Graphene is considered a promising material with enormous potential applications in many electronic and optoelectronics devices due to its superior properties. There are several techniques to produce graphene films. Among these techniques, chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-scale graphene films. Though CVD method is suitable for large area growth of graphene, the need for transferring a graphene film to silicon-based substrates is required. Furthermore, the graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS circuitry and CVD chamber as well. So, lowering the deposition temperature is another technological milestone for the successful adoption of graphene in integrated circuits fabrication. In this research, direct large-scale graphene film fabrication on silicon based platform (i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine graphene formation on the bottom side of the Ni film

  20. Ceramic fabrication R D final technical progress report

    SciTech Connect

    Not Available

    1991-01-01

    The goal of this research and development project has been to develop the cohesive ceramic fabrication (CCF) process and to demonstrate its application to various defense-related systems. The CCF process, which is proprietary to Ceramic Binder Systems, Inc. (CBSi), involves a binder system that yields a green ceramic having rubbery yet plastic and tacky properties. The tackiness allows green parts to be pressed together with light (hand) pressure, and the bond is maintained through firing. Fabricating of complex parts is possible via the assembly of simple shapes, easily fabricated by plastic forming and followed by firing to produce a ceramic bond. For some applications, this approach offers substantial potential cost savings over more conventional methods. Other possibilities include the potential for fabricating ceramic parts having graded properties and fabricating ceramic matrix composites.

  1. Ceramic fabrication R&D final technical progress report

    SciTech Connect

    Not Available

    1991-12-31

    The goal of this research and development project has been to develop the cohesive ceramic fabrication (CCF) process and to demonstrate its application to various defense-related systems. The CCF process, which is proprietary to Ceramic Binder Systems, Inc. (CBSi), involves a binder system that yields a green ceramic having rubbery yet plastic and tacky properties. The tackiness allows green parts to be pressed together with light (hand) pressure, and the bond is maintained through firing. Fabricating of complex parts is possible via the assembly of simple shapes, easily fabricated by plastic forming and followed by firing to produce a ceramic bond. For some applications, this approach offers substantial potential cost savings over more conventional methods. Other possibilities include the potential for fabricating ceramic parts having graded properties and fabricating ceramic matrix composites.

  2. Fabrication of Micron Scale Retroreflectors for Novel Biosensors

    NASA Astrophysics Data System (ADS)

    Sherlock, Tim

    Many bioanalytical and diagnostic methods detect the presence of secondary labels, such as colored particles, fluorescent molecules, nanoparticles, and enzyme reaction product, when they accumulate in the presence of the target biomolecules (i.e., bacteria, viruses, etc.) at predetermined locations. In this dissertation, we describe the development of a new class of labels consisting of micro-fabricated retroreflectors that are easy to image, compatible with machine vision automation, and can be detected in solution or within microfluidic channels. The retroreflecting structures are designed to return incident light directly back to its source over a large range of angles, making them extremely detectable using low cost, low numerical aperture objectives, as is evidenced by their common use as lane markers and in safety signs. This work describes two different biosensing systems using these labels. In the first, retroreflectors are fabricated at fixed locations at the base of microfluidic channels and their brightness is attenuated by the biologically-driven accumulation of magnetic particles, thus forming a readout strategy that well-suited for automation and multiplexing. The work demonstrates that single, micron-scale magnetic beads can be rapidly detected over very large areas (square millimeters). The second approach uses suspended corner cube retroreflectors, five microns on a side, as ultra bright labels that are bound to magnetic sample preparation beads in the presence of an analyte. The magnetic particles can then be moved to an imaging site within the sample where the cubes are readily detected. The fabrication of these micron-scale retroreflectors required the development of new lithography, thin film disposition, and reactive ion etching tools and the integration of chip-based structures with microfluidic systems. The dissertation also describes the experimental validation of a Fourier optics model that accounts for diffraction inherent to the micron-scale

  3. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    SciTech Connect

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  4. Nano scale devices: Fabrication, actuation, and related fluidic dynamics

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    Using external actuating magnetic fields to manipulate magnetic parts is an efficient method to manipulate mesoscopic actable devices. Extensive researches have explored the potentials of self-assembly techniques based on capillary force, static charge force, drying, surface tension, and even dynamic fields as a low cost method for ordered 2D or 3D super-lattice structures for new materials and devices. But the ability of tunable patterning nano-particles for designed actable devices is still a requirement yet to be met. Utilizing anodized aluminum oxide (AAO) membranes as templates, soft-magnetic nanowires around 200 nm in diameter, 10 microns long have been fabricated. In this thesis, I describe a method to assemble these magnetic nanowires into a two dimension Wigner structure, of which the wire-wire distance is conveniently adjustable during the fabrication procedure. Using geometric tailored magnetic fields, we can plant these self-assembled magnetic nanowires with desired patterns into a thin soft polymer support layer. The final devices may be readily actuated by an external actuating magnetic field (a self-designed magnetic system, 3-dimensional force microscope (3DFM)) with precise patterns and frequencies in a micro-fluidic system. This method offers a general method to fabricate mesoscopic devices from a wide range of materials with magnetic dipoles to desired structures. And the actable devices themselves can find direct usage in low Re number flow mixing and bio-physical fluidic dynamic researches. The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is responsible for many important biological functions such as organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. The hydrodynamics produced by these beating structures, including mixing, shear and extensional flows, is not understood. We developed an experimental model system for

  5. Fabrication of cubic micron-scale 3D metamaterial resonators.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

    2010-06-01

    We present a new fabrication technique called Membrane Projection Lithography for the production of three-dimensional metamaterials at infrared wavelengths. Using this technique, multilayer infrared metamaterials that include both in-plane and out-of-plane resonators can be fabricated.

  6. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system.

    PubMed

    Hu, Z J; Yan, Y D; Zhao, X S; Gao, D W; Wei, Y Y; Wang, J H

    2011-12-01

    The atomic force microscope (AFM) tip-based nanomechanical machining has been demonstrated to be a powerful tool for fabricating complex 2D∕3D nanostructures. But the machining scale is very small, which holds back this technique severely. How to enlarge the machining scale is always a major concern for the researches. In the present study, a modified AFM tip-based nanomechanical machining system is established through combination of a high precision X-Y stage with the moving range of 100 mm × 100 mm and a commercial AFM in order to enlarge the machining scale. It is found that the tracing property of the AFM system is feasible for large scale machining by controlling the constant normal load. Effects of the machining parameters including the machining direction and the tip geometry on the uniform machined depth with a large scale are evaluated. Consequently, a new tip trace and an increasing load scheme are presented to achieve a uniform machined depth. Finally, a polymer nanoline array with the dimensions of 1 mm × 0.7 mm, the line density of 1000 lines/mm and the average machined depth of 150 nm, and a 20 × 20 polymer square holes array with the scale of 380 μm × 380 μm and the average machined depth of 250 nm are machined successfully. The uniform of the machined depths for all the nanostructures is acceptable. Therefore, it is verified that the AFM tip-based nanomechanical machining method can be used to machine millimeter scale nanostructures.

  7. Fabrication of diffractive-optical elements by using halftone gray-scale masks

    NASA Astrophysics Data System (ADS)

    Liu, Jinsong; Waddie, Andrew J.; Taghizadeh, Mohammad R.

    2002-07-01

    The fabrication of diffractive optical elements (DOEs), especially the DOEs with variable spatial frequency features, by using halftone gray-scale masks is investigated. Three aspects of the DOEs profile infidelity have been studied. The first two infidelities are, with the reduced periods, the decrease in maximum depth in photoresist and the increase in relative transition width between adjacent ramps. Imaging error is found to be responsible for the infidelities. The infidelities can be reduced by using a certain aperture or a larger photoreduction, while proximity-printing nearly eliminates the infidelites. The third infidelity is the uncertainty of the nonlinearity between the gray values in mask data and the final depth in photoresist. Both the nonlinearity and the uncertainty of the nonlinearity can be reduced to some extent by using a reduced gamut of gray values of 0.3-0.8 and an appropriate exposure dose from the primary mask to the secondary mask before the compensation function is finally measured and imposed on the gray-scale values.

  8. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin; Mills, Bernice E.; Liu, Shiling; Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N.; Hekmuuaty, Michelle A.

    2005-05-01

    prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  9. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    SciTech Connect

    Wahlquist, D.R.

    1996-07-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.

  10. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect

    Corren, Dean; Colby, Jonathan; Adonizio, Mary Ann

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  11. Silicon-solar-cell process development, fabrication, and analysis. Final report

    SciTech Connect

    Minahan, J.A.

    1981-03-09

    Solar cells have been fabricated from unconventional silicon materials in the second and final phase of the contract. In the most recent period of work, EFG, Web, Hem, and Continuous CZ silicon materials were fabricated into solar cells, measured and analyzed. Current-voltage measurements under AM1 conditions, in addition to those under AMO conditions, were introduced in Phase II. Several low-cost fabrication steps were included in that phase. Both Hem and Continuous CZ silicon were found to be superior to what had been provided in Phase I. Correlation between quality of starting materials and cell conversion efficiency was observed for Hem-grown silicon. Correlation between position in the crystal growth sequence and cell quality was observed for Continuous CZ.

  12. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  13. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching.

    PubMed

    Tong, Siyu; Bian, Hao; Yang, Qing; Chen, Feng; Deng, Zefang; Si, Jinhai; Hou, Xun

    2014-11-17

    Large-scale high quality microlens arrays (MLAs) play an important role in enhancing the imaging quality of CCD and CMOS as well as the light extraction efficiency of LEDs and OLEDs. To meet the requirement in MLAs' wide application areas, a rapid fabrication method to fabricate large-scale MLAs with high quality, high fill factor and high uniformity is needed, especially on the glass substrate. In this paper, we present a simple and cost-efficient approach to the development of both concave and convex large-scale microlens arrays (MLAs) by using femtosecond laser wet etching method and replication technique. A large-scale high quality square-shaped microlens array with 512 × 512 units was fabricated.The unit size is 20 × 20 μm² on the whole scale of 1 × 1 cm². Its perfect uniformity and optical performance are demonstrated. PMID:25402166

  14. Fabrication of 1/3 scale boron/epoxy booster thrust structure, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, materials, tooling, various manufacturing processes, quality control, test procedures, and results associated with the fabrication and testing of a 1/3 scale boron/epoxy, booster thrust structure are described. A complete two-dimensional truss type thrust structure, comprised of nine boron/epoxy tubular members and six apex fittings, was fabricated. This resulted in structurally representative flight hardware, and verified the manufacturing feasibility and projected weight savings (30%) for this type of structure.

  15. Subtask 12A1: Fabrication of production-scale heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Tsai, H.C.; Smith, D.L.

    1995-03-01

    On the basis of excellent properties that were determined for a laboratory-scale heat, V-4Cr-4Ti has been identified previously as the most promising vanadium-based candidate alloy for application in fusion reactor structural components. The objective of this work is to produce a large-scale (500-kg) ingot of the alloy and fabricate various plates and sheets from the ingot, thereby demonstrating a reliable method of fabricating an industrial-scale heat of V-4Cr-4Ti that exhibits excellent properties. A 500-kg heat of V-4Cr-4Ti, an alloy identified previously as the most promising vanadium-based candidate alloy for application in fusion reactor structural components, has been produced. The ingot was produced by multiple vacuum-arc melting using screened high-quality raw materials of vanadium, chrome, and titanium. Several long bars {approx}64 mm in thickness and {approx}200 mm in width were extruded from the ingot, and plates and sheets of various thicknesses ranging from 1.0 to 29.2 mm were fabricated successfully from the extruded bars. The chemical composition of the ingot and the secondary fabrication procedures, specified on the basis of the experience and knowledge gained from fabrication, testing, and microstructural characterization of a laboratory-scale heat, were found to be satisfactory. Charpy-impact tests showed that mechanical properties of the production-scale heat are as good as those of the laboratory-scale heat. This demonstrates a method of reliable fabrication of industrial-scale heats of V-4Cr-4Ti that exhibit excellent properties. 14 refs., 1 fig., 1 tab.

  16. Microfluidic design and fabrication of wafer-scale varifocal liquid lens

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Yub; Choi, Seung-Tae; Lee, Seung-Wan; Kim, Woonbae

    2009-08-01

    Microfluidic design and fabrication was developed for wafer-scale varifocal liquid lens which is slim less than 0.9mm. The liquid-filled varifocal lens has advanced functions such as auto macro and focusing to obtain a high quality of image. This varifocal lens is similar to human eye and it consists of main Si frame which has penetrated inner hole, upside-bonded PDMS (polydimethylsiloxane) elastomer membrane, downside-bonded glass plate and optical fluid confined by these structures. Si frame, which has a circular hole for tunable lens chamber, several holes for actuator chamber and micro-fluidic channels between chambers, is fabricated using thin Si wafer and microelectromechanical system (MEMS) processes. When optical fluid is filled the internal cavity by conventional injection, void trapping which degrades optical performance or filling impossibility happens because of high aspect ratio between lens diameter and thickness for slim liquid lens. To prevent these problems, we developed wafer-based microfabrications of seal line dispensing, accurate dropping of optical fluid, pressing & bonding process in vacuum and UV sealant curing. Afterward, electro-active polymer actuators, which push the optical fluid to change the lens shape, was attached on the PDMS membrane of liquid lens wafer and sawing process of 9.4mm*9.0mm chip size followed. Finally, the varifocal liquid lens which is slim less than 0.6mm thickness (0.9mm included actuators), tunable more than 20diopter changes of refractive power, guaranteed reliability of 300,000 repetitions and suitable for mass production, was realized.

  17. Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Lee, Chi-Yuan; Yang, Kung-Ting; Kuan, Feng-Hui; Lai, Ping-Hung

    In order to take better advantage of metallic bipolar plates for producing metallic fuel cells and make it a feasible technology, it is essential that we have an efficient and cost effective fabrication process for creating micro-scaled flow channels. In this study, an electrochemical micro-machining (EMM) process is developed. In order to have better process control a finite element analysis is employed to ensure machine tool platform rigidity; an electric field analysis is applied for the electrode design; and an electrolytic flow analysis is carried out for the fixture design and the selection of the operational parameter. Finally, flow channels measuring 200 μm in depth and 500 μm in width are fabricated on SS316 stainless steel sheets measuring 50 mm × 0.6 mm thick.

  18. Fabrication of small-scale structures with non-planar features

    SciTech Connect

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  19. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration.

    PubMed

    Green, David W; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a "water-tight" barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  20. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    PubMed Central

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  1. A Scaled Final Focus Experiment for Heavy Ion Fusion

    SciTech Connect

    MacLaren, Stephan, Alexander

    2000-09-19

    A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows for the observation of significant effects on both the size and shape of the focal spot when the electrons are added.

  2. Large scale fabrication of lightweight Si/SiC lidar mirrors

    NASA Astrophysics Data System (ADS)

    Goela, Jitendra Singh; Taylor, Raymond L.

    1989-10-01

    An up-scalable CVD process has been used to fabricate 7.5-cm models of lightweight Si/SiC mirrors consisting of an f/1.6 concave face-plate of SiC coated with CVD Si, in conjunction with a lightweight backup structure of SiC. Due to CVD chamber fabrication, no bonding agent was required to attach the SiC backup structure to the face-plate. Upon up-scaling, the SiC deposition process has been able to produce 40-cm diameter f/1.6 concave mirror face-plates. The mirrors were polished to a 1/5-wave figure and 10 A rms surface finish. There appear to be no intrinsic physical limits to further up-scaling of this mirror-fabrication process.

  3. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    PubMed

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  4. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication.

    PubMed

    Song, Hyun Jae; Son, Minhyeok; Park, Chibeom; Lim, Hyunseob; Levendorf, Mark P; Tsen, Adam W; Park, Jiwoong; Choi, Hee Cheul

    2012-05-21

    Metal catalyst-free growth of large scale single layer graphene film on a sapphire substrate by a chemical vapor deposition (CVD) process at 950 °C is demonstrated. A top-gated graphene field effect transistor (FET) device is successfully fabricated without any transfer process. The detailed growth process is investigated by the atomic force microscopy (AFM) studies. PMID:22526246

  5. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  6. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  7. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  8. 77 FR 31182 - Final Withdrawal of Regulations Pertaining to Imports of Cotton Woven Fabric and Short Supply...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Fabric and Short Supply Procedures: Opportunity for Public Comment, 77 FR 5440 (Feb. 3, 2012). No... Quota Established Under the Tax Relief and Health Care Act of 2006 (Interim Final Rule), 72 FR 40235... Established Under the Tax Relief and Health Care Act of 2006 (Final Rule), 73 FR 39585 (July 10,...

  9. Dual-scale artificial lotus leaf fabricated by fully nonlithographic simple approach based on sandblasting and anodic aluminum oxidation techniques

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Jun; Kim, Tae-Hyun; Kong, Jeong-Ho; Kim, Yongsung; Cho, Chae-Ryong; Kim, Soo-Hyung; Lee, Deug-Woo; Park, Jong-Kweon; Lee, Dongyun; Kim, Jong-Man

    2012-12-01

    This paper reports a micro/nano dual-scaled artificial lotus leaf that is formed on a silicon substrate by simple and inexpensive fully nonlithographic approach, combining a sandblasting technique and an anodic aluminum oxidation (AAO) process. The proposed dual-scaled surface was demonstrated by covering the sandblasted micro-roughened substrate entirely with nano-scale protuberances, and its surface wettability was characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH). The measurements confirmed that the proposed dual-scaled surface can sufficiently ensure superhydrophobicity in the Cassie wetting regime with a high SCA of 159.4 ± 0.5° and a low CAH of 3.9 ± 0.7°, and the surface wetting properties can be improved greatly compared to those of flat, sandblasted micro-roughened and nano-scale protuberance-arrayed surfaces. Through a dropping test, it was observed that the fabricated dual-scaled surface can ensure its superior water-repellency with various levels of the impact velocity. Finally, a self-cleaning ability of the proposed dual-roughened surface was verified experimentally by observing the dynamic rolling-off behavior of the water droplet on the surface covered with contaminants.

  10. Laser fabrication of large-scale nanoparticle arrays for sensing applications.

    PubMed

    Kuznetsov, Arseniy I; Evlyukhin, Andrey B; Gonçalves, Manuel R; Reinhardt, Carsten; Koroleva, Anastasia; Arnedillo, Maria Luisa; Kiyan, Roman; Marti, Othmar; Chichkov, Boris N

    2011-06-28

    A novel method for high-speed fabrication of large scale periodic arrays of nanoparticles (diameters 40-200 nm) is developed. This method is based on a combination of nanosphere lithography and laser-induced transfer. Fabricated spherical nanoparticles are partially embedded into a polymer substrate. They are arranged into a hexagonal array and can be used for sensing applications. An optical sensor with the sensitivity of 365 nm/RIU and the figure of merit of 21.5 in the visible spectral range is demonstrated. PMID:21539373

  11. cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias

    2015-04-01

    Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions

  12. Fabrication of ordered micro- and nano-scale patterns based on optical discs and nanoimprint

    NASA Astrophysics Data System (ADS)

    Guo, Hui-jing; Zhang, Xiao-liang; Li, Xiao-chun

    2016-07-01

    A simple method to fabricate one-dimensional (1-D) and two-dimensional (2-D) ordered micro- and nano-scale patterns is developed based on the original masters from optical discs, using nanoimprint technology and soft stamps. Polydimethylsiloxane (PDMS) was used to replicate the negative image of the 1-D grating pattern on the masters of CD-R, DVD-R and BD-R optical discs, respectively, and then the 1-D pattern on one of the PDMS stamps was transferred to a blank polycarbonate (PC) substrate by nanoimprint. The 2-D ordered patterns were fabricated by the second imprinting using another PDMS stamp. Different 2-D periodic patterns were obtained depending on the PDMS stamps and the angle between the two times of imprints. This method may provide a way for the fabrication of complex 2-D patterns using simple 1-D masters.

  13. Novel thin-film CuInSe/sub 2/ fabrication: Final subcontract report, January 1989

    SciTech Connect

    Mooney, G.D.; Hermann, A.M.

    1989-06-01

    This work studies the feasibility of fabricating CuInSe/sub 2/ (CIS) solar cells by laser annealing sandwiched layers of elemental Cu, In, and Se. The chalcopyrite phase of CIS now is obtained by thermal annealing elemental Cu and In layers in H/sub 2/Se. This process is hazardous because the H/sub 2/Se gas is highly toxic. The ability to form the desired chalcopyrite structure by laser annealing would be safer and more conductive to large-scale production. Initial studies of the feasibility of laser annealing the elemental layered structures were performed using a CW argon laser on films fabricated by means of electrodeposition. Characterization of the post-annealed films by x-ray diffraction analysis has shown encouraging results. The laser annealed films have all contained the chalcopyrite phase of CIS. The percentage of the chalcopyrite phase has been small however. Undesirable binary oxides have also formed. To produce higher quality films, future work will concentrate on increasing the percentage of the desirable phase and eliminating all binary compounds. 5 refs., 4 figs., 1 tab.

  14. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  15. Benchtop fabrication of multi-scale micro-electromagnets for capturing magnetic particles

    NASA Astrophysics Data System (ADS)

    Hosseini, A.; Soleymani, L.

    2014-08-01

    Micro-electromagnets hold great promise for integration into portable and handheld lab-on-a- chip systems applicable to point-of-care disease management. Two major requirements must be satisfied in order for such devices to be applicable into practical, miniaturized, and portable biomedical instrumentation: low power operation and low-cost fabrication. In this paper, we use numerical modeling combined with a lithography-free fabrication process to create micro-electromagnets on a polymer substrate. Numerical modeling reveals that active-passive devices—ferromagnetic layers coupled with current-controlled planar coils—are essential for generating a sufficient magnetic force for magnetic particle manipulation at low currents (<50 mA). In addition, it is shown that current carrying conductors created from micro/nanotextured materials further enhance the generated magnetic force at a given current. To combine low-cost fabrication with low-current operation, we developed a benchtop fabrication method based on craft cutting, polymer induced thin film wrinkling, and electrodeposition to create a multilevel arrangement of multi-scale materials essential for low-current operation. We demonstrate that the fabricated active-passive devices featuring wrinkled copper active layers and permalloy passive layers capture 2.8 μm magnetic particles upon the application of a 35 mA current.

  16. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    NASA Astrophysics Data System (ADS)

    Tian, Boyuan; Liang, Xuelei; Yan, Qiuping; Zhang, Han; Xia, Jiye; Dong, Guodong; Peng, Lianmao; Xie, Sishen

    2016-07-01

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratio (>105), and high mobility (>30 cm2/V.s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.

  17. Fabrication Of Atomic-scale Gold Junctions By Electrochemical Plating Technique Using A Common Medical Disinfectant

    NASA Astrophysics Data System (ADS)

    Umeno, Akinori; Hirakawa, Kazuhiko

    2005-06-01

    Iodine tincture, a medical liquid familiar as a disinfectant, was introduced as an etching/deposition electrolyte for the fabrication of nanometer-separated gold electrodes. In the gold dissolved iodine tincture, the gold electrodes were grown or eroded slowly in atomic scale, enough to form quantum point contacts. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at the room temperature. The iodine tincture is a commercially available common material, which makes the fabrication process to be the simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinary strong acid. We expect this method to be a useful interface between single-molecular-scale structures and macroscopic opto-electronic devices.

  18. Data processing for fabrication of GMT primary segments: raw data to final surface maps

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Hubler, William; Martin, Hubert M.; West, Steven C.; Zhou, Ping

    2014-07-01

    The Giant Magellan Telescope (GMT) primary mirror is a 25 meter f/0.7 surface composed of seven 8.4 meter circular segments, six of which are identical off-axis segments. The fabrication and testing challenges with these severely aspheric segments (about 14 mm of aspheric departure, mostly astigmatism) are well documented. Converting the raw phase data to useful surface maps involves many steps and compensations. They include large corrections for: image distortion from the off-axis null test; misalignment of the null test; departure from the ideal support forces; and temperature gradients in the mirror. The final correction simulates the active-optics correction that will be made at the telescope. Data are collected and phase maps are computed in 4D Technology's 4SightTM software. The data are saved to a .h5 (HDF5) file and imported into MATLAB® for further analysis. A semi-automated data pipeline has been developed to reduce the analysis time as well as reducing the potential for error. As each operation is performed, results and analysis parameters are appended to a data file, so in the end, the history of data processing is embedded in the file. A report and a spreadsheet are automatically generated to display the final statistics as well as how each compensation term varied during the data acquisition. This gives us valuable statistics and provides a quick starting point for investigating atypical results.

  19. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Hao; Tian, Zhen-Nan; Jiang, Tong; Niu, Li-Gang; Gao, Bing-Rong

    2016-03-01

    We report on the fabrication of large-scale eight-level phase-type Fresnel zone plate arrays (FZPAs) by femtosecond-laser direct writing technology. A high-speed galvanometer scanning system was used to fabricate each Fresnel zone plate to realize high fabrication efficiency. To overcome the limited fabrication scale in the case of galvanometer scanning, inter-plate movements were controlled by multi-axis air-bearing precise positioning stages. With the system, FZPAs whose fill-factor was designed to be 100% realized a diffraction efficiency of 89%. The focusing and imaging properties of the FZPAs were also evaluated, and the FZPAs showed high fidelity.

  20. Subtask 12A2: Fabrication and properties of laboratory-scale heat of V-5Cr-5Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Smith, D.L.

    1995-03-01

    The immediate objective of this work is to fabricate a new laboratory-scale heat of V-5Cr-5Ti and identify optimal annealing procedure that produces the highest impact toughness in the alloy. By comparing the result with the optimal annealing procedure identified for the production- and laboratory-scale heats of V-4Cr-4Ti, the eventual objective of the study is to demonstrate that excellent and reliable mechanical properties of V-(4-5)Cr-(4-5)Ti alloy class can be produced through a common annealing procedure. Impact properties were determined on a new 15-kg laboratory heat of V-5Cr-5Ti, fabricated by the same procedures as those used to produce the 500-kg production-scale heat of V-4Cr-4Ti, to identify optimal annealing procedure of the alloy. Charpy-impact tests were conducted on one-third-size specimens because low-temperature (<0{degrees}C) impact properties have been known to be most sensitive to the structure and quality of V-(4-5)Cr-(4-5)Ti alloy class. After final annealing at {approx}1000{degrees}C for 1 h in high-quality vacuum, the laboratory heat V-5Cr-5Ti exhibited impact properties as excellent as those of the production-scale heat V-4Cr-4Ti; i.e., DBTT < -200{degrees}C and absorbed energies of 10-16 J. This demonstrates that when annealed at common optimal condition of 1000{degrees}C for 1 h, the V-(4-5)Cr-(4-5)Ti alloy class exhibit excellent impact toughness and a sufficient tolerance to minor variations in alloying element composition. 5 refs., 5 figs., 1 tab.

  1. Fabrication of three-dimensional and submicrometer-scaled microstructures based on metal contact printing and silicon bulk machining

    NASA Astrophysics Data System (ADS)

    Kao, Kuo-Lun; Chang, Cho-Wei; Lee, Yung-Chun

    2014-04-01

    This paper describes a method that contains a series of processes for producing three-dimensional (3-D) microstructures with a feature size in the submicrometer scale. It starts from using a metal contact printing lithography to pattern a thin metal film on the surface of a (100) silicon substrate. The metal film has a hole-array pattern with a hole diameter ranging from 300 nm to 800 nm and is used as an etching mask for silicon bulk machining to create concave pyramid-shaped surface microstructures. Using this bulk-machined silicon substrate as a template, polymer 3-D microstructures are replicated on top of a silicon dioxide (SiO) layer. Finally, through a dry etching process, 3-D microstructures with a profile similar to the replicated polymer microstructures are formed on the SiO layer. Potential applications of these fabricated SiO microstructures in the light-emitting diode industry will be addressed.

  2. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography.

    PubMed

    Hall, Anthony Shoji; Friesen, Stuart A; Mallouk, Thomas E

    2013-06-12

    By combining nanosphere lithography with template stripping, silicon wafers were patterned with hexagonal arrays of nanowells or pillars. These silicon masters were then replicated in gold by metal evaporation, resulting in wafer-scale hexagonal gratings for plasmonic applications. In the nanosphere lithography step, two-dimensional colloidal crystals of 510 nm diameter polystyrene spheres were assembled at the air-water interface and transferred to silicon wafers. The spheres were etched in oxygen plasma in order to define their size for masking of the silicon wafer. For fabrication of metallic nanopillar arrays, an alumina film was grown over the nanosphere layer and the spheres were then removed by bath sonication. The well pattern was defined in the silicon wafer by reactive ion etching in a chlorine plasma. For fabrication of metal nanowell arrays, the nanosphere monolayer was used directly as a mask and exposed areas of the silicon wafer were plasma-etched anisotropically in SF6/Ar. Both techniques could be used to produce subwavelength metal replica structures with controlled pillar or well diameter, depth, and profile, on the wafer scale, without the use of direct writing techniques to fabricate masks or masters.

  3. Fabrication of atomic-scale gold junctions by electrochemical plating using a common medical liquid

    NASA Astrophysics Data System (ADS)

    Umeno, A.; Hirakawa, K.

    2005-04-01

    Fabrication of nanometer-separated gold junctions has been performed using "iodine tincture," a medical liquid known as a disinfectant, as an etching/deposition electrolyte. In the gold-dissolved iodine tincture, gold electrodes were grown or eroded slowly enough to form quantum point contacts in an atomic scale. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at room temperature (e: the elementary charge, h: the Planck constant). Iodine tincture is a commercially available common material, which makes the fabrication process to be simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinarily strong acids.

  4. Study on Quartz Multitier Mold Fabrication Using Gray Scale Laser Beam Lithography

    NASA Astrophysics Data System (ADS)

    Youn, Sung-Won; Park, Sang-Cheon; Wang, Qing; Suzuki, Kenta; Hiroshima, Hiroshi

    2011-06-01

    Gray scale laser beam lithography (G-LBL) is an inexpensive, fast, and simple process for creating a multitier or near-continuous surface topography of microscale components. In this work, the combined use of the microfabrication processes of G-LBL (with a 375 nm diode laser) and reactive ion etching (RIE) was studied to fabricate multitier quartz molds. In the G-LBL process, both pixel pulse length and grayscale level in bitmap images were controlled under a fixed laser power of 10 mW to develop multitier features in an OFPR-800LB resist in a single writing step. By the subsequent CHF3 RIE process, the multitier features defined in the resist were transferred into the underlying quartz with a depth ratio of 1:2.2. Furthermore, the feasibility of the fabricated quartz molds was verified through the UV imprint experiments.

  5. Application of foams to the processing of fabrics. Final report, October 1, 1977-September 30, 1981

    SciTech Connect

    Namboodri, C.G.

    1981-10-01

    The primary objective of this project was to reduce the energy consumed in the wet processing of fabrics where wet processing encompasses those processes used to convert loomstate (greige) goods to finished textile products. This includes desizing, scouring, bleaching, dyeing, printing, and finishing of fabrics. The energy intensive step in most of these processes is drying the fabric. By having less water on the fabric as it enters a drying oven, proportionately less energy is consumed in drying the fabric. The specific route used in this project to accomplish this objective has been to use air to distribute the finish, dye or printing ink onto the fabric. Rather than saturating the fabric with a dilute finish formulation, a concentrated formulation is mechanically foamed, air serving as the diluting medium and the foam applied to the fabric. In this manner, the water content of the fabric as it enters the drying oven is reduced by as much as 80% thereby leading to a corresponding reduction in the energy required to dry the fabric. Details on the procedure are presented and experimental results are discussed. (MCW)

  6. Stable atom-scale junctions on silicon fabricated by kinetically controlled electrochemical deposition and dissolution.

    PubMed

    Shi, Ping; Bohn, Paul W

    2008-08-01

    Metallic atom-scale junctions (ASJs) constitute the natural limit of nanowires, in which the limiting region of conduction is only a few atoms wide. They are of interest because they exhibit ballistic conduction and their conductance is extraordinarily sensitive to molecular adsorption. However, identifying robust and regenerable mechanisms for their production is a challenge. Gold ASJs have been fabricated electrochemically on silicon using an iodide-containing medium to control the kinetics. Extremely slow electrodeposition or electrodissolution rates were achieved and used to reliably produce ASJs with limiting conductance <5 G(0). Starting from a photolithographically fabricated, Si(3)N(4)-protected micrometer-scale Au bridge between two contact electrodes, a nanometer-scale gap was prepared by focused ion beam milling. The opposing Au faces of this construct were then used in an open-circuit working electrode configuration to produce Au ASJs, either directly or by first overgrowing a thicker Au nanowire and electrothinning it back to an ASJ. Gold ASJs produced by either approach exhibit good stabilityin some cases being stable over hours at 300 Kand quantized conductance properties. The influence of deposition/dissolution potential and supporting electrolyte on the stability of ASJs are considered. PMID:19206360

  7. Fabrication of wafer-scale nanopatterned sapphire substrate through phase separation lithography

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Ni, Mengyang; Zhuang, Zhe; Dai, Jiangping; Wu, Feixiang; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-01

    A phase separation lithography (PSL) based on polymer blend provides an extremely simple, low-cost, and high-throughput way to fabricate wafer-scale disordered nanopatterns. This method was introduced to fabricate nanopatterned sapphire substrates (NPSSs) for GaN-based light-emitting diodes (LEDs). The PSL process only involved in spin-coating of polystyrene (PS)/polyethylene glycol (PEG) polymer blend on sapphire substrate and followed by a development with deionized water to remove PEG moiety. The PS nanoporous network was facilely obtained, and the structural parameters could be effectively tuned by controlling the PS/PEG weight ratio of the spin-coating solution. 2-in. wafer-scale NPSSs were conveniently achieved through the PS nanoporous network in combination with traditional nanofabrication methods, such as O2 reactive ion etching (RIE), e-beam evaporation deposition, liftoff, and chlorine-based RIE. In order to investigate the performance of such NPSSs, typical blue LEDs with emission wavelengths of ~450 nm were grown on the NPSS and a flat sapphire substrate (FSS) by metal-organic chemical vapor deposition, respectively. The integral photoluminescence (PL) intensity of the NPSS LED was enhanced by 32.3 % compared to that of the FSS-LED. The low relative standard deviation of 4.7 % for PL mappings of NPSS LED indicated the high uniformity of PL data across the whole 2-in. wafer. Extremely simple, low cost, and high throughput of the process and the ability to fabricate at the wafer scale make PSL a potential method for production of nanopatterned sapphire substrates.

  8. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Eggleston, Michael; Wu, Ming C

    2013-07-15

    Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology.

  9. Wafer scale fabrication of submicron chessboard gratings using phase masks in proximity lithography

    NASA Astrophysics Data System (ADS)

    Stuerzebecher, Lorenz; Harzendorf, Torsten; Fuchs, Frank; Zeitner, Uwe D.

    2012-03-01

    One and two dimensional grating structures with submicron period have a huge number of applications in optics and photonics. Such structures are conventionally fabricated using interference or e-beam lithography. However, both technologies have significant drawbacks. Interference lithography is limited to rather simple geometries and the sequential writing scheme of e-beam lithography leads to time consuming exposures for each grating. We present a novel fabrication technique for this class of microstructures which is based on proximity lithography in a mask aligner. The technology is capable to pattern a complete wafer within less than one minute of exposure time and offers thereby high lateral resolution and a reliable process. Our advancements compared to standard mask aligner lithography are twofold: First of all, we are using periodic binary phase masks instead of chromium masks to generate an aerial image of high resolution and exceptional light efficiency at certain distances behind the mask. Second, a special mask aligner illumination set-up is employed which allows to precisely control the incidence angles of the exposure light. This degree of freedom allows both, to shape the aerial image (e. g. transformation of a periodic spot pattern into a chessboard pattern) and to increase its depth of focus considerably. That way, our technology enables the fabrication of high quality gratings with arbitrary geometry in a fast and stable wafer scale process.

  10. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Eggleston, Michael; Wu, Ming C

    2013-07-15

    Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology. PMID:23938507

  11. Fabrication of gray-scale masks and diffractive optical elements with LDW glass

    NASA Astrophysics Data System (ADS)

    Korolkov, Victor P.; Malyshev, Anatoly I.; Poleshchuk, Alexander G.; Cherkashin, Vadim V.; Tiziani, Hans J.; Pruss, Christof; Schoder, Thomas; Westhauser, Johann; Wu, Chuck

    2001-11-01

    In the last years the application of gray-scale masks (GSM) for diffractive optics manufacturing attracts attention because of cost-effective possibility to produce a lot of diffractive elements on hard and heat-resistant thermally stable substrates. Direct laser writing of GSMs and fabrication of diffractive optical elements are effectively realized with application of LDW-glass (material for Laser Direct Write from CANYON MATERIALS, Inc). An important advantage of this material is the real-time change of transmittance in a single-step process without liquid development. It is shown that optimal transmittance range in which track width is not more than 1 micrometers is from 5-10% (transmittance of unexposed area) to 60-65% for LDW-glass type I having thinner colored layer. Power modulation and surroundings dependent peculiarities of direct laser writing on LDW-glass are discussed. Results of fabrication of diffractive optical elements using LDW-glass masks are presented. Among several types of LDW glasses studied the advantages of new GS-11 glass are elaborated. Application of GS-11 glass for GSMs allowed to fabricate blazed diffractive structures with backward slope width of 0.8 micrometers .

  12. Belt scales user`s guide. Final report

    SciTech Connect

    Rosenberg, N.I.

    1993-02-01

    A conveyor-belt scale provides a means of obtaining accurate weights of dry bulk materials without delaying other plant operations. In addition, for many applications a belt scale is the most cost-effective alternative among many choices for a weighing system. But a number of users are not comfortable with the accuracy of their belt scales. In cases of unsatisfactory scale performance, it is often possible to correct problems and achieve the accuracy that was expected. To have a belt scale system that is accurate, precise, and cost effective, practical experience has shown that certain basic requisites must be satisfied. These requisites include matching the scale capability to the needs of the application, selecting durable scale equipment and conveyor idlers, adopting improved conveyor support methods, employing superior scale installation and alignment techniques, and establishing and practicing an effective scale testing and performance monitoring program. The goal of the Belt Scale Users` Guide is to enable utilities to reap the benefits of consistently accurate output from their new or upgraded belt scale installations. Such benefits include eliminating incorrect payments for coal receipts, improving coal pile inventory data, providing better heat rate results to enhance plant efficiency and yield more economical power dispatch, and satisfying regulatory agencies. All these benefits can reduce the cost of power generation.

  13. Centrifugal Jet Spinning for Highly Efficient and Large-scale Fabrication of Barium Titanate Nanofibers

    PubMed Central

    Ren, Liyun; Kotha, Shiva P.

    2014-01-01

    The centrifugal jet spinning (CJS) method has been developed to enable large-scale synthesis of barium titanate nanofibers. Barium titanate nanofibers with fiber diameters down to 50 nm and grain sizes around 25 nm were prepared with CJS by spinning a sol-gel solution of barium titanate and poly(vinylpyrrolidone) with subsequent heat treatment at 850 °C. XRD and FTIR analysis demonstrated high purity and tetragonal perovskite structured barium titanate nanofibers. SEM and TEM images confirm the continuous high aspect ratio structure of barium titanate nanofibers after heat treatment. It is demonstrated that the CJS technique offers a highly efficient method for large-scale fabrication of ceramic nanofibers at production rates of up to 0.3 gram/minute. PMID:24563566

  14. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays.

    PubMed

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-06-02

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom-up synthesis of suspended graphene nanoribbon arrays (over 1,000,000 graphene nanoribbons in 2 × 2 cm(2) substrate) with a very high yield (over 98%). Polarized Raman measurements reveal graphene nanoribbons in the array can have relatively uniform-edge structures with near zigzag orientation dominant. A promising growth model of suspended graphene nanoribbons is also established through a comprehensive study that combined experiments, molecular dynamics simulations and theoretical calculations with a phase-diagram analysis. We believe that our results can contribute to pushing the study of graphene nanoribbons into a new stage related to the optoelectrical physics and industrial applications.

  15. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  16. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-06-01

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom-up synthesis of suspended graphene nanoribbon arrays (over 1,000,000 graphene nanoribbons in 2 × 2 cm2 substrate) with a very high yield (over 98%). Polarized Raman measurements reveal graphene nanoribbons in the array can have relatively uniform-edge structures with near zigzag orientation dominant. A promising growth model of suspended graphene nanoribbons is also established through a comprehensive study that combined experiments, molecular dynamics simulations and theoretical calculations with a phase-diagram analysis. We believe that our results can contribute to pushing the study of graphene nanoribbons into a new stage related to the optoelectrical physics and industrial applications.

  17. Final Report on the Joule-Scale Experimental Demonstration

    SciTech Connect

    Shverdin, M

    2008-10-01

    We describe the final results of the High Power Laser Pulse Recirculation project. We have developed and implementing a novel technique for picosecond, Joule-class laser pulse recirculation inside a passive cavity. The aim of this project was to develop technology compatible with increasing the efficiency of Compton based light sources by more than an order of magnitude. In year 1 of the project, we achieved a greater than 40 times average power enhancement of the mJ-scale laser pulses inside a passive cavity with internal focus. In year 2, we demonstrated recirculation of lasers pulses with energies up to 191 mJ at 532 nm, at a repetition rate of 10 Hz, and a pulse duration of 20 ps. In this high energy regime, we achieved up to 14 times average power enhancement inside the cavity. This enhancement factor is compatible with the new X-band based mono-energetic gamma-ray machine, Velociraptor, being constructed at LLNL. The demonstrated cavity enhancement is primarily limited by the poor spatial beam quality of the high power laser beam. We expect a nearly diffraction limited laser beam to achieve 40 times or better cavity enhancement, as demonstrated in low energy experiments in FY-07. The two primary obstacles to higher average brightness and conversion efficiency of laser pulse energy to gamma-rays are the relatively small Compton scattering cross-section and the typically low repetition rates of Joule-class interaction lasers (10 Hz). Only a small fraction (10{sup -10}) of the available laser photons is converted to gamma-rays, while the rest is discarded. To significantly reduce the average power requirements of the laser and increase the overall system efficiency, we can recirculate laser light for repeated interactions with electron bunches. Our pulse recirculation scheme is based on nonlinear frequency conversion, termed recirculation injection by nonlinear gating (RING), inside a passive cavity. The main objectives of the two year project were: (1) Validate

  18. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  19. Requirements and approaches to adapting laser writers for fabrication of gray-scale masks

    NASA Astrophysics Data System (ADS)

    Korolkov, Victor P.; Shimansky, Ruslan; Poleshchuk, Alexander G.; Cherkashin, Vadim V.; Kharissov, Andrey A.; Denk, Dmitry

    2001-11-01

    The photolithography using gray-scale masks (GSM) with multilevel transmittance is now one of promising ways for manufacturing of high efficiency diffractive optical elements and microoptics. Such masks can be most effectively fabricated by laser or electron-beam writers on materials with a transmittance changing under influence of high-energy beams. The basic requirements for adaptation of existing and developed scanning laser writers are formulated. These systems create an image by continuous movement of a writing beam along one coordinate and overlapping of adjacent written tracks along another coordinate. Several problems must be solved at the GSM manufacturing: the calibration of the influence of the laser beam on a recording material without transferring the gray-scale structure into photoresist; the transmittance at the current exposed pixel depends on surrounding structures generated before recording of the current track and a character of the laser beam power modulation; essential increasing of the computed data in comparison with binary elements. The offered solutions are based on the results of investigations of the materials with variable transmittance (LDW-glass, a-Si film) and takes into account the specificity of diffractive blazed microstructures. The reduction of data amount for fabrication of multi-level DOEs is effectively performed using offered vector-gradient data format, which is based on piecewise-linear approximation of phase profile. The presented approaches to adaptation of laser writers are realized in software and hardware, and they allow to solve the basic problems of manufacturing GSMs.

  20. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  1. Design and Fabrication of the First Commercial-Scale Liquid Phase Methanol (LPMEOH) Reactor

    SciTech Connect

    1998-12-21

    The Liquid Phase Methanol (LPMEOHT) process uses a slurry bubble column reactor to convert synthesis gas (syngas), primarily a mixture of carbon monoxide and hydrogen, to methanol. Because of its superior heat management the process can utilize directly the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or other hydrocarbon feedstocks. The LPMEOHM Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P., a partnership between Air Products and Chemicals, Inc. and Eastman Chemical Company, to produce methanol from coal-derived syngas. Construction of the LPMEOH~ Process Demonstration Plant at Eastman's chemicals-from-coal complex in Kingsport was completed in January 1997. Following commissioning and shakedown activities, the fwst production of methanol from the facility occurred on April 2, 1997. Nameplate capacity of 260 short tons per day (TPD) was achieved on April 6, 1997, and production rates have exceeded 300 TPD of methanol at times. This report describes the design, fabrication, and installation of the Kingsport LPMEOEFM reactor, which is the first commercial-scale LPMEOEPM reaetor ever built. The vessel is 7.5 feet in diameter and 70 feet tall with design conditions of 1000 psig at 600 `F. These dimensions represent a significant scale-up from prior experience at the DOE-owned Alternative Fuels Development Unit in LaPorte, Texas, where 18-inch and 22-inch diameter reactors have been tested successfidly over thousands of hours. The biggest obstacles discovered during the scale- up, however, were encountered during fabrication of the vessel. The lessons learned during this process must be considered in tailoring the design for future sites, where the reactor dimensions may grow by yet another factor of two.

  2. Large-scale controlled fabrication of highly roughened flower-like silver nanostructures in liquid crystalline phase

    PubMed Central

    Yang, Chengliang; Xiang, Xiangjun; Zhang, Ying; Peng, Zenghui; Cao, Zhaoliang; Wang, Junlin; Xuan, Li

    2015-01-01

    Large-scale controllable fabrication of highly roughened flower-like silver nanostructures is demonstrated experimentally via electrodeposition in the liquid crystalline phase. Different sizes of silver flowers are fabricated by adjusting the deposition time and the concentration of the silver nitrate solution. The density of the silver flowers in the sample is also controllable in this work. The flower-like silver nanostructures can serve as effective surface-enhanced Raman scattering and surface-enhanced fluorescence substrates because of their local surface plasmon resonance, and they may have applications in photoluminescence and catalysis. This liquid crystalline phase is used as a soft template for fabricating flower-like silver nanostructures for the first time, and this approach is suitable for large-scale uniform fabrication up to several centimetres. PMID:26216669

  3. Surface-controlled contact printing for nanowire device fabrication on a large scale

    NASA Astrophysics Data System (ADS)

    Roßkopf, D.; Strehle, S.

    2016-05-01

    Assembly strategies for functional nanowire devices that merge bottom-up and top-down technologies have been debated for over a decade. Although several breakthroughs have been reported, nanowire device fabrication techniques remain generally incompatible with large-scale and high-yield top-down microelectronics manufacturing. Strategies enabling the controlled transfer of nanowires from the growth substrate to pre-defined locations on a target surface would help to address this challenge. Based on the promising concept of mechanical nanowire transfer, we developed the technique of surface-controlled contact printing, which is based purely on dry friction between a nanowire and a target surface. Surface features, so-called catchers, alter the local frictional force or deposition probability and allow the positioning of single nanowires. Surface-controlled contact printing extends the current scope of nanowire alignment strategies with the intention to facilitate efficient nanowire device fabrication. This is demonstrated by the simultaneous assembly of 36 nanowire resistors within a chip area of greater than 2 cm2 aided only by mask-assisted photolithography.

  4. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    SciTech Connect

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian

    2014-08-21

    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials.

  5. Fabrication of photonic quasicrystalline structures in the sub-micrometer scale

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Sun, XiaoHong; Li, WenYang; Liu, Wei; Jiang, Lei; Han, Juan

    2016-05-01

    Compared to periodic crystals, photonic quasicrystals (PQC) have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures in the sub-micro scale. Based on the difference of production conditions, a variety of quasicrystals have been obtained in the SU8 photoresist films. Scanning Probe Microscopy and laser diffraction are used to characterize the produced structures. The corresponding theoretical analysis is also provided to compare with the experimental results. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  6. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Final report

    SciTech Connect

    Weber, G.F.; Dunham, G.E.; Laudal, D.L.; Ness, S.R.; Schelkoph, G.L.

    1994-08-01

    The overall objective of the project proposed was to evaluate the catalyst-coated fabric filter concept for effective control of NO{sub 2} and particulate emissions simultaneously. General goals included demonstrating high removal efficiency of NO{sub x} and particulate matter, acceptable bag and catalyst life, and that process economics show a significant cost savings in comparison to a commercial SCR process and conventional particulate control. Specific goals included the following: reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of >99.5%; demonstrate a bag/catalyst life of >1 year; Control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with S0{sub 2} removal systems; and show that the concept results in a nonhazardous waste product.

  7. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  8. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  9. Final Technical Report for Terabit-scale hybrid networking project.

    SciTech Connect

    Veeraraghavan, Malathi

    2015-12-12

    This report describes our accomplishments and activities for the project titled Terabit-Scale Hybrid Networking. The key accomplishment is that we developed, tested and deployed an Alpha Flow Characterization System (AFCS) in ESnet. It is being run in production mode since Sept. 2015. Also, a new QoS class was added to ESnet5 to support alpha flows.

  10. Fabrication of high-resolution reflective scale grating for an optical encoder using a patterned self-assembly process

    NASA Astrophysics Data System (ADS)

    Fan, Shanjin; Jiang, Weitao; Li, Xuan; Yu, Haoyu; Lei, Biao; Shi, Yongsheng; Yin, Lei; Chen, Bangdao; Liu, Hongzhong

    2016-07-01

    Steel tape scale grating of a reflective incremental linear encoder has a key impact on the measurement accuracy of the optical encoder. However, it is difficult for conventional manufacturing processes to fabricate scale grating with high-resolution grating strips, due to process and material problems. In this paper, self-assembly technology was employed to fabricate high-resolution steel tape scale grating for a reflective incremental linear encoder. Graphene oxide nanoparticles were adopted to form anti-reflective grating strips of steel tape scale grating. They were deposited in the tape, which had a hydrophobic and hydrophilic grating pattern when the dispersion of the nanoparticles evaporated. A standard lift-off process was employed to fabricate the hydrophobic grating strips on the steel tape. Simultaneously, the steel tape itself presents a hydrophilic property. The hydrophobic and hydrophilic grating pattern was thus obtained. In this study, octafluorocyclobutane was used to prepare the hydrophobic grating strips, due to its hydrophobic property. High-resolution graphene oxide steel tape scale grating with a pitch of 20 μm was obtained through the self-assembly process. The photoelectric signals of the optical encoder containing the graphene oxide scale grating and conventional scale grating were tested under the same conditions. Comparison test results showed that the graphene oxide scale grating has a better performance in its amplitude and harmonic components than that of the conventional steel tape scale. A comparison experiment of position errors was also conducted, demonstrating an improvement in the positioning error of the graphene oxide scale grating. The comparison results demonstrated the applicability of the proposed self-assembly process to fabricate high-resolution graphene oxide scale grating for a reflective incremental linear encoder.

  11. Methods for reducing volatile organic content in fabric waterproof coatings. Final report, May--November 1993

    SciTech Connect

    Keohan, F.L.; Lazaro, E.

    1994-03-01

    Fabrics for rainwear and outdoor equipment traditionally have been rendered waterproof by coating with solvent-borne rubber solutions, solvent-borne polyurethanes and vinyl plastisols. Regulatory pressure for environmental protection and worker safety has become a potent driving force in eliminating volatile organic solvents and toxic additives from commercial coating products. A variety of low-solvent coating technologies are being introduced to replace the traditional solvent-based products. These include high solids formulation, solventless UV and electron beam curing systems, powder coatings and supercritical, CO{sub 2}-reduced paints. The benefits and limitations of these coating technologies were compared with respect to their applicability to fabric waterproofing. In addition, a novel acrylated surfactant was synthesized and employed in the formulation of UV-curing waterborne coatings for textile waterproofing. The application methods and cure characteristics of the solvent-free formulations are described. Physical properties of cured coating films including tensile strength, percent elongation, water absorption, water drop contact angle, and adhesion to common fabrics were measured and compared to those obtained using a commercial waterborne waterproofing system. One formulation produced cured films having low water absorption, tenacious adhesion to polyester fabric and surface hydrophobicity properties approaching those of polyethylene.

  12. Fabrication and characteristic evaluation of a rotary type SDA with a rotation angle measuring scale

    NASA Astrophysics Data System (ADS)

    Nagao, Shinya; Oohira, Fumikazu; Matsui, Takashi; Hosogi, Maho; Hashiguchi, Gen

    2005-12-01

    Recently, there are a lot of studies on the micro motors using an electrostatic actuator as the driving force in the micro electro mechanical systems (MEMS) field. However, the electrostatic actuator has a problem concerning the precise actuation control. In the conventional researches, the rotary type electrostatic actuators have been reported, but the rotation angle has not been precisely controlled in the actuators. This paper describes a new micro motor by a rotary type scratch drive actuator (SDA) with a Poly-Si scale to measure the rotation angle based on the MEMS technology. In this study, we make it possible to measure the rotation angle of th rotary type SDA motor by a fiber type micro encoder. For this purpose, we formed the Poly-Si scale around the outside of the micro SDA motor, and achieved a reflection type optical fiber micro encoder. In this presentation, we describe the fabrication process for this device and the evaluation results of the optical characteristic of the fiber type micro encoder.

  13. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays

    PubMed Central

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-01-01

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom–up synthesis of suspended graphene nanoribbon arrays (over 1,000,000 graphene nanoribbons in 2 × 2 cm2 substrate) with a very high yield (over 98%). Polarized Raman measurements reveal graphene nanoribbons in the array can have relatively uniform-edge structures with near zigzag orientation dominant. A promising growth model of suspended graphene nanoribbons is also established through a comprehensive study that combined experiments, molecular dynamics simulations and theoretical calculations with a phase-diagram analysis. We believe that our results can contribute to pushing the study of graphene nanoribbons into a new stage related to the optoelectrical physics and industrial applications. PMID:27250877

  14. Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale

    PubMed Central

    Zeng, Hao; Wasylczyk, Piotr; Parmeggiani, Camilla; Martella, Daniele; Wiersma, Diederik Sybolt

    2016-01-01

    Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others. PMID:27285398

  15. Free-form Light Actuators - Fabrication and Control of Actuation in Microscopic Scale.

    PubMed

    Zeng, Hao; Wasylczyk, Piotr; Parmeggiani, Camilla; Martella, Daniele; Wiersma, Diederik Sybolt

    2016-01-01

    Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others. PMID:27285398

  16. Final Report on Project “Ton-scale Germanium: Beyond Zeptobarn WIMP Cross-section”

    SciTech Connect

    Minion, Michael

    2014-04-23

    The DOE CAREER proposal primarily focused on establishing a modern semiconductor detector fabrication facility that would provide significant improvement in the cost profile and performance of the cryogenic semiconductor detectors used by the CDMS experiment so as to enable a next generation ton-scale experiment. The proposal also included significant work on performing data analysis on the Soudan experiment.

  17. Synthesis of polydopamine at the femtoliter scale and confined fabrication of Ag nanoparticles on surfaces.

    PubMed

    Guardingo, M; Esplandiu, M J; Ruiz-Molina, D

    2014-10-25

    Nanoscale polydopamine motifs are fabricated on surfaces by deposition of precursor femtolitre droplets using an AFM tip and employed as confined reactors to fabricate Ag nanoparticle patterns by in situ reduction of a Ag(+) salt. PMID:25195667

  18. Fabrication of 10 nm-scale complex 3D nanopatterns with multiple shapes and components by secondary sputtering phenomenon.

    PubMed

    Jeon, Hwan-Jin; Jeong, Hyeon Su; Kim, Yun Ho; Jung, Woo-Bin; Kim, Jeong Yeon; Jung, Hee-Tae

    2014-02-25

    We introduce an advanced ultrahigh-resolution (∼ 15 nm) patterning technique that enables the fabrication of various 3D high aspect ratio multicomponents/shaped nanostructures. This methodology utilizes the repetitive secondary sputtering phenomenon under etching plasma conditions and prepatterned fabrication control. The secondary sputtering phenomenon repetitively generates an angular distribution of target particles during ion-bombardment. This method, advanced repetitive secondary sputtering lithography, provides many strategies to fabricate complex continuous patterns and multilayer/material patterns with 10 nm-scale resolution. To demonstrate the versatility of this method, we show induced vertical alignment of liquid crystals (LCs) on indium-tin-oxide (ITO) grid patterns without any alignment layers. The ITO grid pattern fabricated in this method is found to have not only an alignment capability but also electrode properties without electrical or optical damage.

  19. Bench-scale co-processing economic assessment. Final report

    SciTech Connect

    Gala, H.B.; Marker, T.L.; Miller, E.N.

    1994-11-01

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active dispersed catalyst has been developed which enables the operation of the co-processing unit at relatively moderate and high temperatures and relatively high pressure. Under the current contract, a multi-year research program was undertaken to study the technical and economic feasibility of this technology. All the contractual tasks were completed. Autoclave experiments were carried out to evaluate dispersed vanadium catalysts, molybdenum catalysts, and a less costly UOP-proprietary catalyst preparation technique. Autoclave experiments were also carried out in support of the continuous pilot plant unit operation and to study the effects of the process variables (pressure, temperature, and metal loading on the catalyst). A total of 24 continuous pilot plant runs were made. Research and development efforts during the pilot plant operations were concentrated on addressing the cost effectiveness of the UOP single-stage slurry catalyzed co-processing concept based on UOP experience gained in the previous DOE contract. To this end, effect of catalyst metal concentration was studied and a highly-active Mo-based catalyst was developed. This catalyst enabled successful long-term operation (924 hours) of the continuous bench-scale plant at highly severe operating conditions of 3,000 psig, 465{degree}C temperature, and 2:1 resid-to-MAF (moisture- and ash-free) coal ratio with 0.1 wt % active metal. The metal loading of the catalyst was low enough to consider the catalyst as a disposable slurry catalyst. Also, liquid recycle was incorporated in the pilot plant design to increase the, reactor back mixing and to increase the flow of liquid through the reactor (to introduce turbulence in the reactor) and to represent the design of a commercial-scale reactor.

  20. Final Technical/Scientific Report: Commodity Scale Thermostable Enzymatic Transformations

    SciTech Connect

    James J. Lalonde; Brian Davison

    2003-08-30

    The conversion of corn starch to high fructose corn-syrup sweetener is a commodity process, producing over 3 billion kg/y. In the last step of the process, an enzyme catalyst is used to convert glucose to the much sweeter sugar fructose. Due to incomplete conversion in the last step, the syrup must be purified using a chromatographic separation technique, which results in equal quantities of water being added to the syrup, and finally the water must be evaporated (up to 1 lb of water/lb of syrup). We have estimated the energy requirement in the evaporation step to be on the order of 13 billion BTU's/y. This process inefficiency could be eliminated if a thermostable form of glucose isomerase (GI), the enzyme catalyst used in the final step, was developed. Our chosen strategy was to develop an immobilized form of the enzyme in which the protein is first crystallized and then chemically cross-linked to form an insoluble particle. This so-called cross-linked enzyme crystal (CLE C(reg. sign)) technology had been shown to be a powerful method for enzyme stabilization for several other protein catalysts. In this work we have developed more than 30 CLEC preparations of glucose isomerase and tested them for activity and stability. We found these preparations to be highly active, with a 10-50 fold rate per gram of catalyst increase over existing commercial catalysts. The initial rates were also higher at higher temperatures as expected, however the efficiency of the CLEC GI preparations unexpectedly rapidly decreased to a low constant value with use at the higher temperatures. At this point, the source of this activity loss is unclear, however during this loss, the catalyst is found to form a solid mass indicating either breakage of the chemical cross-links or simple aggregation of the particles. It is likely that the increased mass transfer resistance due to this agglomeration is a major component of the activity loss. This research suggests that one potentially beneficial

  1. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates.

    PubMed

    Cai, Hongbing; Wu, YuKun; Dai, Yanmeng; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2016-09-01

    Metallic nanogap is very important for a verity of applications in plasmonics. Although several fabrication techniques have been proposed in the last decades, it is still a challenge to produce uniform nanogaps with a few nanometers gap distance and high throughput. Here we present a simple, yet robust method based on the atomic layer deposition (ALD) and lift-off technique for patterning ultranarrow nanogaps array. The ability to accurately control the thickness of the ALD spacer layer enables us to precisely define the gap size, down to sub-5 nm scale. Moreover, this new method allows to fabricate uniform nanogaps array along different directions densely arranged on the wafer-scale substrate. It is demonstrated that the fabricated array can be used as an excellent substrate for surface enhanced Raman scatting (SERS) measurements of molecules, even on flexible substrates. This uniform nanogaps array would also find its applications for the trace detection and biosensors. PMID:27607684

  2. Fabric composite radiators for space nuclear power applications. Final report, March 1993

    SciTech Connect

    Klein, A.C.; Al-Baroudi, H.; Gulshan-Ara, Z.; Kiestler, W.C.; Snuggerud, R.D.; Abdul-Hamid, S.A.; Marks, T.S.

    1993-03-24

    Nuclear power systems will be required to provide much greater power levels for both civilian and defense space activities in the future than an currently needed. Limitations on the amount of usable power from radioisotope thermal generators and the limited availability of radioisotope heat source materials lead directly to the conclusion that nuclear power reactors will be needed to enhance the exploration of the solar system as well as to provide for an adequate defense. Lunar bases and travel to the Martian surface will be greatly enhanced by the use of high levels of nuclear power. Space based radar systems requiring many kilowatts of electrical power can provide intercontinental airline traffic control and defense early warning systems. Since the, figure of merit used in defining any space power system is the specific power, the decrease in die mass of any reactor system component will yield a tremendous benefit to the overall system performance. Also, since the heat rejection system of any power system can make up a large portion of the total system mass, any reduction in the mass of the heat rejection radiators will significantly affect the performance of the power system. Composite materials which combine the high strength, flexibility, and low mass characteristics of Si% based fibers with the attractive compatibility and heat transfer features of metallic foils, have been proposed for use m a number of space radiator applications. Thus, the weave of the fabric and the high strength capability of the individual fibers are combined with the high conductivity and chemical stability of a metallic liner to provide a light weight, flexible alternative to heavy, rigid, metallic radiator structural containers. The primary focus of this investigation revolves around two applications of the fabric composite materials, notably a fabric heat pipe radiator design and the Bubble Membrane Radiator concept.

  3. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    SciTech Connect

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules.

  4. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  5. Molecular-Scale Lubricants for Micromachine Applications: Final Report

    SciTech Connect

    Burns, A.R.; Dugger, M.T.; Houston, J.E.; Lopez, G.P.; Mayer, T.M.; Michalske, T.A.; Miller, S.L.; Sniegowski, J.J.; Stevens, M.J.; Zhou, Y.

    1998-12-01

    The nature of this work was to develop the physics and chemistry base for understanding molecular-scale lubricants used to reduce of friction- and adhesion-induced failure in silicon micromachines (MEMS). We acquired this new knowledge by tailoring the molecular properties of the lubricants, applying local probes that can directly monitor the response of lubricants in contact conditions, and evaluating the performance of model lubricants MEMS devices. Model lubricants under investigation were the silane coupling agents that form monolayer films on native oxide silicon surfaces, which is the substrate in MEMS. These molecules bind via strong surface bonds and produce a layer of hydro- or fluoro-carbon chains normal to the substrate. "Tailoring" the lubricants entails modifying the chain length, the chain chemical reactivity (H or F), and the density of chain structures. Thus much effort went into understanding the surface chemistry of silane-silicon oxide coupling. With proximal probes such as atomic force microscopy (AFM), interracial force microscopy (FM), and shear force microscopy in combination with IFM, we examined the frictional and adhesive properties of the silane films with very high spatial resolution (< 100 nm) and sensitivity. MEMS structures are treated with silanes under identical conditions, and examined for friction and adhesion under operating conditions. Proper assessment of the lubricants required quantitative analysis of MEMS performance at high speeds and long operating times. Our proximal probe measurements and WS performance analyses form a very important link for future molecular dynamics simulations, that, in turn, should be able to predict MEMS performance under all conditions.

  6. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    SciTech Connect

    Lambarski, T.; Minyard, G.

    1998-10-01

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  7. Fabrication and characterization of fluidic artificial muscles having millimeter-scale diameters

    NASA Astrophysics Data System (ADS)

    Hocking, Erica G.; Wereley, Norman M.

    2012-04-01

    This study presents the manufacturing process, experimental characterization, and analytical modeling of fluidic artificial muscles (FAMs) with millimeter-scale diameters. First, a fabrication method was developed to consistently deliver low-cost, high-performance, miniature FAMs using commercially available materials. The quasi-static behavior of these FAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in) using compressed air as the working fluid. Tests were carried out at several discrete actuation pressures ranging from 207 kPa (30 psi) to 552 kPa (80 psi) in order to demonstrate the full evolution of force with displacement over a broad spectrum of operating pressures. The results of these tests also revealed the blocked force and free contraction capabilities of the FAM at each internal pressure. When pressurized to 552 kPa (80 psi), the actuator was capable of delivering a maximum blocked force of 132.9 N (29.87 lb) and a maximum free contraction of ΔL/L0 = 0.0688. Furthermore, it is the goal of this work to compare the data from these experiments to previously developed models for full-scale PAMs. Using two formulations, one derived using a force balance approach and the other obtained using virtual work methods, the experimental data was validated against existing analytical models. With the inclusion of correction factors to account for physical phenomena encountered during testing, comparison between the models and the experimental results indicate that the improved models accurately predict the behavior of these miniature FAMs at low contractions.

  8. Fabrication of 3D fine scale PZT components by ink-jet prototyping process

    NASA Astrophysics Data System (ADS)

    Noguera, R.; Dossou-Yovo, C.; Lejeune, M.; Chartier, T.

    2005-09-01

    Different investigations have been carried out to optimize an ink-jet printing technique, devoted to the fabrication of 3D fine scale PZT parts, by adjustment of the fluid properties of the ceramic suspensions and by controlling the ejection and impact phenomena. A 10 vol% PZT loaded suspension characterized by a Newtonian behavior, corresponding to a viscosity of 10mPa.s and to a ratio Re/We1/2 of 5.98 has been selected. The ejection and impact phenomena strongly depend on the driving parameters of the printing head, in particular the formation of the droplet, with satellite or not, as well as its velocity and volume which are function of the pulse amplitude. Moreover, the conditions of ejection (droplet velocity and volume) control the characteristics of the deposit (definition, spreading, thickness uniformity). Sintered PZT pillar array has been achieved by ink-jet printing with a definition equal to 50μm. These structures could be very useful to improve the performances of 1-3 ceramic polymer composites for imaging probes or more generally for ultrasonic transducers and also of micro-deformable mirrors for optical adaptive systems.

  9. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-01

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 1011 cm-2, embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  10. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks.

    PubMed

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-21

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices. PMID:27632684

  11. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks.

    PubMed

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-21

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  12. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage.

    PubMed

    Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie

    2014-10-27

    Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. PMID:25212514

  13. Fabrication and testing of long length high-{Tc} composite conductors. Final report

    SciTech Connect

    Fisher, L.M.

    1997-12-31

    Presently some methods of HTS-conductors processing are under study in the authors laboratory. ``Powder-in-tube`` (PIT), ``Jelly-roll``, electrophorethis are among them. PIT process has developed predominantly both in a view of the achieved J{sub c} values Bi-2223 phase was used as a core material for these tapes. Since the main purpose of the task order was to enhance the development of long length high temperature superconductor tapes, the authors have considered reasonable to lay the perfection idea of the PIT process step by step or tape by tape. To realize it they have assumed, keeping stable the basic scheme of PIT process, to vary some technological parameters which are as follows: (1) type of initial powder; (2) sheath material; (3) tape construction (filaments number, cross section e.a.); and (4) processing regimes. This report covers the fabrication process and characteristics of the produced conductors.

  14. Advanced fabrication techniques for hydrogen-cooled engine structures. Final report, October 1975-June 1982

    SciTech Connect

    Buchmann, O.A.; Arefian, V.V.; Warren, H.A.; Vuigner, A.A.; Pohlman, M.J.

    1985-11-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  15. Fuel Fabrication Capability WBS 01.02.01.05 - HIP Bonding Experiments Final Report

    SciTech Connect

    Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng; Tucker, Laura Arias; Chen, Ching-Fong; Aikin, Beverly; Aragon, Daniel Adrian; Beard, Timothy Vance; Montalvo, Joel Dwayne; Pena, Maria Isela; Dombrowski, David E.

    2015-06-10

    The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIP bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.

  16. Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects. [Transport; fuel fabrication; decay; policy; economics

    SciTech Connect

    Alexander, C.W.; Croff, A.G.

    1980-09-01

    This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T.

  17. Chemical control in fabrication of nanometer-scale structures on surfaces

    NASA Astrophysics Data System (ADS)

    Seshadri, Kannan

    1998-12-01

    The formation of structures with molecular scale organization on surfaces is important for technology development in areas such as microelectronics, optical materials, coatings and biomaterials. The use of alkyl chain molecular assemblies and ultrathin polymer films on solid surfaces represents a step in this direction. Understanding of the chemical issues involved is necessary for controlled engineering and application of these structures. The fabrication and characterization of all these structures involves the application of diverse tools and analytical strategies. Combination of surface sensitive techniques and optical methods such as ellipsometry and infrared spectroscopy, together with quantitative methods of interpretation of the spectra was used in the determination of molecular organization. A new class of ultra-thin polymeric films was developed by the polymerization of diazomethane on gold surfaces. These films are robust and form crystalline, low-dielectric conformal structures on the substrate. Film formation was found to originate by cluster formation at high-energy sites on the gold surface, such as grain boundaries and defect sites. The clusters grow parallel and perpendicular to the surface, and at a certain point, growth spills over to the terraces. These form "nanowell" like structures that have been characterized by electrochemical measurements. These have been used to fabricate novel chemical structures on gold surfaces Self-assembled monolayer films formed from octadecyltrichlorosilane have been used as high-resolution resists for electron beam lithography. The parameters involved in the formation of the siloxy-backbone and the organization of the pendant alkyl chains were investigated using parallel studies on poly(n-alkylsiloxane), The chemistry of the electron beam irradiation has been exhaustively investigated. This has both allowed for, and necessitated the development of protocols for film formation, pattern transfer and surface

  18. 77 FR 75978 - Utility Scale Wind Towers From the People's Republic of China: Final Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... International Trade Administration Utility Scale Wind Towers From the People's Republic of China: Final... countervailable subsidies are being provided to producers and exporters of utility scale wind towers (wind towers... investigation is the Wind Tower Trade Coalition.\\2\\ The respondents in this investigation are: CS Wind China...

  19. Final-Year Results from the i3 Scale-Up of Reading Recovery

    ERIC Educational Resources Information Center

    May, Henry; Sirinides, Philip; Gray, Abby; Davila, Heather Goldsworthy; Sam, Cecile; Blalock, Toscha; Blackman, Horatio; Anderson-Clark, Helen; Schiera, Andrew J.

    2015-01-01

    As part of the 2010 economic stimulus, a $55 million "Investing in Innovation" (i3) grant from the US Department of Education was awarded to scale up Reading Recovery across the nation. This paper presents the final round of results from the large-scale, mixed methods randomized evaluation of the implementation and impacts of Reading…

  20. Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT

    SciTech Connect

    Wu, Judy Z

    2009-09-07

    The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized

  1. Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report

    SciTech Connect

    Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

    1987-04-01

    The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

  2. Design fabrication and testing of a low cost ceramic collector panel. Final report

    SciTech Connect

    Earl, W.A.; Johnson, P.F.; Sisson, J.C.

    1983-02-01

    The effects of fabrication procedures on the thermal performance of various ceramic systems for active solar applications were investigated. A shale-based structural clay body was used as a standard. This body was also coated with silicon carbide, a glossy black glaze and a matte black glaze. Metal samples used included copper, aluminum and aluminum coated with a flat black paint. Experiments were performed using a solar test box linked to an automated data acquisition system. Temperatures of samples were recorded at 3 min. intervals for 4 h solar periods. An F-statistical analysis was performed on the resulting data and was correlated with total solar emittance, total solar reflectance and monochromatic reflectance as a function of incident wavelength. The information above was also utilized in developing a computer model used to simulate the performance of various materials in active solar testing. Results suggest that a structural clay body fired to maturity and coated with a matte black glaze could be commercially useful for applications requiring large quantities of heated water.

  3. Purification, growth, fabrication and characterization of wide bandgap materials. Final technical report

    SciTech Connect

    Chen, K.T.; Chen, H.; Burger, A.

    1998-05-01

    Wide bandgap semiconductor single crystals, such as heavy metal halide compounds, have been grown by physical vapor transport and Bridgman methods. Zone-refining and vacuum sublimation techniques were used to purify and adjust the stoichiometric composition of the starting material, and were proven to be effective. Several spectroscopic, microscopic and thermodynamic analytical techniques were employed to investigate the optical, electrical and structural properties of crystals. These results revealed information regarding micro- and macroscopic defects, impurities and modifications resulting from source material, growth process, post-growth treatment and device fabrication. Crystal growth and processing conditions have been correlated with this information and were optimized to achieve the purest and highest quality materials for practical device applications. Future works will involve optimization of material purification and crystal growth processes to produce high purity and low defect crystals, development of sensitive material characterization tools allowing a better understanding of defects formation and their correlation with processing conditions. Developments in bulk crystal growth research for detector devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials based on heavy metal halides semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures.

  4. Large-scale fabrication of 2-D nanoporous graphene using a thin anodic aluminum oxide etching mask.

    PubMed

    Lee, Jae-Hyun; Jang, Yamujin; Heo, Keun; Lee, Jeong-Mi; Choi, Soon Hyung; Joo, Won-Jae; Hwang, Sung Woo; Whang, Dongmok

    2013-11-01

    A large-scale nanoporous graphene (NPG) fabrication method via a thin anodic aluminum oxide (AAO) etching mask is presented in this paper. A thin AAO film is successfully transferred onto a hydrophobic graphene surface under no external force. The AAO film is completely stacked on the graphene due to the van der Waals force. The neck width of the NPG can be controlled ranging from 10 nm to 30 nm with different AAO pore widening times. Extension of the NPG structure is demonstrated on a centimeter scale up to 2 cm2. AAO and NPG structures are characterized using optical microscopy (OM), Raman spectroscopy and field-emission scanning electron microscopy (FE-SEM). A field effect transistor (FET) is realized by using NPG. Its electrical characteristics turn out to be different from that of pristine graphene, which is due to the periodic nanostructures. The proposed fabrication method could be adapted to a future graphene-based nano device. PMID:24245263

  5. Large-scale fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by soft UV-nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cui, Lin; Han, Jie-Cai; Wang, Gui-Gen; Zhang, Hua-Yu; Sun, Rui; Li, Ling-Hua

    2013-11-01

    Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography.

  6. Large-scale fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by soft UV-nanoimprint lithography

    PubMed Central

    2013-01-01

    Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718

  7. Characterization of photoresist and simulation of a developed resist profile for the fabrication of gray-scale diffractive optic elements

    NASA Astrophysics Data System (ADS)

    Park, Jong Rak; Sierchio, Justin; Zaverton, Melissa; Kim, Youngsik; Milster, Tom D.

    2012-02-01

    We have characterized a photoresist used for the fabrication of gray-scale diffractive optic elements in terms of Dill's and Mack's model parameters. The resist model parameters were employed for the simulations of developed resist profiles for sawtooth patterns executed by solving the Eikonal equation with the fast-marching method. The simulated results were shown to be in good agreement with empirical data.

  8. Analysis and fabrication of micro scale self-terminated electrochemical growth by a pressure-driven method

    NASA Astrophysics Data System (ADS)

    Soltani, Fatemeh; Wlasenko, Alex; Steeves, Geoff

    2010-03-01

    A self-terminated electrochemical method was used to fabricate microscopic-scale contacts between two Au electrodes in a microfluidic channel. The conductance of contacts varies in a stepwise fashion with a tendency to quantize near the integer multiples of the conductance quantum (G0). The mechanism works by a pressure-driven flow parallel with a pair of Au electrodes with a gap in order of micron in an electrolyte of HCl. When applying a bias voltage between electrodes, metal atoms are etched off the anode and deposited onto the cathode. Consequently, the gap decreases to the atomic scale and then completely closed as the two electrodes form a contact. The electrochemical fabrication approach introduces large variance in the formation and location of individual junctions. Controlling this process will enable the precise positioning of reproducible geometries into nano-electronic devices. To investigate the high speed behavior of a QPC, it can be integrated with a transmission line structure patterned on a photoconductive GaAs substrate. The nonlinear conductance of the QPC (due to the finite density of states of the conductors) can be examined and compared with recent theoretical studies. Samples are fabricated in situ using an electrochemical procedure to produce QPCs along the transmission line structure. This method may provide insight into Terahertz Optoelectronic devices and ultrafast communication systems.

  9. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology

    NASA Astrophysics Data System (ADS)

    Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei

    2014-12-01

    A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.

  10. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  11. Scale-up of microwave nitridation of sintered reaction bonded silicon nitride parts. Final report

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O.; Garvey, G.A.

    1997-10-01

    Scale-up were performed in which microwave heating was used to fabricate reaction-bonded silicon nitride and sintered reaction-bonded silicon nitride (SRBSN). Tests were performed in both a 2.45 GHz, 500 liter and a 2.45 GHz, 4000 liter multimode cavities. The silicon preforms processed in the studies were clevis pins for diesel engines. Up to 230 samples were processed in a single microwave furnace run. Data were collected which included weight gains for nitridation and sintering studies were performed using a conventional resistance-heated furnace.

  12. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOEpatents

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  13. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements.

    PubMed

    Shen, C H; Gau, C

    2004-07-30

    The design and fabrication for a thermal chip with an array of temperature sensors and heaters for study of micro-jet impingement cooling heat transfer process are presented. This thermal chip can minimize the heat loss from the system to the ambient and provide a uniform heat flux along the wall, thus local heat transfer processes along the wall can be measured and obtained. The fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. In addition, micro-jet impingement cooling experiments are performed to obtain the micro-scale local heat transfer Nusselt number along the wall. Flow visualization for the micro-impinging jet is also made. The experimental results indicate that both the micro-scale impinging jet flow structure and the heat transfer process along the wall is significantly different from the case of large-scale jet impingement cooling process. PMID:15142582

  14. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    SciTech Connect

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F. |

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of various processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.

  15. Fabrication of highly porous platinum electrodes for micro-scale applications by pulsed electrodeposition and dealloying

    NASA Astrophysics Data System (ADS)

    Köhler, Christian; Kloke, Arne; Drzyzga, Anna; Zengerle, Roland; Kerzenmacher, Sven

    2013-11-01

    We present the implementation and optimization of a novel electrodeposition method for the fabrication of highly porous platinum electrodes. It is based on the co-deposition of platinum and copper and the selective dealloying of copper in a pulsed manner. The new process yields mechanically stable platinum electrodes with roughness factors of up to RF = 6500 ± 700, compared to the state-of-the-art cyclic electrodeposition method this corresponds to an improvement in RF by 111%. Furthermore the time demand for fabrication is reduced by 59%, whereas the platinum utilization is increased by 53%. The method is particularly advantageous for applications such as micro fuel cells since it enables the precise deposition of catalytically active electrodes on micro-structured conductive areas. In this context the novel platinum electrodes show higher current densities for the oxidation of formic acid and glucose than state-of-the-art electrodes. In terms of methanol oxidation their catalytic activity is comparable to commercial direct methanol fuel cell (DMFC) electrodes, fabricated from Pt-Ru nanoparticles dispersed on carbon black.

  16. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  17. Fabrication and characterization of ITO/silicon SIS solar cells. Final report, October 1, 1978-April 30, 1980

    SciTech Connect

    DuBow, J. B.

    1980-06-01

    The objectives of this research were to optimize the performance of ITO/polycrystalline silicon solar cells, identify performance limitations, identify major stability problems which would inhibit terrestrial application of these devices, evaluate the impact of indium supply and price on terrestrial applications, and evaluate the economic viability of ITO sputter deposited solar cells. These goals were successfully achieved during the course of this multipronged effort. Both area scaling with efficiency maintenance were achieved by process modifications including surface preparation and in-situ passivation techniques. Indium tin oxide on Wacker polycrystalline silicon solar cells were fabricated which achieved 13.7% efficiency for 11 cm/sup 2/ devices. Typical open circuit voltages were 0.525 volts, short circuit currents, 34 mA/cm/sup 2/, and fill factors of 0.75. In the course of this project, three device measurement techniques which assisted in improving cell efficiency and which have broad applicability to all photovoltaic devices were introduced. These were automated admittance and surface state analysis, noise spectral density analysis, and automated I-V and C-V analysis. These measurements were combined with Auger/ESCA, EBIC and flying spot scanner, and other measurement techniques to identify grain boundaries, intragrain defects, edge leakage, and interface losses which were subsequently alleviated through process improvements. It is concluded from this work that prototype production of cells and modules based on this technology would be warranted in the near term.

  18. A Micromechanical Unit Cell Model of 2 × 2 Twill Woven Fabric Textile Composite for Multi Scale Analysis

    NASA Astrophysics Data System (ADS)

    Dixit, A.; Mali, H. S.; Misra, R. K.

    2014-04-01

    Woven fabric based composite materials are being considered for potential structural applications in automotive and aircraft industries due to their better out of plane strength, stiffness and toughness properties than ordinary composite laminates. This paper presents the micromechanical unit cell model of 2 × 2 twill woven fabric textile composite for the estimation of in-plane elastic properties. Modelling of unit cell and its analysis for this new model is developed by using open source coded tool TexGen and finite element software, ABAQUS® respectively. The predicted values are in good agreement with the experimental results reported in literature. To ascertain the effectiveness of the developed model parametric studies have also been conducted on the predicted elastic properties in order to investigate the effects of various geometric parameters such as yarn spacing, fabric thickness, yarn width and fibre volume fraction. The scope of altering weave pattern and yarn characteristics is facilitated in this developed model. Further this model can be implemented for the multi-scale micro/macro-mechanical analysis for the calculation of strength and stiffness of laminates structure made of 2 × 2 twill composite.

  19. Development of the Final Version of the Classification and Assessment of Occupational Dysfunction Scale

    PubMed Central

    Teraoka, Mutsumi; Kyougoku, Makoto

    2015-01-01

    Occupational therapy is involved in disability prevention and health enhancement through the prevention of occupational dysfunction. Although many occupational dysfunction scales exist, no standard method is available for the assessment and classification of occupational dysfunction, which may include occupational imbalance, occupational deprivation, occupational alienation, and occupational marginalization. The purpose of this study was to develop the final version of Classification and Assessment of Occupational Dysfunction (CAOD). Our study demonstrated the validity and reliability of CAOD in a group of undergraduate students. The CAOD scale includes 16 items and addresses the following 4 domains: occupational imbalance, occupational deprivation, occupational alienation, and occupational marginalization. PMID:26263375

  20. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    PubMed

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  1. Polycrystalline thin-film, cadmium-telluride solar cells fabricated by electrodeposition cells. Final subcontract report, March 20, 1992--April 27, 1995

    SciTech Connect

    Trefny, J.U.; Mao, D.; Kim, D.

    1995-10-01

    The objective of this project was to develop improved processes for the fabrication of CdTe/CdS polycrystalline thin film solar cells. The technique we used for the formation of CdTe, electrodeposition, was a non-vacuum, low-cost technique that is attractive for economic, large-scale production. Annealing effects and electrical properties are discussed.

  2. Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces

    NASA Astrophysics Data System (ADS)

    Abdulhussein, Ali T.; Kannarpady, Ganesh K.; Wright, Andrew B.; Ghosh, Anindya; Biris, Alexandru S.

    2016-10-01

    Superhydrophobic surfaces are found in nature and possess several fascinating properties, including the ability to self-clean. A typical superhydrophobic surface has micro/nanostructure roughness and low surface energy, which combine to give it its unusual anti-wetting properties. Because of their unique capabilities, these surfaces have interested scientists in research and industry fields for years. In recent decades, researchers have developed a number of synthetic methods for producing novel superhydrophobic surfaces that mimic natural surfaces. These synthetic surfaces have been widely applied on different types of substrates for potential widespread, practical applications. This review article focuses on these advances in fabricating manmade superhydrophobic surfaces.

  3. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  4. Design and evaluation of improved barrier fabrics for protection against toxic aerosols and biological agents. Final report

    SciTech Connect

    Hersh, S.P.; Tucker, P.A.

    1993-09-01

    The structure of nine fabrics, their resistance to aerosol penetration, and their pore size distributions were evaluated to determine their suitability as barrier fabrics for protection against aerosols. A main objective is to gain insight and knowledge which will be useful for designing fabrics that will provide better protection with minimum discomfort. Aerosol penetration was assessed using fluorescent polystyrene latex spheres ranging in diameter from 0.6 to 4.5 um at a face velocity of 1.8 cm/s. The maximum penetration occurred for 1.01 micrometers diameter spheres. Fabric pore size distributions were measured by liquid extrusion and microscopical image analysis, and the maximum pore size was also measured by liquid critical breakthrough pressure. Results obtained by all three techniques were fairly consistent. The best correlation between fabric structure and particle penetration at this time is between fabric density and weave type, with penetration decreasing with increasing fabric areal density and being lower for plain weave fabrics than for twill weaves. Biological aerosols, Chemical protective clothing, Biological agents, Fabrics, Aerosol penetration, Aerosols, Pore size.

  5. The Origin of Olivine B-Type Fabric in Naturally Deformed Peridotite: Insight from the Ronda Large-Scale Mantle Shear Zone (spain)

    NASA Astrophysics Data System (ADS)

    Précigout, J.; Hirth, G.

    2011-12-01

    Strain-induced olivine Lattice Preferred Orientation (LPO) mostly controls the propagation of seismic waves in the mantle. Hence, it strongly affects the imaging of mantle structures through analyzing of elastic waves coming from deep earthquakes (Ismaïl and Mainprice, 1998). Understanding the relationships between mantle deformation and olivine LPO is thus crucial to objectively interpret the deep mantle structures. Here, based on detailed documentation of olivine LPOs in the Ronda peridotite (southern Spain), we provide evidences of flow-normal a-axis LPO, i.e., B-type fabric, within a kilometer-scale ductile shear zone. This fabric occurs upon entering the shear zone and describes a progressive transition from A-type fabric (parallel-flow a-axis LPO) to B-type fabric. While B-type fabrics have been described from several localities, to our knowledge this is the first olivine fabric transition ever observed in naturally deformed peridotites. Furthermore, while the olivine fabric strength (Jindex) increases in the A-type fabric domain towards the center of the shear zone, the Jindex progressively decreases in the B-type fabric domain. Based on deformation experiments, A-type fabric occurs during high-temperature/low-stress deformation of anhydrous olivine aggregates (Jung and Karato, 2001). In contrast, the B-type fabrics have been observed under a wide range of conditions: 1) at high-temperature/low stress conditions in the presence of melt (Kohlstedt and Holtzman, 2009); 2) at high-stress in the presence of water (Jung and Karato, 2001); 3) under dry conditions at very high pressure (> 3 GPa; Jung et al., 2009); and 4) during diffusion-creep in the presence of orthopyroxene (Sundberg and Cooper, 2008). In our natural example, we conclude that the B-type fabric arises from enhancing diffusion creep at the expense of dislocation creep, because: 1) the B-type fabric is observed to overprint the typical fabric of anhydrous peridotite (A-type), 2) the Ronda

  6. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

    PubMed Central

    Slyngborg, Morten; Tsao, Yao-Chung

    2016-01-01

    Summary A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy. PMID:27547608

  7. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response.

    PubMed

    Slyngborg, Morten; Tsao, Yao-Chung; Fojan, Peter

    2016-01-01

    A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy.

  8. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response.

    PubMed

    Slyngborg, Morten; Tsao, Yao-Chung; Fojan, Peter

    2016-01-01

    A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy. PMID:27547608

  9. Self-Aligned Multichannel Graphene Nanoribbon Transistor Arrays Fabricated at Wafer Scale.

    PubMed

    Jeong, Seong-Jun; Jo, Sanghyun; Lee, Jooho; Yang, Kiyeon; Lee, Hyangsook; Lee, Chang-Seok; Park, Heesoon; Park, Seongjun

    2016-09-14

    We present a novel method for fabricating large-area field-effect transistors (FETs) based on densely packed multichannel graphene nanoribbon (GNR) arrays using advanced direct self-assembly (DSA) nanolithography. The design of our strategy focused on the efficient integration of the FET channel and using fab-compatible processes such as thermal annealing and chemical vapor deposition. We achieved linearly stacked DSA nanopattern arrays with sub-10 nm half-pitch critical dimensions (CD) by controlling the thickness of topographic Au confinement patterns. Excellent roughness values (∼10% of CD) were obtained, demonstrating the feasibility of integrating sub-10 nm GNRs into commercial semiconductor processes. Based on this facile process, FETs with such densely packed multichannel GNR arrays were successfully fabricated on 6 in. silicon wafers. With these high-quality GNR arrays, we achieved FETs showing the highest performance reported to date (an on-to-off ratio larger than 10(2)) for similar devices produced using conventional photolithography and block-copolymer lithography.

  10. Self-Aligned Multichannel Graphene Nanoribbon Transistor Arrays Fabricated at Wafer Scale.

    PubMed

    Jeong, Seong-Jun; Jo, Sanghyun; Lee, Jooho; Yang, Kiyeon; Lee, Hyangsook; Lee, Chang-Seok; Park, Heesoon; Park, Seongjun

    2016-09-14

    We present a novel method for fabricating large-area field-effect transistors (FETs) based on densely packed multichannel graphene nanoribbon (GNR) arrays using advanced direct self-assembly (DSA) nanolithography. The design of our strategy focused on the efficient integration of the FET channel and using fab-compatible processes such as thermal annealing and chemical vapor deposition. We achieved linearly stacked DSA nanopattern arrays with sub-10 nm half-pitch critical dimensions (CD) by controlling the thickness of topographic Au confinement patterns. Excellent roughness values (∼10% of CD) were obtained, demonstrating the feasibility of integrating sub-10 nm GNRs into commercial semiconductor processes. Based on this facile process, FETs with such densely packed multichannel GNR arrays were successfully fabricated on 6 in. silicon wafers. With these high-quality GNR arrays, we achieved FETs showing the highest performance reported to date (an on-to-off ratio larger than 10(2)) for similar devices produced using conventional photolithography and block-copolymer lithography. PMID:27532894

  11. Robust Au-Ag-Au bimetallic atom-scale junctions fabricated by self-limited Ag electrodeposition at Au nanogaps.

    PubMed

    Hwang, Tai-Wei; Bohn, Paul W

    2011-10-25

    Atom-scale junctions (ASJs) exhibit quantum conductance behavior and have potential both for fundamental studies of adsorbate-mediated conductance in mesoscopic conductors and as chemical sensors. Electrochemically fabricated ASJs, in particular, show the stability needed for molecular detection applications. However, achieving physically robust ASJs at high yield is a challenge because it is difficult to control the direction and kinetics of metal deposition. In this work, a novel electrochemical approach is reported, in which Au-Ag-Au bimetallic ASJs are reproducibly fabricated from an initially prepared Au nanogap by sequential overgrowth and self-limited thinning. Applying a potential across specially prepared Au nanoelectrodes in the presence of aqueous Ag(I) leads to preferential galvanic reactions resulting in the deposition of Ag and the formation of an atom-scale junction between the electrodes. An external resistor is added in series with the ASJ to control self-termination, and adjusting solution chemical potential (concentration) is used to mediate self-thinning of junctions. The result is long-lived, mechanically stable ASJs that, unlike previous constructions, are stable in flowing solution, as well as to changes in solution media. These bimetallic ASJs exhibit a number of behaviors characteristic of quantum structures, including long-lived fractional conductance states, that are interpreted to arise from two or more quantized ASJs in series.

  12. Fracture-based Fabrication of Normally-closed, Adjustable and Fully Reversible Micro-scale Fluidic Channels

    PubMed Central

    Huang, Jiexi; Matsuoka, Toshiki; Thouless, M.D.; Takayama, Shuichi

    2014-01-01

    Adjustable fluidic structures play an important role in microfluidic systems. Fracture of multilayered materials under applied tension has been previously demonstrated as a convenient, simple and inexpensive approach to fabricate nano-scale adjustable structures; here, we demonstrate how to extend this concept to the micro-scale. We achieve this by a novel pairing of materials that leverages fracture mechanics to limit crack formation to a specified region, allowing us to create size-controllable and adjustable microfluidic structures. We demonstrate that this technique can be used to fabricate ‘normally-closed’ microfluidic channels that are completely reversible, a feature that is challenging to achieve in conventional systems without careful engineering controls. The adjustable microfluidic channels are then applied to mechanically lyse single cells, and subsequently manipulate the released nuclear chromatin, creating new possibilities for epigenetic analysis of single cells. This simple, versatile and robust technology provides an easily accessible pathway to construct adjustable microfluidic structures, which will be useful in developing complex assays and experiments even in resource-limited settings. PMID:24942855

  13. A study on the fabrication of main scale of linear encoder using continuous roller imprint method

    NASA Astrophysics Data System (ADS)

    Fan, Shanjin; Shi, Yongsheng; Yin, Lei; Feng, Long; Liu, Hongzhong

    2013-10-01

    Linear encoder composed of main and index scales has an extensive application in the field of modern precision measurement. The main scale is the key component of linear encoder as measuring basis. In this article, the continuous roller imprint technology is applied to the manufacturing of the main scale, this method can realize the high efficiency and low cost manufacturing of the ultra-long main scale. By means of the plastic deformation of the soft metal film substrate, the grating microstructure on the surface of the cylinder mold is replicated to the soft metal film substrate directly. Through the high precision control of continuous rotational motion of the mold, ultra-long high precision grating microstructure is obtained. This paper mainly discusses the manufacturing process of the high precision cylinder mold and the effects of the roller imprint pressure and roller rotation speed on the imprint replication quality. The above process parameters were optimized to manufacture the high quality main scale. At last, the reading test of a linear encoder contains the main scale made by the above method was conducted to evaluate its measurement accuracy, the result demonstrated the feasibility of the continuous roller imprint method.

  14. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    SciTech Connect

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J. |

    1995-03-06

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of {approximately}3 keV electron temperature and an electron density of {approximately}1.0 E + 21 cm{sup {minus}3}. A gas cell target design was chosen to confine as gas of {approximately}0.01 cm{sup 3} in volume at {approximately} 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL.

  15. Fabrication of commercial-scale fiber-reinforced hot-gas filters by chemical vapor deposition

    SciTech Connect

    White, L.R.

    1992-11-01

    Goal was to fabricate a filter for removing particulates from hot gases; principal applications would be in advanced utility processes such as pressurized fluidized bed combustion or coal gasification combined cycle systems. Filters were made in two steps: make a ceramic fiber preform and coat it with SiC by chemical vapor infiltration (CVD). The most promising construction was felt/filament wound. Light, tough ceramic composite filters can be made; reinforcement by continuous fibers is needed to avoid brittleness. Direct metal to filter contact does not damage the top which simplifies installation. However, much of the filter surface of felt/filament wound structures is closed over by the CVD coating, and the surface is rough and subject to delamination. Recommendations are given for improving the filters.

  16. Full-Scale GRCop-84 Combustion Chamber Liner Preform Fabricated Successfully

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Russell, Carolyn K.; Goudy, Rick

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has been under development at the NASA Glenn Research Center for several years. The alloy possesses a unique combination of good thermal conductivity, high elevated temperature strength, long creep life, and long low-cycle- fatigue. The alloy is also more oxidation resistant than pure copper and most competitive alloys. The combination of properties has attracted attention from major rocket engine manufacturers who are interested in the alloy for the combustion chamber liner in their next generation of regeneratively cooled engines. Before GRCop-84 can be used in a main combustion chamber application, it must be demonstrated that the alloy can be made successfully to the large sizes and proper shape needed and that it retain useful properties. Recent efforts have successfully demonstrated the ability to fabricate a liner preform via metal spinning that retains the alloy s strength even in the welded sections.

  17. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  18. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  19. Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype

    NASA Technical Reports Server (NTRS)

    Pace, Gregory S.; Fisher, John

    2005-01-01

    A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.

  20. Silicon microlens structures fabricated by scanning-probe gray-scale oxidation.

    PubMed

    Chen, C F; Tzeng, S D; Chen, H Y; Gwo, S

    2005-03-15

    We report on the micromachining of silicon microlens structures by use of scanning-probe gray-scale anodic oxidation along with dry anisotropic etching. Convex, concave, and arbitrarily shaped silicon microlenses with diameters as small as 2 microm are demonstrated. We also confirm the high fidelity of pattern transfer between the probe-induced oxides and the etched silicon microlens structures. Besides the flexibility, the important features of scanning-probe gray-scale anodic oxidation are small pixel size and pitch (of the order of tens of nanometers), an unlimited number of gray-scale levels, and the possibility of creating arbitrarily designed microlens structures with exquisite precision and resolution. With this approach, refractive, diffractive, and hybrid microlens arrays can be developed to create innovative optical components.

  1. Submicron-scale high- Tc superconducting Bi-2212 stack fabrication for single-Cooper-pair tunneling

    NASA Astrophysics Data System (ADS)

    Kim, S.-J.; Latyshev, Yu. I.; Yamashita, T.; Sato, N.; Kishida, S.

    2000-07-01

    We report the characteristics of Bi-2212 intrinsic Josephson junctions (IJJ) showing single-Cooper-pair tunneling effect with a decrease of their in-plane area, S, smaller than a micron scale. The junctions show the typical slope of critical current and current peak-like structure up to 37 K.

  2. Design and fabrication of the NASA HL-20 full scale research model

    NASA Technical Reports Server (NTRS)

    Driver, K. Dean; Vess, Robert J.

    1991-01-01

    A full-scale engineering model of the HL-20 Personnel Launch System (PLS) was constructed for systems and human factors evaluation. Construction techniques were developed to enable the vehicle to be constructed with a minimum of time and cost. The design and construction of the vehicle are described.

  3. Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting.

    PubMed

    Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Yang, Jianmao

    2011-09-01

    For the first time, two-dimensional (2D) gelatin nano-nets are fabricated by regulating the solution properties and several process parameters during electrospinning/electro-netting. The spider-web-like nano-nets that comprise interlinked one-dimensional (1D) ultrathin nanowires (10-35 nm) are stacked layer-by-layer and widely distributed in the three-dimensional (3D) porous membranes. The final morphology of the gelatin nano-nets, including nanowire diameter, area density and pore-width of the nano-nets, is highly dependent on the solution concentration, salt concentration, kinds of solvents, applied voltage, ambient temperature and relative humidity (RH). The occurrence of rapid phase separation on the splitting-film and the formation of hydrogen bond among gelatin molecules during electro-netting are proposed as the possible mechanisms for the formation of these spider-web-like nano-nets.

  4. Investigation of Springback Associated with Composite Material Component Fabrication (MSFC Center Director's Discretionary Fund Final Report, Project 94-09)

    NASA Technical Reports Server (NTRS)

    Benzie, M. A.

    1998-01-01

    The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

  5. Fabrication of multi-scale micro-lens arrays on hydrophobic surfaces using a drop-on-demand droplet generator

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyang; Zhu, Li; Chen, Hejuan; Yang, Mei; Zhang, Weiyi

    2015-03-01

    A simple method was demonstrated for the fabrication of multi-scale polymer microlenses (μ-lenses) and microlens arrays (MLAs) using a drop-on-demand (DOD) droplet generator. A ultraviolet (UV) curable polymer used as the ink was DOD printed on the hydrophobic surfaces with different wetting conditions and cured by a UV lamp. The high quality μ-lenses and MLAs with good geometrical uniformity were fabricated. The shapes of the μ-lenses and MLAs were controlled by the different surface wetting conditions, and these shape changes affected the optical properties of the μ-lenses and MLAs, such as the numerical aperture (NA), focal distance (f) and the f-number (f#). The surface roughness of the μ-lens was measured by a white light interferometer (VSI mode) and atomic force microscope (AFM) and proved satisfactory. The influences of the surface wetting conditions on imaging and light gathering characteristics of the MLAs were evaluated by an optical microscope.

  6. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    SciTech Connect

    Kim, Hong-Ki; Lee, Young-Hie; Lee, Seung-Hwan; In Kim, Soo; Woo Lee, Chang; Rag Yoon, Jung; Lee, Sung-Gap

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  7. Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport

    SciTech Connect

    Holt, J K; Noy, A; Huser, T; Eaglesham, D; Bakajin, O

    2004-08-25

    A membrane consisting of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for fluid mechanics studies on the nanometer scale. Characterization by tracer diffusion and scanning electron microscopy suggests that the membrane is free of large voids. An upper limit to the diffusive flux of D{sub 2}O of 2.4x10-{sup 8} mole/m{sup 2}-s was determined, indicating extremely slow transport. By contrast, hydrodynamic calculations of water flow across a nanotube membrane of similar specifications predict a much higher molar flux of 1.91 mole/m{sup 2}-s, suggesting that the nanotubes produced possess a 'bamboo' morphology. The carbon nanotube membranes were used to make nanoporous silicon nitride membranes, fabricated by sacrificial removal of the carbon. Nitrogen flow measurements on these structures give a membrane permeance of 4.7x10{sup -4} mole/m{sup 2}-s-Pa at a pore density of 4x10{sup 10} cm{sup -2}. Using a Knudsen diffusion model, the average pore size of this membrane is estimated to be 66 nm, which agrees well with TEM observations of the multiwall carbon nanotube outer diameter. These membranes are a robust platform for the study of confined molecular transport, with applications inseparations and chemical sensing.

  8. Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide

    SciTech Connect

    Krishnan, Gopala; Jayaweera, Indira; Sanjrujo, Angel; O'Brien, Kevin; Callahan, Richard; Berchtold, Kathryn; Roberts, Daryl-Lynn; Johnson, Will

    2012-03-31

    The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

  9. Characteristics of Al substituted nanowires fabricated by self-aligned growth for future large scale integration interconnects

    NASA Astrophysics Data System (ADS)

    Kudo, Hiroshi; Kurahashi, Teruo

    2011-06-01

    Substituted Al nanowires for use in future large scale integration interconnects were fabricated by self-aligned growth. The resistivity of an Al substituted nanowire 80 nm in width, 100 nm in height, and 20 μm in length was 4.7 μΩ cm, which is 48% lower than that of an Al nanowire with the same dimensions fabricated using a bottom-up approach. The variation in the resistivity was in a narrow range (14%) over a Si wafer. The TEM imaging revealed that the Al substituted nanowire had a bamboo-like structure with grains larger than 1.6 μm. The electromigration activation energy was 0.72 eV, which is comparable to that of a pure Al wire with a bamboo-like structure. The product of the critical current density and wire length was 1.3 × 103 A/cm at 250 °C; 2.1 times higher than that of a pure Al wire with a polycrystalline structure. The acceleration of electromigration due to current density was 2.0, indicating that incubation time dominates electromigration lifetime. The prolonged incubation time observed in the electromigration test is attributed to the reduction in electromigration-induced mass transport due to the microstructure of the Al substituted nanowire. Even the formation of a small void immediately after incubation may be a fatal defect for nanoscale Al wires.

  10. Nanometer-scale fabrication of hydrogen silsesquioxane (HSQ) films with post exposure baking.

    PubMed

    Kim, Dong-Hyun; Kang, Se-Koo; Yeom, Geun-Young; Jang, Jae-Hyung

    2013-03-01

    A nanometer-scale grating structure with a 60-nm-wide gap and 200-nm-wide ridge has been successfully demonstrated on a silicon-on-insulator substrate by using a 220-nm-thick hydrogen silsesquioxane (HSQ) negative tone electron beam resist. A post exposure baking (PEB) process and hot development process with low concentration (3.5 wt%) of tetramethylammonium hydroxide (TMAH) solution were introduced to realize the grating pattern. To study the effects of post exposure baking on the HSQ resist, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses were carried out. From the FT-IR and XPS analyses, it was verified that a thin SiO2 with high cross-linked network structure was formed on the HSQ surface during the PEB step. This SiO2 layer prevents the formation of unwanted bonds on the HSQ surface, which results in clearly defined grating structures with a 60-nm-gap and 200-nm-wide-ridge on the 220-nm-thick HSQ resist. The nanometer-scale grating pattern was successfully transfered to the 280-nm-thick silicon layer of a silicon-on-insulator (SOI) substrate by using inductively-coupled-plasma-reactive-ion-etching (ICP-RIE).

  11. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms.

    PubMed

    Chintapalli, Ravi Kiran; Mirkhalaf, Mohammad; Dastjerdi, Ahmad Khayer; Barthelat, Francois

    2014-09-01

    Crocodiles, armadillo, turtles, fish and many other animal species have evolved flexible armored skins in the form of hard scales or osteoderms, which can be described as hard plates of finite size embedded in softer tissues. The individual hard segments provide protection from predators, while the relative motion of these segments provides the flexibility required for efficient locomotion. In this work, we duplicated these broad concepts in a bio-inspired segmented armor. Hexagonal segments of well-defined size and shape were carved within a thin glass plate using laser engraving. The engraved plate was then placed on a soft substrate which simulated soft tissues, and then punctured with a sharp needle mounted on a miniature loading stage. The resistance of our segmented armor was significantly higher when smaller hexagons were used, and our bio-inspired segmented glass displayed an increase in puncture resistance of up to 70% compared to a continuous plate of glass of the same thickness. Detailed structural analyses aided by finite elements revealed that this extraordinary improvement is due to the reduced span of individual segments, which decreases flexural stresses and delays fracture. This effect can however only be achieved if the plates are at least 1000 stiffer than the underlying substrate, which is the case for natural armor systems. Our bio-inspired system also displayed many of the attributes of natural armors: flexible, robust with 'multi-hit' capabilities. This new segmented glass therefore suggests interesting bio-inspired strategies and mechanisms which could be systematically exploited in high-performance flexible armors. This study also provides new insights and a better understanding of the mechanics of natural armors such as scales and osteoderms. PMID:24613857

  12. Fabrication of Large-Scale Microlens Arrays Based on Screen Printing for Integral Imaging 3D Display.

    PubMed

    Zhou, Xiongtu; Peng, Yuyan; Peng, Rong; Zeng, Xiangyao; Zhang, Yong-Ai; Guo, Tailiang

    2016-09-14

    The low-cost large-scale fabrication of microlens arrays (MLAs) with precise alignment, great uniformity of focusing, and good converging performance are of great importance for integral imaging 3D display. In this work, a simple and effective method for large-scale polymer microlens arrays using screen printing has been successfully presented. The results show that the MLAs possess high-quality surface morphology and excellent optical performances. Furthermore, the microlens' shape and size, i.e., the diameter, the height, and the distance between two adjacent microlenses of the MLAs can be easily controlled by modifying the reflowing time and the size of open apertures of the screen. MLAs with the neighboring microlenses almost tangent can be achieved under suitable size of open apertures of the screen and reflowing time, which can remarkably reduce the color moiré patterns caused by the stray light between the blank areas of the MLAs in the integral imaging 3D display system, exhibiting much better reconstruction performance. PMID:27540754

  13. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-08-10

    Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.

  14. Design, fabrication and testing of a low headroom conveyor transfer chute. Final technical report. [Chutes for transferring material from one conveyor to another

    SciTech Connect

    Douglas, S. B.; Larson, P.

    1980-12-01

    This document contains the results of tests performed on eight one-sixth scale models of low headroom transfer chutes for underground belt conveyors. The models were evaluated using a methodology technique to select one chute for further full-scale testing in an underground mine. The study concludes that the slide chute should be tested in an underground 90/sup 0/ transfer point. The report contains a state-of-the-art survey, a literature search, data from mine visits, test results, evaluation based on the methodology technique, and a set of guidelines for the design of low headroom transfer chutes. Also included are the preliminary designs of the slide and stone box chutes, scaled up from the designs used in the tests. Following the first phase of the program, the contract was terminated for the convenience of the government; therefore, the program did not progress to the Phase II full-scale chute fabrication or Phase III field testing.

  15. Fabrication and testing of gas-filled targets for large-scale plasma experiments on nova

    SciTech Connect

    Stone, G.F.; Rivers, C.J.; Spragge, M.R.; Wallace, R.J.

    1996-06-01

    The proposed next-generation ICF facility, the National Ignition Facility (NIF) is designed to produce energy gain from x-ray heated {open_quotes}indirect-drive{close_quotes} fuel capsules. For indirect-drive targets, laser light heats the inside of the Au hohlraum wall and produces x rays which in turn heat and implode the capsule to produce fusion conditions in the fuel. Unlike Nova targets, in NIF-scale targets laser light will propagate through several millimeters of gas, producing a plasma, before impinging upon the Au hohlraum wall. The purpose of the gas-produced plasma is to provide sufficient pressure to keep the radiating Au surface from expanding excessively into the hohlraum cavity. Excessive expansion of the Au wall interacts with the laser pulse and degrades the drive symmetry of the capsule implosion. The authors have begun an experimental campaign on the Nova laser to study the effect of hohlraum gas on both laser-plasma interaction and implosion symmetry. In their current NIF target design, the calculated plasma electron temperature is T{sub e} {approx} 3 keV and the electron density is N{sub e} {approx} 10{sup 21}cm{sup {minus}3}.

  16. Study of Micro and Nano Scale Features in the Fabrication, Performance, and Degradation of Advanced Engineering Materials

    NASA Astrophysics Data System (ADS)

    Lombardo, Jeffrey John

    Increasingly, modern engineering materials are designed on a micron or nano scale to fulfill a given set of requirements or to enhance the material's performance. In this dissertation several such materials will be studied including catalyst particles for carbon nanotube (CNT) growth by use of atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS), multi walled carbon nanotubes (MWNTs) by reactor scale modeling, hermetic carbon coatings by focused ion beam/ scanning electron microscopy (FIB/SEM) and Fourier transform infrared spectroscopy (FTIR) the latter of which was performed by Andrei Stolov at OFS Specialty Photonics Division (Avon, CT), and Ni/Yttria stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anodes using X-ray nanotomography (XNT) and X-ray fluorescence (XRF) the second of which was performed by Barry Lai at APS (Argonne National Lab, IL). For each material, a subset of the material properties will be looked at to determine how the selected property affects either the fabrication, performance, or degradation of the material. Following the analysis of these materials, it was found that although the materials are different, the study of micron and nano scale features has many related traits. X-rays and electrons are frequently used to examine nanoscale structures, numerical study can be exploited to expedite measurements and extract additional information from experiments, and the study of these requires knowledge across many scientific fields. As a product of this research, detailed information about all of the materials studied has been contributed to the scientific literature including size dependance information about the oxidation states of nanometer size iron particles, optimal CVD reactor growth conditions for different CNT catalyst particle sizes and number of walls, a technique for rapid measurement of hermetic carbon film thickness, and detailed microstructural detail and sulfur poisoning mapping for Ni/YSZ SOFC anodes.

  17. Final Scientific Report: A Scalable Development Environment for Peta-Scale Computing

    SciTech Connect

    Karbach, Carsten; Frings, Wolfgang

    2013-02-22

    This document is the final scientific report of the project DE-SC000120 (A scalable Development Environment for Peta-Scale Computing). The objective of this project is the extension of the Parallel Tools Platform (PTP) for applying it to peta-scale systems. PTP is an integrated development environment for parallel applications. It comprises code analysis, performance tuning, parallel debugging and system monitoring. The contribution of the Juelich Supercomputing Centre (JSC) aims to provide a scalable solution for system monitoring of supercomputers. This includes the development of a new communication protocol for exchanging status data between the target remote system and the client running PTP. The communication has to work for high latency. PTP needs to be implemented robustly and should hide the complexity of the supercomputer's architecture in order to provide a transparent access to various remote systems via a uniform user interface. This simplifies the porting of applications to different systems, because PTP functions as abstraction layer between parallel application developer and compute resources. The common requirement for all PTP components is that they have to interact with the remote supercomputer. E.g. applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time. The client server architecture of the established monitoring application LLview, developed by the JSC, can be applied to PTP's system monitoring. LLview provides a well-arranged overview of the supercomputer's current status. A set of statistics, a list of running and queued jobs as well as a node display mapping running jobs to their compute resources form the

  18. Fabrication and testing of a ceramic two-cycle diesel engine. Final report, 29 November 1983-31 January 1986

    SciTech Connect

    MacBeth, J.W.

    1986-03-31

    The project effort was focused around evaluating the friction horsepower performance of a single-cylinder two-stroke opposed-piston diesel engine, fabricated from conventional metal components and then with the substitution of ceramic components for the cylinder liner and pistons. The ceramic configurations were run ringless and without cylinder lubrication. Frictional torque measurements were 50% lower than in the standard baseline case.

  19. Pilot-scale production of grout with simulated double-shell slurry feed. Final report

    SciTech Connect

    Whyatt, G.A.

    1994-08-01

    This report describes the pilot-scale production of grout with simulated double-shell slurry feed (DSSF) waste performed in November 1988, and the subsequent thermal behavior of the grout as it cured in a large, insulated vessel. The report was issued in draft form in April 1989 and comments were subsequently received; however, the report was not finalized until 1994. In finalizing this report, references or information gained after the report was drafted in April 1989 have not been incorporated to preserve the report`s historical perspective. This report makes use of criteria from Ridelle (1987) to establish formulation criteria. This document has since been superseded by a document prepared by Reibling and Fadeef (1991). However, the reference to Riddelle (1987) and any analysis based on its content have been maintained within this report. In addition, grout is no longer being considered as the waste form for disposal of Hanford`s low-level waste. However, grout disposal is being maintained as an option in case there is an emergency need to provide additional tank space. Current plans are to vitrify low-level wastes into a glass matrix.

  20. Li(B) ingot preparation scale-up study. Final report. [Anodes for thermal batteries

    SciTech Connect

    Szwarc, R.; Dallek, S.

    1982-05-14

    Results of the investigation to determine the feasibility of scaling the lithium-boron alloy preparation from laboratory to commercial scale are reported. Earlier reports have demonstrated the usefulness of this alloy for anodes in thermal batteries which operate at temperatures well above th melting point of lithium. Electrochemically, the alloy behaves very much like lithium, attaining a potential only 20 mV below lithium when discharged in a LiCl-KCl eutectic melt. Its discharge characteristics under heavy loads suggest that the anode behaves as if the active species were molten, yet the anode remains a solid at operating temperatures. Single cells employing this anode were developed and described earlier. A single cell consists of three components, an anode, a separator layer and a catholyte layer. The anode is made up of foil as thin as 0.003 inch spotwelded on a 0.005-inch thick stainless steel collector. The separator layer is an electrolyte-MgO mixture. Its purpose is to prevent direct contact and therefore reaction between the anode and the active cathode material. Many separator configurations were investigated earlier; our final choice has now been adopted for all thermal batteries employing lithium compound anodes. The catholyte layer is a mechanical mixture of FeS/sub 2/ and electrolyte powder. Both the separator and the catholyte are pressed powder pellets. Alloy preparation and physical properties are reported, and test results are detailed. (WHK)

  1. Design and Simulation Studies of a One-tenth Scale Final Focus System for Heavy Ion Fussion

    NASA Astrophysics Data System (ADS)

    Wu, X.; York, R. C.; Bangerter, R.; Faltens, A.; Fawley, W.; Judd, D.; Lee, E.

    1997-05-01

    A scaled test of a final focus lattice for Heavy Ion Fusion (HIF) is planned at LBNL. The test parameters were set by scaling the length dimensions of the envelope equation by one tenth while maintaining the generalized perveance. The values to be scaled were taken in large part to be those of the HIBALL-II final focus system.(H. Wollnik, KfK-3840, Kernforschungszentrum Karlsruhe, 1985) The planned experimental system will focus a 120 keV Cs^+ beam to a scaled radial spot size of 0.25 mm. Tracking studies of the tenth-scale system have been performed at NSCL using a version of COSY INIFINITY(M. Berz, MSUCL-977, Michigan State University, 1995) modified to include a linear space charge force. A description of the planned experimental system, the beam parameters, and simulation results will be presented.

  2. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading

    NASA Astrophysics Data System (ADS)

    Hu, Qiao; Wu, Han; Sun, Jia; Yan, Donghang; Gao, Yongli; Yang, Junliang

    2016-02-01

    Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays with great potential applications in flexible electronic and optoelectronic devices.Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays

  3. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis.

    PubMed

    Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R

    2015-03-01

    Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs. PMID:25640805

  4. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis.

    PubMed

    Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R

    2015-03-01

    Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs.

  5. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    SciTech Connect

    Malinauskas, M.; Purlys, V.; Zukauskas, A.; Rutkauskas, M.; Danilevicius, P.; Paipulas, D.; Bickauskaite, G.; Gadonas, R.; Piskarskas, A.; Bukelskis, L.; Baltriukiene, D.; Bukelskiene, V.; Sirmenis, R.; Gaidukeviciute, A.; Sirvydis, V.

    2010-11-10

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY--ALS130-100, Z--ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software ''3D-Poli'' specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  6. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Rutkauskas, M.; Danilevičius, P.; Paipulas, D.; Bičkauskaitė, G.; Bukelskis, L.; Baltriukienė, D.; Širmenis, R.; Gaidukevičiutė, A.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-11-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY—ALS130-100, Z—ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software "3D-Poli" specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  7. Large-scale stirring in the southern stratospheric polar vortex during the final warming of 2005

    NASA Astrophysics Data System (ADS)

    de La Camara, Alvaro; Mechoso, Carlos R.; Ide, Kayo; Walterscheid, Richard; Schubert, Gerard

    2010-05-01

    The present work examines the large-scale stirring during the final warming of the Southern Hemisphere stratosphere in the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Stratéole/VORCORE project, drifted for several weeks o tow different isopycnic levels in the lower stratosphere. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of Lagrangian properties of the stratospheric flow. An approximation to coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and distributions of FTLE maxima reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic surface are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex.

  8. Achieving "Final Storage Quality" of municipal solid waste in pilot scale bioreactor landfills.

    PubMed

    Valencia, R; van der Zon, W; Woelders, H; Lubberding, H J; Gijzen, H J

    2009-01-01

    Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.

  9. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics

    NASA Astrophysics Data System (ADS)

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-03-01

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.

  10. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics.

    PubMed

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-03-07

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.

  11. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics.

    PubMed

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-01-01

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry. PMID:24603964

  12. FINAL REPORT: Mechanistically-Base Field Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    SciTech Connect

    Wood, Brian D.

    2013-11-04

    Biogeochemical reactive transport processes in the subsurface environment are important to many contemporary environmental issues of significance to DOE. Quantification of risks and impacts associated with environmental management options, and design of remediation systems where needed, require that we have at our disposal reliable predictive tools (usually in the form of numerical simulation models). However, it is well known that even the most sophisticated reactive transport models available today have poor predictive power, particularly when applied at the field scale. Although the lack of predictive ability is associated in part with our inability to characterize the subsurface and limitations in computational power, significant advances have been made in both of these areas in recent decades and can be expected to continue. In this research, we examined the upscaling (pore to Darcy and Darcy to field) the problem of bioremediation via biofilms in porous media. The principle idea was to start with a conceptual description of the bioremediation process at the pore scale, and apply upscaling methods to formally develop the appropriate upscaled model at the so-called Darcy scale. The purpose was to determine (1) what forms the upscaled models would take, and (2) how one might parameterize such upscaled models for applications to bioremediation in the field. We were able to effectively upscale the bioremediation process to explain how the pore-scale phenomena were linked to the field scale. The end product of this research was to produce a set of upscaled models that could be used to help predict field-scale bioremediation. These models were mechanistic, in the sense that they directly incorporated pore-scale information, but upscaled so that only the essential features of the process were needed to predict the effective parameters that appear in the model. In this way, a direct link between the microscale and the field scale was made, but the upscaling process

  13. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading.

    PubMed

    Hu, Qiao; Wu, Han; Sun, Jia; Yan, Donghang; Gao, Yongli; Yang, Junliang

    2016-03-01

    Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ∼45%, temperature ∼28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays with great potential applications in flexible electronic and optoelectronic devices. PMID:26883938

  14. Ventilation-kinetics testing of a steel frame/rubber fabric underground shelter. Final report, Aug 89-Aug 90

    SciTech Connect

    Seitzinger, A.T.

    1991-05-01

    Design modifications were implemented on a respectively new steel frame/rubber fabric underground shelter to improve its collective protection characteristics for usage in an NBC warfare environment. Design changes were evaluated by analyzing volumetric air flow and pressure data collected from ventilation tests conducted for each design modification. Modifications to doors within the shelter proved to have significant impact on its performance. One door modification utilized velcro and rubber adhesives to attach the doorflap on the positive pressure side of the doorway. This modification increased maximum overpressure attained by the shelter from 0.125 inches of water (in.WG) to 1.8 in.WG over its original design. Test results indicated that this was due to a substantial decrease in the effective leakage areas associated with all of the doorways. At this higher overpressure, the risk of airborne nuclear fallout, biological agents, or vapors from chemical agents or aerosols penetrating into the shelter during exit/entry operations would be greatly reduced.

  15. Performance of electrostatic precipitators and fabric filter particulate controls on oil-fired electric utility boilers. Final report

    SciTech Connect

    McRanie, R.D.; Baker, S.S. Jr.

    1995-09-01

    Of the 189 hazardous air pollutants (HAPs) listed in Title III of the 1990 Clean Air Act Amendments, 11 are metals commonly found in particulate emissions from oil-fired boilers. In light of the potential future need for additional control of particulate emissions from oil-fired units, a white paper was prepared documenting the extent of particulate and HAPs emissions and the state-of-the-art in the use of electrostatic precipitator (ESP) and fabric filter (FF) technologies to control their emissions from oil-fired boilers. The white paper is based on EPRI research on particulate emissions from oil-fired boilers and a survey of ESP and FF manufacturers. The EPRI ESPM{trademark} performance model was used to estimate the particulate control effectiveness of oil-fired ESPs. The white paper describes the characteristics of oil ash, summarizes particulate and HAPs emission rates for oil-fired boilers, and projects the particulate and HAPs removal effectiveness for baghouses and different sized ESPs. Information on oil-fired ESP operation and maintenance requirements and overall costs is included.

  16. A MEMS fabrication approach for a 200GHz microklystron driven by a small-scaled pseudospark electron beam

    NASA Astrophysics Data System (ADS)

    Schuhmann, Tom; Protz, Jonathan; Fields, David; Yin, Helen; Cross, Adrian; He, Wenlong; Bowes, David; Ronald, Kevin; Phelps, Alan

    2010-10-01

    High performance terahertz (THz) radiation sources hold great promise for a variety of military and space applications. With micro-electro-mechanical systems (MEMS) fabrication techniques, it is possible to attain the smaller, more precisely machined resonant structures required by Vacuum Electronic Devices (VEDs) to function in these frequencies. The research presented here proposes a design and fabrication process for a micro-klystron with a targeted operating frequency of 200 GHz; being developed jointly by Duke University, the University of Strathclyde, UK, and Logos Technologies. It also analyzes the use of a pseudospark (PS) discharge as a novel electron beam source to drive the klystron. Dimensional tolerances are investigated using both analytic and numeric techniques. The incorporation of alignment structures into the fabrication process that utilize kinematic and elastic averaging effects, along with clever stacking techniques, allows submicron alignment tolerances yielding an expected power output of approximately 5W per klystron with an overall efficiency of 20%. The device proposed here, with a volume on the order of 0.01 cc, should be capable of output power densities of up to 1kW/cc. A fabrication run recently completed at MIT's Microsystems Technology Laboratories yielded promising results and 32 silicon die were successfully bonded into a stack 1.4cm tall. Difficulties remain, however, in controlling surface roughness and integrating a klystron with alignment features for parallel processing. Several alternative fabrication schemes have been proposed and another fabrication run based on these modifications is currently underway.

  17. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  18. Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution. Final report

    SciTech Connect

    Larson, Vincent E.

    2015-02-21

    This is a final report for a SciDAC grant supported by BER. The project implemented a novel technique for coupling small-scale dynamics and microphysics into a community climate model. The technique uses subcolumns that are sampled in Monte Carlo fashion from a distribution of subgrid variability. The resulting global simulations show several improvements over the status quo.

  19. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  20. Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.

    SciTech Connect

    Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-04-01

    The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

  1. Creating the final conversations scale: a measure of end-of-life relational communication with terminally ill individuals.

    PubMed

    Generous, Mark Alan; Keeley, Maureen P

    2014-01-01

    Final conversations (FCs) are defined as the communicative interactions, both verbal and nonverbal, that occur between terminally ill patients and relational partners. In this study, the "Final Conversations Scale" was developed and tested. A total of 152 participants that had engaged in final conversations with individuals that were terminally ill completed the newly developed instrument. Factor analysis produced a five-factor structure, including: messages of spirituality/religion; expressions of love; proactive difficult relationship talk; everyday communication; and talk about illness/death. Participants' perceptions of the relational closeness and difficulty with the deceased significantly influenced the individuals' recalled frequency of FCs messages. Practical and scholarly implications focus on the needs of the family members regarding their communication with terminally ill individuals, as well as directions for future research with the FCs Scale. PMID:25148453

  2. A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current.

    PubMed

    Shin, Sangwoo; Kim, Beom Seok; Song, Jiwoon; Lee, Hwanseong; Cho, Hyung Hee

    2012-07-21

    Active modulation of ions and molecules via field-effect gating in nanofluidic channels is a crucial technology for various promising applications such as DNA sequencing, drug delivery, desalination, and energy conversion. Developing a rapid and facile fabrication method for ionic field-effect transistors (FET) over a large area may offer exciting opportunities for both fundamental research and innovative applications. Here, we report a rapid, cost-effective route for the fabrication of large-scale nanofluidic field-effect transistors using a simple, lithography-free two-step fabrication process that consists of sputtering and barrier-type anodization. A robust alumina gate dielectric layer, which is formed by anodizing sputtered aluminium, can be rapidly fabricated in the order of minutes. When anodizing aluminium, we employ a hemispherical counter electrode in order to give a uniform electric field that encompasses the whole sputtered aluminium layer which has high surface roughness. In consequence, a well-defined thin layer of alumina with perfect step coverage is formed on a highly rough aluminium surface. A gate-all-around nanofluidic FET with a leak-free gate dielectric exhibits outstanding gating performance despite a large channel size. The thin and robust anodized alumina gate dielectric plays a crucial role in achieving such excellent capacitive coupling. The combination of a gate-all-around structure with a leak-free gate dielectric over a large area could yield breakthroughs in areas ranging from biotechnology to energy and environmental applications.

  3. Design and fabrication of polymer-concrete-lined pipe for testing in geothermal-energy processes. Final report

    SciTech Connect

    Kaeding, A.O.

    1981-12-01

    A specific polymer-concrete formulation was applied as a steel pipe liner in response to a need for durable, economical materials for use in contact with high temperature geothermal brine. Processes are described for centrifugally applying the liner to straight pipe, for casting the liner in pipe fittings, and for closure of field joints. Physical properties of the liner materials were measured. Compressive strengths of up to 165.8 MPa (24,045 psi) and splitting tensile strengths of 23.5 MPa (3408 psi) were measured at ambient temperature. Compressive strengths of 24 MPa (3490 psi) and splitting tensile strengths of 2.5 MPa (366 psi) were measured at about 150/sup 0/C (302/sup 0/F). A full-scale production plant is described which would be capable of producing about 950 m (3120 ft) of lined 305-mm-diam (12 in.) pipe per day. Capital cost of the plant is estimated to be about $8.6 million with a calculated return on investment of 15.4%. Cost of piping a geothermal plant with PC and PC-lined steel pipe is calculated to be $1.21 million, which compares favorably with a similar plant piped with alloy steel piping at a cost of $1.33 million. Life-cycle cost analysis indicates that the cost of PC-lined steel pipe would be 82% of that of carbon steel pipe over a 20-year plant operating life.

  4. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    SciTech Connect

    Duignan, M.R.; Weeks, G.E.

    1999-07-01

    As requested by the Technical Task Request (1), a full-scale test was carried out on several different liquid-level measurement bubblers as recommended from previous testing (2). This final report incorporates photographic evidence (Appendix B) of the bubblers at different stages of testing, along with the preliminary results (Appendix C) which were previously reported (3), and instrument calibration data (Appendix D); while this report contains more detailed information than previously reported (3) the conclusions remain the same. The test was performed under highly prototypic conditions from November 26, 1996 to January 23, 1997 using the full-scale SRAT/SME tank test facilities located in the 672-T building at TNX. Two different types of advanced bubblers were subjected to approximately 58 days of slurry operation; 14 days of which the slurry was brought to boiling temperatures.The test showed that the large diameter tube bubbler (2.64 inches inside diameter) operated successfully throughout the2-month test by not plugging with the glass-frit ladened slurry which was maintained at a minimum temperature of 50 deg Cand several days of boiling temperatures. However, a weekly blow-down with air or water is recommended to minimize the slurry which builds up.The small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) operated successfully on a daily basis in the glass-frit ladened slurry which was maintained at a minimum temperature of 50 degrees C and several days of boiling temperatures. However, a daily blow-down with air, or air and water, is necessary to maintain accurate readings.For the small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) there were varying levels of success with the lower water-flow tubes and these tubes would have to be cleaned by blowing with air, or air and water, several times a day to maintain them plug free. This

  5. Final Report for Enhancing the MPI Programming Model for PetaScale Systems

    SciTech Connect

    Gropp, William Douglas

    2013-07-22

    This project performed research into enhancing the MPI programming model in two ways: developing improved algorithms and implementation strategies, tested and realized in the MPICH implementation, and exploring extensions to the MPI standard to better support PetaScale and ExaScale systems.

  6. An Efficient Multi-Scale Simulation Architecture for the Prediction of Performance Metrics of Parts Fabricated Using Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Pal, Deepankar; Patil, Nachiket; Zeng, Kai; Teng, Chong; Stucker, Brent

    2015-09-01

    In this study, an overview of the computational tools developed in the area of metal-based additively manufactured (AM) to simulate the performance metrics along with their experimental validations will be presented. The performance metrics of the AM fabricated parts such as the inter- and intra-layer strengths could be characterized in terms of the melt pool dimensions, solidification times, cooling rates, granular microstructure, and phase morphologies along with defect distributions which are a function of the energy source, scan pattern(s), and the material(s). The four major areas of AM simulation included in this study are thermo-mechanical constitutive relationships during fabrication and in- service, the use of Euler angles for gaging static and dynamic strengths, the use of algorithms involving intelligent use of matrix algebra and homogenization extracting the spatiotemporal nature of these processes, a fast GPU architecture, and specific challenges targeted toward attaining a faster than real-time simulation efficiency and accuracy.

  7. Design and fabrication of nano-scale single crystal diamond cutting tool by focused ion beam (FIB) milling

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Yub

    2015-07-01

    Micro/nanoscale diamond cutting tools used in ultra-precision machining can be fabricated by precision grinding, but it is hard to fabricate a tool with a nanometric cutting edge and complex configurations. High-precision geometry accuracy and special shapes for microcutting tools with sharp edges can be achieved by FIB milling. Because the FIB milling method induces much smaller machining stress compared with conventional precision grinding methods. In this study, the FIB milling characteristics of single-crystal diamond were investigated, along with methods for decreasing the FIB-induced damage on diamond tools. Lift-off process method and Pt(Platinum) coating process method with FIB milling were investigated to reduce the damage layer on diamond substrate and quadrilateral-shaped single-crystal diamond cutting tool with cutting edge width under 500 nm were obtained.

  8. Molecular-scale studies of single-channel membrane pores : final report.

    SciTech Connect

    Fleming, James Grant; Evans, Kervin O.; Burns, Alan Richard; Swartzentruber, Brian Shoemaker

    2003-10-01

    We present our research results on membrane pores. The study was divided into two primary sections. The first involved the formation of protein pores in free-standing lipid bilayer membranes. The second involved the fabrication via surface micromachining techniques and subsequent testing of solid-state nanopores using the same characterization apparatus and procedures as that used for the protein pores. We were successful in our ability to form leak-free lipid bilayers, to detect the formation of single protein pores, and to monitor the translocation dynamics of individual homogeneous 100 base strands of DNA. Differences in translocation dynamics were observed when the base was switched from adenine to cytosine. The solid state pores (2-5 nm estimated) were fabricated in thin silicon nitride membranes. Testing of the solid sate pores indicated comparable currents for the same size protein pore with excellent noise and sensitivity. However, there were no conditions under which DNA translocation was observed. After considerable effort, we reached the unproven conclusion that multiple (<1 nm) pores were formed in the nitride membrane, thus explaining both the current sensitivity and the lack of DNA translocation blockages.

  9. LDRD final report on nano-scale engineering of smart membranes

    SciTech Connect

    Loy, D.A.; Jamison, G.M.; Assink, R.A.

    1997-09-01

    A new approach to the fabrication of porous, amorphous inorganic membranes using organic pore templates was investigated. The pore templates were a new family of hybrid organic-inorganic monomers. As background for membrane work, the monomers were polymerized by sol-gel techniques to make crosslinked polymers. Molecular modeling was used to create computer simulations of the materials and provide insight into their composites, were then converted into porous silicas using low temperature oxygen plasma techniques. A select few of the monomers were copolymerized with silica monomers to form non-porous thin films on mesoporous substrates. The films were converted into porous silica thin films with thermal oxidations and the resulting membranes were tested for gas selectivities and flux.

  10. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    SciTech Connect

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density

  11. Test report for the trial burn of Dinoseb in a pilot-scale incinerator. Final report

    SciTech Connect

    Oberacker, D.; Wool, M.; Villa, F.; Mason, H.

    1989-06-01

    The U.S. Environmental Protection Agency (EPA) has determined that the herbicide Dinoseb represents a significant human health hazard. EPA estimates that there are approximately 5 million gallons affected by this action. As part of a program by the EPA Office of Research and Development (ORD) to determine which technically viable disposal option is appropriate, pilot-scale test burns were made of a mixture of Dinoseb products at the John Zink Company Research Incineration Facility in Tulsa, Oklahoma. The mixture represented the various Dinoseb products to be destroyed. The rationale for doing the pilot-scale test was that specific performance data were needed to address, with confidence, any public or permitting questions that may arise in authorizing a full-scale incineration disposal operation. The test burns were successfully performed between February 18 and February 26, 1988. The report gives an overall summary of the test program.

  12. Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography

    NASA Astrophysics Data System (ADS)

    Arai, Miho; Masubuchi, Satoru; Nose, Kenji; Mitsuda, Yoshitaka; Machida, Tomoki

    2015-04-01

    We performed local anodic oxidation (LAO) lithography on monolayer graphene and highly oriented pyrolytic graphite (HOPG) using atomic force microscope (AFM). Auger electron spectroscopic measurements in the oxidized area formed on the HOPG revealed that the number of oxygen atoms systematically increased with the bias voltage applied to the AFM cantilever |Vtip|, which demonstrates the tunability of the extent of oxidation with |Vtip|. By optimizing the LAO conditions, we fabricated monolayer graphene nanoconstrictions with a channel width as small as 10 nm, which is the smallest graphene nanoconstriction so far achieved by utilizing AFM lithography techniques.

  13. Design and evaluation of improved barrier fabrics for protection against toxic aerosols and biological agents. Phase 2. Final report, January 1993-December 1994

    SciTech Connect

    Hersh, S.P.; Tucker, P.A.

    1995-05-01

    The ultimate objective of this research is to develop semipermeable barrier fabrics which provide better protection for chemical protective clothing applications. In order to understand the relationship between the aerosol particle penetration and the structure of barrier fabrics, the research activities in Phase I focused on measuring the transmission of aerosols through test fabrics, determining the penetration mechanisms, and evaluating the pore size distributions in the fabrics. Based on the knowledge gained in Phase I, a set of 32 fabrics was designed, fabricated, and evaluated in Phase II using a 2-level, 7-factor, statistical design. Five additional outer fabrics and a carbon foam liner supplied by the U.S. Army Natick RDE Center (Natick) were evaluated to provide further insights into the effect of dual layers of fabrics and their relative orientations on aerosol penetration. The results of this research have been described in a Doctoral Dissertation by Dr. Surinder M. Maini (based on the 32 statistically designed fabrics) 1 and in a Master of Science thesis by Ms. Amelia Tosti 2 (on the fabrics supplied by Natick) in accordance with the research proposal. Abstracts of these two documents are presented in Section 2.0. The rest of this report describes the work and results conducted during Phase II. pg14. JMD.

  14. Refinement of the Experiencing Scale as a Counseling Tool. Final Report.

    ERIC Educational Resources Information Center

    Kiesler, Donald J.

    The first study concerns the effects of level of clinical experience of judges on reliability and validity of Experiencing Scale (EXP) ratings. Inexperienced and experienced judges rated tape-segments from psychotherapy sessions. No differences existed between ratings. The second study focuses on the relationships of in-therapy patient…

  15. Fast and robust hydrogen sensors based on discontinuous palladium films on polyimide, fabricated on a wafer scale.

    PubMed

    Kiefer, T; Villanueva, L G; Fargier, F; Favier, F; Brugger, J

    2010-12-17

    Fast hydrogen sensors based on discontinuous palladium (Pd) films on supporting polyimide layers, fabricated by a cost-efficient and full-wafer compatible process, are presented. The films, deposited by electron-beam evaporation with a nominal thickness of 1.5 nm, consist of isolated Pd islands that are separated by nanoscopic gaps. On hydrogenation, the volume expansion of Pd brings initially separated islands into contact which leads to the creation of new electrical pathways through the film. The supporting polyimide layer provides both sufficient elasticity for the Pd nanoclusters to expand on hydrogenation and a sufficiently high surface energy for good adhesion of both film and contacting electrodes. The novel order of the fabrication processes involves a dicing step prior to the Pd deposition and stencil lithography for the patterning of microelectrodes. This allows us to preserve the as-deposited film properties. The devices work at room temperature, show response times of a few seconds and have a low power consumption of some tens of nW. PMID:21098952

  16. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route.

    PubMed

    Wang, Zhuo; Qian, Xue-Feng; Yin, Jie; Zhu, Zi-Kang

    2004-04-13

    Large-scale arrayed ZnO crystals with a series of novel morphologies, including tower-like, flower-like, and tube-like samples, have been successfully fabricated by a simple aqueous solution route. The morphology and orientation of the obtained ZnO crystal arrays can be conveniently tailored by changing the reactants and experimental conditions. For example, the tower-like ZnO crystal arrays were obtained in a reaction solution system including zinc salt, ammonia, ammonium salt, and thiourea, and the orientation of these tower-like crystals could be controlled by the contents of these reactants. Flower-like ZnO arrays were obtained at lower temperatures, and tube-like ZnO arrays were obtained by ultrasonic pretreatment of the reaction system. The growth mechanism of the tower-like and tube-like ZnO crystals was investigated by FESEM. The results show that tower-like crystals grow layer by layer, while tube-like crystals grow from active nanowires. Ultrasonic pretreatment is proved to be effective in promoting the formation of active nuclei, which have important effects on the formation of the tube-like ZnO crystals. In addition, large-scale arrays of these ZnO crystals can be successfully synthesized onto various substrates such as amorphous glass, crystalline quartz, and PET. This implies this chemical method has a wide application in the fabrication of nano-/microscale devices.

  17. Fabricating small-scale, curved, polymeric structures for biological applications using a combination of photocurable/thermocurable polydimethylsiloxane and phase interactions

    NASA Astrophysics Data System (ADS)

    Chang, Ting-Ya; Sung, Chun-Yen; Hashimoto, Michinao; Cheng, Chao-Min

    2016-09-01

    This paper describes an easy-to-handle technique for creating curved, millimetrically scaled polymeric structures in order to develop in vitro cell culture devices for biologically relevant applications. For the master mold in this study, the authors used UV-activated photocurable polydimethylsiloxane (PDMS). This product can readily be used to create millimetrically scaled pattern molds by controlling droplet contact angles during deposition onto a flexible paper-based substrate that has been prepatterned with ink/wax. Resultant desired patterns can be transferred onto thermocurable PDMS as arrays of wells for biological applications. By combining photocurable and thermocurable PDMS manufacturing processes, this approach endows PDMS-based structures with unique controllability in terms of size, pattern, and curvature. Providing such features enhances the biocompatibility and practicality of devices so manufactured in that they mimic the natural topography of the extracellular matrix. Additionally, three-dimensional cell culturing and immunofluorescent staining can be demonstrated on this biomimetic platform. This manufacturing method takes only several minutes to complete and does not require complicated facilities in order to fabricate PDMS-based biomedical devices. We believe that this method would be very useful for rapid, economical fabrication of cell-focused assay platforms, which would be particularly useful in resource-limited settings.

  18. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  19. Physics and Dynamics Coupling Across Scales in the Next Generation CESM. Final Report

    SciTech Connect

    Bacmeister, Julio T.

    2015-06-12

    This project examines physics/dynamics coupling, that is, exchange of meteorological profiles and tendencies between an atmospheric model’s dynamical core and its various physics parameterizations. Most model physics parameterizations seek to represent processes that occur on scales smaller than the smallest scale resolved by the dynamical core. As a consequence a key conceptual aspect of parameterizations is an assumption about the subgrid variability of quantities such as temperature, humidity or vertical wind. Most existing parameterizations of processes such as turbulence, convection, cloud, and gravity wave drag make relatively ad hoc assumptions about this variability and are forced to introduce empirical parameters, i.e., “tuning knobs” to obtain realistic simulations. These knobs make systematic dependences on model grid size difficult to quantify.

  20. An Investigation of Wavelet Bases for Grid-Based Multi-Scale Simulations Final Report

    SciTech Connect

    Baty, R.S.; Burns, S.P.; Christon, M.A.; Roach, D.W.; Trucano, T.G.; Voth, T.E.; Weatherby, J.R.; Womble, D.E.

    1998-11-01

    The research summarized in this report is the result of a two-year effort that has focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality was found to be less desirable than weaker semi-orthogonality or bi-orthogonality for solving partial differential equations. This conclusion has led to the development of a multi-scale linear finite element based on a hierarchical change of basis. The reproducing kernel particle method has been found to yield extremely accurate phase characteristics for hyperbolic problems while providing a convenient framework for multi-scale analyses.

  1. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  2. Grassland/atmosphere response to changing climate: Coupling regional and local scales. Final report

    SciTech Connect

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C{sub 3} temperate grasslands wig respond more strongly to elevated CO{sub 2} than temperate C{sub 4} grasslands in the short-term while a large positive N-PP response was predicted for a C{sub 4} Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO{sub 2} is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO{sub 2} GCM Simulations revealed relatively small differences.

  3. Iterative methods for large scale nonlinear and linear systems. Final report, 1994--1996

    SciTech Connect

    Walker, H.F.

    1997-09-01

    The major goal of this research has been to develop improved numerical methods for the solution of large-scale systems of linear and nonlinear equations, such as occur almost ubiquitously in the computational modeling of physical phenomena. The numerical methods of central interest have been Krylov subspace methods for linear systems, which have enjoyed great success in many large-scale applications, and newton-Krylov methods for nonlinear problems, which use Krylov subspace methods to solve approximately the linear systems that characterize Newton steps. Krylov subspace methods have undergone a remarkable development over the last decade or so and are now very widely used for the iterative solution of large-scale linear systems, particularly those that arise in the discretization of partial differential equations (PDEs) that occur in computational modeling. Newton-Krylov methods have enjoyed parallel success and are currently used in many nonlinear applications of great scientific and industrial importance. In addition to their effectiveness on important problems, Newton-Krylov methods also offer a nonlinear framework within which to transfer to the nonlinear setting any advances in Krylov subspace methods or preconditioning techniques, or new algorithms that exploit advanced machine architectures. This research has resulted in a number of improved Krylov and Newton-Krylov algorithms together with applications of these to important linear and nonlinear problems.

  4. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  5. Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect

    Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-20

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  6. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion

  7. Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process

    NASA Technical Reports Server (NTRS)

    Dinicola, Albert J.; Kassapoglou, Christos; Chou, Jack C.

    1992-01-01

    Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.

  8. Fabrication of double-walled section models of the ITER vacuum vessel

    SciTech Connect

    Koizumi, K.; Kanamori, N.; Nakahira, M.; Itoh, Y.; Horie, M.; Tada, E.; Shimamoto, S.

    1995-12-31

    Trial fabrication of double-walled section models has been performed at Japan Atomic Energy Research Institute (JAERI) for the construction of ITER vacuum vessel. By employing TIG (Tungsten-arc Inert Gas) welding and EB (Electron Beam) welding, for each model, two full-scaled section models of 7.5 {degree} toroidal sector in the curved section at the bottom of vacuum vessel have been successfully fabricated with the final dimensional error of within {+-}5 mm to the nominal values. The sufficient technical database on the candidate fabrication procedures, welding distortion and dimensional stability of full-scaled models have been obtained through the fabrications. This paper describes the design and fabrication procedures of both full-scaled section models and the major results obtained through the fabrication.

  9. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-01-01

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases. PMID:27550930

  10. Re-Defining Photovoltaic Efficiency Through Molecule Scale Control. Final Report

    SciTech Connect

    Yardley, James T.

    2015-04-30

    can be used practically in a solar cell system. In addition much work will be required to envision and demonstrate effective device structures that can utilize this concept. However these discoveries do provide the basis for an entirely new set of opportunities for more efficient solar energy generation moving beyond the Shockley-Queisser limit. A second part of the EFRC research program has been to investigate the material and device properties of an entirely new set of materials based on two-dimensional sheets (“ultra-thin”) with thicknesses of only one atom, or a single molecule or just a few atoms. These materials can exhibit conducting, insulating, and semiconducting character and thus they can form the basis for entirely new types of electrical devices. Recent fundamental investigations of these materials, at Columbia and elsewhere, demonstrate clearly that the flow of electrical charges in these systems is fundamentally different from the nature of electrical current flow in conventional materials. This fact presents many possibilities for new photovoltaic device concepts. The EFRC research team has achieved world leadership in the creation and understanding of these materials and in developing the fabrication techniques necessary to create useful devices from them. We have developed the basic fabrication methodology to build structures of these materials into complex device structures, layer by layer. Our EFRC research team has pioneered the synthesis and understanding for graphene, perhaps the simplest of these materials. Graphene can function as a highly transparent conducting material, capable of funneling an electrical charge over reasonable distances without significant energy loss. The EFRC program has also pioneered the development of ultra-thin sheets that function in a way analogous to semiconductor materials as well as sheets that act as electrical insulators. These developments therefore enable the construction of solar cells based on totally

  11. Final Progress Report: FRACTURE AND SUBCRITICAL DEBONDING IN THIN LAYERED STRUCTURES: EXPERIMENTS AND MULTI-SCALE MODELING

    SciTech Connect

    Reinhold H. Dauskardt

    2005-08-30

    Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.

  12. LDRD Final Report-New Directions for Algebraic Multigrid: Solutions for Large Scale Multiphysics Problems

    SciTech Connect

    Henson, V E

    2003-02-06

    The purpose of this research project was to investigate, design, and implement new algebraic multigrid (AMG) algorithms to enable the effective use of AMG in large-scale multiphysics simulation codes. These problems are extremely large; storage requirements and excessive run-time make direct solvers infeasible. The problems are highly ill-conditioned, so that existing iterative solvers either fail or converge very slowly. While existing AMG algorithms have been shown to be robust and stable for a large class of problems, there are certain problems of great interest to the Laboratory for which no effective algorithm existed prior to this research.

  13. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    SciTech Connect

    Douglas P. Cook

    2012-05-22

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  14. Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1999-01-01

    This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

  15. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    SciTech Connect

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  16. Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity

    SciTech Connect

    Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.; Meyer, Perry A.; Greenwood, Margaret S.; Titzler, Patricia A.; Terrones, Guillermo

    2007-09-01

    The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze the effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank

  17. Conceptual design of a KrF scaling module. Final report

    SciTech Connect

    1980-10-01

    A conceptual design of an angular multiplexed 50 kJ KrF laser module for Inertial Confinement Fusion is presented. Optical designs for encoding, beam packing and beam transfer between amplifier stages are developed; emphasis is placed on reducing prepulse problems and achieving acceptable optical quality. An axisymmetric optical design is identified as optimum in terms of simplicity, optical quality, cost and alignment. A kinetic code model was developed for the KrF amplifier and was used to derive scaling maps for the 50 kJ module. Attention was given to reducing parasitics, achieving acceptable extraction efficiency and accounting for amplified spontaneous emission effects. The size of the module is constrained by parasitic suppression and damage thresholds; the power gain is constrained by demanding 40% extraction efficiency in a double pass extraction geometry; and, the run time is constrained by the pulsed power technology (PFN or PFL) and acceptable values of g/sub 0/L. The bounds imposed on the design by the pulsed power technology were examined. Both PFLs and PFNs were considered along with their associated diode, hibachi and guide field requirements. A base line design for a 50 kJ module including amplifier staging, layout and overall size is discussed. Cost analysis and scaling for optical components, pulsed power technology and the guide field are also presented.

  18. Large-scale hydrogen combustion experiments: Volume 2, Data plots: Final report

    SciTech Connect

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments.

  19. Large-scale hydrogen combustion experiments: Volume 1, Methodology and results: Final report

    SciTech Connect

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen-air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments. 236 figs., 110 tabs.

  20. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa

    NASA Astrophysics Data System (ADS)

    Perri, Edoardo; Manzo, Elena; Tucker, Maurice E.

    2012-07-01

    Three sites of actively-forming tufa, two barrage systems and one terraced slope system, located in northern Calabria (Italy) and in north-east England, have been investigated with the purpose of studying the neo-formed carbonate minerals at the interface with the organic components that compose the associated biofilms. Several depositional facies are distinguished, notably peloidal to aphanitic, laminar and dendrolitic fabrics composed of micrite and microsparite, and isolated botryoids and continuous crusts composed of sparite. All fabrics occurring in all depositional facies are organized into layers with a more or less well-developed seasonal cyclicity. Low-Mg calcite precipitates more or less constantly during all seasons within the active depositional zone. This extends for a few hundred microns upon the external surface of the deposits, where the biofilm occurs. The latter is composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, Actinobacteria and fungi, with a variable amount of extracellular polymeric substances (EPS). Porous micro-columns (50 to 150 μm in size), separated by interstitial spaces, characterize the active depositional zone. Here precipitation always begins with organomineral nanospheres (10 to 20 nm diameter), both along the external surfaces and within internal cavities of the micro-columns, by replacing degraded organic matter, and at point-sites suspended within living cyanobacterial tufts along the external surface of their sheaths, indicating that the biological activities of the biofilm are crucial, with its living organisms and non-living organic matter. Organomineral nanospheres successively agglutinate to form irregular to rod-shaped crystal aggregates, 100-200 nm in size, that with their further agglutination create two basic types of larger, more ordered, crystal structure: polyhedrons in the range of 1-2 μm, and minute triads of calcite fibres varying in length from ~ 0

  1. Final Report for Subcontract B541028, Pore-Scale Modeling to Support "Pore Connectivity" Research Work

    SciTech Connect

    Ewing, R P

    2009-02-25

    This report covers modeling aspects of a combined experimental and modeling task in support of the DOE Science and Technology Program (formerly OSTI) within the Office of Civilian Radioactive Waste Management (OCRWM). Research Objectives The research for this project dealt with diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. Diffusive retardation involves not only fracture conductivity and matrix diffusion, but also other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. The objective of the project was to improve understanding of diffusive retardation of radionuclides due to fracture / matrix interactions. Results from combined experimental/modeling work were to (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) help in evaluating the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. Questions explored included the following: (1) What is the relationship between the diffusion coefficient measured at one scale, to that measured or observed at a different scale? In classical materials this relationship is trivial; in low-connectivity materials it is not. (2) Is the measured diffusivity insensitive to the shape of the sample? Again, in classical materials there should be no sample shape effect. (3) Does sorption affect diffusive exchange in low-connectivity media differently than in classical media? (4) What is the effect of matrix

  2. Final PHP bench-scale report for the DOE-ID/SAIC sole source contract

    SciTech Connect

    1997-04-01

    The Plasma Hearth Process (PHP) Technology Development Project was established to develop, test, and evaluate a new concept for treating mixed waste. The new concept uses direct current (dc) transferred-arc plasma torch technology to process mixed waste into a glass-like end-product. Under the cognizance of the US Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Focus Area (MWFA), the technology is being explored for its potential to treat mixed waste. Because it is a mature technology, well-understood and commercially available, it is expected to develop rapidly in this new application. This report summarizes the radioactive bench-scale system activities funded under PHP Sole Source Contract DE-AC07-94ID13266 through the end of the contract.

  3. Final report for next generation multi-scale quantum simulation software for strongly correlated materials

    SciTech Connect

    Jarrell, Mark

    2014-11-18

    The goal of this project was to develop a new formalism for the correlated electron problem, which we call, the Multi Scale Many Body formalism. This report will focus on the work done at the Louisiana State University (LSU) since the mid term report. The LSU group moved from the University of Cincinnati (UC) to LSU in the summer of 2008. In the last full year at UC, only half of the funds were received and it took nearly two years for the funds to be transferred from UC to LSU . This effectively shut down the research at LSU until the transfer was completed in 2011, there were also two no-cost extensions of the grant until August of this year. The grant ended for the other SciDAC partners at Davis and ORNL in 2011. Since the mid term report, the LSU group has published 19 papers [P1-P19] acknowledging this SciDAC, which are listed below. In addition, numerous invited talked acknowledged the SciDAC. Below, we will summarize the work at LSU since the mid-term report and mainly since funding resumed. The projects include the further development of multi-scale methods for correlated systems (1), the study of quantum criticality at finite doping in the Hubbard model (2), the description of a promising new method to study Anderson localization with a million-fold reduction of computational complexity!, the description of other projects (4), and (5) a workshop to close out the project that brought together exascale program developers (Stellar, MPI, OpenMP,...) with applications developers.

  4. Arapahoe low-sulfur-coal fabric filter pilot plant: Volume 3, Characterization of sonic-assisted reverse-gas cleaning, May 1982--May 1984: Final report

    SciTech Connect

    Cushing, K.M.; Bustard, C.J.; Pontius, D.H.; Pyle, B.E.; Smith, W.B.

    1989-02-01

    During 1981 intense interest developed in the utility industry regarding the use of horns as a supplement to reverse-gas bag cleaning. To characterize and assess sonic-enhanced, reverse-gas cleaning, horns were installed at EPRI's 10-MW Fabric Filter Pilot Plant (FFPP) at its Arapahoe Test Facility located at Public Service Company of Colorado's Arapahoe Steam Plant in Denver, Colorado. In addition to the FFPP tests, laboratory studies of sonic cleaning were conducted to supplement the pilot plant data. To verify the applicability of the pilot plant and laboratory work to full-scale baghouses, field data from utility baghouses in which horns had been installed were collected. The purpose of the testing was to determine the range of horn frequencies and total output power most effective in removing residual dustcakes from bags in reverse-gas-cleaned baghouses and, hence, most effective in reducing baghouse pressure drop. No attempt was made to identify a specific horn or horns most appropriate for baghouse application. The report presents the results of this testing from May 1982 through May 1984. Results showed that horns can dislodge a significant fraction of residual dustcake, thereby reducing pressure drop by as much as 60% without any noticeable reduction in bag life. Although outlet particulate emissions are higher with sonic assistance, they are generally <0.01 lb/10/sup 6/ Btu---below the 1979 New Source Performance Standards of 0.03 lb/MBtu. The overall results of this sonic horn investigation indicate that reverse-gas cleaning with sonic assistance definitely promotes more effective bag filter cleaning and lower pressure drop, and it should be considered as a supplement for most reverse-gas cleaned baghouse applications. 10 refs., 37 figs., 7 tabs.

  5. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity.

    PubMed

    Gao, Botao; Konno, Tomohiro; Ishihara, Kazuhiko

    2015-01-01

    We propose a spinning-assisted layer-by-layer method for simple fabrication of a multilayered polymer hydrogel membrane that contains living cells. Hydrogel formation occurred based on the spontaneous cross-linking reaction between two polymers in aqueous solution. A water-soluble 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups (PMBV) and poly(vinyl alcohol) (PVA) were used as polymers for hydrogel membrane formation. Changing the number of hydrogel membrane layers, polymer concentration, spinning rate, and processing time for diffusion-dependent gelation of PMBV and PVA facilitated the regulation of the multilayered polymer hydrogel membrane thickness and morphology. We concluded that a multilayered polymer hydrogel membrane prepared using 5.0 wt% PMBV and 5.0 wt% PVA at a spinning rate of 2000 rpm was suitable for precise spatial control of cells in single layers. This multilayered polymer hydrogel membrane was used to prepare a single cell-laden layer to minimize barriers to the diffusion of bioactive compounds while preserving the three-dimensional (3-D) context. The pharmaceutical effects of one of the anticancer agents, paclitaxel, on a human cervical cancer line, HeLa cells, were evaluated in vitro, and the usability of this culture model was demonstrated. PMID:26374190

  6. Fabrication of micron scale metallic structures on photo paper substrates by low temperature photolithography for device applications

    NASA Astrophysics Data System (ADS)

    Cooke, M. D.; Wood, D.

    2015-11-01

    Using commercial standard paper as a substrate has a significant cost reduction implication over other more expensive substrate materials by approximately a factor of 100 (Shenton et al 2015 EMRS Spring Meeting; Zheng et al 2013 Nat. Sci. Rep. 3 1786). Discussed here is a novel process which allows photolithography and etching of simple metal films deposited on paper substrates, but requires no additional facilities to achieve it. This allows a significant reduction in feature size down to the micron scale over devices made using more conventional printing solutions which are of the order of tens of microns. The technique has great potential for making cheap disposable devices with additional functionality, which could include flexibility and foldability, simple disposability, porosity and low weight requirements. The potential for commercial applications and scale up is also discussed.

  7. Fracture fabrication of a multi-scale channel device that efficiently captures and linearizes DNA from dilute solutions.

    PubMed

    Kim, Byoung Choul; Weerappuli, Priyan; Thouless, M D; Takayama, Shuichi

    2015-03-01

    This paper describes a simple technique for patterning channels on elastomeric substrates, at two distinct scales of depth, through the use of controlled fracture. Control of channel depth is achieved by the careful use of different layers of PDMS, where the thickness and material properties of each layer, as well as the position of the layers relative to one another, dictate the depth of the channels formed. The system created in this work consists of a single 'deep' channel, whose width can be adjusted between the micron- and the nano-scale by the controlled application or removal of a uniaxial strain, and an array of 'shallow' nano-scale channels oriented perpendicular to the 'deep' channel. The utility of this system is demonstrated through the successful capture and linearization of DNA from a dilute solution by executing a two-step 'concentrate-then-linearize' procedure. When the 'deep' channel is in its open state and a voltage is applied across the channel network, an overlapping electric double layer forms within the 'shallow' channel array. This overlapping electric double layer was used to prevent passage of DNA into the 'shallow' channels when the DNA molecules migrate into the junctional region by electrophoresis. Release of the applied strain then allows the 'deep' channel to return to its closed state, reducing the cross-sectional area of this channel from the micro- to the nano-scale. The resulting hydrodynamic flow and nano-confinement effects then combine to efficiently uncoil and trap the DNA in its linearized form. By adopting this strategy, we were able to overcome the entropic barriers associated with capturing and linearizing DNA derived from a dilute solution.

  8. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    SciTech Connect

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to

  9. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

    NASA Astrophysics Data System (ADS)

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua

    2014-06-01

    We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

  10. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    SciTech Connect

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  11. Final report of experimental laboratory-scale brittle fracture studies of glasses and ceramics

    SciTech Connect

    Jardine, L.J.; Mecham, W.J.; Reedy, G.T.; Steindler, M.J.

    1982-10-01

    An experimental program was conducted to characterize the fragments generated when brittle glasses and ceramics are impacted. The direct application of the results is to radioactive waste forms for which the effects of accidental impacts must be known or predictable. Two major measurable experimental responses used for characterization of these effects are (1) the size distribution of the fragments, including the sizes that are respirable, and (2) the increase in surface area of the brittle test specimen. This report describes the glass and ceramic materials characterized, the procedures and techniques used for the characterization of size distributions and surface areas, and the results of the two key responses of the impact tests. Five alternative methods of determining size distributions were compared. Also examined were the effects of diametral and axial specimen impact configurations and the use of mechanical stops to eliminate secondary crushing during testing. Microscopic characterizations of Pyrex and SRL 131 simulated waste glass and SYNROC fragments were also performed. Preliminary correlations of impact energy with key size-distribution parameters, fragment surface areas, and respirable fines were proposed as useful for future verification and for use with modeling and scale-up studies of brittle fracture of larger realistic waste forms. The impact fragments of all specimens could be described by lognormal size distributions.

  12. LDRD LW Project Final Report:Resolving the Earthquake Source Scaling Problem

    SciTech Connect

    Mayeda, K; Felker, S; Gok, R; O'Boyle, J; Walter, W R; Ruppert, S

    2004-02-10

    The scaling behavior of basic earthquake source parameters such as the energy release per unit area of fault slip, quantitatively measured as the apparent stress, is currently in dispute. There are compelling studies that show apparent stress is constant over a wide range of moments (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001, Ide et al. 2003). Other equally compelling studies find the apparent stress increases with moment (e.g. Kanamori et al., 1993; Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001; Richardson and Jordan, 2002). The resolution of this issue is complicated by the difficulty of accurately accounting for attenuation, radiation inhomogeneities, bandwidth and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. As one part of our LDRD project we convened a one-day workshop on July 24, 2003 in Livermore to review the current state of knowledge on this topic and discuss possible methods of resolution with many of the world's foremost experts.

  13. Current and Future Carbon Budgets of Tropical Rain Forest: A Cross Scale Analysis. Final Report

    SciTech Connect

    Oberbauer, S. F.

    2004-01-16

    The goal of this project was to make a first assessment of the major carbon stocks and fluxes and their climatic determinants in a lowland neotropical rain forest, the La Selva Biological Station, Costa Rica. Our research design was based on the concurrent use of several of the best available approaches, so that data could be cross-validated. A major focus of our effort was to combine meteorological studies of whole-forest carbon exchange (eddy flux), with parallel independent measurements of key components of the forest carbon budget. The eddy flux system operated from February 1998 to February 2001. To obtain field data that could be scaled up to the landscape level, we monitored carbon stocks, net primary productivity components including tree growth and mortality, litterfall, woody debris production, root biomass, and soil respiration in a series of replicated plots stratified across the major environmental gradients of the forest. A second major focus of this project was on the stocks and changes of carbon in the soil. We used isotope studies and intensive monitoring to investigate soil organic stocks and the climate-driven variation of soil respiration down the soil profile, in a set of six 4m deep soil shafts stratified across the landscape. We measured short term tree growth, climate responses of sap flow, and phenology in a suite of ten canopy trees to develop individual models of tree growth to daytime weather variables.

  14. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    SciTech Connect

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M.; Keener, H.M.; Webner, R.L.

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  15. Guidelines for siting WECS relative to small-scale terrain features. Final report

    SciTech Connect

    Frost, W.; Shieh, C.F.

    1981-12-01

    Because real terrain is too complex and random to allow development of quantitative site selection data for specific applications, guidelines for siting wind energy conversion systems (WECS) relative to small-scale terrain features have been extracted from literature relative to analytical and experimental studies of fluid flow over geometries which represent idealized terrain features. These guidelines are presented in a format suitable for assessing the influence of small or microscale terrain features on a proposed wind turbine site. In organizing the available information, three categories of terrain were considered: (1) protrusions, topographical features that protrude well above the general level of their neighboring terrain; (2) depressions, areas such as valleys, canyons, or passes; and (3) complex terrain, so rugged or irregular that no well-defined protrusion or depression can be easily distinguished. The optimum site on a protrusion is always at the highest point. The smoother the peak of the protrusion and the more gentle the slopes on all sides the more optimum the site, providing the geometry and orientation of the depression are such that full advantage can be taken of existing strong valley winds or outflow. Where the terrain is very complex and tortuous, the highest point of the topography will be the optimum site.

  16. Final report for''automated diagnosis of large scale parallel applications''

    SciTech Connect

    Karavanic, K L

    2000-11-17

    The work performed is part of a continuing research project, PPerfDB, headed by Dr. Karavanic. We are studying the application of experiment management techniques to the problems associated with gathering, storing, and using performance data with the goal of achieving completely automated diagnosis of application and system bottlenecks. This summer we focused on incorporating heterogeneous data from a variety of tools, applications, and platforms, and on designing novel techniques for automated performance diagnosis. The Experiment Management paradigm is a useful approach for designing a tool that will automatically diagnose performance problems in large-scale parallel applications. The ability to gather, store, and use performance data gathered over time from different executions and using different collection tools enables more sophisticated approaches to performance diagnosis and to performance evaluation more generally. We look forward to continuing our efforts by further development and analysis of online diagnosis using historical data, and by investigating performance data and diagnosis gathered from mixed MPUOpenMP applications.

  17. Full-scale turbine-missile-casing tests. Final report. [PWR; BWR

    SciTech Connect

    Yoshimura, H.R.; Schamaun, J.T.

    1983-01-01

    Results are presented of two full-scale tests simulating the impact of turbine disk fragments on simple ring and shell structures that represent the internal stator blade ring and the outer housing of an 1800-rpm steam turbine casing. The objective was to provide benchmark data on both the energy-absorbing mechanisms of the impact process and, if breakthrough occured, the exit conditions of the turbine missile. A rocket sled was used to accelerate a 1527-kg (3366-lb) segment of a turbine disk, which impacted a steel ring 12.7 cm (5 in.) thick and a steel shell 3.2 cm (1.25 in.) thick. The impact velocity of about 150 m/s (492 ft/s) gave a missile kinetic energy corresponding to the energy of a fragment from a postulated failure at the design overspeed (120% of operating speed). Depending on the orientation of the missile at impact, the steel test structure either slowed the missile to 60% of its initial translational velocity or brought it almost to rest (an energy reduction of 65 and 100%, respectively). The report includes structural and finite element analysis and data interpretation, estimates of energy during impact, missile displacement and velocity histories, and selected strain gage data.

  18. Bench-scale testing of the multi-gravity separator in combination with microcel. Final report

    SciTech Connect

    Luttrell, G.H.; Venkatraman, P.; Phillips, D.I.; Yoon, Roe-Hoan

    1995-03-01

    It was the purpose of this investigation to test a new fine coal cleaning system, in which a coal is cleaned first by column flotation to remove primarily ash-forming minerals and then by an enhanced gravity separation technique to remove the pyrite remaining in the flotation product. Of the various column flotation technologies developed under the auspices of the US Department of Energy, the Microcel{sup TM} flotation column was chosen because it is being used commercially in the US coal industry, particularly by low-sulfur coal producers. Of the various enhanced gravity separation technologies used in minerals industry, Multi-Gravity Separator (MGS) was chosen because it shows promise for pyrite rejection from fine coal streams containing a wide range of particle sizes. The bench-scale tests were conducted using three different circuit configurations, i.e.; Microcel{sup TM} column alone; MGS alone; and Microcel{sup Tm} and MGS in series. In general, high ash-rejections were achieved using Microcel{sup TM} column and an MGS unit in series, both the ash and pyritic sulfur rejections exceeded what can be achieved using either the Microcel{sup TM} column or the MGS unit alone, demonstrating a synergistic effect.

  19. Final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. LEFPC appendices, Volume 4, Appendix V-C

    SciTech Connect

    1994-09-01

    This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.

  20. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    SciTech Connect

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  1. Large scale displacements and internal deformations of the Outer Western Carpathians during the Cenozoic as manifested in paleomagnetic rotations and in the magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Tokarski, Antek K.

    2016-04-01

    The paleomagnetic and magnetic anisotropy results interpreted in this presentation in terms of tectonics were obtained on the fine grained members, mostly mudstones/claystones, of the flysch from the Magura, the Silesian and the Dukla rootless nappes. The results are the best from the Upper Oligocene Krosno beds, which were affected by compression soon after deposition. These beds were available for sampling in the Silesian and Dukla nappes, but absent in the Magura nappe. Thus, in the latter older Paleogene strata were tested. A common feature of all sampled sediments is the low susceptibility (in the range of 10-4 SI or lower), weak remanence and the presence of pyrite. AMS measurements point to quite strong and probably repeated deformation in the Magura nappe, and the remanence is of-post-folding age. The AMS of the Silesian and Dukla nappes indicate weaker deformation, the orientations of the AMS lineations reflect compression. The remanence is of pre-folding age in the western and central segments of the Silesian nappe and is a mixture of pre and post-folding magnetization in the eastern segment. All the so far mentioned areas must have been affected by about 60° CCW rotation which followed the internal deformation. The Dukla nappe also rotated in the CCW sense, but the angle is far from well-defined. This can be attributed to the complicated internal structure of the nappe (e.g. presence of olistoliths) and non-removable overprint magnetizations. The relationship between local tectonic strikes and AMS lineations seems to imply that the ductile deformation responsible for the AMS lineations were acquired first, and the map-scale structures came into being during the CCW rotation of the studied segment of the nappe. AARM measurements documented that the fabrics of the ferrimagnetic minerals are often different from the orientation of the AMS fabrics. In such cases, they either fail to define an ellipsoid or the general orientations of the maxima are different

  2. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem

  3. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  4. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  5. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  6. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC appendices. Volume 5. Appendix V-D

    SciTech Connect

    1994-09-01

    This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).

  7. Large-scale fabrication of boron nitride nanotubes with high purity via solid-state reaction method

    PubMed Central

    2014-01-01

    An effective solid-state reaction method is reported for synthesizing boron nitride nanotubes (BNNTs) in large scale and with high purity by annealing amorphous boron powder and ferric chloride (FeCl3) catalyst in ammonia atmosphere at elevated temperatures. FeCl3 that has rarely been utilized before is introduced not only as a catalyst but also as an efficient transforming agent which converts boron powder into boron chloride (BCl3) vapor in situ. The nanotubes are bamboo in shape and have an average diameter of about 90 nm. The effect of synthetic temperatures on nanotube morphology and yield is investigated. The photoluminescence (PL) measurement shows emission bands of the nanotubes at 354, 423, 467, and 666 nm. A combined growth mechanism of vapor–liquid-solid (VLS) and solid–liquid-solid (SLS) model is proposed for the formation of the BNNTs. PMID:25313303

  8. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  9. Large-Scale Fabrication of Boron Nitride Nanotubes via a Facile Chemical Vapor Reaction Route and Their Cathodoluminescence Properties

    PubMed Central

    2011-01-01

    Cylinder- and bamboo-shaped boron nitride nanotubes (BNNTs) have been synthesized in large scale via a facile chemical vapor reaction route using ammonia borane as a precursor. The structure and chemical composition of the as-synthesized BNNTs are extensively characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction. The cylinder-shaped BNNTs have an average diameter of about 100 nm and length of hundreds of microns, while the bamboo-shaped BNNTs are 100–500 nm in diameter with length up to tens of microns. The formation mechanism of the BNNTs has been explored on the basis of our experimental observations and a growth model has been proposed accordingly. Ultraviolet–visible and cathodoluminescence spectroscopic analyses are performed on the BNNTs. Strong ultraviolet emissions are detected on both morphologies of BNNTs. The band gap of the BNNTs are around 5.82 eV and nearly unaffected by tube morphology. There exist two intermediate bands in the band gap of BNNTs, which could be distinguishably assigned to structural defects and chemical impurities. PMID:21711576

  10. Fabrication of Dendrimer-Based Polyion Complex Submicrometer-Scaled Structures with Enhanced Stability under Physiological Conditions.

    PubMed

    Naoyama, Kenshiro; Mori, Takeshi; Katayama, Yoshiki; Kishimura, Akihiro

    2016-07-01

    Submicrometer-scaled (subμ-) self-assembled materials have been developed based on polyion complex (PIC) formation, in particular for biomedical-applications. However, sufficient stability under physiological conditions is required for their practical use. In this study, PIC formation behavior is examined using a block aniomer, poly(ethylene glycol)-b-poly(aspartic acid), and homocatiomers, poly(l-lysine) (LPK) and dendritic poly(l-lysine) (DPK) with different generations, to elucidate the contribution of the dendritic architecture to stability enhancement. LPK-based PIC shows a subμ-vesicular structure only at 25 °C in the absence of NaCl; in contrast, DPK-based PIC forms a subμ-structure under physiological salt concentration and temperature conditions, even when the number of charges of a single molecule is much smaller than that of LPK. Moreover, the formation of subμ-vesicular and -spherical micellar structures is dependent on DPK generation. Thus, the molecular backbone architecture of the PIC component plays an important role not only in expanding the preparation conditions and enhancing stability, but also in controlling the self-assembled structures, mainly due to the spatially restricted structures of dendrimers. PMID:27191793

  11. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials.

    PubMed

    Wang, Baoyu; Zhang, Min; Li, Weizhen; Wang, Linlin; Zheng, Jing; Gan, Wenjun; Xu, Jingli

    2015-05-01

    In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio of iron acetylacetonate to Ag NWs plays a crucial role in controlling the amount of magnetite nanoparticles decorated on the Ag NWs. The resulting Ag NW/Fe3O4 NP composites exhibit superparamagnetic properties at room temperature, and can be well dispersed in aqueous and organic solutions, which is greatly beneficial for their application and functionality. Thus, the as-prepared magnetic silver nanowires show good catalytic activity, using the catalytic reduction of methylene blue (MB) as a model reaction. Furthermore, the Ag NW/Fe3O4 NP composites can be functionalized with polydopamine (Pdop), resorcinol-formaldehyde resin (PFR), and SiO2, respectively, in aqueous/ethanol solution. Meanwhile they can also be coated with polyphosphazene (PZS) in organic solution, resulting in a unique nanocable with well-defined core shell structures. Besides, taking Ag NW/Fe3O4@SiO2 as an example, a hollow magnetic silica nanotube can be obtained with the use of Ag NWs as physical templates and a solution of ammonium and H2O2. These can greatly improve the application of the Ag NW/Fe3O4 NP composites. The as-synthesized above nanocomposites have high potential for applications in the fields of polymers, wastewater treatment, sensors, and biomaterials.

  12. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials.

    PubMed

    Wang, Baoyu; Zhang, Min; Li, Weizhen; Wang, Linlin; Zheng, Jing; Gan, Wenjun; Xu, Jingli

    2015-05-01

    In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio of iron acetylacetonate to Ag NWs plays a crucial role in controlling the amount of magnetite nanoparticles decorated on the Ag NWs. The resulting Ag NW/Fe3O4 NP composites exhibit superparamagnetic properties at room temperature, and can be well dispersed in aqueous and organic solutions, which is greatly beneficial for their application and functionality. Thus, the as-prepared magnetic silver nanowires show good catalytic activity, using the catalytic reduction of methylene blue (MB) as a model reaction. Furthermore, the Ag NW/Fe3O4 NP composites can be functionalized with polydopamine (Pdop), resorcinol-formaldehyde resin (PFR), and SiO2, respectively, in aqueous/ethanol solution. Meanwhile they can also be coated with polyphosphazene (PZS) in organic solution, resulting in a unique nanocable with well-defined core shell structures. Besides, taking Ag NW/Fe3O4@SiO2 as an example, a hollow magnetic silica nanotube can be obtained with the use of Ag NWs as physical templates and a solution of ammonium and H2O2. These can greatly improve the application of the Ag NW/Fe3O4 NP composites. The as-synthesized above nanocomposites have high potential for applications in the fields of polymers, wastewater treatment, sensors, and biomaterials. PMID:25815705

  13. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    PubMed

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-01

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large-scale

  14. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  15. Micro-scale variability of particulate matter and the influence of urban fabric on the aerosol distribution in two mid-sized German cities

    NASA Astrophysics Data System (ADS)

    Paas, Bastian; Schneider, Christoph

    2016-04-01

    Spatial micro-scale variability of particle mass concentrations is an important criterion for urban air quality assessment. The major proportion of the world's population lives in cities, where exceedances of air quality standards occur regularly. Current research suggests that both long-term and even short-term stays, e.g. during commuting or relaxing, at locations with high PM concentrations could have significant impacts on health. In this study we present results from model calculations in comparison to high resolution spatial and temporal measurements. Airborne particles were sampled using an optical particle counter in two inner-city park areas in Aachen and Munster. Both are mid-sized German cities which, however, are characterized by a different topology. The measurement locations represent spots with different degrees of outdoor particle exposure that can be experienced by a pedestrian walking in an intra-urban recreational area. Simulations of aerosol distributions induced by road traffic were conducted using both the German reference dispersion model Austal2000 and the numerical microclimate model ENVI-met. Simulation results reveal details in the distribution of urban particles with highest concentrations of PM10 in direct vicinity to traffic lines. The corresponding concentrations rapidly decline as the distances to the line sources increase. Still, urban fabric and obstacles like shrubs or trees are proved to have a major impact on the aerosol distribution in the area. Furthermore, the distribution of particles was highly dependent of wind direction and turbulence characteristics. The analysis of observational data leads to the hypothesis that besides motor traffic numerous diffuse particle sources e.g. on the ability of surfaces to release particles by resuspension which were dominantly apparent in measured PM(1;10) and PM(0.25;10) data are present in the urban roughness layer. The results highlight that a conclusive picture concerning micro-scale

  16. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  17. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  18. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars.

    PubMed

    Li, Y; Ng, H W; Gates, B D; Menon, C

    2014-07-18

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR.

  19. Studies of brine chemistry and scaling at the Salton Sea geothermal field, 1977-1979. Final report

    SciTech Connect

    Harrar, J.E.

    1981-01-01

    Summarized are the results of investigations of brine chemistry, the effects of brine acidification and organic additives on the rate of scale formation and scale composition, and the use of other additives for scale control. A bibliography of reports describing these studies is included. Recommendations are given for techniques and approaches for further testing of additives for silica scale control.

  20. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  1. Fabric fastenings

    NASA Technical Reports Server (NTRS)

    Walen, E D; Fisher, R T

    1920-01-01

    The study of aeronautical fabrics has led to a consideration of the best methods of attaching and fastening together such materials. This report presents the results of an investigation upon the proper methods of attaching fabrics to airplane wings. The methods recommended in this report have been adopted by the military services.

  2. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    SciTech Connect

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  3. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  4. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  5. AFIP-6 Fabrication Summary Report

    SciTech Connect

    Glenn A. Moore; M. Craig Marshall

    2011-09-01

    The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  6. AFIP-4 Fabrication Summary Report

    SciTech Connect

    Glenn A. Moore

    2010-02-01

    The AFIP-4 (ATR Full –size-plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Twelve qualified fueled plates were fabricated for the AFIP-4 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts; including material selection, fabrication processes, and fuel plate qualification.

  7. AFIP-2 Fabrication Summary Report

    SciTech Connect

    Glenn Moore

    2010-02-01

    The Advanced Test Reactor (ATR) Full-size Plate In Center Flux Trap Position (AFIP)-2 experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP 2 experiment to be irradiated in the Idaho National Laboratory ATR. This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  8. Review and evaluation of literature on testing of chemical additives for scale control in geothermal fluids. Final report

    SciTech Connect

    Crane, C.H.; Kenkeremath, D.C.

    1981-01-01

    A selected group of reported tests of chemical additives in actual geothermal fluids are reviewed and evaluated to summarize the status of chemical scale-control testing and identify information and testing needs. The task distinguishes between scale control in the cooling system of a flash plant and elsewhere in the utilization system due to the essentially different operating environments involved. Additives for non-cooling geothermal fluids are discussed by scale type: silica, carbonate, and sulfide.

  9. Fabric softeners and softness perception.

    PubMed

    Ali, S I; Begum, S

    1994-05-01

    In order to evaluate the efficiency of various commercial chemical fabric softeners, a technique of obtaining subjective assessment known as 'magnitude estimation' was used to estimate the fabric softness. Particular emphasis was given to subjective scaling and limits of human perception. Comparison between softness and compression (a physical measure) was demonstrated. PMID:8206048

  10. Arapahoe low-sulfur-coal Fabric Filter Pilot Plant: Volume 4, Shake-deflate cleaning tests, May 1984--July 1986: Final report

    SciTech Connect

    Cushing, K.M.; Bustard, C.J.; Smith, W.B.

    1989-06-01

    This report describes operations at EPRI's low-sulfur coal Fabric Filter Pilot Plant during a twenty-seven month evaluation of shake-deflate cleaning. The primary objective was to collect sufficient data to optimize shake-deflate parameters and to allow prediction of baghouses operation with this cleaning method at utility power plants burning low-sulfur coal. The tests evaluated baghouse performance (pressure drop at various filtering air-to-cloth ratios, dustcake weight, and emissions) as a function of bag-cap acceleration, shake frequency, shake duration, and deflation volume. The findings indicate that shake-deflate cleaning can reduce cake weight and tube-sheet pressure drops by greater than 50% over conventional reverse-gas cleaned units. No bag life problems were observed over 11,000 h of testing, and emissions were very low (0.006 lb/10/sup 6/ Btu). Minimum filter pressure drop was attained at a bag-cap acceleration of 1.4 g (amplitude 2 in. and frequency 3 Hz). Low frequency high-amplitude shaking was more effective than high-frequency low-amplitude shaking. Shake durations around 20 s (at 3 Hz) preceded by deflation flows equivalent to about one-sixth total bag volume (1 ft/min deflation flow for 3 s) gave optimal performance. 9 refs., 12 figs., 5 tabs.

  11. 77 FR 37653 - Utility Scale Wind Towers From the People's Republic of China: Alignment of Final Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ...: Initiation of Countervailing Duty Investigation, 77 FR 3447 (January 24, 2012) and Utility Scale Wind Towers... Duty Investigations, 77 FR 3440 (January 24, 2012). \\2\\ See Utility Scale Wind Towers From the People's Republic of China: Preliminary Affirmative Countervailing Duty Determination, 77 FR 33422 (June 6,...

  12. Development of a cavitating descaling technique for on-line geothermal pipe and component cleaning and scale removal. Final report

    SciTech Connect

    Howard, S.C.; Bohli, W.H.

    1980-01-01

    The use of cavitation for cleaning and removing geothermal scale from pipes and system components is discussed. A study of the technical feasibility of using cavitation to remove scale is described including the preliminary fold test, the GLEF in-plant field demonstration, a production line cleaning trial, and recommendations. (MHR)

  13. QUIJOTE telescope design and fabrication

    NASA Astrophysics Data System (ADS)

    Gomez, Alberto; Murga, Gaizka; Etxeita, Borja; Sanquirce, Rubén; Rebolo, Rafael; Rubiño-Martin, Jose Alberto; Herreros, José-Miguel; Hoyland, Roger; Gomez, Francisca; Génova-Santos, Ricardo T.; Piccirillo, Lucio; Maffei, Bruno; Watson, Robert

    2010-07-01

    The QUIJOTE CMB experiment aims to characterize the polarization of the CMB in the frequency range 10-30 GHz and large angular scales. It will be installed in the Teide Observatory, following the projects that the Anisotropy of the Cosmic Microwave Background group has developed in the past (Tenerife experiment, IAC-Bartol experiment...) and is running at the present time (VSA, Cosmosomas). The QUIJOTE CMB experiment will consist of two telescopes which will be installed inside a unique enclosure, which is already constructed. The layout of both telescopes is based on an altazimuth mount supporting a primary and a secondary mirror disposed in a offset Gregorian Dragon scheme. The use of industrial-like fabrication techniques, such as sand-mould casting, CNC machining, and laser tracker measuring for alignment, provided the required performances for microwave observation. A fast-track construction scheme, altogether with the use of these fabrication techniques allowed designing and manufacturing the opto-mechanics of the telescope in 14 months prior to delivery for final start-up in December 2008.

  14. Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    SciTech Connect

    1994-09-01

    IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

  15. Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: the key roles of Cl and Ar-flow rates.

    PubMed

    Boi, Filippo S; Guo, Jian; Wang, Shanling; He, Yi; Xiang, Gang; Zhang, Xi; Baxendale, Mark

    2016-03-18

    A key challenge in the fabrication of ferromagnetically filled carbon-nanotube buckypapers in the presence of Cl-radicals is the achievement of a preferential horizontal nanotube-alignment. We show that a horizontal-alignment can be achieved by tuning two main CVD parameters for a fixed dichlorobenzene concentration: the precursor-evaporation temperature and the flow rate. PMID:26905009

  16. Final Technical Report for DUSEL Research and Development on Sub-Kelvin Germanium Detectors for Ton Scale Dark Matter Search

    SciTech Connect

    Cabrera, Blas

    2012-09-10

    We have supported one graduate student and a small percentage of fabrication staff on $135k per year for three years plus one no cost extension year on this DUSEL R&D grant. There were three themes within our research program: (1) how to improve the radial sensitivity for single sided phonon readout with four equal area sensors of which three form a central circle and fourth a surrounding ring; (2) how to instrument double sided phonon readouts which will give us better surface event rejection and increased fiducial volume for future CDMS style detectors; and (3) can we manufacture much larger Ge detectors using six inch diameter material which is not suitable for standard gamma ray spectroscopy.

  17. 77 FR 75984 - Utility Scale Wind Towers From the Socialist Republic of Vietnam: Final Determination of Sales at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... Department considers Vietnam to be a non-market economy (``NME'') country.\\10\\ In accordance with section 771... Postponement of Final Determination: Certain Frozen Fish Fillets from the Socialist Republic of Vietnam, 68 FR... Socialist Republic of Vietnam, 68 FR 37116 (June 23, 2003). Section 776(b) of the Act provides that,...

  18. 77 FR 75992 - Utility Scale Wind Towers From the People's Republic of China: Final Determination of Sales at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... of Sales at Less Than Fair Value and Postponement of Final Determination, 77 FR 46034 (August 2, 2012... economy purchase price for winches.\\17\\ \\17\\ See Issues and Decision Memorandum at Comment 15; Memorandum... Verification Report at 1; Titan's Verification Report at 1. Non-Market Economy Country The PRC has been...

  19. 78 FR 11150 - Utility Scale Wind Towers From the Socialist Republic of Vietnam: Amended Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... Determination, 77 FR 46058 (August 2, 2012) (``Preliminary Determination''). \\9\\ Section 736(b)(2) of the Act...: Background In accordance with sections 735(d) and 777(i)(1) of the Tariff Act of 1930, as amended (``Act... Less Than Fair Value, 77 FR 75984 (December 26, 2012) (``Final Determination''). \\2\\ See Utility...

  20. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner. Final report

    SciTech Connect

    Bose, S.; Sheffler, K.D.

    1988-02-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  1. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    EPA Science Inventory

    This report describes the scenarios and models used to generate national-scale housing density scenarios for the conterminous US to the year 2100 as part of the Integrated Climate and Land Use Scenarios (ICLUS) project. The report was prepared by the Global Change Research Progra...

  2. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  3. Plasmonic nanoring fabrication tuned to pitch: Efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices

    SciTech Connect

    Lehr, D.; Dietrich, K.; Siefke, T.; Kley, E.-B.; Alaee, R.; Filter, R.; Lederer, F.; Rockstuhl, C.; Tünnermann, A.

    2014-10-06

    A double-patterning process for scalable, efficient, and deterministic nanoring array fabrication is presented. It enables gaps and features below a size of 20 nm. A writing time of 3 min/cm{sup 2} makes this process extremely appealing for scientific and industrial applications. Numerical simulations are in agreement with experimentally measured optical spectra. Therefore, a platform and a design tool for upcoming next generation plasmonic devices like hybrid plasmonic quantum systems are delivered.

  4. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    SciTech Connect

    Jon Chorover, University of Arizona; Peggy O'€™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  5. Final Report, DE-FG02-92ER14261, Pore Scale Geometric and Fluid Distribution Analysis

    SciTech Connect

    W. Brent Lindquist

    2005-01-21

    The elucidation of the relationship between pore scale structure and fluid flow in porous media is a fundamental problem of long standing interest. Incomplete characterization of medium properties continues to be a limiting factor in accurate field scale simulations. The accomplishments of this grant have kept us at the forefront in investigating the applicability of X-ray computed microtomography (XCMT) as a tool for contributing to the understanding of this relationship. Specific accomplishments have been achieved in four areas: - development of numerical algorithms (largely in the field of computational geometry) to provide automated recognition of and measurements on features of interest in the pore space. These algorithms have been embodied in a software package, 3DMA-Rock. - application of these algorithms to extensive studies of the pore space of sandstones. - application of these algorithms to studies of fluid (oil/water) partitioning in the pore space of Berea sandstone and polyethylene models. - technology transfer.

  6. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters Final Report to the Subsurface Biogeochemical Research Program

    SciTech Connect

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-10

    . In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.

  7. Preliminary Scaling and controls Analysis of an FHR-HTSE System Idaho National Laboratory Summer 2013 Final Report

    SciTech Connect

    Shannon Bragg-Sitton; Piyush Sabharwall; Rohit Upadhya

    2013-08-01

    For new nuclear reactor system designs to be approved by regulatory agencies like the Nuclear Regulatory Commission (NRC), the details of system operation must be validated with respect to standards of safety, control, and output. A scaled experiment that replicates certain properties of the system can be used to validate compliance with regulatory standards, while avoiding the prohibitive cost and labor required to develop a fully functional prototype system; therefore, designing such an experiment is of special interest to current efforts to develop hybrid energy systems (HES) that integrate small modular reactors (SMRs), renewable energy systems, and industrial process applications such as hydrogen production and desalination. In addition, a scaled experiment can be an economical method of analyzing the interconnections between HES components and understanding the time constants associated between inter-component energy and information flows. This report discusses the results of a preliminary scaling analysis done for the primary loop of a 300 MWth Fluoride-Salt-Cooled High Temperature Reactor (FHR) that is coupled with a High-Temperature Steam Electrolysis system (HTSE), as well as the basic control logic that governs the primary components and the necessary hardware to achieve optimal functionality. The scaled facility will be a 1 MWth system that uses Dowtherm A as the simulant fluid for Flibe (the coolant of choice for the primary loop of molten salt reactors), and can validate the heat transfer and steady-state operational requirements of the 300 MWth prototype. The scaled facility matches the Prandtl and Reynolds numbers associated with steady-state operation of the FHR-HTSE’s primary loop without having to deal with very high temperatures, flow rates, or power inputs. This will allow the facility to run experiments that analyze various thermophysical and fluid-dynamic properties that characterize reactor operation, such as pressure drops, radial

  8. Preliminary Scaling and controls Analysis of an FHR-HTSE System Idaho National Laboratory Summer 2013 Final Report

    SciTech Connect

    Shannon Bragg-Sitton; Piyush Sabharwall; Rohit Upadhya

    2014-01-01

    For new nuclear reactor system designs to be approved by regulatory agencies like the Nuclear Regulatory Commission (NRC), the details of system operation must be validated with respect to standards of safety, control, and output. A scaled experiment that replicates certain properties of the system can be used to validate compliance with regulatory standards, while avoiding the prohibitive cost and labor required to develop a fully functional prototype system; therefore, designing such an experiment is of special interest to current efforts to develop hybrid energy systems (HES) that integrate small modular reactors (SMRs), renewable energy systems, and industrial process applications such as hydrogen production and desalination. In addition, a scaled experiment can be an economical method of analyzing the interconnections between HES components and understanding the time constants associated between inter-component energy and information flows. This report discusses the results of a preliminary scaling analysis done for the primary loop of a 300 MWth Fluoride-Salt-Cooled High Temperature Reactor (FHR) that is coupled with a High-Temperature Steam Electrolysis system (HTSE), as well as the basic control logic that governs the primary components and the necessary hardware to achieve optimal functionality. The scaled facility will be a 1 MWth system that uses Dowtherm A as the simulant fluid for Flibe (the coolant of choice for the primary loop of molten salt reactors), and can validate the heat transfer and steady-state operational requirements of the 300 MWth prototype. The scaled facility matches the Prandtl and Reynolds numbers associated with steady-state operation of the FHR-HTSE’s primary loop without having to deal with very high temperatures, flow rates, or power inputs. This will allow the facility to run experiments that analyze various thermophysical and fluid-dynamic properties that characterize reactor operation, such as pressure drops, radial

  9. Scale-Up of CdTe Photovoltaic Device Processes for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-06-196

    SciTech Connect

    Albin, D.

    2013-02-01

    Through this Cooperative Research and Development Agreement, NREL and PrimeStar Solar will work together to scale up the NREL CdTe photovoltaic process from the laboratory to produce photovoltaic devices in a size that is commercially viable. The work in this phase will focus on the transference of NREL CdTe device fabrication techniques to PrimeStar Solar. NREL and PrimeStar Solar will engage in a series of technical exchange meetings and laboratory training sessions to transfer the knowledge of CdTe PV film growth from NREL to PrimeStar Solar. PrimeStar Solar will grow thin films on PrimeStar Solar equipment and interleave them with NREL-grown films in an effort to develop a commercial scale process on PrimeStar Solar equipment. Select NREL film growth equipment will be upgraded either by PrimeStar Solar or at PrimeStar Solar's expense to increase equipment reliability and throughput.

  10. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  11. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    SciTech Connect

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  12. Scaling and modeling of three-dimensional, end-wall, turbulent boundary layers. Ph.D. Thesis - Final Report

    NASA Technical Reports Server (NTRS)

    Goldberg, U. C.; Reshotko, E.

    1984-01-01

    The method of matched asymptotic expansion was employed to identify the various subregions in three dimensional, turbomachinery end wall turbulent boundary layers, and to determine the proper scaling of these regions. The two parts of the b.l. investigated are the 3D pressure driven part over the endwall, and the 3D part located at the blade/end wall juncture. Models are proposed for the 3d law of the wall and law of the wake. These models and the data of van den Berg and Elsenaar and of Mueller are compared and show good agreement between models and experiments.

  13. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  14. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  15. Parallel supercomputing: Advanced methods, algorithms and software for large-scale problems. Final report, August 1, 1987--July 31, 1994

    SciTech Connect

    Carey, G.F.; Young, D.M.

    1994-12-31

    The focus of the subject DOE sponsored research concerns parallel methods, algorithms, and software for complex applications such as those in coupled fluid flow and heat transfer. The research has been directed principally toward the solution of large-scale PDE problems using iterative solvers for finite differences and finite elements on advanced computer architectures. This work embraces parallel domain decomposition, element-by-element, spectral, and multilevel schemes with adaptive parameter determination, rational iteration and related issues. In addition to the fundamental questions related to developing new methods and mapping these to parallel computers, there are important software issues. The group has played a significant role in the development of software both for iterative solvers and also for finite element codes. The research in computational fluid dynamics (CFD) led to sustained multi-Gigaflop performance rates for parallel-vector computations of realistic large scale applications (not computational kernels alone). The main application areas for these performance studies have been two-dimensional problems in CFD. Over the course of this DOE sponsored research significant progress has been made. A report of the progression of the research is given and at the end of the report is a list of related publications and presentations over the entire grant period.

  16. (Design and operation of a portable ethanol plant). Final report. [Small-scale (5-10 gal/h)

    SciTech Connect

    Glenn, K.C.

    1983-09-25

    A portable distillation plant with a packed reflux column was designed and built that is capable of producing 10 to 15 gallons of 190 proof ethanol per hour. Several kinds of feedstocks were used to produce ethanol. Corn served as a good feedstock and was easily processed in the still. However, because of the present high prices of corn and the manual labor for operation it cannot be used to produce ethanol commercially as a fuel at prices competitive with petroleum fuels. Cellulosic feedstocks such as paper, sawdust and grasses and leaves were enzymatically degraded to sugars and fermented to ethanol. Because of the manual labor required and small capacity of the still total operation costs would preclude competitive fuel prices. However, such a plant could be used on a farm for production of a supplementary fuel or for independence from petroleum fuels. The trials with cellulosic materials did give evidence that such feedstocks are plausible sources for ethanol when produced on a large scale in an automated production plant. On a large scale basis ethanol could be produced competitively as an alternative fuel for gasoline.

  17. Surfactant studies for bench-scale operation. Final technical progress report, July 1, 1992--March 31, 1994

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1994-03-31

    The present work effort relates to an investigation of surfactant-assisted coal liquefaction with the objective of quantifying the enhancement in overall coal conversions and the product quality. Based on the results of a Phase 1 preliminary study on the effect of several surfactants on coal liquefaction, sodium lignosulfonate was chosen as the surfactant for a detailed parametric study to be conducted at JPL using a batch autoclave reactor. These tests primarily related to thermal liquefaction of coal. The results of JPL autoclave test runs showed an increase in overall conversions from 5 to 15% due to surfactant addition over the base case of coal alone. A continuous-flow bench scale coal liquefaction process run was conducted over a 5-day period at Hydrocarbon Research Incorporated (HRI). This test showed that the surfactant is suitable for an industrial continuous recycle process, and does not interfere with the supported catalyst. After the bench scale test, a series of autoclave runs were conducted with coprocessing the surfactant and the Ni-Mo catalyst. These experiments showed that high conversions and product quality can be maintained at milder processing conditions. Based on results of the autoclave test runs, the overall product values were obtained for two stage reactors at 400{degrees}C. The best product value was realized for the two-stage case (e) which showed an 8% improvement over the base case.

  18. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    SciTech Connect

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  19. A high-yield two-step transfer printing method for large-scale fabrication of organic single-crystal devices on arbitrary substrates.

    PubMed

    Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2014-01-01

    Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458

  20. A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates

    PubMed Central

    Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2014-01-01

    Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458

  1. Fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed and compact optical printed circuit board (O-PCB) and VLSI photonic applications

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Kang, J. K.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We report on the design, fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed, compact, light-weight, low power optical printed circuit boards (O-PCBs) and VLSI photonic applications. The optical wires are formed in the form of waveguides by thermal embossing and ultraviolet (UV) radiated embossing of polymer materials. The photonic devices include vertically coupled surface emitting laser (VCSEL) microlasers, microlenses, 45-degree reflection couplers, directional couplers, arrayed waveguide grating structures, multimode interference (MMI) devices and photodetectors. These devices are optically interconnected and integrated for O-PCB assembly and VLSI micro/nano-photonics. The O-PCBs are to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We report on the result of the optical transmission performances of these assembled O-PCBs. For the design, fabrication, and VLSI integration of nano-scale photonic devices, we used photonic crystal structures and plasmonic metallic waveguide structures. We examined the bandwidth, power dissipation, thermal stability, weight, and the miniaturization and density of optical wires and the O-PCB module. Characteristics of these devices are also described.

  2. Final Report on DOE Project entitled Dynamic Optimized Advanced Scheduling of Bandwidth Demands for Large-Scale Science Applications

    SciTech Connect

    Ramamurthy, Byravamurthy

    2014-05-05

    In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published several conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.

  3. Optimization and scale-up of fermentation process for production of microbial polysaccharide. Final technical progress report

    SciTech Connect

    Buller, C.S.

    1994-12-21

    This grant was awarded to provide for the scale-up of the process of production of a (1 {r_arrow})-{beta}-D-glucan which is produced by Cellulomonas flavigena. One of the goals was to provide sufficient amounts of the polysaccharide polymer to conduct a field test of its usefulness in subterranean permeability modification procedures of enhanced oil recovery. During September and October, 1994, fermentations and recoveries were done by Abbott Laboratories, to develop a process to provide at least 400 lbs of the glucan polymer for field testing. Shake flask runs and four fermentation runs were completed. A summary of the fourth fermentation run, conducted in a 40,000 liter fermentor, follows.

  4. Mathematical methods in material science and large scale optimization workshops: Final report, June 1, 1995-November 30, 1996

    SciTech Connect

    Friedman, A.

    1996-12-01

    The summer program in Large Scale Optimization concentrated largely on process engineering, aerospace engineering, inverse problems and optimal design, and molecular structure and protein folding. The program brought together application people, optimizers, and mathematicians with interest in learning about these topics. Three proceedings volumes are being prepared. The year in Materials Sciences deals with disordered media and percolation, phase transformations, composite materials, microstructure; topological and geometric methods as well as statistical mechanics approach to polymers (included were Monte Carlo simulation for polymers); miscellaneous other topics such as nonlinear optical material, particulate flow, and thin film. All these activities saw strong interaction among material scientists, mathematicians, physicists, and engineers. About 8 proceedings volumes are being prepared.

  5. Continuous bench-scale tests to assess METHOXYCOAL process performance. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Knight, R.A.; Carty, R.H.

    1992-12-31

    Laboratory-scale research conducted at Southern Illinois University at Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4}/O{sub 2} in a 97:3 mole ratio (the METHOXYCOAL process) can produce high yields of liquids and valuable chemical feedstocks, particularly phenols, cresols, and xylenols (PCX). The addition of magnesia, coal ash, or clays have been shown to further enhance coal conversion to these chemicals. The goal of this two-year project was to build upon that laboratory research by conducting continuous bench-scale tests at IGT. Tests were conducted with IBC-101 and IBC-105 coals under N{sub 2}, CH{sub 4}, and CH{sub 4}/O{sub 2} blends, with and without mineral additives, at temperatures and pressures up to 1000{degree}F and 200 psig. These tests have provided data valuable to further development efforts on the process. In the first year, fluidized-bed tests were conducted using inert bed diluents (coke and sand) to retard agglomeration. PCX yields of 0.99 wt% maf coal were achieved in CH{sub 4} atmosphere, tripling the yield in N, atmosphere, while overall liquid yields were 18--20 wt% maf in either atmosphere. However, control of caking was difficult in spite of a very high bed dilution ratio of 4.5:1. During the second year, agglomeration was controlled by slurry impregnation of the coal with coal ash, magnesia, or montmorillonite at levels as low as 10 wt%. Thirteen continuous tests were conducted in 2-inch fluidized-bed and moving-bed reactors at test conditions of 900{degree}--1000{degree}F and 120 psig.

  6. APT target-blanket fabrication development

    SciTech Connect

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  7. SUPPLEMENTARY COMPARISON: Final report of EUROMET.T-S1 (EUROMET project 658): The examination of base parameters for ITS-90 scale realisation in radiation thermometry

    NASA Astrophysics Data System (ADS)

    McEvoy, H. C.

    2008-01-01

    Over the years, a number of international comparisons have been performed, in the field of radiation thermometry, to compare realisation of temperature scales. These have involved the use of a transfer instrument circulated among participants and were designed to compare the different ITS-90 realisations at different national measurement institutes (NMIs). EUROMET project 658 ('The examination of base parameters for ITS-90 scale realisation') was instigated to investigate the uncertainties of some of the underlying parameters in these ITS-90 realisations, namely: the size-of-source effect, linearity and relative spectral response of a radiation thermometer, and the calculation of the emissivity of different designs of blackbody cavity. The comparison was led by NPL and involved the following NMIs: PTB, VSL, CEM, UME, BNM-INM (Cnam) and IMGC. The comparison was performed by circulating two precision radiation thermometers (an IKE LP3 belonging to PTB and a VEGA TSP2 belonging to IMGC). This report describes the measurement procedures used in each laboratory and compares the results obtained from the measurements by the participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EUROMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  8. Parallel fabrication of nanogap electrodes.

    PubMed

    Johnston, Danvers E; Strachan, Douglas R; Johnson, A T Charlie

    2007-09-01

    We have developed a technique for simultaneously fabricating large numbers of nanogaps in a single processing step using feedback-controlled electromigration. Parallel nanogap formation is achieved by a balanced simultaneous process that uses a novel arrangement of nanoscale shorts between narrow constrictions where the nanogaps form. Because of this balancing, the fabrication of multiple nanoelectrodes is similar to that of a single nanogap junction. The technique should be useful for constructing complex circuits of molecular-scale electronic devices.

  9. Quantum Bridge Fabrication Using Photolithography

    SciTech Connect

    Quinones, R.

    2001-04-16

    The need for high-speed performance electronics in computers integrated circuits and sensors, require the fabrication of low energy consumption diodes. Nano fabrication methods require new techniques and equipment. We are currently developing a procedure to fabricate a diode based on quantum-effects. The device will act like a traditional diode, but the nanometer scale will allow it to reach high speeds without over heating. This new diode will be on a nano-bridge so it can be attenuated by an electromagnetic wave. The goal is to obtain similar current vs voltage response as in a silicon diode.

  10. Fabrication of polyetheretherketone (PEEK) parts. Final report

    SciTech Connect

    Nelson, R.W.

    1991-12-01

    A literature search was conducted for polyetheretherketone (PEEK) thermoplastic to investigate its physical properties and molding applications. Simple molds were designed, built, and tested using PEEK molding compound. Molding parameters and shrink factors were determined. Physical properties varied with the percent of crystalline PEEK present. Annealing the molded parts enhanced their physical properties and increased the percent crystallinity. 11 refs.

  11. Final Report PetaScale Application Development Analysis Grant Number DE-FG02-04ER25629

    SciTech Connect

    Robert W. Numrich

    2008-06-20

    The results obtained from this project will fundamentally change the way we look at computer performance analysis. These results are made possible by the precise definition of a consistent system of measurement with a set of primary units designed specifically for computer performance analysis. This system of units, along with their associated dimensions, allows us to apply the methods of dimensional analysis, based on the Pi Theorem, to define scaling and self-similarity relationships. These relationships reveal new insights into experimental results that otherwise seems only vaguely correlated. Applying the method to cache-miss data revealed scaling relationships that were not seen by those who originally collected the data. Applying dimensional analysis to the performance of parallel numerical algorithms revealed that computational force is a unifying concept for understanding the interaction between hardware and software. The efficiency of these algorithms depends, in a very intimate way, on the balance between hardware forces and software forces. Analysis of five different algorithms showed that performance analysis can be reduced to a study of the differential geometry of the efficiency surface. Each algorithm defines a set of curvilinear coordinates, specific to that algorithm, and different machines follow different paths along the surface depending on the difference in balance between hardware forces and software forces. Two machines with the same balance in forces follow the same path and are self-similar. The most important result from the project is the statement of the Principle of Computational Least Action. This principle follows from the identification of a dynamical system underlying computer performance analysis. Instructions in a computer are modeled as a classical system under the influence of computational forces. Each instruction generates kinetic energy during execution, and the sum of the kinetic energy for all instructions produces a

  12. Denitrification in nonhomogeneous laboratory-scale aquifers: 4. Hydraulics, nitrogen chemistry, and microbiology in a single layer. Final report

    SciTech Connect

    Lindstrom, F.T.; Boersma, L.; Myrold, D.; Barlaz, M.

    1991-04-01

    A two-dimensional mathematical model for simulating the transport and fate of organic chemicals in a laboratory scale, single layer aquifer is presented. The aquifer can be nonhomogeneous and anisotropic with respect to its fluid flow properties. The physical model has open inlet and outlet ends and is bounded by impermeable walls on all sides. Fully penetrating injection and/or extraction wells can be placed anywhere in the flow field. The inlet and outlet boundaries have user prescribed hydraulic pressure fields. The steady state hydraulic pressure field is obtained first by using the two-dimensional Darcy flow law and the continuity equation. The chemical transport and fate equation is then solved in terms of user stipulated initial and boundary conditions. The model accounts for the major physical processes of storage, dispersion, and advection, and also can account for linear equilibrium sorption, first-order loss processes, microbial denitrification, irreversible sorption and/or dissolution into the organic phase, metabolism in the sorbed state, and first order loss in the sorbed state.

  13. High-temperature gas filtration. Volume 2, Operating performance of a pilot-scale filter: Final report

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U.

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900{degrees}C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM{sub w} at 200 to 650{degrees}C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  14. Small-scale hydropower from irrigation canals near Albuquerque, NM. Final report, 1 January 1981-31 December 1981

    SciTech Connect

    Heggen, R.J.

    1982-04-01

    Although intermittent stream flows restrict hydroelectric potential throughout New Mexico, there exists a possibility for small-scale hydroelectric (SSH) development. One area of current interest involves irrigation canals. Generally the flows in such canals are seasonal with low volume and low power potential. The environmentally sound nature SSH and the proximity of canal sites to irrigation pumping stations make canal SSH a possible source of hydropower for pumps or other remote, small, seasonal electric demands. The Middle Rio Grande Conservancy District system consists of irrigation canals paralleling the Rio Grande from Cochiti Dam to Bosque del Apache, New Mexico. Assessments of engineering and economic feasibility for two demonstration sites meeting institutional, regulatory, environmental, and legal restrictions were carried out. Design parameters, required equipment and its sizing, power plant layout, power production and the plant operating criteria were evaluated. The canal sites were selected on the basis of available flow and head values to demonstrate the different types of SSH layouts and uses of generated power. One of the sites would require the retrofit of the SSH power plant into the existing concrete canal structure and could use the generated power to operate a nearby irrigation pump. At the second site, the unit would be placed on new site construction.

  15. Development of laser-plasma diagnostics using ultrafast atomic-scale dynamics. 96-ERD-046 final report

    SciTech Connect

    Bolton, P.R.; Kulander, K.C.; Boreham, B.W.

    1997-03-01

    Ultrashort laser pulse systems allow examination of intense, ultrafast laser-plasma interactions. More specifically, intense laser irradiation can induce short xuv/x-ray bursts from the surface of condensed phase targets. Ultrafast xuv/x-ray detection is needed to understand laser-plasma interactions in this dynamic regime. Support of the Stockpile Stewardship and Management Program requires this critical understanding. Our effort here has been to extend understanding of atomic-scale dynamics in such environments with the goal of developing next generation ultrafast xuv/x-ray diagnostics where the sensors will be the atoms and ions themselves and the time resolution will approach that of the induced atomic transitions ({approx} a few femtoseconds). Pivotal contributions to the rapidly developing field of highly nonperturbative interactions of ultrashort pulse lasers with atoms/ions have been made at this laboratory. In the visible/infrared wavelength regions the temporal and spectral content of ultrashort laser pulses are now reliably monitored within a single pulse using frequency resolved optical gating (FROG) which is based on rapid nonlinear optical processes such as the Kerr effect. New applications of this basic concept are still being developed. Corresponding detection for the xuv/x-ray wavelengths does not exist and is urgently needed in many laboratory programs. The FROG technique cannot be applied in the xuv/x-ray region. Current x-ray streak camera technology is limited to {approx}0.5 picosecond resolution.

  16. Pilot-scale Limestone Emission Control (LEC) process: A development project. Volume 1, Main report and appendices A, B, C, and D: Final report

    SciTech Connect

    Prudich, M.E.; Appell, K.W.; McKenna, J.D.

    1994-03-01

    ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. A nominal 5,000 acfm LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. A total of over 90 experimental trials have been performed using the pilot-scale moving-bed LEC dry scrubber as a part of this research project with run times ranging up to a high of 125 hours. SO{sub 2} removal efficiencies as high as 99.9% were achievable for all experimental conditions studied during which sufficient humidification was added to the LEC bed. The LEC process and conventional limestone scrubbing have been compared on an equatable basis using flue gas conditions that would be expected at the outlet of the electrostatic precipitator (ESP) of a 500 MW coal-fired power plant. The LEC was found to have a definite economic advantage in both direct capital costs and operating costs. Based on the success and findings of the present project, the next step in LEC process development will be a full-scale commercial demonstration unit.

  17. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  18. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1

  19. Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(0 0 1) wafers processed and nanopackaged in a clean room environment

    NASA Astrophysics Data System (ADS)

    Kolmer, Marek; Godlewski, Szymon; Zuzak, Rafal; Wojtaszek, Mateusz; Rauer, Caroline; Thuaire, Aurélie; Hartmann, Jean-Michel; Moriceau, Hubert; Joachim, Christian; Szymonski, Marek

    2014-01-01

    Specific surfaces allowing the ultra-high vacuum (UHV) creation of electronic interconnects and atomic nanostructures are required for the successful development of novel nanoscale electronic devices. Atomically flat and reconstructed Si(0 0 1):H surfaces are serious candidates for that role. In this work such Si:H surfaces were prepared in a cleanroom environment on 200 mm silicon wafers with a hydrogen bake and were subsequently bonded together to ensure the surface protection, and allow their transportation and storage for several months in air. Given the nature of the bonding, which was hydrophobic with weak van der Waals forces, we were then able to de-bond them in UHV. We show that the quality of the de-bonded Si:H surface enables the "at will" construction of sophisticated and complex dangling bond (DB) nanostructures by atomically precise scanning tunneling microscope (STM) tip induced desorption of hydrogen atoms. The DB structures created on slightly doped Si:H samples were characterized by scanning tunneling microscopy and spectroscopy (STM/STS) performed at 4 K. Our results demonstrate that DB nanostructures fabricated on UHV de-bonded Si(0 0 1):H wafers could be directly incorporated in future electronics as interconnects and parts of nanoscale logic circuits.

  20. Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes.

    PubMed

    Wongkasem, Nantakan; Akyurtlu, Alkim; Marx, Kenneth A; Goodhue, William D; Li, Jin; Dong, Qi; Ada, Earl T

    2007-06-01

    In this report, we describe the fabrication of a chiral metamaterial based on a periodic array of Y-shaped Al structures on a dielectric Mylar substrate. The unit cell dimensions of the Y-structure are approximately 100 microm on a side with 8 microm linewidths. The fabricated Y-structure elements are characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Quantitative elemental analyses were carried out on both the Y-structure, comprised of Al and its oxide, as well as adjacent regions of the underlying mylar substrate using the energy dispersive X-ray spectroscopy (EDS) capability of the SEM. Finite-Difference Time-Domain (FDTD) calculations of the negative index of refraction for a 3D wedge of multiple layers of the 2D metamaterials showed that these metamaterials possess double negative (-mu,-epsilon) electromagnetic bulk properties at THz frequencies. The same negative index of refraction was determined for a wedge comprised of appropriately scaled larger Y-structures simulated in the microwave region. This double negative property was confirmed experimentally by microwave measurements on a 3D wedge comprised of stacked and registered Y-structure sheets.

  1. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modelling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, principally an MHD electrode for strategic defense initiative (SDI) applications. A high stress, low cost, ceramic component is to be selected, designed and, if possible, analyzed. The final design for the MHD electrode comprised a layered structure of molybdenum disilicide graded with quartz glass. The design demonstrates the fabrication capabilities of the CCF process. The high stress component was targeted at armor applications and will be thick alumina plate. Silicon carbide reinforcement of the alumina will be explored. Task 2 is directed at establishing a mechanical properties data base for monolithic and laminated alumina fabricated using the CCF process. Task 3 involved production of a solid oxide fuel cell model electrode; however, work ceased when it became apparent that successful integration of the electrode modules would require additional time. Currently, work is principally focused on the production of thick CCF alumina plates; three test plates were ballistically tested and showed a very satisfactory performance. Silicon carbide reinforcement of the CCF alumina is being explored. Effort on the CCF processing of molybdenum disilicide (a nonoxide material) continued at a reduced level. Sinter aids were explored, and densities of 87% theoretical density on pressureless sintered dry pressed pellets were achieved. 1 ref., 9 figs., 4 tabs.

  2. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys

    NASA Astrophysics Data System (ADS)

    Bergner, Frank; Hilger, Isabell; Virta, Jouko; Lagerbom, Juha; Gerbeth, Gunter; Connolly, Sarah; Hong, Zuliang; Grant, Patrick S.; Weissgärber, Thomas

    2016-07-01

    The standard powder metallurgy (PM) route for the fabrication of oxide-dispersion-strengthened (ODS) steels involves gas atomization to produce a prealloyed powder, mechanical alloying (MA) with fine oxide powders, consolidation, and finally thermal/thermomechanical treatment (TMT). It is well established that ODS steels with superior property combinations, for example, creep and tensile strength, can be produced by this PM/MA route. However, the fabrication process is complex and expensive, and the fitness for scaling up to the industrial scale is limited. At the laboratory scale, production of small amounts of well-controlled model systems continues to be desirable for specific purposes, such as modeling-oriented experiments. Thus, from the laboratory to industrial application, there is growing interest in complementary or alternative fabrication routes for ODS steels and related model systems, which offer a different balance of cost, convenience, properties, and scalability. This article reviews the state of the art in ODS alloy fabrication and identifies promising new routes toward ODS steels. The PM/AM route for the fabrication of ODS steels is also described, as it is the current default process. Hybrid routes that comprise aspects of both the PM route and more radical liquid metal (LM) routes are suggested to be promising approaches for larger volumes and higher throughput of fabricated material. Although similar uniformity and refinement of the critical nanometer-sized oxide particles has not yet been demonstrated, ongoing innovations in the LM route are described, along with recent encouraging preliminary results for both extrinsic nano-oxide additions and intrinsic nano-oxide formation in variants of the LM route. Finally, physicochemical methods such as ion beam synthesis are shown to offer interesting perspectives for the fabrication of model systems. As well as literature sources, examples of progress in the authors' groups are also highlighted.

  3. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys

    NASA Astrophysics Data System (ADS)

    Bergner, Frank; Hilger, Isabell; Virta, Jouko; Lagerbom, Juha; Gerbeth, Gunter; Connolly, Sarah; Hong, Zuliang; Grant, Patrick S.; Weissgärber, Thomas

    2016-11-01

    The standard powder metallurgy (PM) route for the fabrication of oxide-dispersion-strengthened (ODS) steels involves gas atomization to produce a prealloyed powder, mechanical alloying (MA) with fine oxide powders, consolidation, and finally thermal/thermomechanical treatment (TMT). It is well established that ODS steels with superior property combinations, for example, creep and tensile strength, can be produced by this PM/MA route. However, the fabrication process is complex and expensive, and the fitness for scaling up to the industrial scale is limited. At the laboratory scale, production of small amounts of well-controlled model systems continues to be desirable for specific purposes, such as modeling-oriented experiments. Thus, from the laboratory to industrial application, there is growing interest in complementary or alternative fabrication routes for ODS steels and related model systems, which offer a different balance of cost, convenience, properties, and scalability. This article reviews the state of the art in ODS alloy fabrication and identifies promising new routes toward ODS steels. The PM/AM route for the fabrication of ODS steels is also described, as it is the current default process. Hybrid routes that comprise aspects of both the PM route and more radical liquid metal (LM) routes are suggested to be promising approaches for larger volumes and higher throughput of fabricated material. Although similar uniformity and refinement of the critical nanometer-sized oxide particles has not yet been demonstrated, ongoing innovations in the LM route are described, along with recent encouraging preliminary results for both extrinsic nano-oxide additions and intrinsic nano-oxide formation in variants of the LM route. Finally, physicochemical methods such as ion beam synthesis are shown to offer interesting perspectives for the fabrication of model systems. As well as literature sources, examples of progress in the authors' groups are also highlighted.

  4. Microoptical system and fabrication method therefor

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  5. Microoptical System And Fabrication Method Therefor

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-03-15

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  6. Performance Modeling and Cost Analysis of a Pilot-Scale Reverse Osmosis Process for the Final Purification of Olive Mill Wastewater

    PubMed Central

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Victor-Ortega, Maria Dolores; Martinez-Ferez, Antonio

    2013-01-01

    A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h−1 m−2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h−2 m−2 bar−1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day−1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m−3 total costs for the RO process were estimated. PMID:24957058

  7. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  8. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components. This quarter, the advanced molybdenum disicilide MHD electrode design was essentially completed. Final refinements will be made after molybdenum disilicide processing results are available and the final layer compositions are established. Work involving whisker incorporation was initiated on the high stress component. It is unlikely that whiskers will become low cost, so particulate reinforcement will be pursued. Modeling work will resume once a suitable aluminum oxide/silicon carbide composition is selected that can be fired to acceptable densities by pressureless sintering. Task 2, subcontracted to Applied Technology Laboratories (ATL), is principally directed at establishing a property data base for monolithic and laminated alumina fabricated using the CCF process. This quarter, ATL demonstrated that the CCF process does not compromise the flexure strength of alumina. Task 3, subcontracted to Ceramics Binder Systems, Inc., focused on CCF silicon carbide particulate reinforced alumina and on the development of processing procedures for nonoxide molybdenum disilicide. Preliminary results indicate that achieving high densities in silicon carbide particulate reinforced aluminum oxide will be difficult. Molybdenum disilicide results are encouraging, and it is clear that the CCF process will work with this nonoxide material. 3 refs., 18 figs., 4 tabs.

  9. Quantum dots-nanogap metamaterials fabrication by self-assembly lithography and photoluminescence studies.

    PubMed

    Tripathi, Laxmi Narayan; Kang, Taehee; Bahk, Young-Mi; Han, Sanghoon; Choi, Geunchang; Rhie, Jiyeah; Jeong, Jeeyoon; Kim, Dai-Sik

    2015-06-01

    We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique.

  10. A Versatile Fabrication Platform for the Exploration of New Electronic Materials and Device Structures

    NASA Astrophysics Data System (ADS)

    Collins, Daniel

    Ubiquitous concerns in device fabrication are nanoscale positioning and the integration of complex combinations of diverse materials, many of which are extremely fragile. Frequently the completed device requires one or more of the constituent materials to be synthesized under suboptimal conditions, thus compromising the performance of the final structure. We have developed a platform to fabricate multi-component electrode crossbar structures, where each material can be synthesized under its own ideal conditions. Furthermore, surface treatments and procedures that may otherwise be incompatible can be performed without concern of damage to the other constituent materials. We demonstrate our approach by fabricating an all carbon cross-bar electrode structure comprised of a graphene-graphite heterojunction. Initially, a graphene field effect transistor is fabricated using electron beam and optical lithography. The top graphite electrode is sculpted from a bulk piece of highly oriented pyrolytic graphite with the aid of a focused ion beam (FIB) and integrated micromanipulator system. This requires realtime shaping, cutting, accurate positioning (circa 100 nm precision) and wiring of the graphite top electrode. Electron transport characteristics of each electrode component and the final heterostructure have been measured. We show that this process is effective for the production of micron and submicron-scale multi-layer device structures including other materials such as gold. This fabrication scheme could be extended to produce novel structures such as mechanical resonators, and provide a foundation for combining fragile materials that have otherwise been incompatible with traditional fabrication techniques.

  11. Evaluation of LANL Capabilities for Fabrication of TREAT Conversion Fuel

    SciTech Connect

    Luther, Erik Paul; Leckie, Rafael M.; Dombrowski, David E.

    2014-03-06

    This report estimates costs and schedule associated with scale up and fabrication of a low-enriched uranium (LEU) core for the Transient Reactor Test Facility (TREAT) reactor. This study considers facilities available at Los Alamos National Laboratory, facility upgrades, equipment, installation and staffing costs. Not included are costs associated with raw materials and off-site shipping. These estimates are considered a rough of magnitude. At this time, no specifications for the LEU core have been made and the final schedule needed by the national program. The estimate range (+/-100%) reflects this large uncertainty and is subject to change as the project scope becomes more defined.

  12. FABRICATION OF WINDOW SADDLES FOR NIF CRYOGENIC HOHLRAUMS

    SciTech Connect

    GIRALDEZ,E; KAAE,J.L

    2003-06-01

    OAK-B135 A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. They solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this paper.

  13. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  14. Fabrication Of Micro-Nozzles Via {mu}-EDM Process

    SciTech Connect

    Modica, F.; Trotta, G.; Fassi, I.

    2011-01-17

    Since traditional handling mechanisms have an unpredictable behavior at micro scale, micro-assembly is a bottleneck in the development of hybrid micro-systems, and the development of new approaches is strongly demanded. In this paper, a recent study of the fabrication of a ceramics vacuum micro-gripper to handle parts in the range of hundreds of microns (300-1000) is presented. Among the possible micro manufacturing processes, micro-EDM has been selected as proving to be a very competitive fabrication technology for the manufacturing of ultra miniature components and micro sized features. The influence of the process parameters on the machining performance of interest is firstly investigated; then, the experimental results on machining the micro gripper are presented, finally concluding remarks are given.

  15. Fabrication Of Micro-Nozzles Via μ-EDM Process

    NASA Astrophysics Data System (ADS)

    Modica, F.; Ferraris, E.; Trotta, G.; Fassi, I.; Reynaerts, D.

    2011-01-01

    Since traditional handling mechanisms have an unpredictable behavior at micro scale, micro-assembly is a bottleneck in the development of hybrid micro-systems, and the development of new approaches is strongly demanded. In this paper, a recent study of the fabrication of a ceramics vacuum micro-gripper to handle parts in the range of hundreds of microns (300-1000) is presented. Among the possible micro manufacturing processes, micro-EDM has been selected as proving to be a very competitive fabrication technology for the manufacturing of ultra miniature components and micro sized features. The influence of the process parameters on the machining performance of interest is firstly investigated; then, the experimental results on machining the micro gripper are presented, finally concluding remarks are given.

  16. Cheap, Gram-Scale Fabrication of BN Nanosheets via Substitution Reaction of Graphite Powders and Their Use for Mechanical Reinforcement of Polymers

    PubMed Central

    Liu, Fei; Mo, Xiaoshu; Gan, Haibo; Guo, Tongyi; Wang, Xuebin; Chen, Bin; Chen, Jun; Deng, Shaozhi; Xu, Ningsheng; Sekiguchi, Takashi; Golberg, Dmitri; Bando, Yoshio

    2014-01-01

    As one of the most important two-dimensional (2D) materials, BN nanosheets attracted intensive interest in the past decade. Although there are many methods suitable for the preparation of BN sheets, finding a cheap and nontoxic way for their mass and high-quality production is still a challenge. Here we provide a highly effective and cheap way to synthesize gram-scale-level well-structured BN nanosheets from many common graphite products as source materials. Single-crystalline multi-layered BN sheets have a mean lateral size of several hundred nanometers and a thickness ranging from 5 nm to 40 nm. Cathodoluminescence (CL) analysis shows that the structures exhibit a near band-edge emission and a broad emission band from 300 nm to 500 nm. Utilization of nanosheets for the reinforcement of polymers revealed that the Young's modulus of BN/PMMA composite had increased to 1.56 GPa when the BN's fraction was only 2 wt.%, thus demonstrating a 20% gain compared to a blank PMMA film. It suggests that the BN nanosheet is an ideal mechanical reinforcing material for polymers. In addition, this easy and nontoxic substitution method may provide a universal route towards high yields of other 2D materials. PMID:24572725

  17. Optical Fabrication and Measurement AXAF and CIRS

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.

  18. Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.

    PubMed

    Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio

    2016-01-13

    We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.

  19. Process optimization in optical fabrication

    NASA Astrophysics Data System (ADS)

    Faehnle, Oliver

    2016-03-01

    Predictable and stable fabrication processes are essential for reliable cost and quality management in optical fabrication technology. This paper reports on strategies to generate and control optimum sets of process parameters for, e.g., subaperture polishing of small optics (featuring clear apertures smaller than 2 mm). Emphasis is placed on distinguishing between machine and process optimization, demonstrating that it is possible to set up the ductile mode grinding process by means other than controlling critical depth of cut. Finally, a recently developed in situ testing technique is applied to monitor surface quality on-machine while abrasively working the surface under test enabling an online optimization of polishing processes eventually minimizing polishing time and fabrication cost.

  20. Process control in optical fabrication

    NASA Astrophysics Data System (ADS)

    Faehnle, Oliver

    2015-09-01

    Predictable and stable fabrication processes are essential for reliable cost and quality management in optical fabrication technology. This paper reports on strategies to generate and control optimum sets of process parameters for e.g. sub-aperture polishing of small optics (featuring clear apertures smaller than 2 mm). Emphasis is placed to distinguish between machine and process optimization demonstrating, that e.g. it is possible setting up ductile mode grinding process by other means than controlling critical depth of cut. Finally, a recently developed in situ testing technique is applied to monitor surface quality on-machine while abrasively working the surface under test enabling an on-line optimization of polishing processes eventually minimizing polishing time and fabrication cost.

  1. Nanogap device: Fabrication and applications

    NASA Astrophysics Data System (ADS)

    Han, Jun Hyun

    A nanogap device as a platform for nanoscale electronic devices is presented. Integrated nanostructures on the platform have been used to functionalize the nanogap for biosensor and molecular electronics. Nanogap devices have great potential as a tool for investigating physical phenomena at the nanoscale in nanotechnology. In this dissertation, a laterally self-aligned nanogap device is presented and its feasibility is demonstrated with a nano ZnO dot light emitting diode (LED) and the growth of a metallic sharp tip forming a subnanometer gap suitable for single molecule attachment. For realizing a nanoscale device, a resolution of patterning is critical, and many studies have been performed to overcome this limitation. The creation of a sub nanoscale device is still a challenge. To surmount the challenge, novel processes including double layer etch mask and crystallographic axis alignment have been developed. The processes provide an effective way for making a suspended nanogap device consisting of two self-aligned sharp tips with conventional lithography and 3-D micromachining using anisotropic wet chemical Si etching. As conventional lithography is employed, the nanogap device is fabricated in a wafer scale and the processes assure the productivity and the repeatability. The anisotropic Si etching determines a final size of the nanogap, which is independent of the critical dimension of the lithography used. A nanoscale light emitting device is investigated. A nano ZnO dot is directly integrated on a silicon nanogap device by Zn thermal oxidation followed by Ni and Zn blanket evaporation instead of complex and time consuming processes for integrating nanostructure. The electrical properties of the fabricated LED device are analyzed for its current-voltage characteristic and metal-semiconductor-metal model. Furthermore, the electroluminescence spectrum of the emitted light is measured with a monochromator implemented with a CCD camera to understand the optical

  2. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  3. THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY, AND STELLAR MASSES FOR THE FINAL SAMPLE

    SciTech Connect

    Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Gavazzi, Raphaël; Marshall, Philip J.

    2013-11-10

    We present Hubble Space Telescope (HST) imaging data and Canada-France-Hawaii Telescope (CFHT) near-infrared ground-based images for the final sample of 56 candidate galaxy-scale lenses uncovered in the CFHT Legacy Survey as part of the Strong Lensing in the Legacy Survey project. The new images are used to perform lens modeling, measure surface photometry, and estimate stellar masses of the deflector early-type galaxies (ETGs). Lens modeling is performed on the HST images (or CFHT when HST is not available) by fitting the spatially extended light distribution of the lensed features assuming a singular isothermal ellipsoid mass profile and by reconstructing the intrinsic source light distribution on a pixelized grid. Based on the analysis of systematic uncertainties and comparison with inference based on different methods, we estimate that our Einstein radii are accurate to ∼3%. HST imaging provides a much higher success rate in confirming gravitational lenses and measuring their Einstein radii than CFHT imaging does. Lens modeling with ground-based images, however, when successful, yields Einstein radius measurements that are competitive with space-based images. Information from the lens models is used together with spectroscopic information from companion Paper IV to classify the systems, resulting in a final sample of 39 confirmed (grade A) lenses and 17 promising candidates (grade B,C). This represents an increase of half an order of magnitude in sample size with respect to the sample of confirmed lenses studied in Papers I and II. The Einstein radii of the confirmed lenses in our sample span the range 5-15 kpc and are typically larger than those of other surveys, probing the mass in regions where the dark matter contribution is more important. Stellar masses are in the range 10{sup 11}-10{sup 12} M{sub ☉}, covering the range of massive ETGs. The redshifts of the main deflector span a range 0.3 ≤ z{sub d} ≤ 0.8, which nicely complements low

  4. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    Lapointe, Donat J. E. (Inventor); Wright, Lawrence T. (Inventor); Vincent, Laurence J. (Inventor)

    1987-01-01

    A tapered tubular polyester sleeve is described to serve as the flexible foundation for a spacesuit limb covering. The tube has a large end and a small end with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end. A requisite number of warp yarns extend the full length of the sleeve. Other warp yarns extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel, heated in an oven, and then attached to the arm or other limb of the spacesuit.

  5. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    LaPointe, Donat J. E. (Inventor); Vincent, Laurence J. (Inventor); Wright, Lawrence T. (Inventor)

    1988-01-01

    A tapered tubular polyester sleeve as set forth. It has a large end 12 and a small end 14 with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end 12. A requisite number of warp yarns 16 extend the full length of the sleeve. Other warp yarns exemplified at 18, 22, 26, 28, 30 and 32 extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn 40 which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel 42, heated in an oven 44 and is thereafter placed on the arm or other limb of a space suit exemplified at 50.

  6. Expedited technology demonstration project final report: final forms

    SciTech Connect

    Hopper, R W

    1999-05-01

    ETDP Final Forms was an attempt to demonstrate the fabrication and performance of a ceramic waste form immobilizing the hazardous and radioactive elements of the MSO/SR mineral residues. The ceramic material had been developed previously. The fabrication system was constructed and functioned as designed except for the granulator. Fabrication of our particular ceramic, however, proved unsatisfactory. The ceramic material design was therefore changed toward the end of the project, replacing nepheline with zircon as the sink for silica. Preliminary results were encouraging, but more development is needed. Fabrication of the new ceramic requires major changes in the processing: Calcination and granulation would be replaced by spray drying; and sintering would be at higher temperature. The main goal of the project--demonstrating the fabrication and performance of the waste form--was not achieved. This report summarizes Final Forms' activities. The problem of immobilizing the MSO/SR mineral residues is discussed.

  7. Cryogenic Nano-Fabrication using the Fab on a Chip approach

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Han, Han; Stark, Thomas; Lowell, Evan; Chang, Jackson; Pardo, Flavio; Bolle, Cristian; Del Corro, Pablo; Bishop, David

    2014-03-01

    The Fab on a Chip approach is a novel fabrication technique that leverages the control and stability of MEMS machines to fabricate structures on the nano-scale. This contrasts to standard deep-UV and e-beam lithography methods typically used today. We present how a fully functional nano-fabrication system can be operated in a cryostat to enable novel physics experiments. To this end MEMS based machines are built that mimic typical macroscopic tools found in a modern nano-fabrication facility. We demonstrate functioning film thickness monitors, heaters, shutters and atom flux sources that can all be integrated on a single silicon chip. At the heart of the fab is a dynamic shutter-aperture system that functions as a programmable stencil which guides atoms to specific locations at precise times. It is argued that this method has the potential to obtain single atom control of the deposited materials. The low power and small footprint enables the setup to function in a cryogenic environment. We demonstrate basic functionality of the elements at liquid helium temperatures. The advantage of resist free lithography and the deposition being the final fabrication step is the ability to pattern materials incompatible with standard techniques. Furthermore, the ultra-clean environment is suited for high purity fabrication of structures made of exotic materials such as lithium, with the intent to enable novel electron transport experiments.

  8. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils: LEFPC appendices, volume 1, appendix I-IV

    SciTech Connect

    1994-09-01

    This document contains Appendix I-IV for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are calibration records; quality assurance; soils characterization; pilot scale trial runs.

  9. Fabrication and characterization of indium arsenide nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-An

    As MOSFET downscaling continues in the sub-0.1mum regime, quantum effects such as size quantization, phase coherence, and ballistic transport will gradually dominate the traditional MOSFET characteristics. It is important to understand these quantum effects in order to design future semiconductor devices. Among the available material systems, the InAs/AlSb quantum well system is particularly suitable for studying quantum effects. Our goal is to develop a fabrication technique for high quality InAs nanostructures and characterize them through transport measurements. Device patterns are defined by e-beam lithography and transferred into the InAs quantum well samples through either dry or wet etching. Dry etching is anisotropic and uniform, desirable for nanofabrication. However, ion bombardment induced damages create reduces the electron mobility. In contrast, shallow wet etching has good controllability and no damage to the crystal structure. Using shallow wet etching and surface Fermi level shifting, we can induce electron conducting channel in the InAs quantum well. Liquid helium temperature transport measurements show shallow-etched InAs channels can have an electron mobility of 4.3 x 105cm2/V·s and a mean free path of 7.5mum. We have successfully fabricated high quality InAs nanostructures. This dissertation is organized as the following: The theories and experimental studies of quantum effects in nanostructures, and the advantages of the InAs/AlSb system in nanofabrication are reviewed in Chapter 1. The development of our nanometer-scale electron beam lithography (EBL) is described in Chapter 2. Our achievement includes 25nm line width and +/-10nm multilevel EBL alignment accuracy. The nanofabrication using RIE mesa etching technique is addressed in Chapter 3. Using RIE for pattern transferring, we have successfully fabricated nanostructures with arbitrary geometry and the smallest feature size we have produced is 30nm. Chapter 4 is dedicated to our novel

  10. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  11. Fabrication of zein nanostructure

    NASA Astrophysics Data System (ADS)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  12. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  13. Spatial scaling: Its analysis and effects on animal movements in semiarid landscape mosaics. Final report, 1 September 1988--31 May 1992

    SciTech Connect

    Wiens, J.A.

    1992-09-01

    The research conducted under this agreement focused in general on the effects of envirorunental heterogeneity on movements of animals and materials in semiarid grassland landscapes, on the form of scale-dependency of ecological patterns and processes, and on approaches to extrapolating among spatial scales. The findings are summarized in a series of published and unpublished papers that are included as the main body of this report. We demonstrated the value of ``experimental model systems`` employing observations and experiments conducted in small-scale microlandscapes to test concepts relating to flows of individuals and materials through complex, heterogeneous mosaics. We used fractal analysis extensively in this research, and showed how fractal measures can produce insights and lead,to questions that do not emerge from more traditional scale-dependent measures. We developed new concepts and theory to deal with scale-dependency in ecological systems and with integrating individual movement patterns into considerations of population and ecosystem dynamics.

  14. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  15. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  16. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  17. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  18. OpenSoC Fabric

    SciTech Connect

    2014-08-21

    Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator for evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by its base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.

  19. OpenSoC Fabric

    2014-08-21

    Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator formore » evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by its base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.« less

  20. Mesoscale fabrication and design

    NASA Astrophysics Data System (ADS)

    Hayes, Gregory R.

    A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel

  1. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    SciTech Connect

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  2. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    SciTech Connect

    Jablonowski, Christiane

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  3. Final Report

    SciTech Connect

    Hameed A. Naseem, Husam H. Abu-Safe

    2007-02-09

    The purpose of this project was to investigate metal-induced crystallization of amorphous silicon at low temperatures using excitation sources such as laser and rapid thermal annealing, as well as, electric field. Deposition of high quality crystalline silicon at low temperatures allows the use of low cost soda-lime glass and polymeric films for economically viable photovoltaic solar cells and low cost large area flat panel displays. In light of current and expected demands on Si supply due to expanding use of consumer electronic products throughout the world and the incessant demand for electric power the need for developing high grade Si thin films on low cost substrate becomes even more important. We used hydrogenated and un-hydrogenated amorphous silicon deposited by plasma enhanced chemical vapor deposition and sputtering techniques (both of which are extensively used in electronic and solar cell industries) to fabricate nano-crystalline, poly-crystalline (small as well as large grain), and single-crystalline (epitaxial) films at low temperatures. We demonstrated Si nanowires on flat surfaces that can be used for fabricating nanometer scale transistors. We also demonstrated lateral crystallization using Al with and without an applied electric field. These results are critical for high mobility thin film transistors (TFT) for large area display applications. Large grain silicon (~30-50 µm grain size for < 0.5 µm thick films) was demonstrated on glass substrates at low temperatures. We also demonstrated epitaxial growth of silicon on (100) Si substrates at temperatures as low as 450°C. Thin film Si solar cells are being projected as the material of choice for low cost high efficiency solar cells when properly coupled with excellent light-trapping schemes. Ar ion laser (CW) was shown to produce dendritic nanowire structures at low power whereas at higher powers yielded continuous polycrystalline films. The power density required for films in contact with Al

  4. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface. PMID:21047101

  5. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.

  6. A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Huang, Mengyu; Yu, Xingjian; Ma, Yupu; Luo, Xiaobing

    2016-11-01

    Precise transportation of liquid microdroplets is a great challenge in the microfluidic field. A sticky superhydrophobic surface with a high static contact angle (CA) and a large contact angle hysteresis (CAH) is recognized as the favorable tool to deal with the challenging job. Some approaches have been proposed to fabricate such surface, such as mimicing the dual-scale hierarchical structure of a natural material, like rose petal. However, the available approaches normally require multiple processing steps or are carried out with great expense. In this study, we report a straightforward and inexpensive method for fabricating the sticky superhydrophobic surfaces. The fabrication relies on electroless galvanic deposition to coat the copper substrates with a textured layer of silver. The whole fabrication process is carried out under ambient conditions by using conventional laboratory materials and equipments, and generally take less than 15 min. Despite the simplicity of this fabrication method, the rose petal-like hierarchical structures and the corresponding sticky superhydrophobic wetting properties were well achieved on the artificial surfaces. For instance, the surface with a deposition time of 10 s exhibits the superhydrophobity with a CA of 151.5°, and the effective stickiness with a CAH of 56.5°. The prepared sticky superhydrophobic surfaces are finally shown in the application of droplet transportation, in which the surface acts as a mechanical hand to grasp and transport the water droplet.

  7. Determining micro- and macro- geometry of fabric and fabric reinforced composites

    NASA Astrophysics Data System (ADS)

    Huang, Lejian

    process is simulated. The near-net shape fabric is modeled using the DEA. Mold surfaces are modeled by standard meshes. Long vertical elements that only take compressive forces are proposed. Finally, micro- and macro-geometry of a fabric reinforced net-shape composite component is obtained.

  8. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    PubMed Central

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication. PMID:24940171

  9. Development of Novel RTP-like Processing for Solar Cell Fabrication using UV-Rich Light Sources: Cooperative Research and Development Final Report, CRADA No. CRD-11-442

    SciTech Connect

    Sopori, B.

    2013-01-01

    NREL and Mattson Technology are interested in developing new processing techniques for fabrication of solar cells using UV-rich optical processing. UV light has a very high absorption coefficient in most semiconductors, allowing the semiconductor surface to be heated locally and, in some cases, without a significant increase in the substrate temperature. NREL has several projects related to cell processing that currently use an optical furnace (having a spectrum rich in visible and infrared light). Mattson Technology has developed a UV rich light source that can be used in either pulse or continuous modes. The objective of this CRADA is to explore applications in solar cell processing where absorption characteristics of UV light can lead to lower cell cost and/or higher efficiencies.

  10. Chemically enabled nanostructure fabrication

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  11. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 3, Appendix V-B

    SciTech Connect

    1994-09-01

    This report consists of appendix V-B which contains the final verification run data package. Validation of analytical data is presented for Ecotek LSI. Analytical results are included of both soil and creek bed samples for the following contaminants: metals; metals (TCLP); uranium; gross alpha/beta; and polychlorinated biphenyls.

  12. Review on ultrasonic fabrication of polymer micro devices.

    PubMed

    Sackmann, J; Burlage, K; Gerhardy, C; Memering, B; Liao, S; Schomburg, W K

    2015-02-01

    Fabrication of micro devices from thermoplastic polymers by ultrasonic processing has become a promising new technology in recent years. Microstructures are generated on polymer surfaces with cycle times of a few seconds and are tightly sealed in even shorter times. Investment costs and energy consumption are comparatively low and processes are very flexible enabling economic fabrication even for small-scale production. For large-scale production role-to-role fabrication has been shown reducing costs even more. A variety of micro devices have been introduced up to now mostly for microfluidic applications. Besides this, electronic circuit boards are fabricated by ultrasonic processing.

  13. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  14. Designing Robust Hierarchically Textured Oleophobic Fabrics.

    PubMed

    Kleingartner, Justin A; Srinivasan, Siddarth; Truong, Quoc T; Sieber, Michael; Cohen, Robert E; McKinley, Gareth H

    2015-12-01

    Commercially available woven fabrics (e.g., nylon- or PET-based fabrics) possess inherently re-entrant textures in the form of cylindrical yarns and fibers. We analyze the liquid repellency of woven and nanotextured oleophobic fabrics using a nested model with n levels of hierarchy that is constructed from modular units of cylindrical and spherical building blocks. At each level of hierarchy, the density of the topographical features is captured using a dimensionless textural parameter D(n)*. For a plain-woven mesh comprised of chemically treated fiber bundles (n = 2), the tight packing of individual fibers in each bundle (D2* ≈ 1) imposes a geometric constraint on the maximum oleophobicity that can be achieved solely by modifying the surface energy of the coating. For liquid droplets contacting such tightly bundled fabrics with modified surface energies, we show that this model predicts a lower bound on the equilibrium contact angle of θ(E) ≈ 57° below which the Cassie–Baxter to Wenzel wetting transition occurs spontaneously, and this is validated experimentally. We demonstrate how the introduction of an additional higher order micro-/nanotexture onto the fibers (n = 3) is necessary to overcome this limit and create more robustly nonwetting fabrics. Finally, we show a simple experimental realization of the enhanced oleophobicity of fabrics by depositing spherical microbeads of poly(methyl methacrylate)/fluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) onto the fibers of a commercial woven nylon fabric. PMID:26473386

  15. Designing Robust Hierarchically Textured Oleophobic Fabrics.

    PubMed

    Kleingartner, Justin A; Srinivasan, Siddarth; Truong, Quoc T; Sieber, Michael; Cohen, Robert E; McKinley, Gareth H

    2015-12-01

    Commercially available woven fabrics (e.g., nylon- or PET-based fabrics) possess inherently re-entrant textures in the form of cylindrical yarns and fibers. We analyze the liquid repellency of woven and nanotextured oleophobic fabrics using a nested model with n levels of hierarchy that is constructed from modular units of cylindrical and spherical building blocks. At each level of hierarchy, the density of the topographical features is captured using a dimensionless textural parameter D(n)*. For a plain-woven mesh comprised of chemically treated fiber bundles (n = 2), the tight packing of individual fibers in each bundle (D2* ≈ 1) imposes a geometric constraint on the maximum oleophobicity that can be achieved solely by modifying the surface energy of the coating. For liquid droplets contacting such tightly bundled fabrics with modified surface energies, we show that this model predicts a lower bound on the equilibrium contact angle of θ(E) ≈ 57° below which the Cassie–Baxter to Wenzel wetting transition occurs spontaneously, and this is validated experimentally. We demonstrate how the introduction of an additional higher order micro-/nanotexture onto the fibers (n = 3) is necessary to overcome this limit and create more robustly nonwetting fabrics. Finally, we show a simple experimental realization of the enhanced oleophobicity of fabrics by depositing spherical microbeads of poly(methyl methacrylate)/fluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) onto the fibers of a commercial woven nylon fabric.

  16. Micro- and meso-scale simulations of magnetospheric processes related to the aurora and substorm morphology. Final technical report, June 1989-November 1991

    SciTech Connect

    Swift, D.W.

    1991-01-01

    The primary methodology during the grant period has been the use of micro or meso-scale simulations to address specific questions concerning magnetospheric processes related to the aurora and substorm morphology. This approach, while useful in providing some answers, has its limitations. Many of the problems relating to the magnetosphere are inherently global and kinetic. Effort during the last year of the grant period has increasingly focused on development of a global-scale hybrid code to model the entire, coupled magnetosheath - magnetosphere - ionosphere system. In particular, numerical procedures for curvilinear coordinate generation and exactly conservative differencing schemes for hybrid codes in curvilinear coordinates have been developed. The new computer algorithms and the massively parallel computer architectures now make this global code a feasible proposition. Support provided by this project has played an important role in laying the groundwork for the eventual development or a global-scale code to model and forecast magnetospheric weather.

  17. Smile design and advanced provisional fabrication.

    PubMed

    Malone, Mike

    2008-05-01

    Cosmetic reconstruction is much more predictable when superb provisionals are used as a blueprint for the final restoration. This article provides details for a technique that can be used to fabricate indirect multilayered composite provisional restorations for porcelain veneers and complex full-arch cases.

  18. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask.

    PubMed

    Hossain, Md Nazmul; Justice, John; Lovera, Pierre; McCarthy, Brendan; O'Riordan, Alan; Corbett, Brian

    2014-09-01

    Wafer-scale nano-fabrication of silicon nitride (Si x N y ) photonic crystal (PhC) structures on glass (quartz) substrates is demonstrated using a thin (30 nm) chromium (Cr) layer as the hard mask for transferring the electron beam lithography (EBL) defined resist patterns. The use of the thin Cr layer not only solves the charging effect during the EBL on the insulating substrate, but also facilitates high aspect ratio PhCs by acting as a hard mask while deep etching into the Si x N y . A very high aspect ratio of 10:1 on a 60 nm wide grating structure has been achieved while preserving the quality of the flat top of the narrow lines. The presented nano-fabrication method provides PhC structures necessary for a high quality optical response. Finally, we fabricated a refractive index based PhC sensor which shows a sensitivity of 185 nm per RIU. PMID:25116111

  19. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask

    NASA Astrophysics Data System (ADS)

    Nazmul Hossain, Md; Justice, John; Lovera, Pierre; McCarthy, Brendan; O'Riordan, Alan; Corbett, Brian

    2014-09-01

    Wafer-scale nano-fabrication of silicon nitride (Si x N y ) photonic crystal (PhC) structures on glass (quartz) substrates is demonstrated using a thin (30 nm) chromium (Cr) layer as the hard mask for transferring the electron beam lithography (EBL) defined resist patterns. The use of the thin Cr layer not only solves the charging effect during the EBL on the insulating substrate, but also facilitates high aspect ratio PhCs by acting as a hard mask while deep etching into the Si x N y . A very high aspect ratio of 10:1 on a 60 nm wide grating structure has been achieved while preserving the quality of the flat top of the narrow lines. The presented nano-fabrication method provides PhC structures necessary for a high quality optical response. Finally, we fabricated a refractive index based PhC sensor which shows a sensitivity of 185 nm per RIU.

  20. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The

  1. Rapid fabrication of materials using directed light fabrication

    SciTech Connect

    Thoma, D.J.; Lewis, G.K.; Milewski, J.O.; Chen, K.C.; Nemec, R.B.

    1997-10-01

    Directed light fabrication (DLF) is a rapid fabrication process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, near-net shape, 3-dimensional metal components from a computer generated solid model. Computer controls dictate the metal deposition pathways, and no preforms or molds are required to generate complex sample geometries. The focal zone of the laser beam is programmed to move along or across a part cross-section, and coupled with a multi-axis sample stage, produces the desired part. By maintaining a constant molten puddle within the focal zone, a continuous liquid/solid interface is possible while achieving constant cooling rates that can be varied between 10 to 10{sup 4} K s{sup -1} and solidification growth rates (that scale with the beam velocity) ranging up to 10{sup 2} m s{sup -1}. The DLF technique offers unique advantages over conventional thermomechanical processes in that many labor and equipment intensive steps can be avoided. Moreover, owing to the flexibility in power distributions of lasers, a variety of materials can be processed, ranging from aluminum alloys to rhenium, and including intermetallics such as Mo{sub 5}Si{sub 3}. As a result, the rapid fabrication of conventional and advanced materials are possible.

  2. Fabrication and Design of Optical Nanomaterials

    NASA Astrophysics Data System (ADS)

    Huntington, Mark D.

    fluorinated molecules can be used to create nanometer-scale wrinkles. Next, we found that wrinkle wavelength could be controlled by either (i) changing the gas used during RIE treatment or (ii) by changing the plasma exposure time for a specific gas. We fabricated wrinkles with wavelengths ranging from 250 nm to 50 nm by chemically treating PS thermoplastic films with RIE gases SF6, CF4, CHF3 or Ar. Unique to the CHF3 gas, the wrinkle wavelength could be continuously tuned from several microns down to as small as 30 nm simply by decreasing the RIE exposure time. Finally, in previous work on polymeric wrinkle systems it was not possible to measure the thickness of the skin layer using ellipsometry because there was not enough refractive difference contrast between the skin and substrate layer. Therefore, more complicated and destructive techniques were used such as secondary ion mass spectroscopy and x-ray photoelectron spectroscopy. Here we showed that the fluorination of the top layer causes a significant shift in the refractive index of the top layer, so that ellipsometry could be used measure the thickness of the modified layer. The thickness of the skin layer was used to determine the Young's moduli of the skin and substrate. We continue the discussion of nanowrinkles in chapter 4, which shows unprecedented control the amplitude and the complex hierarchical wrinkle structures and nanofolds that form at high strains. The three main highlights of this paper are: (i) wrinkles with nanometer wavelengths with large amplitudes, (ii) modulation of type of secondary structure with macroscale strain distribution, and (iii) patterning strain to control the orientation of nanowrinkles and nanofolds. Typically, nonlinear strain between the skin and substrate limit the amplitude of nanowrinkles (lambda < 100 nm) to less than 10 nm. Because of the unique mechanical properties of the PS substrate, we could increase the amplitude of the nanowrinkles approximately 10 times greater than

  3. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 2, Appendix V-A

    SciTech Connect

    1994-09-01

    This document contains information concerning validation of analytical data for the pilot-scale thermal treatment of Lower East Fork Poplar Creek Floodplain soils located at the Y-12 Plant site. This volume is an appendix of compiled data from this validation process.

  4. 35/70 MPa Small-scale Hydrogen Fueling Appliance (SHFA) Phase 2a - Design of the First-Generation (Alpha) device - Final Report and Guide

    SciTech Connect

    Kelly Jezierski, NextEnergy; Ted Barnes, GTI; Stephen Jones, ITM Power

    2011-08-31

    The NextEnergy Center MicroGrid Power Pavilion and Hydrogen Fueling Facility construction was divided into 5 phases, as described in further detail below. Phases 1 through 4 involved build out of the facility and phase 5 included the development of the 35/70 MPa (10,000 psi) Small-scale Hydrogen Fueling Appliance (SHFA).

  5. The Validity of Rating Scales and Interviews for Evaluating Indian Education; Perceptions of Indian Education. The National Study of American Indian Education, Series IV, No. 8, Final Report.

    ERIC Educational Resources Information Center

    Birchard, Bruce A.

    As part of the National Study of American Indian Education, this report assessed the validity of the analysis of interview and questionnaire data obtained. With some significant exceptions, agreement was good between the rating scale and questionnaire analysis and the field workers' observations on ranking and comparing the 4 schools: 3 public…

  6. Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $ \\sqrt{s}=8 $ TeV

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.

    2015-07-01

    A search for evidence of physics beyond the Standard Model in final states with multiple high-transverse-momentum jets is performed using 20.3 fb-1 of proton-proton collision data at √s=8 TeV recorded by the ATLAS detector at the LHC. No significant excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross sections for non-Standard Model production of multi-jet final states are set. A wide variety of models for black hole and string ball production and decay are considered, and the upper limit on the cross section times acceptance is as low as 0.16 fb at the 95% confidence level. For these models, excluded regions are also given as function of the main model parameters.

  7. CSU Final Report on the Math/CS Institute CACHE: Communication-Avoiding and Communication-Hiding at the Extreme Scale

    SciTech Connect

    Strout, Michelle

    2014-06-10

    The CACHE project entails researching and developing new versions of numerical algorithms that result in data reuse that can be scheduled in a communication avoiding way. Since memory accesses take more time than any computation and require the most power, the focus on turning data reuse into data locality is critical to improving performance and reducing power usage in scientific simulations. This final report summarizes the accomplishments at Colorado State University as part of the CACHE project.

  8. The Rupture Behaviour Of Woven Fabrics Containing Kevlar Fibres

    NASA Astrophysics Data System (ADS)

    Mao, N.; Qu, J.; Darley, M.; Lingard, S.

    2012-07-01

    Woven fabrics containing high performance fibres are frequently used in spacecraft structures and the rupture behaviour of these fabrics heavily influences the performance of its final products. However, the initiation and propagation of a ruptured fracture in the woven fabrics is not clear and the interpretation of the results from different tear testing methods varies. Currently there is a lack of knowledge about both the characteristics of tear propagation woven fabrics containing high performance fibres such as Kevlar and the influence of the fabric structural parameters on the rupture behaviour of the fabrics; this knowledge gap creates difficulties for the engineering design and selection of suitable fabric materials to meet specific requirements in each application case involving such woven fabrics. In this paper, the tear propagations in a polyurethane-coated woven fabric containing Kevlar fibres based on two different tear testing standards are examined; the mechanism of tear propagation in woven fabrics and the influences of tear testing design on the interpretation of the results from different tear testing methods are discussed. It is expected that the results will guide both the engineering design of Kevlar woven fabric structures and the evaluation of the fabric performance.

  9. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    SciTech Connect

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  10. Development, principles, and applications of automated ice fabric analyzers.

    PubMed

    Wilen, L A; Diprinzio, C L; Alley, R B; Azuma, N

    2003-09-01

    We review the recent development of automated techniques to determine the fabric and texture of polycrystalline ice. The motivation for the study of ice fabric is first outlined. After a brief introduction to the relevant optical concepts, the classic manual technique for fabric measurement is described, along with early attempts at partial automation. Then, the general principles behind fully automated techniques are discussed. We describe in some detail the similarities and differences of the three modern instruments recently developed for ice fabric studies. Next, we discuss briefly X-ray, radar, and acoustic techniques for ice fabric characterization. We also discuss the principles behind automated optical techniques to measure fabric in quartz rock samples. Finally, examples of new applications that have been facilitated by the development of the ice fabric instruments are presented.

  11. A new approach to fabricate pdms structures using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Selvaraj, Hamsapriya

    Polydimethylsiloxane (PDMS) is commonly used to prototype micro and nano featured components due to its beneficial properties. PDMS based devices have been used for diverse applications such as cell culturing, cell sorting and sensors. Motivated by such diverse applications possible through pure PDMS and reinforced PDMS, numerous efforts have been directed towards developing novel fabrication techniques. Prototyping 2D and 3D pure and reinforced PDMS microdevices normally require a long curing time and must go through multiple steps. This research explores the possibility of fabricating microscale and nanoscale structures directly from PDMS resin using femtosecond laser processing. This study offers an alternative fabrication route that potentially lead to a new way for prototyping of pure and reinforced PDMS devices, and the generation of hybrid nanomaterials. In depth investigation of femtosecond laser irradiation of PDMS resin reveals that the process is highly intensity-dependent. At low to intermediate intensity regime, femtosecond laser beam is able to rapidly cure the resin and create micron-sized structures directly from PDMS resin. At higher intensity regime, a total break-down of the resin material occurs and leads to the formation of PDMS nanoparticles. This work demonstrates a new way of rapid curing of PDMS resin on a microsecond timescale using femtosecond laser irradiation. The proposed technique permits maskless singlestep curing and is capable of fabricating 2D and 3D structures in micro-scale. Reinforced PDMS microstructures also have been fabricated through this method. The proposed technique permits both reinforcement and rapid curing and is ideal for fabricating reinforced structures in microscale. The strength of the nanofiber reinforced PDMS microstructures has been investigated by means of Nanoindentation test. The results showed significant improvement in strength of the material. Hybrid PDMS-Si and hybrid PDMS-Al nanoparticle aggregate

  12. Keck telescope primary mirror segments: fabrication and support.

    NASA Astrophysics Data System (ADS)

    Mast, T. S.; Nelson, J. E.

    1988-10-01

    The fabrication of the mirror segments and segment support systems for the Keck Telescope are currently in progress. High quality mirror blanks are being manufactured and delivered by Schott Optical Technologies on a regular schedule. The segment fabrication facilities at Itek Optical Systems are in the final stage of preparation for production.

  13. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  14. Fabric Fact & Fiction.

    ERIC Educational Resources Information Center

    Cohen, Andrew

    2001-01-01

    Examines the positive and negative attributes of fabric structures in providing affordable shelter for a variety of multipurpose applications, including temporary or seasonal use. Describes the three basic types of fabric structures: air-supported, frame-supported, and mast-supported. This article focuses on smaller structures of the air- and…

  15. Integrated Recycling Test Fuel Fabrication

    SciTech Connect

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  16. Optimization of Ultrasonic Fabric Cleaning

    SciTech Connect

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  17. INL Laboratory Scale Atomizer

    SciTech Connect

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  18. Fabrication of 20 nm embedded longitudinal nanochannels transferred from metal nanowire patterns

    NASA Technical Reports Server (NTRS)

    Choi, D.; Yang, E. H.

    2003-01-01

    bstract we describe a technique for fabricating nanometer-scale channels embedded by dielectric materials. Longitudinal 'embedded ' nanochannels with an opening size 20 nm x 80 nm have been successfully fabricated on silicon wafer by transferring sacrificial nanowire structures.

  19. Shape, Loading, and Motion in the Bioengineering Design, Fabrication, and Testing of Personalized Synovial Joints

    PubMed Central

    Williams, Gregory M.; Chan, Elaine F.; Temple-Wong, Michele M.; Bae, Won C.; Masuda, Koichi; Bugbee, William D.; Sah, Robert L.

    2009-01-01

    With continued development and improvement of tissue engineering therapies for small articular lesions, increased attention is being focused on the challenge of engineering partial or whole synovial joints. Joint-scale constructs could have applications in the treatment of large areas of articular damage or in biological arthroplasty of severely degenerate joints. This review considers the roles of shape, loading and motion in synovial joint mechanobiology and their incorporation into the design, fabrication, and testing of engineered partial or whole joints. Incidence of degeneration, degree of impairment, and efficacy of current treatments are critical factors in choosing a target for joint bioengineering. The form and function of native joints may guide the design of engineered joint-scale constructs with respect to size, shape, and maturity. Fabrication challenges for joint-scale engineering include controlling chemo-mechano-biological microenvironments to promote the development and growth of multiple tissues with integrated interfaces or lubricated surfaces into anatomical shapes, and joint-scale bioreactors which nurture and stimulate the tissue with loading and motion. Finally, evaluation of load-bearing and tribological properties can range from tissue to joint scale and can focus on biological structure at present or after adaptation. PMID:19815214

  20. Fabrication of Nanovoid-Imbedded Bismuth Telluride with Low Dimensional System

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Stoakley, Diane M. (Inventor)

    2013-01-01

    A new fabrication method for nanovoids-imbedded bismuth telluride (Bi--Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi--Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.

  1. Potassium-argon (argon-argon), structural fabrics

    USGS Publications Warehouse

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  2. Pilot-scale limestone emission control (LEC) process: A development project. Volume 1: Main report and appendices A, B, C, and D. Final report

    SciTech Connect

    Not Available

    1994-03-01

    ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. The primary goal of the current study is the demonstration of the techno/economic capability of the LEC system as a post-combustion FGD process capable of use in both existing and future coal-fired boiler facilities burning high-sulfur coal. A nominal 5,000 acfm LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. The pilot plant was normally operated on the slipstream of the Ohio Univ. boiler plant flue gas, but also had the capability of operating at higher inlet SO{sub 2} concentrations (typically equivalent to 3-1/2% sulfur coal) than those normally available from the flue gas slipstream. This was accomplished by injecting SO{sub 2} gas into the slipstream inlet. The pilot plant was instrumented to provide around-the-clock operation and was fully outfitted with temperature, SO{sub 2}, gas flow and pressure drop monitors.

  3. New polymorphous computing fabric.

    SciTech Connect

    Wolinski, C.; Gokhale, M.; McCabe, K. P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  4. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    SciTech Connect

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

  5. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  6. The design and fabrication of a prototype trash compacting unit. [for long duration space missions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A prototype trash compactor, that is compatible with the anticipated requirements of future long-term space missions, is described. Preliminary problem definition studies were conducted to identify typical types and quantities of waste materials to be expected from a typical mission. Bench-scale compaction tests were then conducted on typical waste materials to determine force/compaction curves. These data were used to design a boilerplate compactor that was fabricated to prove the feasibility of the basic design concept. A final design was then prepared from which the deliverable unit was fabricated. Design concepts are presented for suggested further development of the compactor, including a version that is capable of handling wet biodegradable wastes.

  7. Prototypical Consolidation Demonstration Project: Final report

    SciTech Connect

    Gili, J.A.; Poston, V.K.

    1993-11-01

    This is the final report of the Prototypical Consolidation Demonstration Project, which was funded by the US Department of Energy`s Office of Civilian Radioactive Waste Management. The project had two objectives: (a) to develop and demonstrate a prototype of production-scale equipment for the dry, horizontal consolidation and packaging of spent nuclear fuel rods from commercial boiling water reactor and pressurized water reactor fuel assemblies, and (b) to report the development and demonstration results to the US Department of Energy, Idaho Operations Office. This report summarizes the activities and conclusions of the project management contractor, EG&G Idaho, Inc., and the fabrication and testing contractor, NUS Corporation (NUS). The report also presents EG&G Idaho`s assessments of the equipment and procedures developed by NUS.

  8. Micro-fabrication Techniques for Target Components

    SciTech Connect

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  9. Study of the effects of interleakage of ammonia and seawater on corrosion and scaling of candidate materials for OTEC heat exchngers. Final report

    SciTech Connect

    Grimes, W D; Schrieber, C F; Manning, J A

    1980-07-01

    Assessment has been made on the effect of small concentrations of ammonia in seawater and varying concentrations of seawater in anhydrous ammonia upon corrosion and scaling of candidate OTEC heat exchanger materials - A1-5052, Alclad 3003, copper alloys 706, 715 and 722, AL-6X stainless steel and CP titanium. Results are presented. AL-6X stainless steel and CP titanium showed exceptional corrosion resistance to all test environments. Alclad alloy 3003 showed satisfactory performance in seawater and seawater plus ammonia environments. Only minimal pitting was observed and this was limited to the sacrificial cladding in seawater plus ammonia only. Cladding alloy 7072 showed unacceptable corrosion resistance in anhydrous ammonia containing low seawater concentrations. Al-5052 tubes showed unsatisfactory corrosion behavior in the presence of seawater flow with ammonia interleakage. Copper alloys considered showed unacceptable corrosion resistance in all seawater environments containing ammonia. Low pressure differentials between seawater and anhydrous ammonia in the tube testing unit resulted in scaling and moderately efficient plug seal formation at the artificial leak sites of the tubes. It is recommended that Alclad 3003, CP titanium and AL-6X stainless steel tubes be assessed for suitability in the presence of probable OTEC cleaning systems.

  10. Design Fabrication and Characterization of High Density Silicon Photonic Components

    SciTech Connect

    Jones, Adam

    2015-02-01

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve e ciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satis ed by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which e cient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modi ed racetrack resonator is then presented enabling extraction of insertion loss data for highly e cient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  11. Design, fabrication, and characterization of high density silicon photonic components

    NASA Astrophysics Data System (ADS)

    Jones, Adam Michael

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve eciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satised by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which ecient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modied racetrack resonator is then presented enabling extraction of insertion loss data for highly ecient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  12. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  13. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Architects, engineers and building owners are turning increasingly to fabric structures because of their aesthetic appeal, relatively low initial cost, low maintenance outlays, energy efficiency and good space utilization. Several examples are shown.

  14. Speedo Fabric Testing

    NASA Video Gallery

    Because the physical laws of motion for moving a body through water are the same as moving a vehicle through air, NASA aeronautics experts test the drag effects of different fabrics for Olympic-bou...

  15. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  16. Alternative fabrication techniques for high-efficiency CuInSe{sub 2} and CuInSe{sub 2}-alloy films and cells. Final subcontract report, 1 March 1990--31 August 1992

    SciTech Connect

    Rockett, A.; Yang, L.C.; Kenshole, G.; Banda, E.; Feen, A.

    1994-07-01

    Work performed during the course of this subcontract has led to improved CuInSe{sub 2} (CIS) processing techniques and materials resulting in improved solar cell performance (up to 10% active area efficiency) based on a thick conductive evaporated CdS window layer and an indium-tin-oxide transparent conductor. Modeling of the device performance has indicated that an optimal CdS thickness should exist if pinholes occur in the CIS layer (for example, due to adhesion failures) leading to shunts between the CdS and the back contact. Pinholes in the CIS layer have been dramatically reduced by the use of a Cu-Mo two-phase back contact metallization resulting from significant increases in adhesion between the CIS and the back contact. Controlled leaching of the Cu from the back contact apparently contributes to this improvement without degradation of the solar cells. Finally, CIS has been grown epitaxially on GaAs. Preliminary results suggest explanations for the morphology and defect structures of polycrystalline layers used in devices as well as indicating the general mechanism for growth of CIS by vapor phase methods.

  17. Final Technical Report on Scaling Models of the Internal Variability of Clouds DoE Grant No. DE-FG02-04ER63773

    SciTech Connect

    Ivanova, Kristinka

    2008-04-24

    The purpose of this proposal is to gain a better understanding of the space-time correlations of atmospheric fluctuations in clouds through application of methods from statistical physics to high resolution, continuous data sets of cloud observations available at the Department of Energy Atmospheric Radiation Measurement Program archive. In this report we present the accomplishments achieved during the four year period. Starting with the most recent one, we report on two break-throughs in our research that make the fourth year of the project exceptionally successful and markedly outperforming the objectives. The first break-through is on characterization of the structure of cirrus radiative properties at large, intermediate and small, generating cells scales by applying the Fokker-Planck equation method and other methods to ARM millimeter wavelength radar observations collected at the Southern Great Plains site. The second break-through is that we show that different characterizations of the cirrus radiative properties are obtained for different synoptic scale environments. We outline a stochastic approach to investigate the internal structure of radiative properties of cirrus clouds based on empirical modeling and draw conclusions about cirrus dynamical properties in the context of the synoptic environment. Results on the structure of cirrus dynamical properties are consistent with the structure of cirrus based on aircraft in situ measurements, with results from ground-based Raman lidar, and with results from model studies. These achievements would not have been possible without the accomplishments from the previous years on a number of problems that involve application of methods of analysis such as the Fokker-Planck equation approach, Tsallis nonextensive statistical mechanics, detrended fluctuation analysis, and others. These include stochastic analysis of neutrally stratified cirrus layers, internal variability and turbulence in cirrus, dynamical model and

  18. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  19. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  20. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  1. Fabrication of miniaturized electrostatic deflectors using LIGA

    SciTech Connect

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-04-01

    Miniaturized electron beam columns ({open_quotes}microcolumns{close_quotes}) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of {open_quotes}selectively scaled{close_quotes} micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures.

  2. Transfer bonding technology for batch fabrication of SMA microactuators

    NASA Astrophysics Data System (ADS)

    Grund, T.; Guerre, R.; Despont, M.; Kohl, M.

    2008-05-01

    Currently, the broad market introduction of shape memory alloy (SMA) microactuators and sensors is hampered by technological barriers, since batch fabrication methods common to electronics industry are not available. The present study intends to overcome these barriers by introducing a wafer scale transfer process that allows the selective transfer of heat-treated and micromachined shape memory alloy (SMA) film or foil microactuators to randomly selected receiving sites on a target substrate. The technology relies on a temporary adhesive bonding layer between SMA film/foil and an auxiliary substrate, which can be removed by laser ablation. The transfer technology was tested for microactuators of a cold-rolled NiTi foil of 20 μm thickness, which were heat-treated in free-standing condition, then micromachined on an auxiliary substrate of glass, and finally selectively transferred to different target substrates of a polymer. For demonstration, the new technology was used for batch-fabrication of SMA-actuated polymer microvalves.

  3. Fabrication and control of simple low Reynolds number microswimmers

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Kim, Min Jun

    2016-07-01

    The development of miniaturized robotic swimmers is hindered by technical limitations in micro- and nanofabrication. To circumvent these limitations, we investigated the minimal geometrical requirements for swimming in low Reynolds number. Micro- and nanofabrication of complex shapes, such as helices, on a massive scale requires sophisticated state of the art technologies and has size limitations. In contrast, simple shaped structures, such as spherical particles, can be fabricated massively using chemical synthesis with relative ease. Here, simple microswimmers were fabricated using two microparticles with debris attached to their surface. The debris on the microswimmer's surface creates a geometry with two or more planes of symmetry, allowing the microswimmer to swim in bulk fluid at low Reynolds number. The microswimmers are magnetically actuated and controlled via a uniform rotating magnetic field generated by an approximate Helmholtz electromagnetic coil system. We characterized the microswimmer's velocity profile with respect to rotating frequency and analyzed the motion of the microswimmer using image processing. Finally, we demonstrated the controllability of the microswimmers by freely steering them in any desired directions.

  4. AUTOMOTIVE REPAIR SHOP, DETAIL OF FABRICATING PRESS IN EAST END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF FABRICATING PRESS IN EAST END OF MAIN WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  5. Fabrication of mm-wave undulator cavities using deep x-ray lithography

    SciTech Connect

    Song, J.J.; Kang, Y.W.; Kustom, R.L.; Lai, B.; Nassiri, A.; Feinerman, A.D.; White, V.; Well, G.M.

    1995-12-31

    The possibility of fabricating mm-wave radio frequency cavities (100-300 GHz) using deep x-ray lithography (DXRL) is being investigated. The fabrication process includes manufacture of precision x-ray masks, exposure of positive resist by x-ray through the mask, resist development, and electroforming of the final microstructure. Highly precise, two-dimensional features can be machined onto wafers using DXRL. Major challenges are: fabrication of the wafers into three-dimensional rf structures; alignment and overlay accuracy of structures; adhesion of the PMMA on the copper substrate; and selection of a developer to obtain high resolution. Rectangular cavity geometry is best suited to this fabrication technique. A 30- or 84-cell 108-GHz mm-wave structure can serve as an electromagnetic undulator. A mm-wave undulator, which will be discussed later, may have special features compared to the conventional undulator. First harmonic undulator radiation at 5.2 KeV would be possible using the Advanced Photon Source (APS) linac system, which provides a low-emittance electron beam by using an rf thermionic gun with an energy as high as 750-MeV. More detailed rf simulation, heat extraction analysis, beam dynamics using a mm-wave structure, and measurements on lOx larger scale models can be found in these proceedings.

  6. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  7. Superamphiphilic Janus fabric.

    PubMed

    Lim, Ho Sun; Park, Song Hee; Koo, Song Hee; Kwark, Young-Je; Thomas, Edwin L; Jeong, Youngjin; Cho, Jeong Ho

    2010-12-21

    Janus fabrics with superamphiphilicity were fabricated via electrospinning of polyacrylonitrile (PAN). PAN nanofibrous mats were formed on an aluminum foil substrate and then thermally treated to cause hydrolysis. An identical PAN solution was subsequently electrospun onto the hydrolyzed PAN layer, followed by peeling off of the bicomposite film from the collector substrate to produce a free-standing Janus fabric. On one side, the electrospun PAN mat exhibited superhydrophobic properties, with a water contact angle of 151.2°, whereas the initially superhydrophobic PAN sheet on the opposite side of the fabric was converted to a superhydrophilic surface (water contact angle of 0°) through hydrolysis of the surface functional groups induced by the thermal treatment. The resulting Janus fabrics exhibited both superhydrophobicity, repelling water on the one side, and superhydrophilicity, absorbing water on the other side. The organic solvent resistance of the PAN nanofibrous sheets was remarkably improved by incorporation of a tetraethyl orthosilicate. This facile and simple technique introduces a new route for the design and development of functional smart, robust fabrics from an inexpensive, commercially available polymer.

  8. Development and testing of a commercial scale coal-fired combustion system -- Phase 3. Final technical progress report, September 26, 1990--August 31, 1994

    SciTech Connect

    Litka, A.; Breault, R.

    1994-10-01

    This report summarizes the results of work performed in the development and testing of a coal-fired space heating system for the commercial market sector. Although coal is the most plentiful energy resource in the US, its use since World War II has been largely restricted to utility power generation for environmental and economic reasons. Within the commercial sector, oil and natural gas are the predominant heating fuels for office buildings, apartment complexes, and similar structures. Generally, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program was to design, build, and test a coal-based heating system for this sector, and determine the economic viability and market potential for the system. Coal water slurry (CWS) fuel was chosen as the fuel form for this development effort. CWS eliminates the need to use dry pulverized coal with its attendant handling, metering, and dusting problems, as well as its explosive potential. A brief description of the overall system design is given in this report, as well as a discussion of the unique features of the system configuration and key components. This is followed by a summary of the testing performed, including a comparison between system performance and program goals. Finally, the results of the economic evaluation are presented, along with a commercialization plan for the technology. A key issue in the eventual commercialization of the technology is the availability of a competitively priced coal water slurry fuel. Predicted prices and availability of CWS are discussed.

  9. Fabrication of angleply carbon-aluminum composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1974-01-01

    A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.

  10. Fabrication of a fluidic membrane lens system

    NASA Astrophysics Data System (ADS)

    Draheim, J.; Schneider, F.; Kamberger, R.; Mueller, C.; Wallrabe, U.

    2009-09-01

    We present the fabrication process of a fluidic membrane lens system with an integrated piezoelectric pumping actuator. The optical unit and the pumping unit are fabricated through casting using a hot embossing machine. Two different systems, one with a homogeneous membrane thickness, and one with an inhomogeneous membrane thickness distribution, are manufactured. The influence of the volume shrinkage of the silicone during curing on the membrane shape and on the focal length is analyzed. The assembled system achieves a focal length between +52.4 mm and -70.9 mm at a piezovoltage of ±40 V. The full-scale response time of the system is below 24 ms.

  11. Preliminary evaluation of the control of microbial fouling by laboratory and pilot-scale air-stripping columns. Final report, March-December 1984

    SciTech Connect

    Seekins, D.; Rogers, M.R.

    1985-03-01

    The U.S. Army Natick Research, Development and Engineering Center (Natick) undertook a study to investigate the buildup of microbial slimes primarily pseudomonas, bacillus and azotobacter in Air Stripping Columns that are used by the military to remove volatile compounds from contaminated groundwater. The air-stripping and carbon-adsorption columns were previously used at the Anniston Army Depot (ANAD) to treat groundwater that had been contaminated with chemical solvents and metal-plating wastes. The major groundwater contaminants were: trichloroethylene (TCE), dichloroethylene (DCE), methylene chloride (MeCl), phenol, and chromium. The results of the study will provide the basis for recommendations on preventative or control measures to be taken in future applications of these water-treatment methods. Measures to prevent buildup of microbial slimes will allow for longer column life and reduction in costs. Treatment of the laboratory-scale column with 3% and 15% hydrogen peroxide reduced total microbial counts but was not successful at disinfecting the column. It was concluded that to prevent microbial fouling of air-stripping columns, the packing material should be disinfected prior to use and should be shock-chlorinated during use if microbial fouling should start to occur. The column should be run continuously if possible to keep the inside temperature as low as possible to retard the growth of microorganisms. If iron fouling should occur, the column should be treated with dilute HCl to clear the packing material of the hydroxide buildup.

  12. EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005

    SciTech Connect

    Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

    2005-10-01

    The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

  13. Lg excitation, attenuation and source spectral scaling in central Asia and China. Final report, 1 November 1993-31 October 1095

    SciTech Connect

    Xie, J.; Cong, L.; Mitchell, B.J.

    1996-01-05

    A nonlinear inverse method is applied to analyze Lg spectra from 21 underground nuclear explosions and 52 shallow (5-33 km) earthquakes in central Eurasia where, for numerous paths, Lg Q and Lg coda Q at 1 Hz are found to be very similar. The logarithm of Lg seismic moment (Mo) values correlate linearly with body wave magnitude (Mb), with slopes of slightly greater than 1.0. For the same Mo values, the Mb values for earthquakes tend to be systematically lower than those for explosions. For both explosions and earthquakes, Mo scale with fcaa, with fc being Lg corner frequency and a being closer to 4 than to 3. For explosions, the estimated Mo, fc values are dependent on whether the explosion or earthquake source model is used. At any given Mo level, the fc value estimated for an explosion with the earthquake source model tends to be higher than that for an earthquake. This tendency appears to be opposite to that observed at the NTS, and maybe used as an explosion discriminant for central Eurasia.

  14. Computational fluid dynamics assessment: Volume 2, Isothermal simulations of the METC bench-scale coal-water slurry combustor: Final report

    SciTech Connect

    Celik, I.; Chattree, M.

    1988-09-01

    The isothermal turbulent, swirling flow inside the METC pressurized bench-scale combustor has been simulated using ISOPCGC-2. The effects of the swirl numbers, the momentum ratio of the primary to secondary streams, the annular wall thickness, and the quarl angle on the flow and mixing patterns have been investigated. The results that with the present configuration of the combustor, an annular recirculation zone is present up to secondary swirl number of four. A central (on axis) recirculation zone can be obtained by increasing the momentum of the secondary stream by decreasing the annular area at the reactor inlet. The mixing of the primary (fuel carrier) air with the secondary air improves only slightly due to swirl unless a central recirculation zone is present. Good mixing is achieved in the quarl region when a central recirculation zone is present. A preliminary investigation of the influence of placing flow regulators inside the the combustor shows that they influence the flow field significantly and that there is a potential of obtaining optimum flow conditions using these flow regulators. 58 refs., 47 figs., 12 tabs.

  15. Anaerobic digestion as final step of a cellulosic ethanol biorefinery: Biogas production from fermentation effluent in a UASB reactor-pilot-scale results.

    PubMed

    Uellendahl, H; Ahring, B K

    2010-09-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (53 degrees C) and mesophilic (38 degrees C) operation of the UASB reactor was investigated. At an OLR of 3.5 kg-VS/(m(3) day) a methane yield of 340 L/kg-VS was achieved for thermophilic operation (53 degrees C) while 270 L/kg-VS was obtained under mesophilic conditions (38 degrees C). For loading rates higher than 5 kg-VS/(m(3) day) the methane yields were, however, higher under mesophilic conditions compared to thermophilic conditions. The conversion of dissolved organic matter (VS(diss)) was between 68% and 91%. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. However, a high content of suspended matter reduced the degradation efficiency. The retention time of the anaerobic system could be reduced from 70 to 7 h by additional removal of suspended matter by clarification. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher carbon utilization in the biorefinery compared to a system with only bioethanol production. PMID:20506521

  16. Fabrication Phase of the Ignitor Program*

    NASA Astrophysics Data System (ADS)

    Mantovani, S.; Frosi, P.; Ramogida, G.; Coppi, B.

    2011-10-01

    The fabrication phase of the complete Ignitor machine has started by identifying at first the main industrial groups that have the capabilities to construct the main components of the machine. The ``translation'' of the drawings of the detailed design into fabrication drawings has been undertaken reconsidering the results of the structural analysis that has been carried out for all the machine elements. A special attention is being devoted to the robotic systems that have to be able to perform different functions during the final assembly of the machine and for its operation. The management structure necessary to carry out the entire fabrication effort has been established. The Italian Space Agency (A.S.I.) has been charged with the task of administrating the funds allocated for the construction of the core of the machine by the Italian government. * Sponsored in part by the U.S. DOE.

  17. Ion Milling On Steps for Fabrication of Nanowires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Vasquez, Richard; Lee, Choonsup

    2006-01-01

    Arrays of nanowires having controlled dimensions can now be fabricated on substrates, optionally as integral parts of multilayer structures, by means of a cost-effective, high-yield process based on ion milling on steps. Nanowires made, variously, of semiconductors or metals are needed as components of sensors and high-density electronic circuits. Unlike prior processes used to fabricate nanowires, the present process does not involve electron-beam lithography, manipulation of nanoscopic objects by use of an atomic-force microscope, or any other technique that is inherently unsuitable for scaling up to mass production. In comparison with the prior processes, this process is rapid and simple. Wires having widths as small as a few tens of nanometers and lengths as long as millimeters have been fabricated by use of this process. The figure depicts a workpiece at different stages of the process. A silicon dioxide substrate is coated with a photoresist or poly(methyl methacrylate) [PMMA] to a thickness of as much as 500 nm. The photoresist or PMMA is patterned to form edges where wires are to be formed. A metal - either Pt or Ti - is deposited, by sputtering, to a thickness of as much as 200 nm. By ion milling at normal incidence, the thickness of the metal deposit is reduced until the only metal that remains is in the form of wall-like nanowires along the edges of the photoresist or PMMA. Finally, an oxygen plasma is used to remove the photoresist or PMMA, leaving only the nanowires on the substrate.

  18. Linking magnetic fabric and cumulate texture in layered mafic-ultramafic intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    O Driscoll, B.; Stevenson, C.; Magee, C.

    2013-12-01

    Research on the magnetic fabrics of igneous rocks, pioneered by Balsley and Buddington[1] and Khan[2], has greatly contributed to our understanding of magma dynamics in lava flows, sheet intrusions and plutons over the past five decades. However, considerably few magnetic fabric studies have focused on layered mafic-ultramafic intrusions, particularly ';lopolithic' intrusions, despite the fact that such rocks may preserve a large range of small-scale kinematic structures potentially related to important magma chamber processes. This may be partly due to the fact that mafic-ultramafic cumulates commonly exhibit visible planar fabrics (mineral lamination), as well as compositional layering, in contrast to the frequent absence of such features in granite bodies or fine-grained mafic lava flows. Indeed, debates in the 1970s and 1980s on the development of layering and mineral fabrics in mafic-ultramafic intrusions, focused around the crystal settling versus in situ crystallisation paradigms, are classic in the subject of igneous petrology. Central to these debates is the notion that a wide range of magma chamber processes occur in layered mafic-ultramafic intrusions that are not frequently considered to occur in their relatively viscous granitic counterparts; in essence, the latter have historically been viewed as much more likely to ';freeze-in' a primary magma flow fabric whilst mafic-ultramafic intrusions are subjected to a more protracted solidification history. This wide array of potential initial sources for layering and mineral fabrics in layered mafic-ultramafic intrusions, together with the possible modification of textures at the postcumulus stage, demands a cautious application of any fabric analysis and presents a problem well-suited to interrogation by the AMS technique. The purpose of this contribution is to provide specific context on the application of AMS to elucidating the formation of cumulates in layered mafic-ultramafic intrusions. Examples of AMS

  19. Polymer micromold and fabrication process

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ahre, Paul E.; Dupuy, Peter C.

    1997-01-01

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  20. Polymer micromold and fabrication process

    SciTech Connect

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  1. Fabrication and Calibration of FORTIS

    NASA Technical Reports Server (NTRS)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-01-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z approximately 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (approximately 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the micro shutter arrays.

  2. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  3. LDRD final report : on the development of hybrid level-set/particle methods for modeling surface evolution during feature-scale etching and deposition processes.

    SciTech Connect

    McBride, Cory L.; Schmidt, Rodney Cannon; Musson, Lawrence Cale

    2005-01-01

    Two methods for creating a hybrid level-set (LS)/particle method for modeling surface evolution during feature-scale etching and deposition processes are developed and tested. The first method supplements the LS method by introducing Lagrangian marker points in regions of high curvature. Once both the particle set and the LS function are advanced in time, minimization of certain objective functions adjusts the LS function so that its zero contour is in closer alignment with the particle locations. It was found that the objective-minimization problem was unexpectedly difficult to solve, and even when a solution could be found, the acquisition of it proved more costly than simply expanding the basis set of the LS function. The second method explored is a novel explicit marker-particle method that we have named the grid point particle (GPP) approach. Although not a LS method, the GPP approach has strong procedural similarities to certain aspects of the LS approach. A key aspect of the method is a surface rediscretization procedure--applied at each time step and based on a global background mesh--that maintains a representation of the surface while naturally adding and subtracting surface discretization points as the surface evolves in time. This method was coded in 2-D, and tested on a variety of surface evolution problems by using it in the ChISELS computer code. Results shown for 2-D problems illustrate the effectiveness of the method and highlight some notable advantages in accuracy over the LS method. Generalizing the method to 3D is discussed but not implemented.

  4. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    SciTech Connect

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  5. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation: When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container: Alloy 22 has been extensively tested for

  6. Final Report: Process Models of the Equilibrium Size & State of Organic/Inorganic Aerosols for the Development of Large Scale Atmospheric Models & the Analysis of Field Data

    SciTech Connect

    Wexler, Anthony Stein; Clegg, Simon Leslie

    2013-10-26

    Our work addressed the following elements of the Call for Proposals: (i) “to improve the theoretical representation of aerosol processes studied in ASP laboratory or field studies”, (ii) “to enhance the incorporation of aerosol process information into modules suitable for large-scale or global atmospheric models”, and (iii) “provide systematic experimental validation of process model predictions ... using data from targeted laboratory and field experiments”. Achievements to the end of 2012 are described in four previous reports, and include: new models of densities and surface tensions of pure (single solute) and mixed aqueous solutions of typical aerosol composition under all atmospheric conditions (0 to 100% RH and T > 150 K); inclusion of these models into the widely used Extended Aerosol Inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php); the addition of vapor pressure calculators for organic compounds to the E-AIM website; the ability of include user-defined organic compounds and/or lumped surrogates in gas/aerosol partitioning calculations; the development of new equations to represent the properties of soluble aerosols over the entire concentration range (using methods based upon adsorption isotherms, and derived using statistical mechanics), including systems at close to zero RH. These results are described in publications 1-6 at the end of this report, and on the “News” page of the E-AIM website (http://www.aim.env.uea.ac.uk/aim/info/news.html). During 2012 and 2013 we have collaborated in a combined observation and lab-based study of the water uptake of the organic component of atmospheric aerosols (PI Gannet Hallar, of the Desert Research Institute). The aerosol samples were analyzed using several complementary techniques (GC/MS, FT-ICR MS, and ion chromatography) to produce a very complete organic “speciation” including both polar and non-polar compounds. Hygroscopic growth factors of the samples were measured, and

  7. OECM MCCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 final data report, Rev. 0 February 12, 2003.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the second water ingression test, designated SSWICS-2. The test investigated the quench behavior of a 15 cm deep

  8. OECD MMCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) SSWICS-1 final data report, Rev. 1 February 10, 2003.; Report, Rev. 1

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure; and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the first water ingression test, designated SSWICS-1. The test investigated the quench behavior of a 15 cm deep

  9. A photolithographic fabrication technique for magnetohydrodynamic micropumps

    NASA Astrophysics Data System (ADS)

    Kuenstner, Stephen; Baylor, Martha-Elizabeth

    2014-03-01

    Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.

  10. Ion traps fabricated in a CMOS foundry

    SciTech Connect

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  11. Final Report

    SciTech Connect

    David W. Mazyck; Angela Lindner; CY Wu, Rick Sheahan, Ashok Jain

    2007-06-30

    Forest products provide essential resources for human civilization, including energy and materials. In processing forest products, however, unwanted byproducts, such as volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) are generated. The goal of this study was to develop a cost effective and reliable air pollution control system to reduce VOC and HAP emissions from pulp, paper and paperboard mills and solid wood product facilities. Specifically, this work focused on the removal of VOCs and HAPs from high volume low concentration (HVLC) gases, particularly methanol since it is the largest HAP constituent in these gases. Three technologies were developed and tested at the bench-scale: (1) A novel composite material of activated carbon coated with a photocatalyst titanium dioxide (TiO{sub 2}) (referred to as TiO{sub 2}-coated activated carbon or TiO{sub 2}/AC), (2) a novel silica gel impregnated with nanosized TiO{sub 2} (referred to as silica-titania composites or STC), and (3) biofiltration. A pilot-scale reactor was also fabricated and tested for methanol removal using the TiO{sub 2}/AC and STC. The technical feasibility of removing methanol with TiO{sub 2}/AC was studied using a composite synthesized via a spay desiccation method. The removal of methanol consists of two consecutive operation steps: removal of methanol using fixed-bed activated carbon adsorption and regeneration of spent activated carbon using in-situ photocatalytic oxidation. Regeneration using photocatalytic oxidation employed irradiation of the TiO{sub 2} catalyst with low-energy ultraviolet (UV) light. Results of this technical feasibility study showed that photocatalytic oxidation can be used to regenerate a spent TiO{sub 2}/AC adsorbent. A TiO{sub 2}/AC adsorbent was then developed using a dry impregnation method, which performed better than the TiO{sub 2}/AC synthesized using the spray desiccation method. The enhanced performance was likely a result of the better

  12. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  13. Fabric filter system study

    NASA Astrophysics Data System (ADS)

    Chambers, R. L.; Plunk, O. C.; Kunka, S. L.

    1984-08-01

    Results of the fourth year of operation of a fabric filter installed on a coal-fired boiler are reported. Project work during the fourth year concentrated on fabric studies. The 10-oz/sq yd fabrics of the 150 1/2 warp, 150 2/2T fill construction demonstrated superior performance over the most common 14-oz/sq yd constructions, regardless of coating. It was determined that improving cleaning by increasing shaking amplitude is more detrimental to baglife than increasing shaker frequency. Maintenance and operation observations continued, and the resolution of these types of problems became more efficient because of increased experience of maintenance personnel with baghouse-related problems.

  14. Sintered silicon nitrode recuperator fabrication

    NASA Technical Reports Server (NTRS)

    Gatti, A.; Chiu, W. S.; Mccreight, L. R.

    1980-01-01

    The preliminary design and a demonstration of the feasibility of fabricating submodules of an automotive Stirling engine recuperator for waste heat recovery at 370 C are described. Sinterable silicon nitride (Sialon) tubing and plates were fabricated by extrusion and hydrostatic pressing, respectively, suitable for demonstrating a potential method of constructing ceramic recuperator-type heat exchangers. These components were fired in nitrogen atmosphere to 1800 C without significant scale formation so that they can be used in the as-fired condition. A refractory glass composition (Al2O3 x 4.5 CaO.MgO x 11SiO2) was used to join and seal component parts by a brazing technique which formed strong recuperator submodules capable of withstanding repeated thermal cycling to 1370 C. The corrosion resistance of these materials to Na2SO4 + NaCl carbon mixtures was also assessed in atmospheres of air, hydrogen and CO2-N2-H2O mixtures at both 870 C and 1370 C for times to 1000 hours. No significant reaction was observed under any of these test conditions.

  15. Metallic parts fabrication using the SIS process

    NASA Astrophysics Data System (ADS)

    Mojdeh, Mehdi

    Since early 1980s, quite a few techniques of Rapid Prototyping (RP), also known as Layered Manufacturing, have been developed. By building three-dimensional parts in a layer-by-layer additive manner, these techniques allow freeform fabrication of parts of complex geometry. Despite recent advances in fabrication of polymer parts, most of the existing rapid prototyping processes are still not capable of fabrication of accurate metallic parts with acceptable mechanical properties. Insufficient dimensional accuracy, limited number of materials, proper mechanical properties, required post machining and lack of repeatability between builds have greatly limited the market penetration of these techniques. This dissertation presents an innovative layered manufacturing technique for fabrication of dense metallic parts called Selective Inhibition Sintering (SIS), developed at the University of Southern California. The SIS-Metal technology adapts RP capabilities and extends them to the field of fabrication of metallic parts for a variety of applications such as tooling and low volume production. Using this process, a metallic part, with varying 3 dimensional geometries, can be automatically constructed from a wide range of materials. SIS-Metal is the only RP process which is suitable for fabrication of dense, complex shaped, accurate objects using a variety of materials. In the SIS-Metal process a metallic part is built layer by layer by deposition for each layer of an inhibitor material which defines the corresponding layer boundary and then filling the voids of the created geometry with metal powder; and compacting the layer formed to reach a high powder density. The resulting green part is then sintered in a furnace to yield the final functional part. In this research different inhibition techniques were explored and a series of single and multi layer parts was fabricated using the most promising inhibition technique, namely, macro-mechanical inhibition. Dimensional

  16. In Situ Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.; Hammond, Monica

    2005-01-01

    A manufacturing system is described that is internal to controlled cabin environments which will produce functional parts to net shape with sufficient tolerance, strength and integrity to meet application specific needs such as CEV ECLS components, robotic arm or rover components, EVA suit items, unforeseen tools, conformal repair patches, and habitat fittings among others. Except for start-up and shut-down, fabrication will be automatic without crew intervention under nominal scenarios. Off-nominal scenarios may require crew and/or Earth control intervention. System will have the ability to fabricate using both provisioned feedstock materials and feedstock refined from in situ regolith.

  17. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  18. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1985-01-01

    There are two kinds of fabric structures - tension, supported by cables and pylons, and those supported by air pressure within an enclosed fabric envelope. They are becoming increasingly popular with architects, engineers, etc., because of their aesthetic appeal, low cost and maintenance, energy efficiency and good space utilization. The Structo-Fab roof weighs only 1/30 as much as a conventional roof of that size. Giant fans are used to blow air into the envelope between the roof's outer membrane and its inner liner automatically maintaining the pressure differential necessary for roof rigidity.

  19. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  20. One-step fabrication of multifunctional micromotors

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  1. Photodeposition Method For Fabricating A Three-Dimensional, Patterned Polymer Microstructure

    DOEpatents

    Walt, David R.; Healey, Brian G.

    2001-03-13

    The present invention is a photodeposition methodology for fabricating a three-dimensional patterned polymer microstructure. A variety of polymeric structures can be fabricated on solid substrates using unitary fiber optic arrays for light delivery. The methodology allows micrometer-scale photopatterning for the fabricated structures using masks substantially larger than the desired dimensions of the microstructure.

  2. A facile in situ self-assembly strategy for large-scale fabrication of CHS@MOF yolk/shell structure and its catalytic application in a flow system.

    PubMed

    Gao, Hongyi; Luan, Yi; Chaikittikul, Kullapat; Dong, Wenjun; Li, Jie; Zhang, Xiaowei; Jia, Dandan; Yang, Mu; Wang, Ge

    2015-03-01

    A hierarchical yolk/shell copper hydroxysulfates@MOF (CHS@MOF, where MOF = metal-organic frameworks) structure was fabricated from a homogeneous yolk/shell CHS template composed of an active shell and a stabilized core via a facile self-template strategy at room temperature. The active shell of the template served as the source of metal ion and was in situ transformed into a well-defined MOF crystal shell, and the relatively stabilized core retained its own nature during the formation of the MOF shell. The strategy of in situ transformation of CHS shell to MOF shell avoided the self-nucleation of MOF in the solution and complex multistep procedures. Furthermore, a flow reaction system using CHS@MOF as self-supported stationary-phase catalyst was developed, which demonstrated excellent catalytic performance for aldehyde acetalization with ethanol, and high yields and selectivities were achieved under mild conditions.

  3. Micromechanical Structures Fabrication

    SciTech Connect

    Rajic, S

    2001-05-08

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates.

  4. Lithographic fabrication of nanoapertures

    DOEpatents

    Fleming, James G.

    2003-01-01

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  5. Techniques of Final Preseal Visual Inspection

    NASA Technical Reports Server (NTRS)

    Anstead, R. J.

    1975-01-01

    A dissertation is given on the final preseal visual inspection of microcircuit devices to detect manufacturing defects and reduce failure rates in service. The processes employed in fabricating monolithic integrated circuits and hybrid microcircuits, various failure mechanisms resulting from deficiencies in those processes, and the rudiments of performing final inspection are outlined.

  6. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  7. Automated pilling detection and fuzzy classification of textile fabrics

    NASA Astrophysics Data System (ADS)

    Dar, Iqbal M.; Mahmood, Waqar; Vachtsevanos, George

    1997-04-01

    In the textile industry, the degree of fabric pilling is subjectively determined by human inspectors resulting in inconsistent quality control. The observed resistance to pilling is reported on an arbitrary scale ranging from No. 5 (no pillings) to No. 1 (very severe pilling). This paper presents a system and a methodology that counts the number of pillings on textile fabric samples automatically and classifies them into one of the pre-defined classes with repeatable accuracy while accounting for the human judgment by allowing the determination of the degree of confidence assigned to the sample's membership in each class. The system consists of an apparatus; an imaging and data processing software procedure for counting the number of pillings; and a methodology for classifying the fabric samples into one of the pre-defined classes with repeatable accuracy while accounting for human judgment. A CCD camera is used to capture successive gray scale images of the fabric sample. A series of segmentation, Radon transform, morphological filtering, and detrending operations are applied to the fabric images to determine the true pilling count. The structuring element for the morphological operations is designed such that fuzz balls (which are not pillings) are filtered. Using fuzzy membership functions, the fabric pilling count is mapped to fabric pilling resistance rating. The system has been successfully tested on a large number of fabric samples with different shades and textures provided by the textile industry.

  8. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  9. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  10. Fabrication of Stainless Steel Mold Using Electrochemical Fabrication Method for Microfluidic Biochip

    NASA Astrophysics Data System (ADS)

    Cho, Min-Soo; Lim, Hyun-Woo; Sunyong Lee, Caroline; Cho, Byung-Ki; Park, Jin-Goo

    2008-06-01

    Imprinting method mechanically transfers patterns from a stamp onto a substrate. In imprinting process, the mold is one of the most important factors. A new micro fabrication method termed electrochemical fabrication (ECF) is introduced to overcome conventional problems of electrical discharge machining (EDM), FeCl3 Wet etching, laser method, electro plating, such as low reliability and reproducibility, high cost. This ECF method defines micro patterns using a conventional photolithography, allowing it to produce micro-scale patterns with an excellent surface roughness and of excellent quality. In this paper, a 150 mm stainless steel (SUS 304, 5 mm in thickness) mold was fabricated using both ECF method and FeCl3-etchant method, respectively. As a result, the ECF mold resulted 10 times better surface roughness values than that of mold using FeCl3 etchant. Also, metal surface of the ECF-SUS mold was cleaner and smoother than that the FeCl3 etched SUS mold. Therefore, SUS mold was successfully fabricated for the first time in micro-scale and multi-step patterns. Plastic replica was fabricated successfully using the ECF-SUS mold.

  11. Thick film fabrication of aluminum nitride microcircuits. Final report

    SciTech Connect

    Perdieu, L.H.

    1994-03-01

    A new substrate material, aluminum nitride (AlN), and 11 new thick film inks were analyzed to determine their chemical compatibility, their electrical properties, their mechanical properties, and their overall suitability for use in the manufacturing of high-power microcircuits with efficient thermal properties. Because high-power chips emit a great deal of heat in a small surface area, a new substrate material was needed to dissipate that heat faster than the substrate material currently in use. Overall, the new materials were found to be acceptable for accomplishing this purpose.

  12. Fabrications of PVDF gratings :final report for LDRD project 79884.

    SciTech Connect

    Rogers, J. A. (University of Illinois, Urbana-Champaign); Carr, Dustin Wade; Bogart, Gregory R.

    2005-12-01

    The purpose of this project was to do some preliminary studies and process development on electroactive polymers to be used for tunable optical elements and MEMS actuators. Working in collaboration between Sandia National Labs and The University of Illinois Urbana-Champaign, we have successfully developed a process for applying thin films of poly (vinylidene fluoride) (PVDF) onto glass substrates and patterning these using a novel stamping technique. We observed actuation in these structures in static and dynamic measurements. Further work is needed to characterize the impact that this approach could have on the field of tunable optical devices for sensing and communication.

  13. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  14. Final Report

    SciTech Connect

    Gurney, Kevin R.

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  15. Directed light fabrication

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Nemec, R.; Milewski, J.; Thoma, D. J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine 'tool paths' are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  16. The Fabric of Reality

    NASA Astrophysics Data System (ADS)

    Whitaker, Andrew

    David Deutsch, The Fabric of Reality (London: Allen Lane, 1997), x+390 pp., ISBN 0-713-990619, hardback. David Deutsch's popular book, The Fabric of Reality, has already won acclaim as a sustained and comprehensible explanation of his own worldview, which encompasses his four main strands of quantum physics, epistemology, computation and evolution, as well as the many connections between them. Deutsch is a strong opponent of reductionism, and the latter three strands are 'high level' theories compared to quantum physics; but all four are to be regarded as fundamental because they are the theories that provide the deepest explanations. Deutsch considers that his worldview may be called the first genuine Theory of Everything; it would stand in strong contrast to the reductionist theories given that title at present. In fact he believes his approach may enable us to unify and explain not just science, but philosophy, logic, mathematics, ethics, politics and aesthetics.

  17. Automated breeder fuel fabrication

    SciTech Connect

    Goldmann, L.H.; Frederickson, J.R.

    1983-09-01

    The objective of the Secure Automated Fabrication (SAF) Project is to develop remotely operated equipment for the processing and manufacturing of breeder reactor fuel pins. The SAF line will be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at the Department of Energy's (DOE) Hanford site near Richland, Washington, and is operated by the Westinghouse Hanford Company (WHC). The fabrication and support systems of the SAF line are designed for computer-controlled operation from a centralized control room. Remote and automated fuel fabriction operations will result in: reduced radiation exposure to workers; enhanced safeguards; improved product quality; near real-time accountability, and increased productivity. The present schedule calls for installation of SAF line equipment in the FMEF beginning in 1984, with qualifying runs starting in 1986 and production commencing in 1987. 5 figures.

  18. Fabrication of freeform optics

    NASA Astrophysics Data System (ADS)

    Blalock, Todd; Medicus, Kate; DeGroote Nelson, Jessica

    2015-08-01

    Freeform surfaces on optical components have become an important design tool for optical designers. Non-rotationally symmetric optical surfaces have made solving complex optical problems easier. The manufacturing and testing of these surfaces has been the technical hurdle in freeform optic's wide-spread use. Computer Numerically Controlled (CNC) optics manufacturing technology has made the fabrication of optical components more deterministic and streamlined for traditional optics and aspheres. Optimax has developed a robust freeform optical fabrication CNC process that includes generation, high speed VIBE polishing, sub-aperture figure correction, surface smoothing and testing of freeform surfaces. Metrology of freeform surface is currently achieved with coordinate measurement machines (CMM) for lower resolution and interferometry with computer generated holograms (CGH) for high resolution irregularity measurements.

  19. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, including an MHD electrode for strategic defense initiative (SDI) applications and a high stress, low cost, reinforced ceramic component for armor applications. The MHD electrode design is substantially completed. A layered structure composed of molybdenum disilicide graded with quartz glass has been designed and analyzed using finite element methods. The design demonstrates the fabrication capabilities of the CCF process. The high stress, armor application component will be silicon carbide reinforced alumina in thick plates. 2 refs., 4 figs., 1 tab.

  20. Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration

    SciTech Connect

    McGuinness, C.; Colby, E.; England, R. J.; Noble, R. J.; Sears, C. M.; Siemann, R.; Spencer, J.; Waltz, D.; Byer, R. L.; Plettner, T.; Cowan, B. M.

    2009-01-22

    We describe initial steps at fabricating a dielectric photonic bandgap accelerator structure designed to operate at near IR frequencies. Such a structure operating at these frequencies requires extremely small, sub-micron sized features, forcing one to use lithographic means for fabrication. A process based upon lithographic equipment at the Stanford Nanofabrication Facility has been developed and a four layer test structure has been fabricated. Unexpected problems with the final etch step, and corresponding modifications to the process flow addressing these problems, are described. Spectroscopic measurements of the structure have been taken and are compared to simulations.