Sample records for scale fixed bed

  1. Fixed-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  2. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN

    2017-03-01

    In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.

  3. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  4. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  5. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply.

    PubMed

    Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz

    2018-02-26

    The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3  m -2  d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.

  6. DESIGNING FIXED-BED ADSORBERS TO REMOVE MIXTURES OF ORGANICS.

    EPA Science Inventory

    A liquid-phase granular activated carbon (GAC) pilot plant and a full-scale GAC adsorber were designed, built, and operated in order to evaluate their performance for treating a groundwater contaminated with several volatile and synthetic organic chemicals. Several empty bed con...

  7. Near-Bed Turbulent Kinetic Energy Budget Under a Large-Scale Plunging Breaking Wave Over a Fixed Bar

    NASA Astrophysics Data System (ADS)

    van der Zanden, Joep; van der A, Dominic A.; Cáceres, Iván.; Hurther, David; McLelland, Stuart J.; Ribberink, Jan S.; O'Donoghue, Tom

    2018-02-01

    Hydrodynamics under regular plunging breaking waves over a fixed breaker bar were studied in a large-scale wave flume. A previous paper reported on the outer flow hydrodynamics; the present paper focuses on the turbulence dynamics near the bed (up to 0.10 m from the bed). Velocities were measured with high spatial and temporal resolution using a two component laser Doppler anemometer. The results show that even at close distance from the bed (1 mm), the turbulent kinetic energy (TKE) increases by a factor five between the shoaling, and breaking regions because of invasion of wave breaking turbulence. The sign and phase behavior of the time-dependent Reynolds shear stresses at elevations up to approximately 0.02 m from the bed (roughly twice the elevation of the boundary layer overshoot) are mainly controlled by local bed-shear-generated turbulence, but at higher elevations Reynolds stresses are controlled by wave breaking turbulence. The measurements are subsequently analyzed to investigate the TKE budget at wave-averaged and intrawave time scales. Horizontal and vertical turbulence advection, production, and dissipation are the major terms. A two-dimensional wave-averaged circulation drives advection of wave breaking turbulence through the near-bed layer, resulting in a net downward influx in the bar trough region, followed by seaward advection along the bar's shoreward slope, and an upward outflux above the bar crest. The strongly nonuniform flow across the bar combined with the presence of anisotropic turbulence enhances turbulent production rates near the bed.

  8. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    PubMed

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  9. Observations of axisymmetric tracer particle orientation during flow through a dilute fixed bed of fibers

    NASA Astrophysics Data System (ADS)

    Frattini, Paul L.; Shaqfeh, Eric S. G.; Levy, Jeffrey L.; Koch, Donald L.

    1991-11-01

    Direct microstructural evidence for net tracer particle orientation induced solely by hydrodynamic interactions in a dilute, disordered, fibrous media is reported. A dilute fixed bed of randomly placed fibers was constructed and glycerol/water suspensions of either synthetic akaganeite (βFeOOH, average aspect ratio 6.3) or hematite (αFe2O3, average aspect ratio 1.6) tracer particles were made to flow axially through the bed at prescribed flow rates. Conservative linear dichroism, a noninvasive light scattering technique, was employed to provide a direct measure of the orientational order parameter for the tracer particle population at the end of the bed. The effect of Brownian motion on the hydrodynamically induced order in the suspensions was studied over three orders of magnitude in scaled rotary Peclet number, 5

  10. Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.

    PubMed

    Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi

    2017-03-01

    Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd 2+ , Pb 2+ and Cu 2+ , the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe 2 (OH) 2 CO 3 ) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Packed-bed catalytic cracking of oak derived pyrolytic vapors

    USDA-ARS?s Scientific Manuscript database

    Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...

  12. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of bedforms and resulting drag can return similar levels of roughness to those in the field site.

  13. Field application of a planted fixed bed reactor (PFR) for support media and rhizosphere investigation using undisturbed samples from full-scale constructed wetlands.

    PubMed

    Barreto, A B; Vasconcellos, G R; von Sperling, M; Kuschk, P; Kappelmeyer, U; Vasel, J L

    2015-01-01

    This study presents a novel method for investigations on undisturbed samples from full-scale horizontal subsurface-flow constructed wetlands (HSSFCW). The planted fixed bed reactor (PFR), developed at the Helmholtz Center for Environmental Research (UFZ), is a universal test unit for planted soil filters that reproduces the operational conditions of a constructed wetland (CW) system in laboratory scale. The present research proposes modifications on the PFR original configuration in order to allow its operation in field conditions. A mobile device to obtain undisturbed samples from real-scale HSSFCW was also developed. The experimental setting is presented with two possible operational configurations. The first allows the removal and replacement of undisturbed samples in the CW bed for laboratory investigations, guaranteeing sample integrity with a mobile device. The second allows the continuous operation of the PFR and undisturbed samples as a fraction of the support media, reproducing the same environmental conditions outside the real-scale system. Investigations on the hydrodynamics of the adapted PFR were carried out with saline tracer tests, validating the proposed adaptation. Six adapted PFR units were installed next to full-scale HSSFCW beds and fed with interstitial liquid pumped from two regions of planted and unplanted support media. Fourteen points were monitored along the system, covering carbon fractions, nitrogen and sulfate. The results indicate the method as a promising tool for investigations on CW support media, rhizosphere and open space for studies on CW modeling, respirometry, kinetic parameters, microbial communities, redox potential and plant influence on HSSFCW.

  14. Fixed bed gasification for production of industrial fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-,more » and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)« less

  15. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    PubMed

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Response of bed surface patchiness to reductions in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Venditti, Jeremy G.; Dietrich, William E.; Kirchner, James W.; Ikeda, Hiroshi; Iseya, Fujiko; Sklar, Leonard S.

    2009-06-01

    River beds are often arranged into patches of similar grain size and sorting. Patches can be distinguished into "free patches," which are zones of sorted material that move freely, such as bed load sheets; "forced patches," which are areas of sorting forced by topographic controls; and "fixed patches" of bed material rendered immobile through localized coarsening that remain fairly persistent through time. Two sets of flume experiments (one using bimodal, sand-rich sediment and the other using unimodal, sand-free sediment) are used to explore how fixed and free patches respond to stepwise reductions in sediment supply. At high sediment supply, migrating bed load sheets formed even in unimodal, sand-free sediment, yet grain interactions visibly played a central role in their formation. In both sets of experiments, reductions in supply led to the development of fixed coarse patches, which expanded at the expense of finer, more mobile patches, narrowing the zone of active bed load transport and leading to the eventual disappearance of migrating bed load sheets. Reductions in sediment supply decreased the migration rate of bed load sheets and increased the spacing between successive sheets. One-dimensional morphodynamic models of river channel beds generally are not designed to capture the observed variability, but should be capable of capturing the time-averaged character of the channel. When applied to our experiments, a 1-D morphodynamic model (RTe-bookAgDegNormGravMixPW.xls) predicted the bed load flux well, but overpredicted slope changes and was unable to predict the substantial variability in bed load flux (and load grain size) because of the migration of mobile patches. Our results suggest that (1) the distribution of free and fixed patches is primarily a function of sediment supply, (2) the dynamics of bed load sheets are primarily scaled by sediment supply, (3) channels with reduced sediment supply may inherently be unable to transport sediment uniformly across their width, and (4) cross-stream variability in shear stress and grain size can produce potentially large errors in width-averaged sediment flux calculations.

  17. Wave Driven Fluid-Sediment Interactions over Rippled Beds

    NASA Astrophysics Data System (ADS)

    Foster, Diane; Nichols, Claire

    2008-11-01

    Empirical investigations relating vortex shedding over rippled beds to oscillatory flows date back to Darwin in 1883. Observations of the shedding induced by oscillating forcing over fixed beds have shown vortical structures to reach maximum strength at 90 degrees when the horizontal velocity is largest. The objective of this effort is to examine the vortex generation and ejection over movable rippled beds in a full-scale, free surface wave environment. Observations of the two-dimensional time-varying velocity field over a movable sediment bed were obtained with a submersible Particle Image Velocimetry (PIV) system in two wave flumes. One wave flume was full scale and had a natural sand bed and the other flume had an artificial sediment bed with a specific gravity of 1.6. Full scale observations over an irregularly rippled bed show that the vortices generated during offshore directed flow over the steeper bed form slope were regularly ejected into the water column and were consistent with conceptual models of the oscillatory flow over a backward facing step. The results also show that vortices remain coherent during ejection when the background flow stalls (i.e. both the velocity and acceleration temporarily approach zero). These results offer new insight into fluid sediment interaction over rippled beds.

  18. Large-scale Clinical-grade Retroviral Vector Production in a Fixed-Bed Bioreactor

    PubMed Central

    Wang, Xiuyan; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; Bartido, Shirley; Hermetet, Gregory; Sadelain, Michel

    2015-01-01

    The successful genetic engineering of patient T cells with γ-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice–grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks’ yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce γ-retroviral vector stocks scalable up to the commercialization phase. PMID:25751502

  19. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  20. Countercurrent fixed-bed gasification of biomass at laboratory scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7%more » CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.« less

  1. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling.

    PubMed

    Cui, Hang; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-10-15

    Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m(2)/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ~255,000 BVs and ~271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  3. Updraft Fixed Bed Gasification Aspen Plus Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  4. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.

    PubMed

    Ogbonna, J C; Mashima, H; Tanaka, H

    2001-01-01

    Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.

  5. Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.

    PubMed

    Chen, J Paul; Wang, Lin

    2004-01-01

    Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.

  6. Fixed-bed operation for manganese removal from water using chitosan/bentonite/MnO composite beads.

    PubMed

    Muliwa, Anthony M; Leswifi, Taile Y; Maity, Arjun; Ochieng, Aoyi; Onyango, Maurice S

    2018-04-24

    In the present study, a new composite adsorbent, chitosan/bentonite/manganese oxide (CBMnO) beads, cross-linked with tetraethyl-ortho-silicate (TEOS) was applied in a fixed-bed column for the removal of Mn (II) from water. The adsorbent was characterised by scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR), N 2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS) techniques, and moreover the point of zero charge (pH pzc ) was determined. The extend of Mn (II) breakthrough behaviour was investigated by varying bed mass, flow rate and influent concentration, and by using real environmental water samples. The dynamics of the column showed great dependency of breakthrough curves on the process conditions. The breakthrough time (t b ), bed exhaustion time (t s ), bed capacity (q e ) and the overall bed efficiency (R%) increased with an increase in bed mass, but decreased with the increase in both influent flow rate and concentration. Non-linear regression suggested that the Thomas model effectively described the breakthrough curves while large-scale column performance could be estimated by the bed depth service time (BDST) model. Experiments with environmental water revealed that coexisting ions had little impact on Mn (II) removal, and it was possible to achieve 6.0 mg/g breakthrough capacity (q b ), 4.0 L total treated water and 651 bed volumes processed with an initial concentration of 38.5 mg/L and 5.0 g bed mass. The exhausted bed could be regenerated with 0.001 M nitric acid solution within 1 h, and the sorbent could be reused twice without any significant loss of capacity. The findings advocate that CBMnO composite beads can provide an efficient scavenging pathway for Mn (II) in polluted water.

  7. Drop Breakup in Fixed Bed Flows as Model Stochastic Flow Fields

    NASA Technical Reports Server (NTRS)

    Shaqfeh, Eric S. G.; Mosler, Alisa B.; Patel, Prateek

    1999-01-01

    We examine drop breakup in a class of stochastic flow fields as a model for the flow through fixed fiber beds and to elucidate the general mechanisms whereby drops breakup in disordered, Lagrangian unsteady flows. Our study consists of two parallel streams of investigation. First, large scale numerical simulations of drop breakup in a class of anisotropic Gaussian fields will be presented. These fields are generated spectrally and have been shown in a previous publication to be exact representations of the flow in a dilute disordered bed of fibers if close interactions between the fibers and the drops are dynamically unimportant. In these simulations the drop shape is represented by second and third order small deformation theories which have been shown to be excellent for the prediction of drop breakup in steady strong flows. We show via these simulations that the mechanisms of drop breakup in these flows are quite different than in steady flows. The predominant mechanism of breakup appears to be very short lived twist breakups. Moreover, the occurrence of breakup events is poorly predicted by either the strength of the local flow in which the drop finds itself at breakup, or the degree of deformation that the drop achieves prior to breakup. It is suggested that a correlation function of both is necessary to be predictive of breakup events. In the second part of our research experiments are presented where the drop deformation and breakup in PDMS/polyisobutylene emulsions is considered. We consider very dilute emulsions such that coalescence is unimportant. The flows considered are simple shear and the flow through fixed fiber beds. Turbidity, small angle light scattering, dichroism and microscopy are used to interrogate the drop deformation process in both flows. It is demonstrated that breakup at very low capillary numbers occurs in both flows but larger drop deformation occurs in the fixed bed flow. Moreover, it is witnessed that breakup in the bed occurs continuously during flow and apparently with uniform probability through the bed length. The drop deformations witnessed in our experiments are larger than those predicted by the numerical simulations, and future plans to investigate these differences are discussed.

  8. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    A novel economical oxidant has been developed for elemental mercury (Hg(0)) removal from coal-fired boilers. The oxidant was rigorously tested in a lab-scale fixed-bed system with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB subbituminous/l...

  9. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    The primary objective of this study is to develop and test advanced noncarbonaceous solid sorbent materials suitable for removing the elemental form of mercury from power plant emissions. An efficient and cost-effective novel Hg(0) oxidant was evaluated in a lab-scale fixed-bed ...

  10. Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption.

    PubMed

    Xavier, Amália Luísa Pedrosa; Adarme, Oscar Fernando Herrera; Furtado, Laís Milagres; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2018-04-15

    In the second part of this series of studies, the monocomponent adsorption of Cu 2+ , Co 2+ and Ni 2+ onto STA adsorbent in a fixed-bed column was investigated and optimized using a 2 2 central composite design. The process variables studied were: initial metal ion concentration and spatial time, and the optimized responses were: adsorption capacity of the bed (Q max ), efficiency of the adsorption process (EAP), and effective use of the bed (H). The higher Q max for Cu 2+ , Co 2+ and Ni 2+ were 1.060, 0.800 and 1.029 mmol/g, respectively. The breakthrough curves were modeled by the original Thomas and Bohart-Adams models. The changes in enthalpy (Δ ads H°) of adsorption of the metal ions onto STA were determined by isothermal titration calorimetry (ITC). The values of Δ ads H° were in the range of 3.0-6.8 kJ/mol, suggesting that the adsorption process involved physisorption. Desorption (E des ) and re-adsorption (E re-ads ) of metal ions from the STA adsorbent were also investigated in batch mode, and the optimum conditions were applied for three cycles of adsorption/desorption in a fixed bed column. For these cycles, the lowest values of E des and E re-ads were 95 and 92.3%, respectively, showing that STA is a promising candidate for real applications on a large scale. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste.

    PubMed

    Ahmad, A A; Hameed, B H

    2010-03-15

    In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column. (c) 2009 Elsevier B.V. All rights reserved.

  12. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  13. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    EPA Science Inventory

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  14. 14. UPPER SHOES, FIXED SHOES, ROLLER SHOES, CENTER WEB, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. UPPER SHOES, FIXED SHOES, ROLLER SHOES, CENTER WEB, AND ROLLER BED PLATES. (Also includes a sheet index and a schedule of parts). American Bridge Company, Ambridge Plant No. 5, sheet no. 4, dated April 7, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot, order no. SF578. For Southern Pacific Company, order no. 8873-P-28746. various scales. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  15. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column.

    PubMed

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-04-01

    Carbonization of Phoenix dactylifera L stones followed by microwave K 2 CO 3 activation was adopted for preparation of granular activated carbon (KAC). High yield and favorable pore characteristics in terms of surface area and pore volume were reported for KAC as follows: 44%, 852m 2 /g, and 0.671cm 3 /g, respectively. The application of KAC as adsorbent for attraction of ciprofloxacin (CIP) and norfloxacin (NOR) was investigated using fixed bed systems. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial drug concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. Inlet drug concentration was of greatest effect on breakthrough data compared to other fixed bed variables. Experimental and calculated breakthrough data were obtained for CIP and NOR adsorption on KAC, thus being important for design of fixed bed column. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects

    NASA Astrophysics Data System (ADS)

    Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio

    2017-04-01

    Free-surface flows with high sediment transport (as debris flow or hyper-concentrated flow) are composed by a mixture of fluid and solid phase, usually water and sediment. When these flows propagate over loose beds, particles constituting the mixture of water and sediments strongly interact with the ones forming the bed, leading to erosion or deposition. However, there are lots of other situations when the mixture flows over rigid bedrocks or over artificially paved transects, so there is no mass exchange between bed and mixture. The two situations are usually referred to as, respectively, mobile- and fixed-bed conditions. From a mathematical point of view, the systems of Partial Differential Equations (PDEs) that describe these flows derive from mass and momentum balance of both phases, but, the two resulting PDEs systems are different. The main difference concerns the concentration: in the mobile-bed condition, the concentration is linked to the local flow conditions by means of a suitable rheological relation, while in the fixed-bed case, the concentration is an unknown of the problem. It is quite common that a free surface flow with high sediment transport, in its path, encounters both conditions. In the recent work of Rosatti & Zugliani 2015, the mathematical and numerical description of the transition between fixed- and mobile-bed was successfully resolved, for the case of low sediment transport phenomena, by the introduction of a suitable erodibility variable and satisfactory results were obtained. The main disadvantage of the approach is related to the erodibility variable, that changes in space, based on bed characteristics, but remains constant in time. However, the nature of the bed can change dynamically as result of deposition over fixed bed or high erosion over mobile bed. With this work, we extend the applicability of the mentioned approach to the more complex PDEs describing the hyper-concentrated flow. Moreover, we introduce a strategy that allows a dynamic time variation of the erodibility variable. The issue of the dynamic transition between fixed- and mobile-bed condition is tackled, from a numerical point of view, using a particular predictor corrector technique that compare the transported concentration related with the fixed bed and the equilibrium concentration, deriving from a closure relation, associated to the mobile bed condition. Through a comparison between exact solution, built using the generalized Rankine - Hugoniot condition, and the numeric results, we highlight capabilities and limits of this enhanced technique. Bibliography: G. Rosatti and D. Zugliani, 2015. "Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution". Journal of Computational Physics, 285:226-250

  17. Mathematical modeling of the adsorption/desorption characteristics of anthocyanins from muscadine (Vitis rotundifolia cv. Noble) juice pomace on Amberlite FPX66 resin in a fixed bed column.

    PubMed

    Uzdevenes, Chad G; Gao, Chi; Sandhu, Amandeep K; Yagiz, Yavuz; Gu, Liwei

    2018-03-24

    Muscadine grape pomace, a by-product of juicing and wine-making, contains significant amounts of anthocyanin 3,5-diglucosides, known to be beneficial to human health. The objective of this research was to use mathematical modeling to investigate the adsorption/desorption characteristics of these anthocyanins from muscadine grape pomace on Amberlite FPX66 resin in a fixed bed column. Anthocyanins were extracted using hot water and ultrasound, and the extracts were loaded onto a resin column at five bed depths (5, 6, 8, 10 and 12 cm) using three flow rates (4, 6 and 8 mL min -1 ). It was found that adsorption on the column fitted the bed depth service time (BDST) model and the empty bed residence time (EBRT) model. Desorption was achieved by eluting the column using ethanol at four concentrations (25, 40, 55 and 70% v/v) and could be described with an empirical sigmoid model. The breakthrough curves of anthocyanins fitted the BDST model for all three flow rates with R 2 values of 0.983, 0.992 and 0.984 respectively. The EBRT model was successfully employed to find the operating lines, which allow for column scale-up while still achieving similar results to those found in a laboratory operation. Desorption with 40% (v/v) ethanol achieved the highest recovery rate of anthocyanins at 79.6%. The mathematical models established in this study can be used in designing a pilot/industrial- scale column for the separation and concentration of anthocyanins from muscadine juice pomace. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. 40 CFR 265.1033 - Standards: Closed-vent systems and control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly in... using a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed... established as a requirement of § 265.1035(b)(4)(iii)(F). (h) An owner or operator using a carbon adsorption...

  19. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  20. Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz

    The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the lifemore » of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.« less

  1. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2015-05-01

    In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Kinetic Modeling of Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Formation Based on Carbon Degradation Reactions

    EPA Science Inventory

    Combustion experiments in a laboratory-scale fixed bed reactor were performed to determine the role of temperature and time in PCDD/F formation allowing a global kinetic expression to be written for PCDD/F formation due to soot oxidation in fly ash deposits. Rate constants were c...

  3. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  4. Flow near a model spur dike with a fixed scoured bed

    USDA-ARS?s Scientific Manuscript database

    Three-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed scoured bed with a submerged spur dike. Three-dimensional flow velocities were measured at 3484 positions around the trapezoidal shaped submerged model spur dike over a fixed ...

  5. Thermochemical Process Integration, Scale-Up, and Piloting Publications |

    Science.gov Websites

    -Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility, Topics in Catalysis Image of a schematic of hot gas filter and ex situ Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors, NREL Technical Report Image

  6. ROLE OF SURFACE FUNCTIONAL GROUPS IN THE CAPTURE OF ELEMENTAL MERCURY AND MERCURIC CHLORIDE BY ACTIVATED CARBONS

    EPA Science Inventory

    The paper discusses using a laboratory-scale, fixed bed apparatus to study the role of surface functional groups (SFGs) in the capture of mercuric chloride (HgC12) and elemental mercury (Hgo) in nitrogen (N2) prior to flue gas atmosphere studies. The study focused on two activat...

  7. Fully Resolved Simulations of Particle-Bed-Turbulence Interactions in Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Apte, S.; Ghodke, C.

    2017-12-01

    Particle-resolved direct numerical simulations (DNS) are performed to investigate the behavior of an oscillatory flow field over a bed of closely packed fixed spherical particles for a range of Reynolds numbers in transitional and rough turbulent flow regime. Presence of roughness leads to a substantial modification of the underlying boundary layer mechanism resulting in increased bed shear stress, reduction in the near-bed anisotropy, modification of the near-bed sweep and ejection motions along with marked changes in turbulent energy transport mechanisms. Characterization of such resulting flow field is performed by studying statistical descriptions of the near-bed turbulence for different roughness parameters. A double-averaging technique is employed to reveal spatial inhomogeneities at the roughness scale that provide alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Spatio-temporal characteristics of unsteady particle forces by studying their spatial distribution, temporal auto-correlations, frequency spectra, cross-correlations with near-bed turbulent flow variables and intermittency intermittency in the forces using the concept of impulse are investigated in detail. These first principle simulations provide substantial insights into the modeling of incipient motion of sediments.

  8. Digestion performance and microbial community in full-scale methane fermentation of stillage from sweet potato-shochu production.

    PubMed

    Kobayashi, Tsutomu; Tang, Yueqin; Urakami, Toyoshi; Morimura, Shigeru; Kida, Kenji

    2014-02-01

    Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.

  9. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  10. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less

  11. Volatile organic compound adsorption in a gas-solid fluidized bed.

    PubMed

    Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T

    2004-01-01

    Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas concentration. Concentrations up to 220 ppm for methanol and 75 ppm for isobutane were prepared using this method.

  12. Batch and fixed-bed column study for p-nitrophenol, methylene blue, and U(VI) removal by polyvinyl alcohol-graphene oxide macroporous hydrogel bead.

    PubMed

    Chen, Dan; Zhou, Jun; Wang, Hongyu; Yang, Kai

    2018-01-01

    There is an increasing need to explore effective and clean approaches for hazardous contamination removal from wastewaters. In this work, a novel bead adsorbent, polyvinyl alcohol-graphene oxide (PVA-GO) macroporous hydrogel bead was prepared as filter media for p-nitrophenol (PNP), dye methylene blue (MB), and heavy metal U(VI) removal from aqueous solution. Batch and fixed-bed column experiments were carried out to evaluate the adsorption capacities of PNP, MB, and U(VI) on this bead. From batch experiments, the maximum adsorption capacities of PNP, MB, and U(VI) reached 347.87, 422.90, and 327.55 mg/g. From the fixed-bed column experiments, the adsorption capacities of PNP, MB, and U(VI) decreased with initial concentration increasing from 100 to 400 mg/L. The adsorption capacities of PNP, MB, and U(VI) decreased with increasing flow rate. Also, the maximum adsorption capacity of PNP decreased as pH increased from 3 to 9, while MB and U(VI) presented opposite tendencies. Furthermore, the bed depth service Time (BDST) model showed good linear relationships for the three ions' adsorption processes in this fixed-bed column, which indicated that the BDST model effectively evaluated and optimized the adsorption process of PVA-GO macroporous hydrogel bead in fixed-bed columns for hazardous contaminant removal from wastewaters.

  13. Forces on stationary particles in near-bed turbulent flows

    NASA Astrophysics Data System (ADS)

    Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.

    2007-06-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.

  14. Forces on stationary particles in near-bed turbulent flows

    USGS Publications Warehouse

    Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.

    2007-01-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.

  15. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    PubMed

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system. Copyright © 2013 American Institute of Chemical Engineers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina

    Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less

  17. Large-scale experimental observations of sheet flow on a sandbar under skewed-asymmetric waves

    NASA Astrophysics Data System (ADS)

    Mieras, Ryan S.; Puleo, Jack A.; Anderson, Dylan; Cox, Daniel T.; Hsu, Tian-Jian

    2017-06-01

    A novel large wave flume experiment was conducted on a fixed, barred beach with a sediment pit on the sandbar, allowing for the isolation of small-scale bed response to large-scale forcing. Concurrent measurements of instantaneous sheet layer sediment concentration profiles and near-bed velocity profiles were obtained on a sandbar for the first time. Two sediment distributions were used with median grain diameters, d50, of 0.17 and 0.27 mm. Sheet flow occurred primarily under wave crests, where sheet thickness increased with increasing wave height. A proportionality constant, Λ, was used to relate maximum Shields parameter to maximum sheet thickness (normalized by d50), with bed shear stress computed using the quadratic drag law. An enhanced sheet layer thickness was apparent for the smaller sediment experiments (Λ = 18.7), when directly compared to closed-conduit oscillatory flow tunnel data (Λ = 10.6). However, Λ varied significantly (5 < Λ < 31) depending on the procedure used to estimate grain roughness, ks, and wave friction factor, fw. Three models for ks were compared (keeping the model for fw fixed): constant ks = 2.5d50, and two expressions dependent on flow intensity, derived from steady and oscillatory sheet flow experiments. Values of ks/d50 varied by two orders of magnitude and exhibited an inverse relationship with Λ, where Λ ˜ 30 for ks/d50 of O(1) while Λ ˜ 5 for ks/d50 of O(100). Two expressions for fw were also tested (with the steady flow-based model for ks), yielding a difference of 69% (Λ ˜ 13 versus Λ ˜ 22).

  18. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  19. Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, October 1, 1992--December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Akgerman, A.

    1993-02-01

    The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less

  20. Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.

    PubMed

    Sordo, Carlos; Van Grieken, Rafael; Marugán, Javier; Fernández-Ibáñez, Pilar

    2010-01-01

    The photocatalytic disinfection efficiency has been investigated for two immobilized TiO(2) catalytic systems (wall reactor and fixed-bed reactor) in a solar pilot plant. Their performances have been compared with the use of a slurry reactor and the solar disinfection without catalyst. The use of photocatalytic TiO(2) wall reactors does no show clear benefits over the solar disinfection process in the absence of catalyst. The reason is that the efficiency of the solar disinfection is so high that the presence of titania in the reactor wall reduces the global efficiency due to the competition for the absorption of photons. As expected, the maximum efficiency was shown by the slurry TiO(2) reactor, due to the optimum contact between bacteria and catalyst. However, it is noticeable that the use of the fixed-bed reactor leads to inactivation rate quite close to that of the slurry, requiring comparable accumulated solar energy of about 6 kJ L(-1) to achieve a 6-log decrease in the concentration of viable bacteria and allowing a total disinfection of the water (below the detection limit of 1 CFU mL(-1)). Not only the high titania surface area of this configuration is responsible for the bacteria inactivation but the important contribution of the mechanical stress has to be considered. The main advantage of the fixed-bed TiO(2) catalyst is the outstanding stability, without deactivation effects after ten reaction cycles, being readily applicable for continuous water treatment systems.

  1. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches.

    PubMed

    Sperlich, Alexander; Werner, Arne; Genz, Arne; Amy, Gary; Worch, Eckhard; Jekel, Martin

    2005-03-01

    Breakthrough curves (BTC) for the adsorption of arsenate and salicylic acid onto granulated ferric hydroxide (GFH) in fixed-bed adsorbers were experimentally determined and modeled using the homogeneous surface diffusion model (HSDM). The input parameters for the HSDM, the Freundlich isotherm constants and mass transfer coefficients for film and surface diffusion, were experimentally determined. The BTC for salicylic acid revealed a shape typical for trace organic compound adsorption onto activated carbon, and model results agreed well with the experimental curves. Unlike salicylic acid, arsenate BTCs showed a non-ideal shape with a leveling off at c/c0 approximately 0.6. Model results based on the experimentally derived parameters over-predicted the point of arsenic breakthrough for all simulated curves, lab-scale or full-scale, and were unable to catch the shape of the curve. The use of a much lower surface diffusion coefficient D(S) for modeling led to an improved fit of the later stages of the BTC shape, pointing on a time-dependent D(S). The mechanism for this time dependence is still unknown. Surface precipitation was discussed as one possible removal mechanism for arsenate besides pure adsorption interfering the determination of Freundlich constants and D(S). Rapid small-scale column tests (RSSCT) proved to be a powerful experimental alternative to the modeling procedure for arsenic.

  2. Impact of a fixed price system on the supply of institutional long-term care: a comparative study of Japanese and German metropolitan areas.

    PubMed

    Yoshida, Keiko; Kawahara, Kazuo

    2014-02-01

    The need for institutional long-term care is increasing as the population ages and the pool of informal care givers declines. Care services are often limited when funding is controlled publicly. Fees for Japanese institutional care are publicly fixed and supply is short, particularly in expensive metropolitan areas. Those insured by universal long-term care insurance (LTCI) are faced with geographically inequitable access. The aim of this study was to examine the impact of a fixed price system on the supply of institutional care in terms of equity. The data were derived from official statistics sources in both Japan and Germany, and a self-administered questionnaire was used in Japan in 2011. Cross-sectional multiple regression analyses were used to examine factors affecting bed supply of institutional/residential care in fixed price and free prices systems in Tokyo (Japan), and an individually-bargained price system in North Rhine-Westphalia (Germany). Variables relating to costs and needs were used to test hypotheses of cost-dependency and need-orientation of bed supply in each price system. Analyses were conducted using data both before and after the introduction of LTCI, and the results of each system were qualitatively compared. Total supply of institutional care in Tokyo under fixed pricing was found to be cost-dependent regarding capital costs and scale economies, and negatively related to need. These relationships have however weakened in recent years, possibly caused by political interventions under LTCI. Supply of residential care in Tokyo under free pricing was need-oriented and cost-dependent only regarding scale economies. Supply in North Rhine-Westphalia under individually bargained pricing was cost-independent and not negatively related to need. Findings suggest that publicly funded fixed prices have a negative impact on geographically equitable supply of institutional care. The contrasting results of the non-fixed-price systems for Japanese residential care and German institutional care provide further theoretical supports for this and indicate possible solutions against inequitable supply.

  3. Impact of a fixed price system on the supply of institutional long-term care: a comparative study of Japanese and German metropolitan areas

    PubMed Central

    2014-01-01

    Background The need for institutional long-term care is increasing as the population ages and the pool of informal care givers declines. Care services are often limited when funding is controlled publicly. Fees for Japanese institutional care are publicly fixed and supply is short, particularly in expensive metropolitan areas. Those insured by universal long-term care insurance (LTCI) are faced with geographically inequitable access. The aim of this study was to examine the impact of a fixed price system on the supply of institutional care in terms of equity. Methods The data were derived from official statistics sources in both Japan and Germany, and a self-administered questionnaire was used in Japan in 2011. Cross-sectional multiple regression analyses were used to examine factors affecting bed supply of institutional/residential care in fixed price and free prices systems in Tokyo (Japan), and an individually-bargained price system in North Rhine-Westphalia (Germany). Variables relating to costs and needs were used to test hypotheses of cost-dependency and need-orientation of bed supply in each price system. Analyses were conducted using data both before and after the introduction of LTCI, and the results of each system were qualitatively compared. Results Total supply of institutional care in Tokyo under fixed pricing was found to be cost-dependent regarding capital costs and scale economies, and negatively related to need. These relationships have however weakened in recent years, possibly caused by political interventions under LTCI. Supply of residential care in Tokyo under free pricing was need-oriented and cost-dependent only regarding scale economies. Supply in North Rhine-Westphalia under individually bargained pricing was cost-independent and not negatively related to need. Conclusions Findings suggest that publicly funded fixed prices have a negative impact on geographically equitable supply of institutional care. The contrasting results of the non-fixed-price systems for Japanese residential care and German institutional care provide further theoretical supports for this and indicate possible solutions against inequitable supply. PMID:24485330

  4. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review.

    PubMed

    Ahmed, M J; Hameed, B H

    2018-03-01

    Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.

    PubMed

    Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A

    2011-09-01

    In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Production of Recombinant Rabies Virus Glycoprotein by Insect Cells in a Single-Use Fixed-Bed Bioreactor.

    PubMed

    Ventini-Monteiro, Daniella C; Astray, Renato M; Pereira, Carlos A

    2018-01-01

    A single-use fixed-bed bioreactor (iCELLis nano) can be used for cultivating non adherent insect cells, which can be then recovered for scaling up or for harvesting a membrane-associated viral glycoprotein with high quality in terms of preserved protein structure and biological function. Here, we describe the procedures for establishing genetically modified Drosophila melanogaster Schneider 2 (S2) cell cultures in the iCELLis nano bioreactor and for quantifying by ELISA the recombinant rabies virus glycoprotein (rRVGP) synthesized. By using the described protocol of production, the following performance can be regularly achieved: 1.7 ± 0.6 × 1E10 total cells; 2.4 ± 0.8 × 1E7 cells/mL and 1.2 ± 0.9 μg of rRVGP/1E7 cells; 1.5 ± 0.8 mg of total rRVGP.

  7. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastellone, M.L.; Arena, U.

    1999-05-01

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor weremore » determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.« less

  8. 40 CFR 60.713 - Compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...

  9. 40 CFR 60.713 - Compliance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...

  10. 40 CFR 60.713 - Compliance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...

  11. [Adsorption of the TiO2 @ yeast composite microspheres for adsorbing Fluorescent Whitening Agent-VBL in fixed bed].

    PubMed

    Wu, Fei; Zhang, Kai-Qiang; Bai, Bo; Wang, Hong-Lun; Suo, You-Rui

    2015-02-01

    In this work, the adsorption potential of TiO2@ yeast composite microspheres to remove Fluorescent Whitening Agent-VBL (FWA-VBL) from aqueous solution was investigated using fixed-bed adsorption column. The effects of pH(2.0-8.0), bed height (1-3 cm), inlet concentration (20-80 mg x L(-1)) and feed flow rate (5-11 mL x min(-1)) on the breakthrough characteristics of the adsorption system were determined. The results showed that the highest bed capacity of 223.80 mg x g(-1) was obtained under the condition of pH 2.0, 80 mg x L(-1) inlet dye concentration, 1.0 cm bed height and 5 mL x min(-1) flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models, namely, BDST model, Thomas model and Yoon-Nelson model. The results fitted well to the three models with coefficients of correlation R2 > 0.980 in different conditions. The TiO2 @ yeast composite microspheres have desired regeneration ability and could be reused for four times.

  12. FIXED-BED HYDROGENATION OF ORGANIC COMPOUNDS IN SUPERCRITICAL CARBON DIOXIDE. (R826034)

    EPA Science Inventory

    Abstract

    The Pd/C hydrogenation of cyclohexene to cyclohexane was performed in a continuous fixed-bed reactor employing CO2 to solubilize the reaction mixture in a single supercritical (sc) phase surrounding the solid catalyst. Employing an equimolar feed of...

  13. 40 CFR 60.745 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determination of the efficiency of a fixed-bed carbon adsorption system with a common exhaust stack for all the... separate runs, each coinciding with one or more complete system rotations through the adsorption cycles of... efficiency of a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel...

  14. APPARATUS FOR SHORT TIME MEASUREMENTS IN A FIXED-BED, GAS/SOLID REACTOR

    EPA Science Inventory

    An apparatus for exposure of a solid to reactive process gas is described which makes possible short time (≥ 0.3 to 15 s) exposures in a fixed-bed reactor. Operating conditions for differential reaction with respect to the gas concentration and rapid quench for arresting hi...

  15. 40 CFR 60.745 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determination of the efficiency of a fixed-bed carbon adsorption system with a common exhaust stack for all the... separate runs, each coinciding with one or more complete system rotations through the adsorption cycles of... efficiency of a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel...

  16. Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column.

    PubMed

    Ye, Yuanyao; Yang, Jing; Jiang, Wei; Kang, Jianxiong; Hu, Ying; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen

    2018-01-15

    A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO 3 - , SO 4 2- , Cl - and NO 3 - ), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg 2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of radiation protraction on BED in the case of large fraction dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, V. Y.

    2013-08-15

    Purpose: To investigate the effect of radiation protraction on biologically effective dose (BED) in the case when dose per fraction is significantly greater than the standard dose of 2 Gy.Methods: By using the modified linear-quadratic model with monoexponential repair, the authors investigate the effect of long treatment times combined with dose escalation.Results: The dependences of the protraction factor and the corresponding BED on fraction time were determined for different doses per fraction typical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). In the calculations, the authors consider changes in the BED to the normal tissue under the conditionmore » of fixed BED to the target.Conclusion: The obtained results demonstrate that simultaneous increase in fraction time and dose per fraction can be beneficial for SRS and SBRT because of the related decrease in BED to normal structures while BED to the target is fixed.« less

  18. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less

  19. Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5

    DOE PAGES

    Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...

    2016-10-07

    Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less

  20. Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor.

    PubMed

    Carpio, Isis E Mejias; Machado-Santelli, Glaucia; Sakata, Solange Kazumi; Ferreira Filho, Sidney Seckler; Rodrigues, Debora Frigi

    2014-10-01

    A heavy-metal resistant bacterial consortium was obtained from a contaminated river in São Paulo, Brazil and utilized for the design of a fixed-bed column for the removal of copper. Prior to the design of the fixed-bed bioreactor, the copper removal capacity by the live consortium and the effects of copper in the consortium biofilm formation were investigated. The Langmuir model indicated that the sorption capacity of the consortium for copper was 450.0 mg/g dry cells. The biosorption of copper into the microbial biomass was attributed to carboxyl and hydroxyl groups present in the microbial biomass. The effect of copper in planktonic cells to form biofilm under copper rich conditions was investigated with confocal microscopy. The results revealed that biofilm formed after 72 h exposure to copper presented a reduced thickness by 57% when compared to the control; however 84% of the total cells were still alive. The fixed-bed bioreactor was set up by growing the consortium biofilm on granular activated carbon (GAC) and analyzed for copper removal. The biofilm-GAC (BGAC) column retained 45% of the copper mass present in the influent, as opposed to 17% in the control column that contained GAC only. These findings suggest that native microbial communities in sites contaminated with heavy metals can be immobilized in fixed-bed bioreactors and used to treat metal contaminated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.

    2017-09-01

    Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.

  2. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    USDA-ARS?s Scientific Manuscript database

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  3. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    PubMed

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  5. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGES

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  6. Treatment of screened dairy manure by upflow anaerobic fixed bed reactors packed with waste tyre rubber and a combination of waste tyre rubber and zeolite: effect of the hydraulic retention time.

    PubMed

    Umaña, Oscar; Nikolaeva, Svetlana; Sánchez, Enrique; Borja, Rafael; Raposo, Francisco

    2008-10-01

    Two laboratory-scale anaerobic fixed bed reactors were evaluated while treating dairy manure at upflow mode and semicontinuous feeding. One reactor was packed with a combination of waste tyre rubber and zeolite (R1) while the other had only waste tyre rubber as a microorganism immobilization support (R2). Effluent quality improved when the hydraulic retention time (HRT) increased from 1.0 to 5.5 days. Higher COD, BOD5, total and volatile solids removal efficiencies were always achieved in the reactor R1. No clogging was observed during the operation period. Methane yield was also a function of the HRT and of the type of support used, and was 12.5% and 40% higher in reactor R1 than in R2 for HRTs of 5.5 and 1.0 days, respectively. The results obtained demonstrated that this type of reactor is capable of operating with dairy manure at a HRT 5 times lower than that used in a conventional reactor.

  7. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    NASA Astrophysics Data System (ADS)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-12-01

    Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  8. Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latheef, I.M.; Huckman, M.E.; Anthony, R.G.

    2000-05-01

    A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less

  9. Fixed bed column study for Cu (II) removal from aqueous solution using water hyacinth (Eichornia crassipes) biomass.

    PubMed

    Gandhimathi, R; Ramesh, S T; Yadu, Anubhav; Bharathi, K S

    2013-07-01

    This paper reports the results of the study on the performance of low-cost biosorbent water hyacinth (WH) in removing Cu (II) from aqueous solution. The adsorbent material adopted was found to be an efficient media for the removal of Cu (II) in continuous mode using fixed bed column. The column studies were conducted with 10 mg/L metal solution with a flow rate of 10 mL/min with different bed depths such as 10, 20 and 30 cm. The column design parameters like adsorption rate constant, adsorption capacity and minimum bed depth were calculated. It was found that, the adsorption capacity of copper ions by water hyacinth increased by increasing the bed depth and the contact time.

  10. Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, G.M.; De Moraes, F.F.

    1997-12-31

    Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less

  11. Kinetics of thermophilic anaerobes in fixed-bed reactors.

    PubMed

    Perez, M; Romero, L I; Sales, D

    2001-08-01

    The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor.

  12. A green strategy for desorption of trihalomethanes adsorbed by humin and reuse of the fixed bed column.

    PubMed

    Cunha, G C; Romão, L P C; Santos, M C; Costa, A S; Alexandre, M R

    2012-03-30

    The objective of the present work was to develop a thermal desorption method for the removal of trihalomethanes (THM) adsorbed by humin, followed by multiple recycling of the fixed bed column in order to avoid excessive consumption of materials and reduce operating costs. The results obtained for adsorption on a fixed bed column confirmed the effectiveness of humin as an adsorbent, extracting between 45.9% and 90.1% of the total THM (TTHM). In none of the tests was the column fully saturated after 10h. Experiments involving thermal desorption were used to evaluate the potential of the technique for column regeneration. The adsorptive capacity of the humin bed increased significantly (p<0.05) between the first and fifth desorption cycle, by 18.9%, 18.1%, 24.2%, 20.2% and 24.2% for CHBr(3), CHBr(2)Cl, CHBrCl(2), CHCl(3) and TTHM, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.

    PubMed

    Chen, Bor-Yann; Chen, Chun-Yen; Guo, Wan-Qian; Chang, Hao-Wei; Chen, Wen-Ming; Lee, Duu-Jong; Huang, Chieh-Chen; Ren, Nan-Qi; Chang, Jo-Shu

    2014-05-01

    A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xianhui; Ngo, Huong T.; Walker, Devin M.

    The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce 0.6Zr 0.4O 2/Al 2O 3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH 4: CO 2: air was fixed as 1.0: 0.70: 0.95. The effects of temperature (800 – 860 °C), pressure (1 – 6 bar), and H 2O/CH 4 molar feed ratio (0.23 – 0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. Atmore » 860 °C, CO 2 conversion increased from 4 to 61% and H 2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6 bar. CO 2 conversion and H 2/CO molar ratio were also influenced by the temperature and H 2O/CH 4 molar ratio. At 3 bar, CO 2 conversion varied between 4 and 43% and the H 2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860 °C. At 3 bar and 860 °C, CO 2 conversion decreased from 35 to 8% and H 2/CO molar ratio increased from 1.7 to 2.4 when the H 2O/CH 4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.« less

  15. Tri-reforming of surrogate blogs over Ni/Mg/ceria-zirconia/alumina pellet catalysts

    DOE PAGES

    Zhao, Xianhui; Ngo, Huong T.; Walker, Devin M.; ...

    2018-01-23

    The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce 0.6Zr 0.4O 2/Al 2O 3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH 4: CO 2: air was fixed as 1.0: 0.70: 0.95. The effects of temperature (800 – 860 °C), pressure (1 – 6 bar), and H 2O/CH 4 molar feed ratio (0.23 – 0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. Atmore » 860 °C, CO 2 conversion increased from 4 to 61% and H 2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6 bar. CO 2 conversion and H 2/CO molar ratio were also influenced by the temperature and H 2O/CH 4 molar ratio. At 3 bar, CO 2 conversion varied between 4 and 43% and the H 2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860 °C. At 3 bar and 860 °C, CO 2 conversion decreased from 35 to 8% and H 2/CO molar ratio increased from 1.7 to 2.4 when the H 2O/CH 4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.« less

  16. ASPEN simulation of a fixed-bed integrated gasification combined-cycle power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, K.R.

    1986-03-01

    A fixed-bed integrated gasification combined-cycle (IGCC) power plant has been modeled using the Advanced System for Process ENgineering (ASPEN). The ASPEN simulation is based on a conceptual design of a 509-MW IGCC power plant that uses British Gas Corporation (BGC)/Lurgi slagging gasifiers and the Lurgi acid gas removal process. The 39.3-percent thermal efficiency of the plant that was calculated by the simulation compares very favorably with the 39.4 percent that was reported by EPRI. The simulation addresses only thermal performance and does not calculate capital cost or process economics. Portions of the BGC-IGCC simulation flowsheet are based on the SLAGGERmore » fixed-bed gasifier model (Stefano May 1985), and the Kellogg-Rust-Westinghouse (KRW) iGCC, and the Texaco-IGCC simulations (Stone July 1985) that were developed at the Department of Energy (DOE), Morgantown Energy Technology Center (METC). The simulation runs in 32 minutes of Central Processing Unit (CPU) time on the VAX-11/780. The BGC-IGCC simulation was developed to give accurate mass and energy balances and to track coal tars and environmental species such as SO/sub x/ and NO/sub x/ for a fixed-bed, coal-to-electricity system. This simulation is the third in a series of three IGCC simulations that represent fluidized-bed, entrained-flow, and fixed-bed gasification processes. Alternate process configurations can be considered by adding, deleting, or rearranging unit operation blocks. The gasifier model is semipredictive; it can properly respond to a limited range of coal types and gasifier operating conditions. However, some models in the flowsheet are based on correlations that were derived from the EPRI study, and are therefore limited to coal types and operating conditions that are reasonably close to those given in the EPRI design. 4 refs., 7 figs., 2 tabs.« less

  17. Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.

    PubMed

    2017-11-17

    A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.

  18. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies.

    PubMed

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-04-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m(2)/g), high pore volume (1.23 cm(3)/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO 2, and halogen species were introduced through the burner to produce a radical pool representativemore » of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO 2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO 2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO 2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO 2, and NO 2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations under-predicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO 2, and halogen species were introduced through the burner to produce a radical pool representativemore » of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO 2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO 2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO 2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO 2, and NO 2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.« less

  2. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  3. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  4. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield.

    PubMed

    Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.

  5. Anaerobic treatment of winery wastewater in fixed bed reactors.

    PubMed

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  6. Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate.

    PubMed

    Jin, Yu; Teng, Chunying; Yu, Sumei; Song, Tao; Dong, Liying; Liang, Jinsong; Bai, Xin; Liu, Xuesheng; Hu, Xiaojing; Qu, Juanjuan

    2018-01-01

    To prevent the blockage in a continuous fix-bed system, Pleurotus Ostreatus spent substrate (POSS), a composite agricultural waste, was immobilized into granular adsorbents (IPOSS) with polymeric matrix, and used to remove Cd(II) from synthetic wastewater in batch experiment as well as in continuous fixed-bed column system. In batch experiment, higher pH, temperature and Cd(II) initial concentration were conducive to a higher biosorption capacity, and the maximum biosorption capacity reached up to 87.2 mg/g at Cd(II) initial concentration of 200 mg/L, pH 6 and 25 °C. The biosorption of Cd(II) onto IPOSS followed the Langmuir isotherm model with the maximum adsorption capacity(q max ) of 100 mg/g. The biosorption was an endothermic reaction and a spontaneous process based on positive value of ΔH 0 and negative value of ΔG 0 . In fixed-bed column system, higher bed depth, lower flow rate and influent Cd(II) concentration led to a longer breakthrough and exhaustion time, and the best performance (equilibrium uptake (q e ) of 14.4 mg, breakthrough time at 31 h and exhaustion time at 78 h) was achieved at a bed depth of 110 cm, a flow rate of 1.2 L/h and an influent concentration of 100 mg/L. Furthermore, regeneration experiment revealed a good reusability of IPOSS with 0.1 M HNO 3 as eluting agent during three cycles of adsorption and desorption. Cd(II) biosorption onto IPOSS mainly relied on a chemical process including ion exchange and complexation or coordination revealed by SEM-EDX, FTIR and XRD analysis. Copyright © 2017. Published by Elsevier Ltd.

  7. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jinshu; Lin, Jinhan; Xu, Mingliang

    Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less

  8. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation

    DOE PAGES

    Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...

    2018-04-17

    Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less

  9. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, M.R., E-mail: mrislam1985@yahoo.com; Joardder, M.U.H.; Hasan, S.M.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants formore » the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.« less

  10. Use of radiation protraction to escalate biologically effective dose to the treatment target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114

    2011-12-15

    Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less

  11. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation.

    PubMed

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-03-01

    Granular activated carbon (KAC) was prepared from abundant Phoenix dactylifera L. stones by microwave- assisted KOH activation. The characteristics of KAC were tested by pore analyses, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The adsorption behavior of levofloxacin (LEV) antibiotic on KAC with surface area of 817m 2 /g and pore volume of 0.638cm 3 /g were analyzed using batch and fixed bed systems. The equilibrium data collected by batch experiments were well fitted with Langmuir compared to Freundlich and Temkin isotherms. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial LEV concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. High LEV adsorption capacity of 100.3mg/g was reported on KAC, thus being an efficient adsorbent for antibiotic pollutants to protect ecological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Separation and purification of fructooligosaccharides on a zeolite fixed-bed column.

    PubMed

    Kuhn, Raquel Cristine; Mazutti, Marcio Antonio; Maugeri Filho, Francisco

    2014-04-01

    Fructooligosaccharides (FOS), a well-known prebiotic product, are obtained by enzymatic synthesis and consist of a mixture of mono- and disaccharides. In this work, a methodology for their separation and purification was developed using a zeolite fixed-bed column. The effects of column temperature (40-60°C), eluent flow rate (0.10-0.14 mL/min), injected to bed volume percent ratio (2.6-5.1%), and ethanol concentration in the eluent (40-60%, v/v) were investigated using a fractionary factorial design (2(4-1)), having the separation efficiency and purity as target responses. Additional experiments were performed as well, where the temperature and ethanol concentration were studied in a central composite design (2(2)). In this work, the zeolite fixed-bed column was shown to be a good alternative for FOS purification, allowing a FOS purity of 90% and separation efficiency of 6.86 between FOS and glucose, using an eluent at 45°C with 60% ethanol concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco

    2013-12-15

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with highmore » productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.« less

  14. Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2009-06-01

    Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 × 105. Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages.

  15. 40 CFR 63.1413 - Compliance demonstration procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measured and used to establish the outlet organic HAP concentration. (iii) For a carbon adsorption system that regenerates the carbon bed directly onsite in the control device, such as a fixed-bed adsorber... time, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon...

  16. 40 CFR 63.1413 - Compliance demonstration procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measured and used to establish the outlet organic HAP concentration. (iii) For a carbon adsorption system that regenerates the carbon bed directly onsite in the control device, such as a fixed-bed adsorber... time, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon...

  17. Chemicl-looping combustion of coal with metal oxide oxygen carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, R.; Tian, H.; Richards, G.

    2009-01-01

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C.more » The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.« less

  18. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE PAGES

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    2017-06-21

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  19. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  20. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield

    PubMed Central

    Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982

  1. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    PubMed

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.

  2. Upstream-advancing waves generated by a current over a sinusoidal bed

    NASA Astrophysics Data System (ADS)

    Kyotoh, Harumichi; Fukushima, Masaki

    1997-07-01

    Upstream-advancing waves are observed in open channel flows over a fixed sinusoidal bed with large amplitude, when the Froude number is less than the resonant value, at which stream velocity is equal to the celerity of the wave with wavelength equal to that of the bottom surface. Their wavelength is about 3-6 times as long as the bottom wavelength and the celerity is close to that obtained from potential flow theory. Therefore, the wavelength of upstream-advancing waves is determined by linear stability analyses assuming that they are induced by the Benjamin-Feir-type instability of steady flow. Here, two formulas for the wavelength with different scaling are introduced and compared with experiment. In addition, the mechanisms of upstream-advancing waves are investigated qualitatively using the forced Schrödinger equation.

  3. Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column.

    PubMed

    Stylianou, Marinos A; Hadjiconstantinou, Michalis P; Inglezakis, Vasilis J; Moustakas, Konstantinos G; Loizidou, Maria D

    2007-05-08

    This work deals with the removal of lead, copper and zinc from aqueous solutions by using natural zeolite (clinoptilolite). Fixed bed experiments were performed, using three different volumetric flow rates of 5, 7 and 10bed volume/h, under a total normality of 0.01N, at initial pH of 4 and ambient temperature (25 degrees C). The removal efficiency increased when decreasing the flow rate and the following selectivity series was found: Pb(2+)>Zn(2+)> or =Cu(2+). Conductivity measurements showed that lead removal follows mainly ion exchange mechanism, while copper and zinc removal follows ion exchange and sorption mechanism as well.

  4. Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: fixed bed column adsorption performance.

    PubMed

    Halim, Azhar Abdul; Aziz, Hamidi Abdul; Johari, Megat Azmi Megat; Ariffin, Kamar Shah; Adlan, Mohd Nordin

    2010-03-15

    The performance of a carbon-mineral composite adsorbent used in a fixed bed column for the removal of ammoniacal nitrogen and aggregate organic pollutant (COD), which are commonly found in landfill leachate, was evaluated. The breakthrough capacities for ammoniacal nitrogen and COD adsorption were 4.46 and 3.23 mg/g, respectively. Additionally, the optimum empty bed contact time (EBCT) was 75 min. The column efficiency for ammoniacal nitrogen and COD adsorption using fresh adsorbent was 86.4% and 92.6%, respectively, and these values increased to 90.0% and 93.7%, respectively, after the regeneration process. (c) 2009 Elsevier B.V. All rights reserved.

  5. An experimental investigation of the effect of walls on gas-liquid flows through fixed particle beds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert

    The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less

  6. Isolated thermocouple amplifier system for stirred fixed-bed gasifier

    DOEpatents

    Fasching, George E.

    1992-01-01

    A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.

  7. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    PubMed

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  8. Fixed bed sorption of phosphorus from wastewater using iron oxide-based media derived from acid mine drainage

    USGS Publications Warehouse

    Sibrell, Philip L.; Tucker, T.W.

    2012-01-01

    Phosphorus (P) releases to the environment have been implicated in the eutrophication of important water bodies worldwide. Current technology for the removal of P from wastewaters consists of treatment with aluminum (Al) or iron (Fe) salts, but is expensive. The neutralization of acid mine drainage (AMD) generates sludge rich in Fe and Al oxides that has hitherto been considered a waste product, but these sludges could serve as an economical adsorption media for the removal of P from wastewaters. Therefore, we have evaluated an AMD-derived media as a sorbent for P in fixed bed sorption systems. The homogenous surface diffusion model (HSDM) was used to analyze fixed bed test data and to determine the value of related sorption parameters. The surface diffusion modulus Ed was found to be a useful predictor of sorption kinetics. Values of Ed < 0.2 were associated with early breakthrough of P, while more desirable S-shaped breakthrough curves resulted when 0.2 < Ed < 0.5. Computer simulations of the fixed bed process with the HSDM confirmed that if Ed was known, the shape of the breakthrough curve could be calculated. The surface diffusion coefficient D s was a critical factor in the calculation of Ed and could be estimated based on the sorption test conditions such as media characteristics, and influent flow rate and concentration. Optimal test results were obtained with a relatively small media particle size (average particle radius 0.028 cm) and resulted in 96 % removal of P from the influent over 46 days of continuous operation. These results indicate that fixed bed sorption of P would be a feasible option for the utilization of AMD residues, thus helping to decrease AMD treatment costs while at the same time ameliorating the impacts of P contamination.

  9. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less

  10. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  11. Leaching of FGD Byproducts Using a CSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kairies, C.L.; Schroeder, K.T.; Cardone, C.R.

    2005-09-01

    Leaching studies of coal utilization byproducts (CUB) are often performed to determine the compatibility of the material in a particular end-use or disposal environment. Typically, these studies are conducted using either a batch or a fixed-bed column technique. Fixed-bed columns offer the advantage of a continuous flow of effluent that provides elution profiles with changing elution volume and pH. Unfortunately, clogs can form in fixed-bed leaching columns, either because of cementitious properties of the material itself, such as is seen for fluidized bed combustion (FBC) fly ash, or because of precipitate formation, such as can occur when a high-calcium ashmore » is subjected to sulfate-containing leachates. Also, very fine-grained materials, such as gypsum, do not provide sufficient permeability for study in a fixed-bed column. A continuous, stirred-tank extractor (CSTX) is being used as an alternative technique that can provide the elution profile of column leaching but without the low permeability problems. The CSTX has been successfully employed in the leaching of flue gas desulfurization products that would not be sufficiently permeable under traditional column leaching conditions. The results indicate that the leaching behavior depends on a number of factors, including (but not limited to) solubility and neutralization capacity of the mineral phases present, sorption properties of these phases, behavior of the solubilized material in the tank, and the type of species in solution. In addition, leaching to near-exhaustion of a wallboard produced from FGD gypsum has allowed the isolation of a highly adsorptive phase. This phase appears to be present in at least some FGD gypsums and accounts for the immobilization of trace metals such as arsenic, cobalt, lead, and mercury.« less

  12. Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns.

    PubMed

    Rastegar, Seyed Omid; Gu, Tingyue

    2017-03-24

    In this work, a new correlation for the axial dispersion coefficient was obtained using experimental data in the literature for axial dispersion in fixed-bed columns packed with particles. The Chung and Wen correlation, the De Ligny correlation are two popular empirical correlations. However, the former lacks the molecular diffusion term and the latter does not consider bed voidage. The new axial dispersion coefficient correlation in this work was based on additional experimental data in the literature by considering both molecular diffusion and bed voidage. It is more comprehensive and accurate. The Peclet number correlation from the new axial dispersion coefficient correlation on the average leads to 12% lower Peclet number values compared to the values from the Chung and Wen correlation, and in many cases much smaller than those from the De Ligny correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  14. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.

    PubMed

    Lee, Sang Cheol; Park, Sunkyu

    2016-09-01

    It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor.

    PubMed

    Park, Dong Kyoo; Kim, Sang Done; Lee, See Hoon; Lee, Jae Goo

    2010-08-01

    Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. Form TGA experiments, weight loss rate of sawdust and coal blend increases above 400 degrees C and additional weight loss was observed at 700 degrees C. In a fixed bed at isothermal condition, the synergy to produce more volatiles is appeared at 500-700 degrees C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600 degrees C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400 degrees C and CH(4) yield increases up to 62% at 600 degrees C compared with the calculated value from the additive model. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor.

    PubMed

    Xiu, G H; Jiang, L; Li, P

    2001-07-05

    A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.

  17. Stay Legal and Safe in Treating for Bed Bugs

    EPA Pesticide Factsheets

    Quick fix solutions may sound appealing, but they may not be legal, safe, or effective. To avoid adverse effects such as poisoning, buy EPA-registered pesticides labeled for bed bug control, and follow all label directions and precautions.

  18. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments. Contrary to previous studies, the pore pressure gradient exhibited a range of values when erosion occurred, which indicates that erosion is the result of multiple physical mechanisms competing to secure or destabilize the sediment bed. The observations provide a better understanding of the forces acting within the sediment, and could improve parameters used in coastal sediment transport models to better predict coastal change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920048767&hterms=Aldehydes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAldehydes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920048767&hterms=Aldehydes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAldehydes"><span>Advanced development of immobilized enzyme reactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne</p> <p>1991-01-01</p> <p>Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14C0991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14C0991M"><span>Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.</p> <p>2016-02-01</p> <p>A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed (< 3 cm above the bed) velocities were estimated using Nortek Vectrino-II profiling velocimeters, while sheet layer sediment concentration profiles (volumetric concentrations > 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29455150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29455150"><span>Fixed bed column study for water defluoridation using neem oil-phenolic resin treated plant bio-sorbent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Adhikari, Basudam; Das, Papita</p> <p>2018-04-15</p> <p>Fluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter. Data obtained from this study indicated that columns with the thickest bed, lowest flow rate, and fluoride concentration showed best column performance. Bio-sorbents used in this study are regenerable and reusable for more than five cycles. The initial materials cost needed to remove one gram of fluoride also found to be lower than the available alternatives. This makes the process more promising candidate to be used for fluoride removal. In addition, the process is also technically advantageous over the available alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19560796','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19560796"><span>Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy</p> <p>2009-08-01</p> <p>Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24041762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24041762"><span>Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shuaidan; Chen, Xueli; Wang, Li; Liu, Aibin; Yu, Guangsuo</p> <p>2013-11-01</p> <p>Co-pyrolysis behaviors of saw dust (SD) and Shenfu bituminous coal (SF) were studied in a drop tube furnace and a fixed bed reactor at different temperatures respectively. Six different biomass/coal ratios (B:C) were used. Compared the results with the calculated value obtained by the additional behavior, CO volume yields were lower while H2, CH4, CO2, volume yields were higher. Blend char yields had a good agreement with the calculated values, and their structures remained similar with SD and SF char's. Synergy effect occurred in gaseous phase, which was mainly caused by the secondary reactions. Compared the blend char yields in the drop tube furnace with those in the fixed bed reactor, the results showed the contacting way of biomass and coal particles had little influence on char yield in co-pyrolysis process. The reactivity index of blend char achieved the minimum at B:C=40:60 and the maximum at B:C=80:20. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28787618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28787618"><span>Fixed-bed column performances of azure-II and auramine-O adsorption by Pinus eldarica stalks activated carbon and its composite with zno nanoparticles: Optimization by response surface methodology based on central composite design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jafari, Maryam; Rahimi, Mahmood Reza; Ghaedi, Mehrorang; Javadian, Hamedreza; Asfaram, Arash</p> <p>2017-12-01</p> <p>A continuous adsorption was used for removal of azure II (AZ II) and auramine O (AO) from aqueous solutions using Pinus eldarica stalks activated carbon (PES-AC) from aqueous solutions. The effects of initial dye concentration, flow rate, bed height and contact time on removal percentage of AO and AZ II were evaluated and optimized by central composite design (CCD) at optimum pH = 7.0. ZnO nanoparticles loaded on activated carbon were also used to remove AO and AZ II at pH = 7.0 and other optimum conditions. The breakthrough curves were obtained at different flow rates, initial dye concentrations and bed heights and the experimental data were fitted by Thomas, Adams-Bohart and Yoon-Nelson models. The main parameters of fixed-bed column including its adsorption capacity at breakthrough point (q b ), adsorption capacity at saturation point (q s ), mass transfer zone (MTZ), total removal percentage (R%), and empty bed contact time (EBCT) were calculated. The removal percentages calculated for AZ II and AO II were in the range of 51.6-61.1% and 40.6-61.6%, respectively. Bed adsorption capacity (N 0 ) and critical bed depth (Z 0 ) were obtained by BDST model. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/304005','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/304005"><span>The extraction of bitumen from western oil sands: Volume 2. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.</p> <p>1997-11-26</p> <p>The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868431','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868431"><span>Two-stage fixed-bed gasifier with selectable middle gas off-take point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Strickland, Larry D.; Bissett, Larry A.</p> <p>1992-01-01</p> <p>A two-stage fixed bed coal gasifier wherein an annular region is in registry with a gasification zone underlying a devolatilization zone for extracting a side stream of high temperature substantially tar-free gas from the gasifier. A vertically displaceable skirt means is positioned within the gasifier to define the lower portion of the annular region so that vertical displacement of the skirt means positions the inlet into the annular region in a selected location within or in close proximity to the gasification zone for providing a positive control over the composition of the side stream gas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9828345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9828345"><span>Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fell, H J; Tuczek, M</p> <p>1998-01-01</p> <p>The presented adsorption--process KOMBISORBON is applied for high efficient off-gas purification, preferably of polychlorinated dioxins and furans from off-gas of incineration plants, which are generated, when these are operated under unfavourable conditions [2]. This off-gas purification process complies with german laws, which limit the concentration of these substances to less than 0.1 ng toxicity equivalents (TE) per cubic metre of gas [1]. The adsorbent, the adsorption process and its plant concept (fixed bed) is described in detail including economics and obtained operation results. Alternative removal technologies are briefly outlined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8998S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8998S"><span>The Planform Mobility of Large River Channel Confluences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul</p> <p>2017-04-01</p> <p>Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970023716','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970023716"><span>Development of a Rational Modeling Approach for the Design, and Optimization of the Multifiltration Unit. Volume 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hand, David W.; Crittenden, John C.; Ali, Anisa N.; Bulloch, John L.; Hokanson, David R.; Parrem, David L.</p> <p>1996-01-01</p> <p>This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18763562','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18763562"><span>A laboratory scale study on arsenic(V) removal from aqueous medium using calcined bauxite ore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohapatra, Debasish; Mishra, Debaraj; Park, Kyung Ho</p> <p>2008-01-01</p> <p>The present work deals with the As(V) removal from an aqueous medium by calcined refractory grade bauxite (CRB) as a function of solution pH, time, As(V) concentration and temperature. The residual As(V) was lowered from 2 mg/L to below 0.01 mg/L in the optimum pH range 4.0-7.0 using a 5 g/L CRB within 3 h contact time. The adsorption data fits well with Langmuir isotherm and yielded Langmuir monolayer capacity of 1.78 mg As(V)/g of CRB at pH 7.0. Presence of anions such as silicate and phosphate decreased As(V) adsorption efficiency. An increase temperature resulted a decrease in the amount of As(V) adsorbed by 6%. The continuous fixed bed column study showed that at the adsorbent bed depth of 30 cm and residence time of 168 min, the CRB was capable of treating 340 bed volumes of As(V) spiked water (C0 = 2 mg/L) before breakthrough (Ce = 0.01 mg/L). This solid adsorbent, although not reusable, can be considered for design of adsorption columns as an efficiency arsenic adsorption media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52..860H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52..860H"><span>Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele</p> <p>2016-02-01</p> <p>An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApSS..375..144N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApSS..375..144N"><span>Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazari, Ghadir; Abolghasemi, Hossein; Esmaieli, Mohamad; Sadeghi Pouya, Ehsan</p> <p>2016-07-01</p> <p>The walnut shell was used as a low cost adsorbent to produce activated carbon (AC) for the removal of cephalexin (CFX) from aqueous solution. A fixed-bed column adsorption was carried out using the walnut shell AC. The effect of various parameters like bed height (1.5, 2 and 2.5 cm), flow rate (4.5, 6 and 7.5 mL/min) and initial CFX concentration (50, 100 and 150 mg/L) on the breakthrough characteristics of the adsorption system was investigated at optimum pH 6.5. The highest bed capacity of 211.78 mg/g was obtained using 100 mg/L inlet drug concentration, 2 cm bed height and 4.5 mL/min flow rate. Three kinetic models, namely Adam's-Bohart, Thomas and Yoon-Nelson were applied for analysis of experimental data. The Thomas and Yoon-Nelson models were appropriate for walnut shell AC column design under various conditions. The experimental adsorption capacity values were fitted to the Bangham and intra-particle diffusion models in order to propose adsorption mechanisms. The effect of temperature on the degradation of CFX was also studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24199844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24199844"><span>Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modelling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oguz, Ensar; Ersoy, Muhammed</p> <p>2014-01-01</p> <p>The effects of inlet cobalt(II) concentration (20-60 ppm), feed flow rate (8-19 ml/min) and bed height (5-15 cm), initial solution pH (3-5) and particle size (0.25<x<0.5, 0.5<x<1 and 1<x<2 mm) on the breakthrough curves were investigated. The highest bed capacity of 11.68 mg/g was obtained using 40 ppm inlet cobalt(II) concentration, 5 cm bed height and 8 ml/min flow rate, pH 6.5 and 0.25<x<0.5 mm particle size. According to the BET (N2) measurements, the specific surface area of the shells of sunflower biomass was found to be 1.82 m(2)/g. A relationship between the predicted results of the ANN model and experimental data was conducted. The ANN model yielded determination coefficient of (R(2) 0.972), standard deviation ratio (0.166), mean absolute error (0.0158) and root mean square error (0.0141). The results indicated that the shells of the sunflower biomass is a suitable biosorbent for the uptake of cobalt(II) in fixed bed columns. © 2013 Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA044998','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA044998"><span>Transient Combustion in Granular Propellant Beds. Part I. Theoretical Modeling and Numerical Solution of Transient Combustion Processes in Mobile Granular Propellant Beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1977-08-01</p> <p>TR~ANSIENT COMBUSTION PROCESSES IN MOBILE GRANULAR PROPELLANT BEDS Prqprid by The Pennsylvania Stats UnIversiV 197 Dopartme of Nmchanica! EngwineerIng...the ignition and flame spreadinb prc-eases by assuming that the granular propillents are fixed in space; and 3) modeling cf mobile granular beds so...through an aggrtgate of mobile "’actin&, partic~vi. The diffevewsoa Wi derivation of conservation equa~tions betvewu our approacit md this -f a Aivorain</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000120286','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000120286"><span>Experimental Replication of an Aeroengine Combustion Instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.</p> <p>2000-01-01</p> <p>Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11694270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11694270"><span>Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tejeda-Mansir, A; Montesinos, R M; Guzmán, R</p> <p>2001-10-30</p> <p>The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915369B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915369B"><span>Hydrodynamics of concordant and discordant fixed bed open-channel confluences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birjukova Canelas, Olga; Lage Ferreira, Rui Miguel; Heleno Cardoso, António</p> <p>2017-04-01</p> <p>The detailed characterization of the flow field in river confluences constitutes a relevant step towards the understanding of the hydro-morpho-dynamics of these key zones of the fluvial system. With a few exceptions, existing works on this topic covered concordant bed scenarios, meaning that both confluent channels had the same elevation. This laboratory study aims to contribute to a detailed three-dimensional characterization of the flow field at a fixed bed confluence, as well as to shed light on how bed elevation discordance modifies the flow patterns of the converging flows. While the junction angle and the discharge ratio were kept fixed, two scenarios were studied on the basis of detailed water level and 3D ADV measurements at the denser mesh ever. The internal flow structure of the concordant bed scenario mostly complied with the classical conceptual models. A relevant difference concerns the size of the stagnation zone, much smaller close to the bed of the discordant bed confluence. A more significant difference is a horizontal flow structure, not previously identified in the literature, characterized by strong streamwise mean vorticity and strong secondary motion. It is observed for the discordant bed case, occurring along the inner wall of the main channel and downstream the junction corner. This structure is spatially well-correlated to a pronounced imbalance of cross-stream and vertical normal Reynolds stresses. This highlights the role of Reynolds stress anisotropy (RSA) that is generated in the shear layers than accompany the entrance of the tributary flow. Since this structure is not present in the concordant case, where RSA is also evident, it is argued that convective effects should also play a role in its formation, presumably due to deflection of the flow in the main channel by the tributary. The newly identified secondary motion should, thus, be a combination of Prandtĺs second kind and Prandtĺs first kind of secondary flow. The relative importance of each generating mechanism is still under investigation. Acknowledgements This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22221460','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22221460"><span>Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik</p> <p>2012-04-01</p> <p>In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28599799','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28599799"><span>Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kobayashi, Makoto; Akiho, Hiroyuki</p> <p>2017-12-01</p> <p>Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=78727&keyword=electric+AND+treatment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=78727&keyword=electric+AND+treatment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R822721C697)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=71010&keyword=electric+AND+treatment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=71010&keyword=electric+AND+treatment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R826694C697)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA373530','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA373530"><span>Feasibility Study of the Geotextile Waste Filtration Unit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-02-10</p> <p>Treatment Module 3-32 Figure 3-20. THE SCHEMATIC OF THE MOVING BED BIOFILM REACTOR ( MBBR ) 3൪ Figure 4-1. The Original Distributed Concept for WFUs...Moving Bed Biofilm Reactor ( MBBR ) process appears to be one of the most feasible processes available to meet Force Provider liquid waste stream...Moving Bed Biofilm Reactor ( MBBR ) process was then examined.31 In this system, both activated sludge and fixed-film processes occur in a bioreactor</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H51H..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H51H..06M"><span>Riparian Vegetation Effects on Near-Bank Turbulence During Overbank Flows: A Flume Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McBride, M.; Thompson, D. M.; Owen, T. E.; Pearce, A. R.; Hession, W. C.; Rizzo, D.</p> <p>2005-12-01</p> <p>Measurements from a fixed-bed, Froude-scaled hydraulic model of a stream in northeastern Vermont demonstrated the importance of riparian vegetation effects on near-bank turbulence during overbank flood events. The prototype stream, a tributary to Sleepers River, increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research has found that reaches of small streams with forested riparian zones are commonly wider that adjacent reaches with non-forested, or meadow, vegetation; however, the driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed to investigate near-bank turbulence as a mechanism for channel widening in response to reforestation. A 1:5 scale, simplified model of half a channel and its adjacent floodplain was constructed within a 6 m long recirculating flume. The test region was 3.7 m long and 0.9 m wide and oriented with the channel centerline at the flume wall. The channel bed slope was fixed at 0.03, and experiments were run at three discharges: 30, 33, and 36 l/s. Two types of riparian vegetation scenarios were simulated: forested, with rigid, randomly-distributed, wooden dowels, and non-forested, with synthetic grass carpeting. Three-dimensional velocities were measured with a Nortek Vectrino acoustic Doppler velocimeter at 41 different locations within the channel and floodplain at near-bed and 0.6-depth elevations. Observations of three-dimensional velocities and calculations of turbulent kinetic energy (TKE) showed significant differences between forested and non-forested runs. Results indicated that turbulence intensity, as quantified by TKE, roughly doubled throughout the channel and floodplain when forested vegetation was introduced. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity, our results demonstrated the potential for increased erosion during overbank flood events in stream reaches with recently reforested riparian zones. The concentration of high TKE values and vertical upwelling at the channel-floodplain interface in forested runs indicated a probable erosion hot spot that could promote channel widening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325826','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325826"><span>Simulated moving bed system for CO.sub.2 separation, and method of same</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Elliott, Jeannine Elizabeth; Copeland, Robert James; Lind, Jeff</p> <p></p> <p>A system and method for separating and/or purification of CO.sub.2 gas from a CO.sub.2 feed stream is described. The system and method include a plurality of fixed sorbent beds, adsorption zones and desorption zones, where the sorbent beds are connected via valve and lines to create a simulated moving bed system, where the sorbent beds move from one adsorption position to another adsorption position, and then into one regeneration position to another regeneration position, and optionally back to an adsorption position. The system and method operate by concentration swing adsorption/desorption and by adsorptive/desorptive displacement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..334a2030S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..334a2030S"><span>Adsorption performance of fixed-bed column for the removal of Fe (II) in groundwater using activated carbon made from palm kernel shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi</p> <p>2018-03-01</p> <p>When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865138','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865138"><span>Ash level meter for a fixed-bed coal gasifier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fasching, George E.</p> <p>1984-01-01</p> <p>An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866604','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866604"><span>Liquid membrane coated ion-exchange column solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Barkey, Dale P.</p> <p>1988-01-01</p> <p>This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867209','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867209"><span>Liquid membrane coated ion-exchange column solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Barkey, Dale P.</p> <p>1989-01-01</p> <p>This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29132103','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29132103"><span>Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N</p> <p>2018-03-01</p> <p>In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA498639','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA498639"><span>Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-01-01</p> <p>Behavior of trickle - bed air biofilter for toluene removal: Effect of non-use periods. Environ. Prog. 2005, 24, 155-161. (3) Martin, F. J.; Loehr, R. C...dampen the fluctuation in acetone concentration at high concentrations. The effect of inlet concentration and empty bed contact time (EBCT) on dampening...oxidizer. The MSA-SST system is a fixed- bed system that rapidly controls the power that heats the adsorbent/adsorbate, resulting in controlled</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApWS....8...90M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApWS....8...90M"><span>Potentiality of a fruit peel (banana peel) toward abatement of fluoride from synthetic and underground water samples collected from fluoride affected villages of Birbhum district</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mondal, Naba Kumar; Roy, Arunabha</p> <p>2018-06-01</p> <p>Contamination of underground water with fluoride (F) is a tremendous health hazard. Excessive F (> 1.5 mg/L) in drinking water can cause both dental and skeletal fluorosis. A fixed-bed column experiments were carried out with the operating variables such as different initial F concentrations, bed depths, pH and flow rates. Results revealed that the breakthrough time and exhaustion time decrease with increasing flow rate, decreasing bed depth and increasing influent fluoride concentration. The optimized conditions are: 10 mg/L initial fluoride concentration; flow rate 3.4 mL/min, bed depth 3.5 and pH 5. The bed depth service time model and the Thomas model were applied to the experimental results. Both the models were in good agreement with the experimental data for all the process parameters studied except flow rate, indicating that the models were appropriate for removal of F by natural banana peel dust in fix-bed design. Moreover, column adsorption was reversible and the regeneration was accomplished by pumping of 0.1 M NaOH through the loaded banana peel dust column. On the other hand, field water sample analysis data revealed that 86.5% fluoride can be removed under such optimized conditions. From the experimental results, it may be inferred that natural banana peel dust is an effective adsorbent for defluoridation of water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=322045','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=322045"><span>Responses of experimental river corridors to engineered log jams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Physical models of the Big Sioux River, SD, were constructed to assess the impact on flow, drag, and bed erosion and deposition in response to the installation of two different types of engineered log jams (ELJs). A fixed-bed model focused on flow velocity and forces acting on an instrumented ELJ, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/103551-propagation-fluidization-combustion-wave','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/103551-propagation-fluidization-combustion-wave"><span>Propagation of a fluidization - combustion wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.</p> <p>1994-05-01</p> <p>A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/121718-hot-gas-desulfurization-phillips-sorb-sorbent-moving-bed-fluidized-bed-reactors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/121718-hot-gas-desulfurization-phillips-sorb-sorbent-moving-bed-fluidized-bed-reactors"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khare, G.P.; Delzer, G.A.; Kubicek, D.H.</p> <p></p> <p>Phillips Z-Sorb sorbents have been evaluated successfully as regenerable sorbents for hydrogen sulfide in the fuel gas that is produced in a clean coal technology power plant. Tests have been carried out in fixed-,moving-, and fluid-bed applications. The fixed-bed tests completed at the Morgantown Energy Technology Center showed that Phillips Z-Sorb sorbent performed better than zinc titanate. The performance of Phillips Z-Sorb sorbent in a moving-bed application was very encouraging. The sorbent flowed well, H{sub 2}S was reduced to less than 50 ppm at the absorber outlet over long periods and post-test analysis of the sorbent indicated very low sulfatemore » levels at the regenerator exit. The fluidizable version of Phillips Z-Sorb sorbent was tested in Research Triangle Institutes`s high temperature, high pressure, semi-bath, fluidized-bed reactor system. in a life cycle test consisting of 50 cycles of sulfidation and regeneration, this sorbent exhibited excellent activity and regenerability. The sulfur loading was observed to be 90 + percent of the theoretical capacity. The sorbent consistently demonstrated a sharp regeneration profile with no evidence of sulfate accumulation. 7 refs., 7 fig., 5 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19601423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19601423"><span>Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems II: evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah</p> <p>2009-06-01</p> <p>A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12628794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12628794"><span>Industrial wastewater treatment in a new gas-induced ozone reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Sheng H; Wang, Ching H</p> <p>2003-03-17</p> <p>The present work was to investigate industrial wastewater treatment by ozonation in a new gas-induced reactor in conjunction with chemical coagulation pretreatment. The reactor was specifically designed in a fashion that gas induction was created on the liquid surface by the high-speed action of an impeller turbine inside a draft tube to maximize the ozone gas utilization. A new design feature of the present reactor system was a fixed granular activated carbon (GAC) bed packed in a circular compartment between the reactor wall and the shaft tube. The fixed GAC bed provided additional adsorption and catalytic degradation of organic pollutants. Combination of the fixed GAC bed and ozonation results in enhanced oxidation of organic pollutants. In addition to enhanced pollutant oxidation, ozonation was found to provide in situ GAC regeneration that was considered crucial in the present reaction system. Kinetic investigations were also made using a proposed complex kinetic model to elucidate the possible oxidation reaction mechanisms of the present gas-induced ozonation system. As a complementary measure, chemical coagulation pretreatment was found able to achieve up to 50% COD and 85% ADMI removal. Experimental tests were conducted to identify its optimum operating conditions. Copyright 2003 Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14753533','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14753533"><span>Treatment of mountain refuge wastewater by fixed and moving bed biofilm systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andreottola, G; Damiani, E; Foladori, P; Nardelli, P; Ragazzi, M</p> <p>2003-01-01</p> <p>Tourists visiting mountain refuges in the Alps have increased significantly in the last decade and the number of refuges and huts at high altitude too. In this research the results of an intensive monitoring of a wastewater treatment plant (WWTP) for a tourist mountain refuge located at 2,981 m a.s.l. are described. Two biofilm reactors were adopted: (a) a Moving Bed Biofilm Reactor (MBBR); (b) a submerged Fixed Bed Biofilm Reactor (FBBR). The aims of this research were: (i) the evaluation of the main parameters characterising the processes and involved in the design of the wastewater plants, in order to compare advantages and disadvantages of the two tested alternatives; (ii) the acquisition of an adequate knowledge of the problems connected with the wastewater treatment in alpine refuges. The main results have been: (i) a quick start-up of the biological reactors obtainable thanks to a pre-colonization before the transportation of the plastic carriers to the refuge at the beginning of the tourist season; (ii) low volume and area requirement; (iii) significantly higher removal efficiency compared to other fixed biomass systems, such as trickling filters, but the energy consumption is higher.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..156C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..156C"><span>Experimental modelling of outburst flood - bed interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..158C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..158C"><span>Experimental modelling of flow - bed interactions in Jökulhlaups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Jökulhlaups (glacial outburst floods) are a sudden release and advancing wave of water and sediment from a glacier, with a peak discharge that is often several orders of magnitude greater than perennial flows. Jökulhlaup hazards are regularly incorporated into risk assessments for glaciated areas because the associated flood hazards are numerous. Jökulhlaup hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to jökulhlaups. However, direct measurement of such phenomena is virtually impossible. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental jökulhlaups. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036671','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036671"><span>Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.</p> <p>2011-01-01</p> <p>Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25014887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25014887"><span>Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guimarães, Damaris; Leão, Versiane A</p> <p>2014-12-01</p> <p>Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983772','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983772"><span>Cognitive Rationalizations for Tanning-Bed Use: A Preliminary Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Banerjee, Smita C.; Hay, Jennifer L.; Greene, Kathryn</p> <p>2016-01-01</p> <p>Objectives To examine construct and predictive utility of an adapted cognitive rationalization scale for tanning-bed use. Methods Current/former tanning-bed-using undergraduate students (N = 216; 87.6% females; 78.4% white) at a large northeastern university participated in a survey. A cognitive rationalization for tanning-bed use scale was adapted. Standardized self-report measures of past tanning-bed use, advantages of tanning, perceived vulnerability to photoaging, tanning-bed use dependence, and tanning- bed use intention were also administered. Results The cognitive rationalization scale exhibited strong construct and predictive validity. Current tanners and tanning-bed-use-dependent participants endorsed rationalizations more strongly than did former tanners and not-tanning-bed-use-dependent participants respectively. Conclusions Findings indicate that cognitive rationalizations help explain discrepancy between inconsistent cognitions. PMID:23985280</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863896','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863896"><span>Coal-feeding mechanism for a fluidized bed combustion chamber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gall, Robert L.</p> <p>1981-01-01</p> <p>The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol26/pdf/CFR-2011-title40-vol26-sec264-1033.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol26/pdf/CFR-2011-title40-vol26-sec264-1033.pdf"><span>40 CFR 264.1033 - Standards: Closed-vent systems and control devices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... condenser exit (i.e., product side). (vii) For a carbon adsorption system that regenerates the carbon bed... requirements of this section. (g) An owner or operator using a -carbon adsorption system such as a fixed-bed...)(F). (h) An owner or operator using a carbon adsorption system such as a carbon canister that does...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20013549-high-efficiency-power-generation-from-coal-wastes-utilizing-high-temperature-air-combustion-technology-part-performance-pebble-bed-gasifier-coal-wastes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20013549-high-efficiency-power-generation-from-coal-wastes-utilizing-high-temperature-air-combustion-technology-part-performance-pebble-bed-gasifier-coal-wastes"><span>High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 1: Performance of pebble bed gasifier for coal and wastes)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro</p> <p>1998-07-01</p> <p>A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H51E0794G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H51E0794G"><span>Coarse sediment transport dynamics at three spatial scales of bedrock channel bed complexity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goode, J. R.; Wohl, E.</p> <p>2007-12-01</p> <p>Rivers incised into bedrock in fold-dominated terrain display a complex bed topography that strongly interacts with local hydraulics to produce spatial differences in bed sediment flux. We used painted tracer clasts to investigate how this complex bed topography influences coarse sediment transport at three spatial scales (reach, cross- section and grain). The study was conducted along the Ocoee River gorge, Tennessee between the TVA Ocoee #3 dam and the 1996 Olympic whitewater course. The bed topography consists of undulating bedrock ribs, which are formed at a consistent strike to the bedding and cleavage of the metagreywake and phyllite substrate. Ribs vary in their orientation to flow (from parallel to oblique) and amplitude among three study reaches. These bedrock ribs create a rough bed topography that substantially alters the local flow field and influences reach- scale roughness. In each reach, 300 tracer clasts were randomly selected from the existing bed material. Tracer clasts were surveyed and transport distances were calculated after five scheduled summer releases and a suite of slightly larger but sporadic winter releases. Transport distances were examined as a function of rib orientation and amplitude (reach scale), spatial proximity to bedrock ribs and standard deviation of the bed elevation (cross- section scale), and whether clasts were hydraulically shielded by surrounding clasts, incorporated in the armour layer, imbricated, and/or existed in a pothole, in addition to size and angularity. At the reach scale, where ribs are parallel to flow, lower reach-scale roughness leads to greater sediment transport capacity, sediment flux and transport distances because transport is uninhibited in the downstream direction. Preliminary results indicate that cross section scale characteristics of bed topography exert a greater control on transport distances than grain size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7136283-paleocene-eocene-lignite-beds-southwest-alabama-parasequence-beds-highstand-systems-tracts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7136283-paleocene-eocene-lignite-beds-southwest-alabama-parasequence-beds-highstand-systems-tracts"><span>Paleocene-eocene lignite beds of southwest Alabama: Parasequence beds in highstand systems tracts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mancini, E.A.; Tew, B.H.; Carroll, R.E.</p> <p>1993-09-01</p> <p>In southwest Alabama, lignite beds are present in at least four stratigraphic intervals that span approximately 8 m.y. of geologic time. Lignite is found in the Paleocene Oak Hill Member and Coal Bluff Member of the Naheola Formation of the Midway Group and the Paleocene Tuscahoma Sand and the Eocene Hatchetigbee Formation of the Wilcox Group. Lignite beds range in thickness from 0.5 to 11 ft and consist of 32-53% moisture, 13-39% volatile matter, 4-36% fixed carbon, and 5-51% ash. These Paleocene and Eocene lignite beds occur as parasequence deposits in highstand systems tracts of four distinct third-order depositional sequences.more » The lignite beds are interpreted as strata within highstand systems tract parasequences that occur in mud-dominated regressive intervals. Lignite beds were deposited in coastal marsh and low-lying swamp environments as part of deltaic systems that prograded into southwestern Alabama from the west. As sediment was progressively delivered into the basin from these deltas, the effects of relative sea level rise during an individual cycle were overwhelmed, producing a net loss of accommodation and concomitant overall basinward progradation of the shoreline (regression). Small-scale fluctuations in water depth resulting from the interaction of eustasy, sediment yield, and subsidence led to cyclical flooding of the low-lying coastal marshes and swamps followed by periods of progradational and regression. Highstand systems tract deposition within a particular depositional sequence culminated with a relative sea level fall that resulted in a lowering of base level and an abrupt basinward shift in coastal onlap. Following sea level fall and the subsequent accumulation of the lowstand deposits, significant relative sea level rise resulted in the marine inundation of the area previously occupied by coastal marshes and swamps and deposition of the transgressive systems tract of the overlying sequence.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14524684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14524684"><span>Upgrading of a small overloaded activated sludge plant using a MBBR system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andreottola, G; Foladori, P; Gatti, G; Nardelli, P; Pettena, M; Ragazzi, M</p> <p>2003-01-01</p> <p>The aim of this research was the application of a biofilm system for the upgrading of a full-scale overloaded activated sludge MWWTP using the MBBR (Moving Bed Biofilm Reactor) technology. The choice of this fixed biomass system appeared appropriate because it offers several advantages including good potential in nitrification process, easiness of management and above all, the possibility to use the existing tank with very few modifications. MBBR system counts only few full-scale plants in Italy at the moment, thus a pilot-scale experimentation was preliminarily carried out. The acquired parameters were used for the fullscale MWWTP upgrading. The upgrading of the activated sludge reactor in the MBBR system has given (1) a relevant increase in the flowrate treated up to 60%; (2) a good efficiency in organic carbon removal and nitrification, equal to 88% and 90% respectively, with HRTs of 5.5-7 h; (3) the overcoming of the hydraulic overload of the secondary settler, applying a lamellar settler. It was observed a good correlation between the results obtained at pilot-scale and those observed in the full-scale plant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22642365-su-radiation-biological-equivalent-presentations-oflem-mkm-approaches-carbon-ion-radiotherapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22642365-su-radiation-biological-equivalent-presentations-oflem-mkm-approaches-carbon-ion-radiotherapy"><span>SU-F-T-124: Radiation Biological Equivalent Presentations OfLEM-1 and MKM Approaches in the Carbon-Ion Radiotherapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hsi, W; Jiang, G; Sheng, Y</p> <p></p> <p>Purpose: To study the correlations of the radiation biological equivalent doses (BED) along depth and lateral distance between LEM-1 and MKM approaches. Methods: In NIRS-MKM (Microdosimetric Kinetic Model) approach, the prescribed BED, referred as C-Eq, doses aims to present the relative biological effectiveness (RBE) for different energies of carbon-ions on a fixed 10% survival value of HCG cell with respect to convention X-ray. Instead of a fixed 10% survival, the BED doses of LEM-1 (Local Effect Model) approach, referred as X-Eq, aims to present the RBE over the whole survival curve of chordoma-like cell with alpha/beta ratio of 2.0. Themore » relationship of physical doses as a function of C-Eq and X-Eq doses were investigated along depth and lateral distance for various sizes of cubic targets in water irradiated by carbon-ions. Results: At the center of each cubic target, the trends between physical and C-Eq or X-Eq doses can be described by a linear and 2nd order polynomial functions, respectively. Using fit functions can then calculate a scaling factor between C-Eq and X-Eq doses to have similar physical doses. With equalized C-Eq and X-Eq doses at the depth of target center, over- and under-estimated X-Eq to C-Eq are seen for depths before and after the target center, respectively. Near the distal edge along depth, sharp rising of RBE value is observed for X-Eq, but sharp dropping of RBE value is observed for C-Eq. For lateral locations near and just outside 50% dose level, sharp raising of RBE value is also seen for X-Eq, while only minor increasing with fast dropping for C-Eq. Conclusion: An analytical function to model the differences between the CEq and X-Eq doses along depth and lateral distance need to further investigated to explain varied clinic outcome of specific cancers using two different approaches to calculated BED doses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...741020A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...741020A"><span>Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmadi, Ehsan; Yousefzadeh, Samira; Ansari, Mohsen; Ghaffari, Hamid Reza; Azari, Ali; Miri, Mohammad; Mesdaghinia, Alireza; Nabizadeh, Ramin; Kakavandi, Babak; Ahmadi, Peyman; Badi, Mojtaba Yegane; Gholami, Mitra; Sharafi, Kiomars; Karimaei, Mostafa; Ghoochani, Mahboobeh; Brahmand, Masoud Binesh; Mohseni, Seyed Mohsen; Sarkhosh, Maryam; Rezaei, Soheila; Asgharnia, Hosseinali; Dehghanifard, Emad; Jafari, Behdad; Mortezapour, Alireza; Moghaddam, Vahid Kazemi; Mahmoudi, Mohammad Molla; Taghipour, Nader</p> <p>2017-02-01</p> <p>Emerging and hazardous environmental pollutants like phthalic acid esters (PAEs) are one of the recent concerns worldwide. PAEs are considered to have diverse endocrine disrupting effects on human health. Industrial wastewater has been reported as an important environment with high concentrations of PAEs. In the present study, four short-chain PAEs including diallyl phthalate (DAP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and phthalic acid (PA) were selected as a substrate for anaerobic fixed film fixed bed reactor (AnFFFBR). The process performances of AnFFFBR, and also its kinetic behavior, were evaluated to find the best eco-friendly phthalate from the biodegradability point of view. According to the results and kinetic coefficients, removing and mineralizing of DMP occurred at a higher rate than other phthalates. In optimum conditions 92.5, 84.41, and 80.39% of DMP, COD, and TOC were removed. DAP was found as the most bio-refractory phthalate. The second-order (Grau) model was selected as the best model for describing phthalates removal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28216654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28216654"><span>Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmadi, Ehsan; Yousefzadeh, Samira; Ansari, Mohsen; Ghaffari, Hamid Reza; Azari, Ali; Miri, Mohammad; Mesdaghinia, Alireza; Nabizadeh, Ramin; Kakavandi, Babak; Ahmadi, Peyman; Badi, Mojtaba Yegane; Gholami, Mitra; Sharafi, Kiomars; Karimaei, Mostafa; Ghoochani, Mahboobeh; Brahmand, Masoud Binesh; Mohseni, Seyed Mohsen; Sarkhosh, Maryam; Rezaei, Soheila; Asgharnia, Hosseinali; Dehghanifard, Emad; Jafari, Behdad; Mortezapour, Alireza; Moghaddam, Vahid Kazemi; Mahmoudi, Mohammad Molla; Taghipour, Nader</p> <p>2017-02-20</p> <p>Emerging and hazardous environmental pollutants like phthalic acid esters (PAEs) are one of the recent concerns worldwide. PAEs are considered to have diverse endocrine disrupting effects on human health. Industrial wastewater has been reported as an important environment with high concentrations of PAEs. In the present study, four short-chain PAEs including diallyl phthalate (DAP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and phthalic acid (PA) were selected as a substrate for anaerobic fixed film fixed bed reactor (AnFFFBR). The process performances of AnFFFBR, and also its kinetic behavior, were evaluated to find the best eco-friendly phthalate from the biodegradability point of view. According to the results and kinetic coefficients, removing and mineralizing of DMP occurred at a higher rate than other phthalates. In optimum conditions 92.5, 84.41, and 80.39% of DMP, COD, and TOC were removed. DAP was found as the most bio-refractory phthalate. The second-order (Grau) model was selected as the best model for describing phthalates removal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5316953','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5316953"><span>Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ahmadi, Ehsan; Yousefzadeh, Samira; Ansari, Mohsen; Ghaffari, Hamid Reza; Azari, Ali; Miri, Mohammad; Mesdaghinia, Alireza; Nabizadeh, Ramin; Kakavandi, Babak; Ahmadi, Peyman; Badi, Mojtaba Yegane; Gholami, Mitra; Sharafi, Kiomars; Karimaei, Mostafa; Ghoochani, Mahboobeh; Brahmand, Masoud Binesh; Mohseni, Seyed Mohsen; Sarkhosh, Maryam; Rezaei, Soheila; Asgharnia, Hosseinali; Dehghanifard, Emad; Jafari, Behdad; Mortezapour, Alireza; Moghaddam, Vahid Kazemi; Mahmoudi, Mohammad Molla; Taghipour, Nader</p> <p>2017-01-01</p> <p>Emerging and hazardous environmental pollutants like phthalic acid esters (PAEs) are one of the recent concerns worldwide. PAEs are considered to have diverse endocrine disrupting effects on human health. Industrial wastewater has been reported as an important environment with high concentrations of PAEs. In the present study, four short-chain PAEs including diallyl phthalate (DAP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and phthalic acid (PA) were selected as a substrate for anaerobic fixed film fixed bed reactor (AnFFFBR). The process performances of AnFFFBR, and also its kinetic behavior, were evaluated to find the best eco-friendly phthalate from the biodegradability point of view. According to the results and kinetic coefficients, removing and mineralizing of DMP occurred at a higher rate than other phthalates. In optimum conditions 92.5, 84.41, and 80.39% of DMP, COD, and TOC were removed. DAP was found as the most bio-refractory phthalate. The second-order (Grau) model was selected as the best model for describing phthalates removal. PMID:28216654</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRF..119..533S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRF..119..533S"><span>Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.</p> <p>2014-03-01</p> <p>Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240123-analysis-fixed-bed-data-extraction-rate-mechanism-reaction-hematite-methane','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240123-analysis-fixed-bed-data-extraction-rate-mechanism-reaction-hematite-methane"><span>Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Breault, Ronald W.; Monazam, Esmail R.</p> <p>2015-04-01</p> <p>In this study, chemical looping combustion is a promising technology for the capture of CO 2 involving redox materials as oxygen carriers. The effects of reduction conditions, namely, temperature and fuel partial pressure on the conversion products are investigated. The experiments were conducted in a laboratory fixed-bed reactor that was operated cyclically with alternating reduction and oxidation periods. Reactions are assumed to occur in the shell surrounding the particle grains with diffusion of oxygen to the surface from the grain core. Activation energies for the shell and core reactions range from 9 to 209 kJ/mol depending on the reaction step.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19350921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19350921"><span>Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Zirui; Peldszus, Sigrid; Huck, Peter M</p> <p>2009-03-01</p> <p>The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC). The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevantfor drinking water treatment Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns forthe change in Freundlich K(F) and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated thatfilm diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional masstransfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22304606-pyrolysis-waste-animal-fats-fixed-bed-reactor-production-characterization-bio-oil-bio-char','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22304606-pyrolysis-waste-animal-fats-fixed-bed-reactor-production-characterization-bio-oil-bio-char"><span>Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis</p> <p></p> <p>Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21176783-adsorption-selected-pharmaceuticals-endocrine-disrupting-compound-granular-activated-carbon-adsorption-capacity-kinetics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21176783-adsorption-selected-pharmaceuticals-endocrine-disrupting-compound-granular-activated-carbon-adsorption-capacity-kinetics"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yu, Z.; Peldszus, S.; Huck, P.M.</p> <p></p> <p>The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider poremore » size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF25009J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF25009J"><span>Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo</p> <p>2017-11-01</p> <p>In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024840','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024840"><span>Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sandu, S.I.; Boardman, G.D.; Watten, B.J.; Brazil, B.L.</p> <p>2002-01-01</p> <p>The performance of fluidized bed nitrification filters charged with 2 ?? 4 ABS plastic beads (specific gravity 1.06) was evaluated. Three unique bed-height to diameter ratios were established, in triplicate, using column diameters of 12.7, 15.2 and 17.8 cm. Filters received water spiked with recycled nutrients and ammonia (TAN), from one of the three 500 1 feed tank system. With daily ammonia loading fixed at 8.6 g per system, TAN removal increased with column diameter at each of four tests hydraulic loading rates (6, 8, 10 and 12 Lpm). TAN in recirculated water (influent) rose from 0.5 to 1.0 mg/1 as ammonia loading increased from 180 mg/m2-day to 360 mg/m2-day. When hydraulic loading was fixed at 12 Lpm, TAN removal (%) was maximized with ammonia loadings ranging from 225 to 270 mg/m2-day. Biofilm thickness increased with ammonia loading, but decreased with increased hydraulic loading rates. Fluidized beds of ABS plastic beads were effective in reducing energy costs (head loss) of water treatment. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/669980-effects-temperature-pressure-carrier-gas-cracking-coal-tar-over-char-dolomite-mixtures-calcined-dolomite-fixed-bed-reactor','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/669980-effects-temperature-pressure-carrier-gas-cracking-coal-tar-over-char-dolomite-mixtures-calcined-dolomite-fixed-bed-reactor"><span>Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixtures and calcined dolomite in a fixed-bed reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seshadri, K.; Shamsi, A.</p> <p>1998-10-01</p> <p>A distillation fraction of a coal-derived liquid (tar) was cracked over a char-dolomite mixture, calcined dolomite, and silicon carbide in a fixed-bed reactor. The char-dolomite mixture (FWC) was produced from Pittsburgh No. 8 coal and dolomite in a Foster Wheeler carbonizer. The experiments were conducted under nitrogen and simulated coal gas (SCG), which was a mixture of CO, CO{sub 2}, H{sub 2}S, CH{sub 4}, N{sub 2}, and steam, at 1 and 17 atm. The conversion over these materials under nitrogen was much higher at 17 atm than at 1 atm. At higher pressures, tar molecules were trapped in the poresmore » of the bed material and underwent secondary reactions, resulting in the formation of excess char. However, when nitrogen was replaced by SCG, the reactions that induce char formation were suppressed, thus increasing the yield of gaseous products. The analysis of the gaseous products and the spent bed materials for organic and inorganic carbons suggested that the product distribution can be altered by changing the carrier gas, temperature, and pressure.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22573917-model-complex-flows-soft-glassy-materials-application-flows-through-fixed-fiber-beds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22573917-model-complex-flows-soft-glassy-materials-application-flows-through-fixed-fiber-beds"><span>A model for complex flows of soft glassy materials with application to flows through fixed fiber beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu</p> <p>2015-11-15</p> <p>The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16856744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16856744"><span>TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferguson, Megan A; Hering, Janet G</p> <p>2006-07-01</p> <p>Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally benign method for As(III) oxidation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=345466','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=345466"><span>Lab-scaled model to evaluate odor and gas production from cattle confinement facilities with deep bedded packs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3332536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3332536"><span>Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Calo, Joseph M.; Madhavan, Lakshmi; Kirchner, Johannes; Bain, Euan J.</p> <p>2012-01-01</p> <p>The description and operation of a novel, hybrid spouted vessel/fixed bed filter system for the removal of arsenic from water are presented. The system utilizes zero-valent iron (ZVI) particles circulating in a spouted vessel that continuously generates active colloidal iron corrosion products via the “self-polishing” action between ZVI source particles rolling in the moving bed that forms on the conical bottom of the spouted vessel. This action also serves as a “surface renewal” mechanism for the particles that provides for maximum utilization of the ZVI material. (Results of batch experiments conducted to examine this mechanism are also presented.) The colloidal material produced in this fashion is continuously captured and concentrated in a fixed bed filter located within the spouted vessel reservoir wherein arsenic complexation occurs. It is demonstrated that this system is very effective for arsenic removal in the microgram per liter arsenic concentration (i.e., drinking water treatment) range, reducing 100 μg/L of arsenic to below detectable levels (≪10 μg/L) in less than an hour. A mechanistic analysis of arsenic behavior in the system is presented, identifying the principal components of the population of active colloidal material for arsenic removal that explains the experimental observations and working principles of the system. It is concluded that the apparent kinetic behavior of arsenic in systems where colloidal (i.e., micro/nano) iron corrosion products are dominant can be complex and may not be explained by simple first or zeroth order kinetics. PMID:22539917</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12850710','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12850710"><span>In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L</p> <p>2003-01-01</p> <p>In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1875b0015I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1875b0015I"><span>Fixed bed pyrolysis of biomass solid waste for bio-oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Islam, Mohammad Nurul; Ali, Mohamed Hairol Md; Haziq, Miftah</p> <p>2017-08-01</p> <p>Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed stainless steel pyrolysis reactor of 50 mm diameter and 50 cm length. The biomass solid feedstock is prepared prior to pyrolysis. The reactor bed is heated by means of a cylindrical heater of biomass source. A temperature of 500°C is maintained with an apperent vapor residence time of 3-5 sec. The products obtained are liquid bio-oil, solid char and gases. The liquid product yield is found to be 30% by weight of solid biomass feedstock while the solid product yield is found to be 35% by weight of solid biomass feedtock, the rest is gas. The bio-oil is a single-phase brownish color liquid of acrid smell. The heating value of the oil is determined to be 25 MJ/kg. The density and pH value are found to be 1.125 kg/m3 and 3.78 respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JIEIA..93..187K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JIEIA..93..187K"><span>Fixed Bed Column Study for Adsolubilization of 2,4-D Herbicide on Surfactant Modified Silica Gel Waste</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koner, S.; Adak, A.</p> <p>2012-09-01</p> <p>The fixed bed column study was conducted for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide from synthetically prepared wastewater using surfactant modified silica gel waste (SMSGW) as an adsorbing media. The adsorbing media was prepared by treating silica gel waste (SGW) with cationic surfactant. The removal was due to adsolubilization of 2,4-D molecules within the admicelles formed on the surface of SGW. The column having 2.5 cm diameter, with different bed heights such as 20, 30 and 40 cm were used in the study. The different column design parameters like depth of exchange zone, time required for exchange zone to move its own height, adsorption rate constant, adsorption capacity constant were calculated using BDST model. The SMSGW was found to be a very efficient media for the removal of 2,4-D from wastewater. Column design parameters were modeled for different field conditions to predict the duration of column run for practical application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23735607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23735607"><span>Pyrolysis of waste tyres: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, Paul T</p> <p>2013-08-01</p> <p>Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7866','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7866"><span>Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett</p> <p>2000-01-01</p> <p>Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26405842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26405842"><span>Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin</p> <p>2015-12-15</p> <p>The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17546973','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17546973"><span>Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schlegel, S; Koeser, H</p> <p>2007-01-01</p> <p>Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25465794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25465794"><span>Upflow fixed bed bioelectrochemical reactor for wastewater treatment applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González-Gutiérrez, Linda; Frontana, Carlos; Martínez, Eduardo</p> <p>2015-01-01</p> <p>A cylindrical Upflow Fixed Bed Reactor (UFB-BER) with granular activated carbon, steel mesh electrodes and anaerobic microorganisms, was constructed for analyzing how hydrodynamic parameters affect the reactions involved during wastewater treatment processes for azo dye degradation. Dye removal percentage was not compromised by decreasing HRTm (99-90% upon changing HRTm from 4 to 1h in single pass mode). Using the residence time distribution method for hydrodynamic characterization, it was found that a higher dispersion in the reactor occurs for HRTm=1h, than for HRTm=4h. A kinetic analysis suggests that this dispersion effect could be associated to a higher specific reaction rate dependent on the azo dye concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA566482','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA566482"><span>Thermal Cracking of Tars in a Continuously Fed Reactor with Steam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-05-01</p> <p>Fluidized Bed using biomass 8 Tars  Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10022067','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10022067"><span>Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B</p> <p>1998-01-01</p> <p>This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22300373-pyrolysis-waste-tyres-review','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22300373-pyrolysis-waste-tyres-review"><span>Pyrolysis of waste tyres: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk</p> <p>2013-08-15</p> <p>Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest inmore » pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24123190','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24123190"><span>Minnesota multiphasic personality inventory-2 restructured form (MMPI-2-RF) scale score differences in bariatric surgery candidates diagnosed with binge eating disorder versus BMI-matched controls.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marek, Ryan J; Ben-Porath, Yossef S; Ashton, Kathleen; Heinberg, Leslie J</p> <p>2014-04-01</p> <p>Binge Eating Disorder (BED) is among the most common psychiatric disorders in bariatric surgery candidates. The Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) is a broadband, psychological test that includes measures of emotional and behavioral dysfunction, which have been associated with BED behaviors in bariatric surgery candidates; however these studies have lacked appropriate controls. In the current study, we compared MMPI-2-RF scale scores of bariatric surgery patients diagnosed with BED (BED+) with BMI-matched controls without BED (BED-). Three-hundred and seven BED+ participants (72.64% female and 67.87% Caucasian; mean BMI of 51.36 kg/m(2) [SD = 11.94]) were drawn from a large, database (N = 1304). Three-hundred and seven BED- participants were matched on BMI and demographics (72.64% female, 68.63% Caucasian, and mean BMI of 51.30 kg/m(2) [SD = 11.70]). The BED+ group scored significantly higher on measures of Demoralization, Low Positive Emotions, and Dysfunctional Negative Emotions and scored lower on measures of Antisocial Behaviors, reflecting behavioral constraint. Optimal T-Score cutoffs were below the traditional 65 T score for several MMPI-2-RF scales. MMPI-2-RF externalizing measures also added incrementally to differentiating between the groups beyond the Binge Eating Scale (BES). BED+ individuals produced greater elevations on a number of MMPI-2-RF internalizing scales and externalizing scales. Use of the test in conjunction with a clinical interview and other self-report data can further aid the clinician in guiding patients to appropriate treatment to optimize outcome. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981RSPSA.300...99H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981RSPSA.300...99H"><span>Motor fuels and chemicals from coal via the Sasol Synthol route</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoogendoorn, J. C.</p> <p>1981-03-01</p> <p>The production of synthetic motor fuels and chemicals from coal by the Sasol procedures is discussed. This process is based on the Fischer-Tropsch reaction by passing hydrogen and carbon monoxide in a specific ratio over iron catalysts at elevated temperatures and pressures. Two parallel reactor systems are discussed. The smaller system employs fixed-bed reactors, using a precipitated iron catalyst and produces predominantly heavy hydrocarbons of an aliphatic nature with carbon chains up to 100. These straight-chain hydrocarbons yield excellent waxes and high quality diesel oil. The larger system uses a powdered iron catalyst in a circulating fluid-bed reactor, a concept developed from American catalytic cracker technology. This system has the advantage of high production capacity and scale-up potential, and produces light olefins which can be used either as petrochemical feedstock or refined and added to the motor fuel pool, and ethylene which is augmented by ethane cracking. Analysis of product selectivities and values shows that co-production of chemicals and motor fuels from coal is profitable and efficient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21068473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21068473"><span>Health resource allocation and productive efficiency of Chinese county hospitals: data from 1993 to 2005.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gai, Ruoyan Y; Zhou, Chengchao C; Xu, Lingzhong Z; Zhu, Min; Wang, Xingzhou Z; Li, Shixue X; Zheng, Wengui G; Song, Peipei P; Yang, Xuelai L; Fang, Liyi Y; Zhen, Yancheng C; Tang, Wei</p> <p>2010-10-01</p> <p>This study aims to assess trends in the productive efficiency of China's county hospitals during the economic transition using data from 1993 to 2005. A data envelopment analysis (DEA) framework was used to calculate the efficiency score of county hospitals in all 31 provinces. A C²R model and a BC² model were devised to respectively calculate overall and scale efficiency and pure technical efficiency at the hospital's current scale. Models included four inputs (number of medical staff; number of beds; value of fixed capital; and hospital expenditures) and three outputs (outpatient and emergency visits, number of inpatients, and hospital revenue) in total. As the results, geographical disparities in health resource allocation and county hospital productivity were noted. From 1993 to 2005, the number of county hospitals increased and their inputs, e.g. fixed capital in particular, grew rapidly. However, the amount of both outpatient and inpatient services declined somewhat especially in the middle and the western regions. The overall efficiency at the national level decreased slightly. County hospitals in the eastern region tended to have better overall, scale, and technical efficiency in comparison to the middle and the western regions. In conclusion, county hospitals are inefficient due to their enlarged scale and the reduced amount of health care services they provide. This issue should be addressed especially in the middle and the western regions, where health resources are far more limited and yet wasted. The effects of ongoing health sector reform on the productivity of county hospitals must be monitored and evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472543-coupling-scales-modelling-heavy-metal-vaporization-from-municipal-solid-waste-incineration-fluid-bed-cfd','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472543-coupling-scales-modelling-heavy-metal-vaporization-from-municipal-solid-waste-incineration-fluid-bed-cfd"><span>Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles</p> <p>2015-09-15</p> <p>Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28317442','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28317442"><span>Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Bon-Wun; Lee, Chang-Gu; Park, Seong-Jik</p> <p>2018-03-01</p> <p>The aim of this study was to investigate the removal of fluoride from aqueous solutions by using crushed concrete fines as a filter medium under varying conditions of pH 3-7, flow rate of 0.3-0.7 mL/min, and filter depth of 10-20 cm. The performance of fixed-bed columns was evaluated on the basis of the removal ratio (Re), uptake capacity (qe), degree of sorbent used (DoSU), and sorbent usage rate (SUR) obtained from breakthrough curves (BTCs). Three widely used semi-mechanistic models, that is, Bohart-Adams, Thomas, and Yoon-Nelson models, were applied to simulate the BTCs and to derive the design parameters. The Box-Behnken design of response surface methodology (RSM) was used to elucidate the individual and interactive effects of the three operational parameters on the column performance and to optimize these parameters. The results demonstrated that pH is the most important factor in the performance of fluoride removal by a fixed-bed column. The flow rate had a significant negative influence on Re and DoSU, and the effect of filter depth was observed only in the regression model for DoSU. Statistical analysis indicated that the model attained from the RSM study is suitable for describing the semi-mechanistic model parameters.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5321081-agglomeration-src-residues-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5321081-agglomeration-src-residues-final-report"><span>Agglomeration of SRC residues. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Theodore, F.W.; Wasson, G.E.</p> <p>1982-01-01</p> <p>EPRI contracted with CCDC to agglomerate Kerr-McGee ash concentrate and determine whether the agglomerates could be used as a fixed-bed gasifier feed. Briquettes were produced from Kerr-McGee ash concentrate which met CCDC's strength criteria for handling as feed to a fixed-bed gasifier. In addition, when shock heated under conditions simulating gasifier conditions, strong coke was produced demonstrating that the briquettes will not disintegrate during the initial temperature shock when charged to the gasifier. The conclusion of this study is that briquettes produced from the Kerr-McGee ash concentrate studied could be considered as feed for a fixed-bed gasifier. The CO/sub 2/-carbonmore » reactivity of the briquettes had values between a typical eastern and western coal. In the case of a dry bottom gasifier where the reactivity is important, it is not clear-cut whether the ash concentrate briquettes would be an economical feed. A closer inspection by a gasifier manufacturer is needed to resolve this issue. Since higher gasification temperatures are used in a slagging gasifier, the reactivity question is eliminated and the briquettes should be considered as a feed. This study does not deal with the exact design of a gasifier since this is a function of the type used. The gasifier manufacturer should be considered in future work for their input on critical design considerations i.e. stirrer design, etc.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/69337','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/69337"><span>Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anthony, R.G.; Akgerman, A.</p> <p>1994-05-06</p> <p>Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666423','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666423"><span>Algal Foams Applied in Fixed-Bed Process for Lead(II) Removal Using Recirculation or One-Pass Modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric</p> <p>2017-01-01</p> <p>The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic gelation using algal biomass (AB, Laminaria digitata) or alginate (as the reference) and applied for Pb(II) sorption. These foams (manufactured as macroporous discs) were packed in filtration holders (simulating fixed-bed column) and the system was operated in either a recirculation or a one-pass mode. Sorption isotherms, uptake kinetics and sorbent reuse were studied in the recirculation mode (analogous to batch system). In the one-pass mode (continuous fixed-bed system), the influence of parameters such as flow rate, feed metal concentration and bed height were investigated on both sorption and desorption. In addition, the effect of Cu(II) on Pb(II) recovery from binary solutions was also studied in terms of both sorption and desorption. Sorption isotherms are well fitted by the Langmuir equation while the pseudo-second order rate equation described well both sorption and desorption kinetic profiles. The study of material regeneration confirms that the reuse of the foams was feasible with a small mass loss, even after 9 cycles. In the one-pass mode, for alginate foams, a slower flow rate led to a smaller saturation volume, while the effect of flow rate was less marked for AB foams. Competitive study suggests that the foams have a preference for Pb(II) over Cu(II) but cannot selectively remove Pb(II) from the binary solution. PMID:29039806</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10643778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10643778"><span>Development and characterization of a carbon-based composite material for reducing patulin levels in apple juice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huebner, H J; Mayura, K; Pallaroni, L; Ake, C L; Lemke, S L; Herrera, P; Phillips, T D</p> <p>2000-01-01</p> <p>Patulin, a heterocyclic lactone produced by various species of Penicillium and Aspergillus fungi, is often detected in apple juices and ciders. Previous research has shown the effectiveness of granular activated carbon for reducing patulin levels in aqueous solutions, apple juices, and ciders. In this study, ultrafine activated carbon was bonded onto granular quartz to produce a composite carbon adsorbent (CCA) with a high carbonaceous surface area, good bed porosity, and increased bulk density. CCA in fixed-bed adsorption columns was evaluated for efficacy in reducing patulin levels from aqueous solutions and apple juice. Columns containing 1.0, 0.5, and 0.25 g of CCA were continuously loaded with a patulin solution (10 microg/ml) and eluted at a flow rate of 1 ml/min. Results indicated that 50% breakthrough capacities for patulin on 1.0-, 0.5-, and 0.25-g CCA columns were 137.5, 38.5, and 19.9 microg, respectively. The effectiveness of CCA to adsorb patulin and prevent toxic effects was confirmed in vitro using adult hydra in culture. Hydra were sensitive to the effects of patulin, with a minimal affective concentration equal to 0.7 microg/ml; CCA adsorption prevented patulin toxicity until 76% breakthrough capacity was achieved. Fixed-bed adsorption with 1.0 g of CCA was also effective in reducing patulin concentrations (20 microg/liter) in a naturally contaminated apple juice, and breakthrough capacities were shown to increase with temperature. Additionally, CCA offered a higher initial breakthrough capacity than pelleted activated carbon when compared in parallel experiments. This study suggests that CCA used in fixed-bed adsorption systems effectively reduced patulin levels in both aqueous solutions and naturally contaminated apple juice; however, the appearance and taste of apple juice may be affected by the treatment process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.1449A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.1449A"><span>Removal of arsenic from drinking water using rice husk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asif, Zunaira; Chen, Zhi</p> <p>2017-06-01</p> <p>Rice husk adsorption column method has proved to be a promising solution for arsenic (As) removal over the other conventional methods. The present work investigates the potential of raw rice husk as an adsorbent for the removal of arsenic [As(V)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column to check the removal efficiency of arsenic. This method shows maximum removal of As, i.e., 90.7 % under the following conditions: rice husk amount 42.5 g; 7 mL/min flow rate in 5 cm diameter column at the bed height of 28 cm for 15 ppb inlet feed concentration. Removal efficiency was increased from 83.4 to 90.7 % by reducing the particle size from 1.18 mm to 710 µm for 15 ppb concentration. Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. The effect of different operating parameters on the column adsorption was determined using breakthrough curves. In the present study, three kinetic models Adam-Bohart, Thomas and Yoon-Nelson were applied to find out the saturated concentration, fixed bed adsorption capacity and time required for 50 % adsorbate breakthrough, respectively. At the end, solidification was done for disposal of rice husk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20727293-experimental-numerical-study-steam-gasification-single-charcoal-particle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20727293-experimental-numerical-study-steam-gasification-single-charcoal-particle"><span>Experimental and numerical study of steam gasification of a single charcoal particle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mermoud, F.; Van de Steene, L.; Golfier, F.</p> <p>2006-04-15</p> <p>The present work deals with a study coupling experiments and modeling of charcoal gasification by steam at large particle scale. A reliable set of experiments was first established using a specially developed 'macro-TG' apparatus where a particle was suspended and continuously weighed during its gasification. The main control parameters of a fixed-bed process were modified separately: steam gasification of beech charcoal spheres of different diameters (10 to 30 mm) was studied at different temperatures (830 to 1030{sup o}C), different steam partial pressures (0.1 to 0.4 atm H{sub 2}O), and different gas velocities around the particle (0.09 to 0.30 m/s). Simulationsmore » with the particle model were performed for each case. Confrontations with experimental data indicate that the model predictions are both qualitatively and quantitatively satisfactory, with an accuracy of 7%, until 60% of conversion, despite the fact that the phenomena of reactive surface evolution and particle fracturing are not well understood. Anisotropy and peripheral fragmentation make the end of the process difficult to simulate. Finally, an analysis of the thermochemical situation is proposed: it is demonstrated that the usual homogeneous or shrinking core particle models are not satisfying and that only the assumption of thermal equilibrium between the particle and the surrounding gas is valid for a model at bed scale. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15449296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15449296"><span>Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ramakrishnan, Divakar; Curtis, Wayne R</p> <p>2004-10-20</p> <p>Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868879','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868879"><span>Shielded fluid stream injector for particle bed reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Notestein, John E.</p> <p>1993-01-01</p> <p>A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21819035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21819035"><span>Removal of hexavalent chromium by biosorption process in rotating packed bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panda, M; Bhowal, A; Datta, S</p> <p>2011-10-01</p> <p>Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25554337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25554337"><span>Note: "Lock-in accelerometry" to follow sink dynamics in shaken granular matter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sánchez-Colina, G; Alonso-Llanes, L; Martínez, E; Batista-Leyva, A J; Clement, C; Fliedner, C; Toussaint, R; Altshuler, E</p> <p>2014-12-01</p> <p>Understanding the penetration dynamics of intruders in granular beds is relevant not only for fundamental physics, but also for geophysical processes and construction on sediments or granular soils in areas potentially affected by earthquakes. While the penetration of intruders in two dimensional (2D) laboratory granular beds can be followed using video recording, this is useless in three dimensional (3D) beds of non-transparent materials such as common sand. Here, we propose a method to quantify the sink dynamics of an intruder into laterally shaken granular beds based on the temporal correlations between the signals from a reference accelerometer fixed to the shaken granular bed, and a probe accelerometer deployed inside the intruder. Due to its analogy with the working principle of a lock-in amplifier, we call this technique lock-in accelerometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/675594-photovoltaic-dryer-dual-packed-beds-drying-medical-herb','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/675594-photovoltaic-dryer-dual-packed-beds-drying-medical-herb"><span>Photovoltaic dryer with dual packed beds for drying medical herb</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Abdel-Rehim, Z.S.; Fahmy, F.H.</p> <p>1998-03-01</p> <p>This work presents design and optimization of a cylindrical photovoltaic dryer with dual packed beds thermal energy storage for drying medical herb. The dryer is provided with electrical heater where the electrical energy is generated by using photovoltaic system. The electrical heater is designed and sized to realize continuous drying (day and night) to minimize the drying time. Two packed beds are used to fix the drying temperature in dryer during day and night. The main packed bed thermal energy storage is charged during the sunlight hours directly, to realize continued drying after sunset. An efficient PV dryer is devisedmore » to work under forced air created by air blower and heated by the electrical coils.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23837346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23837346"><span>Long-term starvation and subsequent recovery of nitrifiers in aerated submerged fixed-bed biofilm reactors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elawwad, Abdelsalam; Sandner, Hendrik; Kappelmeyer, Uwe; Koeser, Heinz</p> <p>2013-01-01</p> <p>The effectiveness of three operational strategies for maintaining nitrifiers in bench-scale, aerated, submerged fixed-bed biofilm reactors (SFBBRs) during long-term starvation at 20 degrees C were evaluated. The operational strategies were characterized by the resulting oxidation-reduction potential (ORP) in the SFBBRs. The activity rates of the nitrifiers were measured and the activity decay was expressed by half-life times. It was found that anoxic and alternating anoxic/aerobic conditions were the best ways to preserve ammonia-oxidizing bacteria (AOB) during long starvation periods and resulted in half-life times of up to 34 and 28 days, respectively. Extended anaerobic conditions caused the half-life for AOB to decrease to 21 days. In comparison, the activity decay of nitrite-oxidizing bacteria (NOB) tended to be slightly faster. The activity of AOB biofilms that were kept for 97 days under anoxic conditions could be completely recovered in less than one week, while over 4 weeks was needed for AOB kept under anaerobic conditions. NOB were more sensitive to starvation and required longer recovery periods than AOB. For complete recovery, NOB needed approximately 7 weeks, regardless of the starvation conditions applied. Using the fluorescence in situ hybridization (FISH) technique, Nitrospira was detected as the dominant NOB genus. Among the AOB, the terminal restriction fragment length polymorphism (TRFLP) technique showed that during starvation and recovery periods, the relative frequency of species shifted to Nitrosomonas europaea/eutropha, regardless of the starvation condition. The consequences of these findings for the operation of SFBBRs under low-load and starvation conditions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5806990-gas-gasoline-plant-half-complete','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5806990-gas-gasoline-plant-half-complete"><span>Gas-to-gasoline plant half complete</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williams, B.</p> <p></p> <p>New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16899254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16899254"><span>Use of laterite for the removal of fluoride from contaminated drinking water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sarkar, Mitali; Banerjee, Aparna; Pramanick, Partha Pratim; Sarkar, Asit R</p> <p>2006-10-15</p> <p>The effects of different operational variables on the mechanistic function of laterite in removal of fluoride have been investigated. Thermodynamic parameters such as free energy change, enthalpy, and entropy of the process, as well as the sorption isotherm, were evaluated. The extent of solute removal is determined by initial solute concentration, operational conditions, laterite dose, and solution pH. For a fixed set of experimental conditions, a model equation is developed from which the percent removal corresponding to each load of fluoride is determined. The mechanism of fluoride adsorption is governed by the zero point charge of laterite and follows a first-order rate equation. pH has a vital role influencing the surface characteristics of laterite. To simulate the flow dynamics, fluoride solution was run through a fixed bed column. The pattern of breakthrough curves for different influent fluoride concentration, pH, and column bed height was characterized. The column efficiency was tested from the bed depth-service time model. The elution of the retained fluoride was studied and the effectiveness of column operation was determined by the retention-elution cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050199449','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050199449"><span>Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Motil, Brian J.; Balakotaiah, Vemuri</p> <p>2001-01-01</p> <p>The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MsT.........27B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MsT.........27B"><span>Design, scale-up, Six Sigma in processing different feedstocks in a fixed bed downdraft biomass gasifier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boravelli, Sai Chandra Teja</p> <p></p> <p>This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27899246','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27899246"><span>Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo</p> <p>2017-03-01</p> <p>The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5410579','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5410579"><span>Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin</p> <p>2017-01-01</p> <p>Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance. PMID:28507535</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22429719-thermal-enhancement-cartridge-heater-modified-tech-mod-tritium-hydride-bed-development-part-design-fabrication','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22429719-thermal-enhancement-cartridge-heater-modified-tech-mod-tritium-hydride-bed-development-part-design-fabrication"><span>Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Klein, J.E.; Estochen, E.G.</p> <p></p> <p>The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due tomore » tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1122546','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1122546"><span>THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Klein, J.; Estochen, E.</p> <p></p> <p>The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds requiremore » replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865044','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865044"><span>Coal gasification system with a modulated on/off control system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fasching, George E.</p> <p>1984-01-01</p> <p>A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25030705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25030705"><span>Effect of bed height and use of hands on trunk angular velocity during the sit-to-stand transfer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lindemann, Ulrich; van Oosten, Leon; Evers, Jordi; Becker, Clemens; van Dieen, Jaap H; van Lummel, Rob C</p> <p>2014-01-01</p> <p>The ability to rise from a chair or bed is critical to an individual's quality of life because it determines functional independence. This study was to investigate the effect of bed height and use of hands on trunk angular velocity and trunk angles during the sit-to-stand (STS) performance. Twenty-four older persons (median age 74 years) were equipped with a body-fixed gyroscopic sensor and stood up from a bed adjusted to different heights, with and without the use of hands at each height. Peak angular velocity and trunk range of motion decreased with increasing bed height (all p ≤ 0.038) and were lower using hands during STS transfer indicating less effort. In conclusion, gyroscopic sensor data of the STS transfer of older persons show differences as an effect of bed height and use of hands. These results provide the rationale for recommending a relatively high bed height for most of the older persons. To minimise the effort during sit-to-stand transfer performance from bed, it is necessary to understand the effect of bed height and use of hands. It is concluded that a relatively high bed height and the use of hands is helpful for most of the older persons during sit-to-stand transfer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015876','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015876"><span>Computational open-channel hydraulics for movable-bed problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lai, Chintu; ,</p> <p>1990-01-01</p> <p>As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18538334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18538334"><span>Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lv, Lu; Zhang, Yan; Wang, Kean; Ray, Ajay K; Zhao, X S</p> <p>2008-09-01</p> <p>On the basis of experimental breakthrough curves of lead ion adsorption on ETS-10 particles in a fixed-bed column, we simulated the breakthrough curves using the two-phase homogeneous diffusion model (TPHDM). Three important model parameters, namely the external mass-transfer coefficient (k(f)), effective intercrystal diffusivity (D(e)), and axial dispersion coefficient (D(L)), were optimally found to be 8.33x10(-5) m/s, 2.57x10(-10) m(2)/s, and 1.93x10(-10) m(2)/s, respectively. A good agreement was observed between the numerical simulation and the experimental results. Sensitivity analysis revealed that the value of D(e) dictates the model performance while the magnitude of k(f) primarily affects the initial breakthrough point of the breakthrough curves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=202993','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=202993"><span>Shifts in Methanogenic Subpopulations Measured with Antibody Probes in a Fixed-Bed Loop Anaerobic Bioreactor Treating Sulfite Evaporator Condensate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Macario, Alberto J. L.; de Macario, Everly Conway; Ney, Ulrich; Schoberth, Siegfried M.; Sahm, Hermann</p> <p>1989-01-01</p> <p>A fixed-bed loop, high-rate anaerobic bioreactor treating sulfite evaporator condensate was sampled when it reached steady state and afterwards following perturbations during a 14-month period. By using immunotechnology, it was observed that shifts in methanogenic subpopulations occurred in association with perturbations, such as restarting and relocating the biomass into a different tank. Methanogens related to Methanobacterium bryantii MoHG and Methanobrevibacter smithii ALI were numerous throughout the observation period, while Methanosarcina mazei S6 and Methanosarcina thermophila TM1 were found in the early and late samples, respectively. Also, Methanobacterium formicicum was more numerous at the top portion of the bioreactor, while Methanobrevibacter arboriphilus AZ and DC were at the bottom. Sample formalinization required for prolonged storage proved suitable for antigen preservation. Images PMID:16347990</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16347990','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16347990"><span>Shifts in methanogenic subpopulations measured with antibody probes in a fixed-bed loop anaerobic bioreactor treating sulfite evaporator condensate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Macario, A J; Conway de Macario, E; Ney, U; Schoberth, S M; Sahm, H</p> <p>1989-08-01</p> <p>A fixed-bed loop, high-rate anaerobic bioreactor treating sulfite evaporator condensate was sampled when it reached steady state and afterwards following perturbations during a 14-month period. By using immunotechnology, it was observed that shifts in methanogenic subpopulations occurred in association with perturbations, such as restarting and relocating the biomass into a different tank. Methanogens related to Methanobacterium bryantii MoHG and Methanobrevibacter smithii ALI were numerous throughout the observation period, while Methanosarcina mazei S6 and Methanosarcina thermophila TM1 were found in the early and late samples, respectively. Also, Methanobacterium formicicum was more numerous at the top portion of the bioreactor, while Methanobrevibacter arboriphilus AZ and DC were at the bottom. Sample formalinization required for prolonged storage proved suitable for antigen preservation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26050934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26050934"><span>Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán</p> <p>2015-09-01</p> <p>Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP33A1053L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP33A1053L"><span>Grain velocity of bedload movement in an armored non-uniform mobile bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, C.</p> <p>2015-12-01</p> <p>The velocity of bedload particles, which directly reflects the interaction between flow and sediment, is one of the important parameters to predict sediment transport rate, is also one of the fundamental problems for sediment transport. Many excellent works have been accomplished in this filed. However, the existing researches are mostly based on the artificial fixed bed, few moveable bed studies are focus on uniform sediment bed, these boundary conditions are different from a real river. In this research, an experiment on non-uniform sediment with an armored, moveable bed were carried out in a flume, the range of bed material is from 0.2mm to 20mm. With a special hanging glass and illumination system, the motion particles in the bed were clearly shoot on top of the flume by a video camera, avoiding the interference of waves at the flow surface. The speed of the camera is 50 frames per second. About 7000 unique coordinates of moving particles were determined from 3000 frames of successive pictures, the particle velocity of longitudinal and crosswise directions were obtained from the coordinates. The results show that, the probability density distribution of grain velocities of both directions are similar to that in the uniform sediment, which have an exponent decay trend, whereas the value of cross velocity of particles is clearly greater than that in the uniform sediment condition. Negative particle velocity was recognized in the experiment, it is shown that these negative may occur at two conditions, one is the backflow of fine particles behind the coarser particles, and the other is a state of movement change, such as a particle from static state to motion or vice versa. Furthermore, the particle movement was strongly affected by the arrangement of local coarse particles. The influence of coarser particles to the movement of fine particles also identified by two opposite effects, one is the acceleration effects in a 'tunnel' between pair of series particles, the other is the deceleration effects out of the tunnel, or fine particles captured by the backwater flow just behind a coarse particle. In addition, ensemble particle velocity in the armored bed is distinctly less than which in the fixed bed and uniform bed condition with same particle Reynolds number and Shields parameter. (Supported by(2012BAB04B01;NSFC(11472310))</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24680542','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24680542"><span>Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J</p> <p>2015-01-23</p> <p>Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025822','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025822"><span>Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, G. W.; Morris, P. M.</p> <p>1985-01-01</p> <p>The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043559','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043559"><span>Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maloney, Kelly O.; Lellis, William A.; Bennett, Randy M.; Waddle, Terry J.</p> <p>2012-01-01</p> <p>1. To manage the environmental flow requirements of sedentary taxa, such as mussels and aquatic insects with fixed retreats, we need a measure of habitat availability over a variety of flows (i.e. a measure of persistent habitat). Habitat suitability measures in current environmental flow assessments are measured on a ‘flow by flow’ basis and thus are not appropriate for these taxa. Here, we present a novel measure of persistent habitat suitability for the dwarf wedgemussel (Alasmidonta heterodon), listed as federally endangered in the U.S.A., in three reaches of the Delaware River. 2. We used a two-dimensional hydrodynamic model to quantify suitable habitat over a range of flows based on modelled depth, velocity, Froude number, shear velocity and shear stress at three scales (individual mussel, mussel bed and reach). Baseline potentially persistent habitat was quantified as the sum of pixels that met all thresholds identified for these variables for flows ≥40 m3 s−1, and we calculated the loss of persistently suitable habitat by sequentially summing suitable habitat estimates at lower flows. We estimated the proportion of mussel beds exposed at each flow and the amount of change in the size of the mussel bed for one reach. 3. For two reaches, mussel beds occupied areas with lower velocity, shear velocity, shear stress and Froude number than the reach average at all flows. In the third reach, this was true only at higher flows. Together, these results indicate that beds were possible refuge areas from the effects of these hydrological parameters. Two reaches showed an increase in the amount of exposed mussel beds with decreasing flow. 4. Baseline potentially persistent habitat was less than half the areal extent of potentially suitable habitat, and it decreased with decreasing flow. Actually identified beds and modelled persistent habitat showed good spatial overlap, but identified beds occupied only a portion of the total modelled persistent habitat, indicating either that additional suitable habitat is available or the need to improve habitat criteria. At one site, persistent beds (beds where mussels were routinely collected) were located at sites with stable substratum, whereas marginal beds (beds where mussels were infrequently collected or that were lost following a large flood event) were located in scoured areas. 5. Taken together, these model results support a multifaceted approach, which incorporates the effects of low and high flow stressors, to quantify habitat suitability for mussels and other sedentary taxa. Models of persistent habitat can provide a more holistic environmental flow assessment of rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9501433','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9501433"><span>Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H</p> <p>1998-03-01</p> <p>This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=106348','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=106348"><span>Bacterial Community Dynamics during Start-Up of a Trickle-Bed Bioreactor Degrading Aromatic Compounds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stoffels, Marion; Amann, Rudolf; Ludwig, Wolfgang; Hekmat, Dariusch; Schleifer, Karl-Heinz</p> <p>1998-01-01</p> <p>This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor. PMID:9501433</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002608','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002608"><span>Additional Developments in Atmosphere Revitalization Modeling and Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.</p> <p>2013-01-01</p> <p>NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18513938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18513938"><span>Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim</p> <p>2008-11-01</p> <p>Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28696313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28696313"><span>Behavioral self-organization underlies the resilience of a coastal ecosystem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan</p> <p>2017-07-25</p> <p>Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5544259','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5544259"><span>Behavioral self-organization underlies the resilience of a coastal ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.</p> <p>2017-01-01</p> <p>Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5670737','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5670737"><span>Loneliness mediates the relationship between emotion dysregulation and bulimia nervosa/binge eating disorder psychopathology in a clinical sample</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Christensen, Kara A.; Fettich, Karla C.; Weissman, Jessica; Berona, Johnny; Chen, Eunice Y.</p> <p>2017-01-01</p> <p>Emotion dysregulation has been linked to binge eating disorder (BED) and bulimia nervosa (BN) although the mechanisms by which it affects BN/BED psychopathology are unclear. This study tested loneliness as a mediator between emotion dysregulation and BN/BED psychopathology. A treatment-seeking sample of 107 women with BN or BED was assessed for loneliness (UCLA Loneliness Scale), emotion dysregulation (Difficulties in Emotion Regulation Scale), and BN/BED psychopathology (Eating Disorder Examination) before treatment. Hierarchical linear regressions and bootstrapping mediation models were run. Greater overall emotion dysregulation was associated with greater BN/BED psychopathology, mediated by loneliness (95 % CI 0.03, 0.09). Emotion dysregulation, however, did not mediate between loneliness and BN/BED psychopathology (95 % CI −0.01, 0.01). Targeting loneliness may effectively treat emotional aspects of BN/BED in women. PMID:24235091</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMEP13A0828M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMEP13A0828M"><span>Using DoD Maps to Examine the Influence of Large Wood on Channel Morphodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacKenzie, L. C.; Eaton, B. C.</p> <p>2012-12-01</p> <p>Since the advent of logging and slash burning, many streams in British Columbia have experienced changes to the amount of large wood added to or removed from these systems, which has, in turn, influenced the storage and movement of sediment within these channels. This set of flume experiments examines and quantifies the impacts of large wood on the reach-scale morphodynamics. Understanding the relation between the wood load and channel morphodynamics is important when assessing the quality of the aquatic habitat of a stream. The experiments were conducted using a fixed-bank, mobile bed Froude-scaled physical model of Fishtrap Creek, British Columbia, built in a shallow flume that is 1.5 m wide and 11 m long. The stream table was run without wood until it reached equilibrium at which point wood pieces of varying sizes were added to the channel. The bed morphology was surveyed using a laser profiling system at five-hour intervals. The laser profiles were then interpolated to create digital elevation models (DEM) from which DEM of difference (DoD) maps were produced. Analysis of the DoD maps focused on quantifying and locating differences in the distribution of sediment storage, erosion, and deposition between the runs as well as those induced by the addition of large wood into the stream channel. We then assessed the typical influence of individual pieces and of jams on pool frequency, size and distribution along the channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6078970-freeboard-reactions-fluidized-coal-combustion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6078970-freeboard-reactions-fluidized-coal-combustion"><span>Freeboard reactions in fluidized coal combustion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walsh, P.M.; Dutta, A.; Beer, J.M.</p> <p>1984-05-11</p> <p>The objective of this study was to determine the contribution of freeboard combustion to overall fixed carbon conversion during atmospheric pressure fluidized bed combustion of Kentucky No. 9 high volatile bituminous coal. The progress of the O/sub 2//char reaction in the freeboard was inferred from O/sub 2/ profiles determined by gas sampling. The rates of O/sub 2/ consumption were in good agreement with the O/sub 2//char rate expression of Sergeant and Smith (1973), except at the lowest temperature investigated (964 K). The discrepancy in this case might be due to catalysis of the O/sub 2//char reaction by lime, since thismore » was the first run of the series. Extrapolation of the O/sub 2/ profile to the bed surface using the rate expression of Sergeant and Smith showed that approximately all of the fixed carbon conversion could be accounted for by freeboard combustion. A simple model is proposed in which devolatilization, fragmentation, attrition, and volatile combustion are limited to the bed; with combustion of the finely ground char occurring only in the freeboard. This model predicts O/sub 2/ at the combustor outlet within 60% of the measured values, except in the low temperature/high lime case.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2887042','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2887042"><span>Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.</p> <p>2010-01-01</p> <p>Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29306712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29306712"><span>Neural fuzzy modelization of copper removal from water by biosorption in fixed-bed columns using olive stone and pinion shell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Calero, M; Iáñez-Rodríguez, I; Pérez, A; Martín-Lara, M A; Blázquez, G</p> <p>2018-03-01</p> <p>Continuous copper biosorption in fixed-bed column by olive stone and pinion shell was studied. The effect of three operational parameters was analyzed: feed flow rate (2-6 ml/min), inlet copper concentration (40-100 mg/L) and bed-height (4.4-13.4 cm). Artificial Neural-Fuzzy Inference System (ANFIS) was used in order to optimize the percentage of copper removal and the retention capacity in the column. The highest percentage of copper retained was achieved at 2 ml/min, 40 mg/L and 4.4 cm. However, the optimum biosorption capacity was obtained at 6 ml/min, 100 mg/L and 13.4 cm. Finally, breakthrough curves were simulated with mathematical traditional models and ANFIS model. The calculated results obtained with each model were compared with experimental data. The best results were given by ANFIS modelling that predicted copper biosorption with high accuracy. Breakthrough curves surfaces, which enable the visualization of the behavior of the system in different process conditions, were represented. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AdWR...33..291C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AdWR...33..291C"><span>Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.</p> <p>2010-03-01</p> <p>In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1944b0075M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1944b0075M"><span>Competitive adsorption between benzene and ethylene dichloride on activated carbon: The importance of concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miao, T.; Tang, H. M.; Cheng, Z. X.</p> <p>2018-03-01</p> <p>In this work we studied breakthroughs of binary mixtures of benzene and ethylene dichloride on fixed activated carbons bed. The results show a series of assault concentrations on activated carbon bed influences the nature of the adsorption competition mechanism. Assault concentration were used to determine how competition of compound distribution. The results are discussed in terms of competing energetic and the underlying molecular mechanisms. The ratio of assault concentrations is main reason for determining selectivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1031564','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1031564"><span>Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments. Phase 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-08-01</p> <p>boundary layer and xPE is the PE thickness (cm). For passive samplers deployed in the sediment bed , the HOC uptake kinetics is also a function of...in sediment beds using performance reference compounds (PRCs) (Adams, Lohmann et al. 2007, Tomaszewski and Luthy 2008, Fernandez, MacFarlane et al...version program was tested for user-friendliness as well as performance. Any reported bugs were fixed, and suggestions on the user-friendliness were</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5084015','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5084015"><span>Quarterly technical progress report, April-June 1982</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p>1984-04-01</p> <p>Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/113878','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/113878"><span>Technology development for cobalt F-T catalysts. Quarterly technical progress report number 10, January 1--March 31, 1995</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Singleton, A.H.</p> <p>1995-06-28</p> <p>The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712873N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712873N"><span>Bed particle entrainment and motion in turbulent open-channel flows: a high-resolution experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nikora, Vladimir; Cameron, Stuart; Amir, Mohammad; Stewart, Mark; Witz, Matthew</p> <p>2015-04-01</p> <p>In spite of significant efforts of geoscientists and engineers, the exact mechanics of sediment entrainment and transport by turbulent flows remains unclear and continues to be the focus of many research groups worldwide. The talk outlines current developments in this direction at the University of Aberdeen, where an extensive experimental programme has recently been completed. The experiments were conducted in the Aberdeen Open Channel Facility (AOCF, 20 m long, 1.18 m wide) over wide ranges of flow submergence (1.9-8.0), bulk Reynolds number (4400-83000), and channel aspect ratio (9-39). The flume bed was covered by hexagonally-packed glass beads 16 mm in diameter. For entrainment experiments, selected glass particles were replaced with lighter particles (nylon and delrin). Instantaneous velocity fields before, during, and after entrainment were measured with an advanced multi-mode Particle Image Velocimetry (PIV) system developed by S. Cameron. This system was also used for 3D particle tracking in the entrainment experiments. The main types of experiments included: (1) multi-mode turbulence measurements with fixed-bed conditions to assess the background flow structure (10 min to 120 min duration of velocity records); (2) simultaneous measurements of fluctuating differential pressure acting on 23 fixed particles with in-built pressure sensors, synchronously with PIV; (3) measurements of waiting times for particle entrainment, employing a specially designed system (SMC-1) for automatic placement of the particles on the bed and subsequent measurement of the time before entrainment; (4) long-term direct measurements of the instantaneous drag force acting on a single particle (attached to the bed) at different protrusions, synchronously with PIV; and (5) synchronous measurements of the flow field around a particle before, at, and during entrainment, supplemented with 3D particle tracking. The key results include: (1) the refined turbulence structure of a rough-bed open-channel flow assessed with multiple-order bulk velocity statistics, spectra, correlations, and structure functions; (2) identification and quantification of coherent motions, with particular focus on 'superstructures' (or 'very large scale motions' up to 40 flow depths in length); (3) assessment of secondary current effects on the flow structure; (4) statistical characteristics of fluctuating pressure acting on multiple bed particles, including spatial pressure correlations and their relations to the coherent structures; (5) estimates and statistical tests of waiting time distributions; (6) statistics of particle trajectories with particular focus on the initial stages of motion; and (7) identification of typical flow features accompanying particle entrainment. Among other findings, it has been shown, for the first time, that particle entrainment is likely to be associated with interactions between flow superstructures. The 'collisions' of superstructures, 'meandering' across the flow, generate regions of a particular velocity pattern leading to the particle entrainment. This study was supported by an EPSRC (UK) Grant EP/G056404/1, which was directly linked to DFG (Germany) Grants FR 1593/5-1/2, focus of which was on direct numerical simulations of mobile-bed flows. The authors are grateful to M. Uhlmann and C. Chan-Braun (Karlsruhe Institute of Technology) and J. Frohlich and B. Vowinckel (Dresden Technical University) for their useful suggestions and insightful discussions throughout the course of this project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12368603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12368603"><span>Biophysics of cochlear implant/MRI interactions emphasizing bone biomechanical properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sonnenburg, Robert E; Wackym, Phillip A; Yoganandan, Narayan; Firszt, Jill B; Prost, Robert W; Pintar, Frank A</p> <p>2002-10-01</p> <p>The forces exerted during a 1.5-Tesla MRI evaluation on the internal magnet of a cochlear implant (CI) raise concern about the safety for CI recipients. This study determines the magnitude of force required to fracture the floor of a CI receiver bed. Recessed CI beds were drilled to maximum uniform thinness into formalin-fixed and fresh-frozen human calvaria specimens. A Med-El stainless steel CI template mounted to the piston of an electrohydraulic testing device was used to fracture the floor of the implant beds. Force and displacement were measured as a function of time using a digital data acquisition system. Mean force to first failure, displacement to first failure, and minimum thickness, respectively, were: group 1 (formalin-fixed, 0.3-0.4-mm thick [n = 22]), 34.08 N (8.21-59.64 N, standard deviation [SD] 15.41 N), 1.09 mm (0.40-2.16 mm, SD 0.51 mm), 0.36 mm (0.3-0.4 mm, SD 0.05 mm); group 2 (formalin-fixed, 0.5-0.9 mm thick [n = 21]), 52.82 N (20.28-135.53 N, SD 25.29 N), 1.08 mm (0.50-2.28 mm, SD 0.47 mm), 0.58 mm (0.5-0.9 mm, SD 0.12 mm); group 3 (fresh-frozen [n = 9]), 134.13 N (86.44-190.70 N, SD 34.92 N), 1.96 mm (1.47-2.46 mm, SD 0.35 mm), 0.42 mm (0.3-0.6 mm, SD 0.11 mm). The mean magnitude of force required to fracture the floor of a CI bed is significantly greater than those that are generated when a Med-El Combi 40+, CII Bionic Ear CI, or Nucleus Contour CI is placed into a 1.5-Tesla MRI unit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22661401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22661401"><span>Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ibrahim, Wael M; Mutawie, Hawazin H</p> <p>2013-02-01</p> <p>Three different species of nonliving red algal biomass Laurancia obtusa, Geldiella acerosa and Hypnea sp. were used to build three types of fixed-bed column for the removal of toxic heavy metal ions such as Cu(2+), Zn(2+), Mn(2+) and Ni(2+) from industrial effluent. In general, the highest efficiency of metal ion bioremoval was recorded for algal column of L. obtusa followed by G. acerosa and the lowest one was recorded for Hypnea sp., with mean removal values of 94%, 85% and 71%, respectively. The obtained results showed that biological treatments of industrial effluents with these algal columns, using standard algal biotest, Pseudokirchneriella subcapitata, were capable of reducing effluent toxicities from 75% to 15%, respectively. Red algal column may be considered as an inexpensive and efficient alternative treatment for conventional removal technology, for sequestering heavy metal ions from industrial effluents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308420-biomass-gasification-liquid-fuel-production','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308420-biomass-gasification-liquid-fuel-production"><span>Biomass gasification for liquid fuel production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Vantuch, Martin</p> <p>2014-08-06</p> <p>In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification willmore » have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1608...71N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1608...71N"><span>Biomass gasification for liquid fuel production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Najser, Jan; Peer, Václav; Vantuch, Martin</p> <p>2014-08-01</p> <p>In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28704771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28704771"><span>Predicting the propagation of concentration and saturation fronts in fixed-bed filters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Callery, O; Healy, M G</p> <p>2017-10-15</p> <p>The phenomenon of adsorption is widely exploited across a range of industries to remove contaminants from gases and liquids. Much recent research has focused on identifying low-cost adsorbents which have the potential to be used as alternatives to expensive industry standards like activated carbons. Evaluating these emerging adsorbents entails a considerable amount of labor intensive and costly testing and analysis. This study proposes a simple, low-cost method to rapidly assess the potential of novel media for potential use in large-scale adsorption filters. The filter media investigated in this study were low-cost adsorbents which have been found to be capable of removing dissolved phosphorus from solution, namely: i) aluminum drinking water treatment residual, and ii) crushed concrete. Data collected from multiple small-scale column tests was used to construct a model capable of describing and predicting the progression of adsorbent saturation and the associated effluent concentration breakthrough curves. This model was used to predict the performance of long-term, large-scale filter columns packed with the same media. The approach proved highly successful, and just 24-36 h of experimental data from the small-scale column experiments were found to provide sufficient information to predict the performance of the large-scale filters for up to three months. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5017/pdf/sir2008-5017.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5017/pdf/sir2008-5017.pdf"><span>Potential for bed-material entrainment in selected streams of the Edwards Plateau - Edwards, Kimble, and Real Counties, Texas, and vicinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Heitmuller, Franklin T.; Asquith, William H.</p> <p>2008-01-01</p> <p>The Texas Department of Transportation spends considerable money for maintenance and replacement of low-water crossings of streams in the Edwards Plateau in Central Texas as a result of damages caused in part by the transport of cobble- and gravel-sized bed material. An investigation of the problem at low-water crossings was made by the U.S. Geological Survey in cooperation with the Texas Department of Transportation, and in collaboration with Texas Tech University, Lamar University, and the University of Houston. The bed-material entrainment problem for low-water crossings occurs at two spatial scales - watershed scale and channel-reach scale. First, the relative abundance and activity of cobble- and gravel-sized bed material along a given channel reach becomes greater with increasingly steeper watershed slopes. Second, the stresses required to mobilize bed material at a location can be attributed to reach-scale hydraulic factors, including channel geometry and particle size. The frequency of entrainment generally increases with downstream distance, as a result of decreasing particle size and increased flood magnitudes. An average of 1 year occurs between flows that initially entrain bed material as large as the median particle size, and an average of 1.5 years occurs between flows that completely entrain bed material as large as the median particle size. The Froude numbers associated with initial and complete entrainment of bed material up to the median particle size approximately are 0.40 and 0.45, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865043','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865043"><span>Ash bed level control system for a fixed-bed coal gasifier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fasching, George E.; Rotunda, John R.</p> <p>1984-01-01</p> <p>An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616684','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616684"><span>Wireless Authentication Protocol Implementation: Descriptions of a Zero-Knowledge Proof (ZKP) Protocol Implementation for Testing on Ground and Airborne Mobile Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-01-01</p> <p>on AFRL’s small unmanned aerial vehicle (UAV) test bed . 15. SUBJECT TERMS Zero-Knowledge Proof Protocol Testing 16. SECURITY CLASSIFICATION OF...VERIFIER*** edition Version Information: Version 1.1.3 Version Details: Successful ZK authentication between two networked machines. Fixed a bug ...that causes intermittent bignum errors. Fixed a network hang bug and now allows continually authentication at the Verifier. Also now removing</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PCE...105..184L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PCE...105..184L"><span>Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Letina, D.; Letshwenyo, W. M.</p> <p>2018-06-01</p> <p>Wastewater from the mining industry is a concern because most of the time it contains heavy metals with concentrations above permissible levels, posing a threat to terrestrial and aquatic life. The study was conducted to evaluate the effectiveness of locally available waste materials (waste rock, tailings, coal ash clinker, and slag) generated by BCL (Ltd) mine, a copper and nickel mining and smelting company in Botswana, for removal of nickel and copper from the real mining wastewater. Batch adsorption studies were conducted to establish the adsorptive efficiency and kinetics of each media with respect to nickel and copper ions. The best media was further evaluated through fixed bed column studies at 24 and 48 h empty bed contact time. The results indicate that the percentage removal for coal ash clinker, waste rock, smelter slag and tailings was 98%, 15%, 3% and -3% with respect to copper ions, and 46%, 9%, 7% and 2% with respect to nickel ions for each media respectively. Coal ash clinker followed pseudo first order kinetic model and Langmuir isotherm model with respect to nickel ions indicating the dominance of physisorption and mono layer coverage respectively. The Langmuir separation factor (RL) was 0.37 suggesting favourable adsorption onto the media. Fixed bed column studies revealed that copper was completely retained in the bed at both 24 and 48 h contact times. In the case of nickel, removal efficiency ranged between 83% and 99% when contact time was 48 h and between 68% and 99% when the contact time was reduced to 24 h. Breakthrough was not reached after 19 bed volumes. It can be concluded that coal ash clinker is a better candidate for the removal of copper and nickel ions from mining wastewater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.2063A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.2063A"><span>Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.</p> <p>2017-07-01</p> <p>This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27132491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27132491"><span>Large pterygium surgery: When coverage of the scleral bed justifies graft rotation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gargallo-Benedicto, A; Hernández Pérez, D; Olate-Pérez, Á; Betancur-Delgado, E; Cerdà-Ibáñez, M; Duch-Samper, A</p> <p>2016-10-01</p> <p>To perform a 12 month follow-up study to assess the safety and effectiveness of resection and conjunctival autograft fixed with Tissucol® in selected cases of large pterygium. The orientation of the graft was adapted to the morphology of the scleral bed for a better coverage free of traction, with limbal position being lost. A prospective, non-comparative study of 10 cases of grade II or superior pterygium (7 primary, 3 recurrent) with at least 8mm of limbal extension. A wide scleral bed was obtained after pterygium and Tenon resection, with larger grafts being required to cover the defects. A superior conjunctival autograft was harvested and fixed to bare sclera using Tissucol. The orientation was adapted to the morphology of the scleral bed and limbal position was lost. Patients were periodically assessed for recurrence and complications for a period of 12 months. Minor complications occurred in 4 eyes. In one case a buttonhole was formed during dissection of the graft. Two presented with small limbal dehiscence, but epithelialisation was completed in the first week. In a third case, it was necessary to increase topical corticosteroids for pyogenic granuloma on the donor site, with secondary increased intraocular pressure (IOP). There were no recurrences after 12 months follow-up. A conjunctival graft of appropriate size adapted to the morphology of the scleral bed to ensure good coverage free of tension, provides good surgical results in selected cases of pterygium, regardless of the conservation the limbal orientation, with no recurrences after one year follow-up. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1851b0029K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1851b0029K"><span>Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karim, Md. Rezwanul; Naser, Jamal</p> <p>2017-06-01</p> <p>Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20000912-gas-purification-dense-phase-cats-terminal','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20000912-gas-purification-dense-phase-cats-terminal"><span>Gas purification in the dense phase at the CATS terminal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Openshaw, P.J.; Carnell, P.J.H.; Rhodes, E.F.</p> <p></p> <p>The purification and transportation of natural gas at very high pressures can help to minimize the capital cost of pipelines and processing equipment. However, complex mixtures of hydrocarbons undergo unusual phase changes, such as retrograde condensation, as the temperature and pressure are altered. The Central Area Transmission System (CATS) is a joint venture of Amoci, BG, Amerada Hess, Phillips, Agip and Fina operated by Amoco on behalf of the owners. The design of the CATS terminal has provided an interesting processing challenge. The terminal receives a total of 1.6 Bscf/d of rich gas from a number of offshore fields. Allmore » are relatively sweet but the small amounts of H{sub 2}S and Hg are removed. Fixed bed technology was selected as the most economic purification process, while minimizing hydrocarbon loss and operator involvement. Conventionally, the raw gas would be split into the different hydrocarbon fractions and each would be processed separately. This would require the installation of a large number of reactors. A more elegant solution is to treat the gas on arrival at the terminal in the dense phase. This option raised questions around whether a fixed bed would be prone to fouling, could the pressure drop be kept low enough to avoid phase separation and would inadvertent wetting by condensation cause problems. Details are given of the test work carried out to prove the viability of using fixed bed technology for dense phase gas processing, the eventual design adopted and the performance over the first year of service.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29721492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29721492"><span>Carbon Cloth Supported Nano-Mg(OH)2 for the Enrichment and Recovery of Rare Earth Element Eu(III) From Aqueous Solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang</p> <p>2018-01-01</p> <p>Nano-Mg(OH) 2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH) 2 (nano-Mg(OH) 2 @CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH) 2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH) 2 @CC composite maintained the excellent adsorption performance of nano-Mg(OH) 2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu 2 O 3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH) 2 @CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH) 2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH) 2 @CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrCh....6..118L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrCh....6..118L"><span>Carbon Cloth Supported Nano-Mg(OH)2 for the Enrichment and Recovery of Rare Earth Element Eu(III) from Aqueous Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang</p> <p>2018-04-01</p> <p>Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5915470','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5915470"><span>Carbon Cloth Supported Nano-Mg(OH)2 for the Enrichment and Recovery of Rare Earth Element Eu(III) From Aqueous Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang</p> <p>2018-01-01</p> <p>Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater. PMID:29721492</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1082940','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1082940"><span>Method and apparatus for animal positioning in imaging systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.</p> <p></p> <p>An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support themore » animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511033O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511033O"><span>The influence of sediment transport rate on the development of structure in gravel bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo</p> <p>2013-04-01</p> <p>Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ms0176.photos.094051p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ms0176.photos.094051p/"><span>10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11693290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11693290"><span>Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nwankwoala, A U; Egiebor, N O; Nyavor, K</p> <p>2001-01-01</p> <p>The aerobic biodegradation of National Aeronautics and Space Administration (NASA) wastewater that contains mixtures of highly concentrated methylhydrazine/hydrazine, citric acid and their reaction product was studied on a laboratory-scale fixed film trickle-bed reactor. The degrading organisms, Achromobacter sp., Rhodococcus B30 and Rhodococcus J10, were immobilized on coarse sand grains used as support-media in the columns. Under continuous flow operation, Rhodococcus sp. degraded the methylhydrazine content of the wastewater from a concentration of 10 to 2.5 mg/mL within 12 days and the hydrazine from approximately 0.8 to 0.1 mg/mL in 7 days. The Achromobacter sp. was equally efficient in degrading the organics present in the wastewater, reducing the concentration of the methylhydrazine from 10 to approximately 5 mg/mL within 12 days and that of the hydrazine from approximately 0.8 to 0.2 mg/mL in 7 days. The pseudo first-order rate constants of 0.137 day(-1) and 0.232 day(-1) were obtained for the removal of methylhydrazine and hydrazine, respectively, in wastewater in the reactor column. In the batch cultures, rate constants for the degradation were 0.046 and 0.079 day(-1) for methylhydrazine and hydrazine respectively. These results demonstrate that the continuous flow bioreactor afford greater degradation efficiencies than those obtained when the wastewater was incubated with the microbes in growth-limited batch experiments. They also show that wastewater containing hydrazine is more amenable to microbial degradation than one that is predominant in methylhydrazine, in spite of the longer lag period observed for hydrazine containing wastewater. The influence of substrate concentration and recycle rate on the degradation efficiency is reported. The major advantages of the trickle-bed reactor over the batch system include very high substrate volumetric rate of turnover, higher rates of degradation and tolerance of the 100% concentrated NASA wastewater. The results of the present laboratory scale study will be of great importance in the design and operation of an industrial immobilized biofilm reactor for the treatment of methylhydrazine and hydrazine contaminated NASA wastewater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4687640','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4687640"><span>Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.</p> <p>2015-01-01</p> <p>Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26660475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26660475"><span>Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R</p> <p>2015-01-01</p> <p>Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28759449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28759449"><span>Adsorption of Hg(II) and Pb(II) ions by nanoscale zero valent iron supported on ostrich bone ash in a fixed-bed column system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amiri, Mohammad Javad; Abedi-Koupai, Jahangir; Eslamian, Saeid</p> <p>2017-07-01</p> <p>In this research, ostrich bone ash (OBA) was modified with nanoscale zerovalent iron (nZVI) particles and applied as a novel composite adsorbent (OBA/nZVI) for dynamic adsorption/reduction of Hg(II) and Pb(II) ions in a fixed-bed column system. Entrapment of nZVI in OBA beads barricades the particles from oxidation and aggregation. The dynamic behavior of metal ions removal by OBA/nZVI was assessed as a function of inlet flow rates, bed height, initial pollutants concentration and pH. The synthesized OBA/nZVI composite was characterized by several physicochemical techniques. Increase in pH and bed height and decrease in flow rates and initial metal concentration resulted in delay of breakthrough time. OBA breakthrough profile is sharper than the OBA/nZVI breakthrough curve for both metal ions and the breakthrough times increase in the order OBA/nZVI-Hg(II) > OBA/nZVI-Pb(II) > OBA-Pb(II) > OBA-Hg(II). Based on the experiment results, redox reaction is expected to occur to a certain extent, as the standard reduction potentials of Hg(II) and Pb(II) are more than that of Fe(II). From a practical point of view, the OBA/nZVI could be applied as a material to remove Hg(II) and Pb(II) ions from natural surface and ground water with a pH value of 5-9.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031114','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031114"><span>Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gaeuman, D.; Jacobson, R.B.</p> <p>2007-01-01</p> <p>Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3029851','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3029851"><span>Medicaid Bed-Hold Policy and Medicare Skilled Nursing Facility Rehospitalizations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grabowski, David C; Feng, Zhanlian; Intrator, Orna; Mor, Vincent</p> <p>2010-01-01</p> <p>Objective To analyze the effect of states' Medicaid bed-hold policies on the 30-day rehospitalization of Medicare postacute skilled nursing facility (SNF) residents. Data Sources Minimum data set assessments were merged with Medicare claims and eligibility files for all first-time SNF admissions (N = 3,322,088) over the period 2000 through 2005; states' Medicaid bed-hold policies were obtained via survey. Study Design Regression specification incorporating facility fixed effects to examine changes in Medicaid bed-hold policies on the likelihood of a 30-day SNF rehospitalization. Principal Findings Using a continuous measure of bed-hold generosity, state Medicaid bed-hold was positively related to Medicare SNF rehospitalization. Specifically, the introduction of a bed-hold policy with average generosity increases Medicare rehospitalizations by 1.8 percent, representing roughly 12,000 SNF rehospitalizations at a cost to Medicare of approximately U.S.$100 million over our study period. Conclusions Although facilities do not receive a Medicaid bed-hold payment for Medicare SNF stays, we found that the adoption of more generous policies led to greater SNF rehospitalizations. This type of spillover is largely ignored in current discussions of Medicare payment reforms such as bundled payment. Neither Medicare nor Medicaid has an incentive to internalize the risks and benefits of its actions as they affect the other. PMID:20403059</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1376...45C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1376...45C"><span>Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Z. X.; Pender, G.; Hu, P.</p> <p>2011-09-01</p> <p>Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19969323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19969323"><span>Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M</p> <p>2010-02-01</p> <p>Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.9259B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.9259B"><span>Experimental simulation of gravity currents in erodible bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bateman, A.; La Roca, M.; Medina, V.</p> <p>2009-04-01</p> <p>Gravity currents are commonly met in nature, when a flow of denser fluid moves into a less dense one. A typical example of a gravity current is given by the sea water which flows into the bottom of a river during the summer, in correspondence of the estuary, when the river's discharge attains low values. In this case, dangerous consequences can occur, because of the polluting of the aquifer caused by the salty water. Density currents also occurs in lakes and reservoirs, because of a change in temperature or because a flood, both can produce some environmental impacts that are of interest to the local water Agency of the different countries. Of particular relevance is also the interaction of the gravity current with the movement of the sediments from the bottom of the bed. The international state of the art is particularly concerned with experimental and numerical investigation on gravity currents on fixed and porous bed [1-2-3], while, to the authors' knowledge, the interaction of a gravity current with an erodible bed is still an open field of investigation. In this paper experiments concerning with the propagation of a gravity current over fixed and erodible bed are presented. The experiments, conducted at the laboratory of Hydraulics of the Universitat Politecnica de Catalunya (actually in the Prof. Bateman's blue room), were concerned with a transparent tank 2 m long, 0.2 m wide and 0.3 m deep, partly filled with salty water and partly with fresh water, up to a depth of 0.28 m. The salty water, whose density was in the range 1050<r<1150 kgm-3, was separated by the fresh water by a gate. After the sudden removal of the gate, the formation of gravity current occurred. The experiments were repeated both with fixed and erodible bed. In this latter case a homogeneous sand (d50=0.3 mm) was used. The results, concerned with the visualisation of the flow and the measurement of the wave front velocity, were obtained. Also the size and the frequency of the new vortices were measured using the characteristic plane. [1] L.P.Thomas, B.M. Marino, P.F. Linden, Lock-release inertial gravity currents over a thick porous layer, The Journal of Fluid Mechanics, Vol. 503, 2004 [2] John E. Simpson. Gravity Currents [3] J.J. Monaghan, R.A.F. Cas, A.M. Kos, M. Hallworth, Gravity currents descending a ramp in a stratified tank, The Journal of Fluid Mechanics, Vol. 379, 1999</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174048','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174048"><span>Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lorah, Michelle M.; Walker, Charles; Graves, Duane</p> <p>2015-01-01</p> <p>Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29158967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29158967"><span>Bed site selection by a subordinate predator: an example with the cougar (Puma concolor) in the Greater Yellowstone Ecosystem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kusler, Anna; Elbroch, L Mark; Quigley, Howard; Grigione, Melissa</p> <p>2017-01-01</p> <p>As technology has improved, our ability to study cryptic animal behavior has increased. Bed site selection is one such example. Among prey species, bed site selection provides thermoregulatory benefits and mitigates predation risk, and may directly influence survival. We conducted research to test whether a subordinate carnivore also selected beds with similar characteristics in an ecosystem supporting a multi-species guild of competing predators. We employed a model comparison approach in which we tested whether cougar ( Puma concolor ) bed site attributes supported the thermoregulatory versus the predator avoidance hypotheses, or exhibited characteristics supporting both hypotheses. Between 2012-2016, we investigated 599 cougar bed sites in the Greater Yellowstone Ecosystem and examined attributes at two scales: the landscape (second-order, n  = 599) and the microsite (fourth order, n  = 140). At the landscape scale, cougars selected bed sites in winter that supported both the thermoregulatory and predator avoidance hypotheses: bed sites were on steeper slopes but at lower elevations, closer to the forest edge, away from sagebrush and meadow habitat types, and on southern, eastern, and western-facing slopes. In the summer, bed attributes supported the predator avoidance hypothesis over the thermoregulation hypothesis: beds were closer to forest edges, away from sagebrush and meadow habitat classes, and on steeper slopes. At the microsite scale, cougar bed attributes in both the winter and summer supported both the predator avoidance and thermoregulatory hypotheses: they selected bed sites with high canopy cover, high vegetative concealment, and in a rugged habitat class characterized by cliff bands and talus fields. We found that just like prey species, a subordinate predator selected bed sites that facilitated both thermoregulatory and anti-predator functions. In conclusion, we believe that measuring bed site attributes may provide a novel means of measuring the use of refugia by subordinate predators, and ultimately provide new insights into the habitat requirements and energetics of subordinate carnivores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRF..118.1400G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRF..118.1400G"><span>Discrimination of bed form scales using robust spline filters and wavelet transforms: Methods and application to synthetic signals and bed forms of the Río Paraná, Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutierrez, Ronald R.; Abad, Jorge D.; Parsons, Daniel R.; Best, James L.</p> <p>2013-09-01</p> <p>There is no standard nomenclature and procedure to systematically identify the scale and magnitude of bed forms such as bars, dunes, and ripples that are commonly present in many sedimentary environments. This paper proposes a standardization of the nomenclature and symbolic representation of bed forms and details the combined application of robust spline filters and continuous wavelet transforms to discriminate these morphodynamic features, allowing the quantitative recognition of bed form hierarchies. Herein the proposed methodology for bed form discrimination is first applied to synthetic bed form profiles, which are sampled at a Nyquist ratio interval of 2.5-50 and a signal-to-noise ratio interval of 1-20 and subsequently applied to a detailed 3-D bed topography from the Río Paraná, Argentina, which exhibits large-scale dunes with superimposed, smaller bed forms. After discriminating the synthetic bed form signals into three-bed form hierarchies that represent bars, dunes, and ripples, the accuracy of the methodology is quantified by estimating the reproducibility, the cross correlation, and the standard deviation ratio of the actual and retrieved signals. For the case of the field measurements, the proposed method is used to discriminate small and large dunes and subsequently obtain and statistically analyze the common morphological descriptors such as wavelength, slope, and amplitude of both stoss and lee sides of these different size bed forms. Analysis of the synthetic signals demonstrates that the Morlet wavelet function is the most efficient in retrieving smaller periodicities such as ripples and smaller dunes and that the proposed methodology effectively discriminates waves of different periods for Nyquist ratios higher than 25 and signal-to-noise ratios higher than 5. The analysis of bed forms in the Río Paraná reveals that, in most cases, a Gamma probability distribution, with a positive skewness, best describes the dimensionless wavelength and amplitude for both the lee and stoss sides of large dunes. For the case of smaller superimposed dunes, the dimensionless wavelength shows a discrete behavior that is governed by the sampling frequency of the data, and the dimensionless amplitude better fits the Gamma probability distribution, again with a positive skewness. This paper thus provides a robust methodology for systematically identifying the scales and magnitudes of bed forms in a range of environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..442P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..442P"><span>Multi-scale fracture networks within layered shallow water tight carbonates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele</p> <p>2015-04-01</p> <p>The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea methodologies. The dimensional, spatial and scaling properties of both stratabound and non-stratabound fractures are documented along single beds and bed-packages, respectively. Persistent fracture zones are studied from individual bed-package associations. By computing the intensity, height distribution, aspect ratio, aperture of each fracture/fault set, DFN (Discrete Fracture Network) models are built for the aforementioned different scales of observation. DFN models of single beds and bed-packages include stratabound and non-stratabound fractures. Differently, the DFN model of a bed-packages association also includes persistent fracture zones and related damage zones. To check the results of our computations, we also build up a smaller scale, 1m3 geocellular volume in which fractures are inserted one at time in the model. All DFN models do not include the matrix porosity. Porosity and 3D permeability (Kx, Ky, Kz) values are obtained as outputs of the DFN models. The results are consistent with the most prominet set of non-stratabound fractures being the major control on the petrophysical properties of both single beds and bed-packages. As expected, the persistent fractures zones strongly affect both porosity and permeability of the bed-packages association. The results of ongoing laboratory analyses on representative limestone samples not only will provide a quantitative assessment of the physical properties of the matrix in terms of porosity and permeability, but also will shed new light on the geometry, density and anisotropy of microfractures and their role on fluid flow properties.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhSen...8..119G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhSen...8..119G"><span>A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Zhanyu; Gu, Yingying; Lv, Yaoyu; Xu, Zhenbang; Wu, Qingwen</p> <p>2018-06-01</p> <p>A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG34A1934L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG34A1934L"><span>Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.</p> <p>2016-02-01</p> <p>Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5298495','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5298495"><span>Method and apparatus for chemically altering fluids in continuous flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.</p> <p>1993-10-19</p> <p>The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868964','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868964"><span>Method and apparatus for chemically altering fluids in continuous flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.</p> <p>1993-01-01</p> <p>The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21977672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21977672"><span>Calibration and verification of models of organic carbon removal kinetics in Aerated Submerged Fixed-Bed Biofilm Reactors (ASFBBR): a case study of wastewater from an oil-refinery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trojanowicz, Karol; Wójcik, Włodzimierz</p> <p>2011-01-01</p> <p>The article presents a case-study on the calibration and verification of mathematical models of organic carbon removal kinetics in biofilm. The chosen Harremöes and Wanner & Reichert models were calibrated with a set of model parameters obtained both during dedicated studies conducted at pilot- and lab-scales for petrochemical wastewater conditions and from the literature. Next, the models were successfully verified through studies carried out utilizing a pilot ASFBBR type bioreactor installed in an oil-refinery wastewater treatment plant. During verification the pilot biofilm reactor worked under varying surface organic loading rates (SOL), dissolved oxygen concentrations and temperatures. The verification proved that the models can be applied in practice to petrochemical wastewater treatment engineering for e.g. biofilm bioreactor dimensioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26481636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26481636"><span>The effect of bioleaching on sewage sludge pyrolysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo</p> <p>2016-02-01</p> <p>The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1415469-coarse-grained-discrete-particle-simulations-particle-segregation-rotating-fluidized-beds-vortex-chambers-discrete-particle-simulations-particle-segregation-rotating-fluidized-beds-vortex-chambers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1415469-coarse-grained-discrete-particle-simulations-particle-segregation-rotating-fluidized-beds-vortex-chambers-discrete-particle-simulations-particle-segregation-rotating-fluidized-beds-vortex-chambers"><span>Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Verma, Vikrant; Li, Tingwen; De Wilde, Juray</p> <p>2017-05-26</p> <p>Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1415469','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1415469"><span>Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Verma, Vikrant; Li, Tingwen; De Wilde, Juray</p> <p></p> <p>Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDG13004K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDG13004K"><span>Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khosronejad, Ali; Sotiropoulos, Fotis</p> <p>2012-11-01</p> <p>We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53E1030V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53E1030V"><span>Variations in Grain-Scale Sediment Structure in a Gravel-Bed Channel as a Function of Fine Sediment Content and Morphological Location</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.</p> <p>2016-12-01</p> <p>One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5248E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5248E"><span>First post-fire flush in a Mediterranean temporary stream: source ascription in bed sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Estrany Bertos, Joan; García-Comendador, Julián; Fortesa, Josep; Calsamiglia, Aleix; Garcias, Francesca</p> <p>2017-04-01</p> <p>First flushes can be of great importance for suspended-sediment transport in fluvial systems of drylands, being temporary streams a characteristic feature of Mediterranean basins. After a wildfire, storm flows may enhance runoff delivery to channels and then increasing the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first post-fire flush effect in the source ascription of bed sediments temporarily stored in a Mediterranean temporary stream severely affected by a wildfire. Thirty potential sediment source samples were collected along the main stem of a catchment located in Mallorca (Spain) during a field campaign developed some weeks after the wildfire. The sample collection was designed considering the wildfire affection, and also distinguishing between soil surface and channel bank. To quantify the relative source contribution to the bed sediment temporarily stored, five sediment samples -deposited during the first storm occurred three months after the wildfire- were collected into the bed stream of the main channel. The 137Cs and 210Pbex concentrations were measured by gamma spectrometry. Then, a linear mixing model was used to establish the relative contribution of each source type to the bed sediments discerning between the most upstream and the downstream parts of the catchment. Post-fire first-flush effect was generated by a torrential event with a suspended-sediment concentration peak ca. 33,618 mg L-1, although transmission losses under a very low runoff coefficient (1%) promoted sediment deposition. Significant differences were observed in fallout radionuclide concentrations between burned surface soil and channel bank samples (p < 0.05), as well as between burned and unburned sources at the downstream part of the catchment (p < 0.01). The radioactivity concentrations in bed sediments samples were statistically similar (p > 0.05). Source ascription in bed sediments in the middle stream shows that 67% was generated in burned hillslopes, reaching 75% in the downstream part because downstream propagation of the sediment derived from the burned area. Bed sediments were mostly generated in burned hillslopes because of the fire effects on soils and sediment availability, high intensity rainfall and limited contribution of channel banks that are fixed by dry-stone walls. This hydro-sedimentary response indicates an association between driven sediment transport factors and sediment availability, generating an effective slope-to-channel sediment connectivity. Long-term sediment sources monitoring will elucidate if the most effective period of the window of disturbance at catchment scale is further extended (i.e., ≈5 years).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5726319','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5726319"><span>Does Scale of Public Hospitals Affect Bargaining Power? Evidence From Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Noto, Konosuke; Kojo, Takao; Innami, Ichiro</p> <p>2017-01-01</p> <p>Background: Many of public hospitals in Japan have had a deficit for a long time. Japanese local governments have been encouraging public hospitals to use group purchasing of drugs to benefit from the economies of scale, and increase their bargaining power for obtaining discounts in drug purchasing, thus improving their financial situation. In this study, we empirically investigate whether or not the scale of public hospitals actually affects their bargaining power. Methods: Using micro-level panel data on public hospitals, we examine the effect of the scale of public hospitals (in terms of the number of occupancy beds) on drug purchasing efficiency (DPE) (the average discount rate in purchasing drugs) as a proxy variable of the bargaining power. Additionally, we evaluate the effect of the presence or absence of management responsibility in public hospital for economic efficiency as the proxy variable of an economic incentive and its interaction with the hospital scales on the bargaining power. In the estimations, we use the fixed effects model to control the heterogeneity of each hospital in order to estimate reliable parameters. Results: The scale of public hospitals does not positively correlate with bargaining power, whereas the management responsibility for economic efficiency does. Additionally, scale does not interact with management responsibility. Conclusion: Giving management responsibility for economic efficiency to public hospitals is a more reliable way of gaining bargaining power in drug purchasing, rather than promoting the increase in scale of these public hospitals. PMID:29172376</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21379818-lateral-solids-dispersion-coefficient-large-scale-fluidized-beds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21379818-lateral-solids-dispersion-coefficient-large-scale-fluidized-beds"><span>Lateral solids dispersion coefficient in large-scale fluidized beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Daoyin; Chen, Xiaoping</p> <p>2010-11-15</p> <p>The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effectmore » on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25668299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25668299"><span>Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S</p> <p>2015-04-28</p> <p>Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMEP23B0811O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMEP23B0811O"><span>Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Connor, J. E.; Wallick, R.; Mangano, J.; Anderson, S. W.; Jones, K. L.; Keith, M. K.</p> <p>2012-12-01</p> <p>The rivers of western Oregon have channel beds ranging from fully alluvial to bedrock. A local history of in-stream gravel mining in conjunction with ongoing permitting concerns with respect to future extraction have prompted a series of investigations of bed-material production, transport and channel morphology across this spectrum of channel types. In western Oregon, it appears that the distribution of alluvial and bedrock channels (and many aspects of river morphology and behavior) are largely controlled by regional lithologies and the downstream consequences of different rates of bed-material supply and clast comminution. In particular, the Klamath Terrane has elevated erosion rates, steep slopes, and rock types resistant to abrasion, resulting in gravel-bed alluvial channels with high bed-material transport rates. By contrast, Coast Range drainages underlain by large areas of soft sedimentary rocks have bedrock channels owing to exceptionally rapid rates of bed-material attrition during transport. The resulting spatially distributed network controls on the distribution of alluvial and non-alluvial channels likely complicate linkages between rock uplift, bedrock incision, bed-material grain size, and profile concavity. Additionally, the alluvial channels have distinct morphologic characteristics, some of which relate strongly to transport rates. In particular, bar area correlates with estimates of bed-material flux, and this correlation is an upper bound for bar-area observations for non-alluvial reaches. Similarly, an index for transport capacity scaled by bed-material grain size correlates with estimated bed-material flux for alluvial rivers, but not for the non-alluvial rivers. Bedrock and mixed-bed channels in western Oregon have few evident broad-scale patterns or relations among reach-scale morphologic measurements or with estimated transport rates, perhaps indicating that very local lithologic, hydraulic and bed-material supply conditions exert more control on channel morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20126705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20126705"><span>Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Do-Young; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W</p> <p>2010-02-21</p> <p>Pt supported on HY zeolite is successfully used as a bifunctional catalyst for phenol hydrodeoxygenation in a fixed-bed configuration at elevated hydrogen pressures, leading to hydrogenation-hydrogenolysis ring-coupling reactions producing hydrocarbons, some with enhanced molecular weight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122.2269K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122.2269K"><span>Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.</p> <p>2017-11-01</p> <p>We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033023','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033023"><span>Effect of temperature, hydraulic residence time and elevated PCO2 on acid neutralization within a pulsed limestone bed reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watten, B.J.; Lee, P.C.; Sibrell, P.L.; Timmons, M.B.</p> <p>2007-01-01</p> <p>Limestone has potential for reducing reagent costs and sludge volume associated with treatment of acid mine drainage, but its use is restricted by slow dissolution rates and the deposition of Fe, Al and Mn-based hydrolysis products on reactive surfaces. We evaluated a pulsed limestone bed (PLB) reactor (15 L/min capacity) that uses a CO2 pretreatment step to accelerate dissolution and hydraulic shearing forces provided by intermittent fluidization to abrade and carry away surface scales. We established the effects of hydraulic residence time (HRT, 5.1-15.9 min), temperature (T, 12-22 ??C) and CO2 tension (PCO2, 34.5-206.8 kPa) on effluent quality when inlet acidity (Acy) was fixed at 440 mg/L (pH=2.48) with H2SO4. The PLB reactor neutralized all H+ acidity (N=80) while concurrently providing unusually high levels of effluent alkalinity (247-1028 mg/L as CaCO3) that allow for side-stream treatment with blending. Alkalinity (Alk) yields rose with increases in PCO2, HRT and settled bed height (BH, cm) and decreased with T following the relationship (R2=0.926; p<0.001): (Alk)non-filtered=-548.726+33.571??(PCO2)0.5+33.671??(HRT)+7.734??(BH)-5.197??(T). Numerical modeling showed CO2 feed requirements for a target Alk yield decrease with increases in HRT, T and the efficiency of off-gas (CO2) recycling. ?? 2007 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015336','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015336"><span>Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John</p> <p>2012-01-01</p> <p>"NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015335','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015335"><span>Developments in Atmosphere Revitalization Modeling and Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.</p> <p>2012-01-01</p> <p>"NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002712','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002712"><span>Additional Developments in Atmosphere Revitalization Modeling and Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos</p> <p>2013-01-01</p> <p>NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11924858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11924858"><span>Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K</p> <p>2002-03-01</p> <p>Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034436','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034436"><span>Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.</p> <p>2011-01-01</p> <p>Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....47.3508L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....47.3508L"><span>Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shuangcai; Duffy, Christopher J.</p> <p>2011-03-01</p> <p>Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRC..113.7018F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRC..113.7018F"><span>Waves plus currents at a right angle: The rippled bed case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faraci, C.; Foti, E.; Musumeci, R. E.</p> <p>2008-07-01</p> <p>The present paper deals with wave plus current flow over a fixed rippled bed. More precisely, modifications of the current profiles due to the superimposition of orthogonal cylindrical waves have been investigated experimentally. Since the experimental setup permitted only the wave dominated regime to be investigated (i.e., the regime where orbital velocity is larger than current velocity), also a numerical k-ɛ turbulence closure model has been developed in order to study a wider range of parameters, thus including the current dominated regime (i.e., where current velocity is larger than wave orbital one). In both cases a different response with respect to the flat bed case has been found. Indeed, in the flat bed case laminar wave boundary layers in a wave dominated regime induce a decrease in bottom shear stresses, while the presence of a rippled bed behaves as a macroroughness, which causes the wave boundary layer to become turbulent and therefore the current velocity near the bottom to be smaller than the one in the case of current only, with a consequent increase in the current bottom roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=126309&keyword=barium&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=126309&keyword=barium&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>REMOVING RADIUM FROM WATER BY PLAIN AND TREATED ACTIVATED ALUMINA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The research determined the feasibility of using BaSO4-impregnated activated alumina and plain activated alumina for radium removal from groundwater by fixed-bed adsorption. The major factors influencing radium adsorption onto the two types of alumina were identified. The radium ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720000556','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720000556"><span>Metered oxygen supply aids treatment of domestic sewage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weliky, N.; Hooper, T. J.; Silverman, H. P.</p> <p>1972-01-01</p> <p>Microbiological fixed-bed process was developed in which supplementary oxygen required by microbial species is supplied by electrochemical device. Rate of addition of oxygen to waste treatment process is controlled to maintain aerobic metabolism and prevent anaerobic metabolisms which produce odorous or toxic products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104602&keyword=environmental+AND+risk+AND+amazon&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104602&keyword=environmental+AND+risk+AND+amazon&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A NOVEL SEPARATION TECHNOLOGY FOR REMOVAL RECOVERY OF METALS FROM AQUEOUS SOLUTIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Recovery/Recycling of metal ions from industrial process waste streams is a preferred alternative to disposal by conventional techniques. This paper presents methods for preparation of inorganic chemically active adsorbents to be used in fixed bed adsorbers. Methods for immobiliz...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26000835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26000835"><span>Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aysu, Tevfik</p> <p>2015-09-01</p> <p>Pyrolysis of Alcea pallida stems was performed in a fixed-bed tubular reactor with and without catalyst at three different temperatures. The effects of pyrolysis parameters including temperature and catalyst on the product yields were investigated. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts had different effects on product yields and composition of bio-oils. Liquid yields were increased in the presence of zinc chloride and alumina but decreased with calcium hydroxide, tincal and ulexite. The highest bio-oil yield (39.35%) by weight including aqueous phase was produced with alumina catalyst at 500 °C. The yields of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils were determined by elemental analysis, TGA, FT-IR and GC-MS. 160 different compounds were identified by GC-MS in the bio-oils obtained at 500 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29017503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29017503"><span>Effect of bacterial lipase on anaerobic co-digestion of slaughterhouse wastewater and grease in batch condition and continuous fixed-bed reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Affes, Maha; Aloui, Fathi; Hadrich, Fatma; Loukil, Slim; Sayadi, Sami</p> <p>2017-10-10</p> <p>This study aimed to investigate the effects of bacterial lipase on biogas production of anaerobic co-digestion of slaughterhouse wastewater (SHWW) and hydrolyzed grease (HG). A neutrophilic Staphylococcus xylosus strain exhibiting lipolytic activity was used to perform microbial hydrolysis pretreatment of poultry slaughterhouse lipid rich waste. Optimum proportion of hydrolyzed grease was evaluated by determining biochemical methane potential. A high biogas production was observed in batch containing a mixture of slaughterhouse composed of 75% SHWW and 25% hydrolyzed grease leading to a biogas yield of 0.6 L/g COD introduced. Fixed bed reactor (FBR) results confirmed that the proportion of 25% of hydrolyzed grease gives the optimum condition for the digester performance. Biogas production was significantly high until an organic loading rate (OLR) of 2 g COD/L. d. This study indicates that the use of biological pre-treatment and FBR for the co-digestion of SHWW and hydrolyzed grease is feasible and effective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17045285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17045285"><span>Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lv, Lu; Wang, Kean; Zhao, X S</p> <p>2007-01-15</p> <p>The breakthrough behavior of Pb2+ in an ETS-10 fixed bed was experimentally examined at various operating conditions. Results showed that the adsorption amount of Pb2+ ions per unit mass of ETS-10 particles in a column is about 1.68 mmol/g under the experimental conditions. This amount was not markedly affected by the operating conditions because of the rapid adsorption rate of Pb2+ ions on ETS-10. In the presence of competitive metal ions, the amount of Pb2+ adsorbed on ETS-10 was slightly reduced. An overshoot of the effluent concentrations of competitive metal ions Cu2+ and Cd2+ was observed in the adsorption systems of binary and ternary solutions. This is ascribed to the replacement of pre-adsorbed Cu2+ and Cd2+ ions by Pb2+ ions. The ETS-10 column broken up by Pb2+ ions can be regenerated by using an EDTA-Na2 solution and the regenerated column can be reused.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28954249','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28954249"><span>Pyrolysis of Date palm waste in a fixed-bed reactor: Characterization of pyrolytic products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bensidhom, Gmar; Ben Hassen-Trabelsi, Aïda; Alper, Koray; Sghairoun, Maher; Zaafouri, Kaouther; Trabelsi, Ismail</p> <p>2018-01-01</p> <p>The pyrolysis of several Tunisian Date Palm Wastes (DPW): Date Palm Rachis (DPR), Date Palm Leaflets (DPL), Empty Fruit Bunches (EFB) and Date Palm Glaich (DPG) was run using a fixed-bed reactor, from room temperature to 500°C, with 15°C/min as heating rate and -5°C as condensation temperature, in order to produce bio-oil, biochar and syngas. In these conditions, the bio-oil yield ranges from 17.03wt% for DPL to 25.99wt% for EFB. For the biochar, the highest yield (36.66wt%) was obtained for DPL and the lowest one (31.66wt%) was obtained from DPG while the syngas production varies from 39.10wt% for DPR to 46.31wt% DPL. The raw material and pyrolysis products have been characterized using elemental analysis thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The syngas composition has been characterized using gas analyzer. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24880609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24880609"><span>Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing</p> <p>2015-12-01</p> <p>A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24457309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24457309"><span>Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo</p> <p>2014-03-01</p> <p>Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/471738-biosorption-metal-ions-from-aqueous-solutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/471738-biosorption-metal-ions-from-aqueous-solutions"><span>Biosorption of metal ions from aqueous solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Jiaping; Yiacoumi, Sotira</p> <p>1997-01-01</p> <p>Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role inmore » the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15899270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15899270"><span>Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bayer, Peter; Heuer, Edda; Karl, Ute; Finkel, Michael</p> <p>2005-05-01</p> <p>Technical constraints can leave a considerable freedom in the design of a technology, production or service strategy. Choosing between economical or ecological decision criteria then characteristically leads to controversial solutions of ideal systems. For the adaptation of granular-activated carbon (GAC) fixed beds, various technical factors determine the adsorber volume required to achieve a desired service life. In considering carbon replacement and recycling, a variety of refill strategies are available that differ in terms of refill interval, respective adsorber volume, and time-dependent use of virgin, as well as recycled GAC. Focusing on the treatment of contaminant groundwater, we compare cost-optimal reactor configurations and refill strategies to the ecologically best alternatives. Costs and consumption of GAC are quantified within a technical-economical framework. The emissions from GAC production out of hard coal, transport and recycling are equally derived through a life cycle impact assessment. It is shown how high discount rates lead to a preference of small fixed-bed volumes, and accordingly, a high number of refills. For fixed discount rates, the investigation reveals that both the economical as well as ecological assessment of refill strategies are especially sensitive to the relative valuation of virgin and recycled GAC. Since recycling results in economic and ecological benefits, optimized systems thus may differ only slightly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981JOM....33d..67S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981JOM....33d..67S"><span>Direct Reduction of Iron Ore</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Small, M.</p> <p>1981-04-01</p> <p>In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5625667-evaluation-effectiveness-factor-along-immobilized-enzyme-fixed-bed-reactors-design-reactor-naringinase-covalently-immobilized-glycophase-coated-porous-glass','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5625667-evaluation-effectiveness-factor-along-immobilized-enzyme-fixed-bed-reactors-design-reactor-naringinase-covalently-immobilized-glycophase-coated-porous-glass"><span>Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors: design of a reactor with naringinase covalently immobilized into glycophase-coated porous glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Manjon, A.; Iborra, J.L.; Gomez, J.L.</p> <p></p> <p>A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentallymore » measured values. (Refs. 28).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27522846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27522846"><span>Are In-Bed Electronic Weights Recorded in the Medical Record Accurate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gerl, Heather; Miko, Alexandra; Nelson, Mandy; Godaire, Lori</p> <p>2016-01-01</p> <p>This study found large discrepancies between in-bed weights recorded in the medical record and carefully obtained standing weights with a calibrated, electronic bedside scale. This discrepancy appears to be related to inadequate bed calibration before patient admission and having excessive linen, clothing, and/or equipment on the bed during weighing by caregivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME13A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME13A..06L"><span>Are Seagrass effective Sentinels of Ecosystem Health in Port Phillip Bay, Australia?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, R. S.; Cook, P. L. M.; Jenkins, G.; Nayar, S.; Hirst, A.; Keough, M. J.; Smith, T.; Ferguson, A.; Gay, J.; Longmore, A. R.; Macreadie, P.; Sherman, C.; Ross, J.; York, P.</p> <p>2016-02-01</p> <p>Seagrasses are an important part of many coastal systems, but are also under threat in many areas, as a result of a wide range of human activities, including habitat loss and changes to water quality. Due to these sensitivities seagrass are often selected as sentinels of change for coastal marine ecosystems, but could these sensitivities be too complex and varied to provide a clear or reliable measure of change? A recent three year study focused on the resilience of Zostera seagrasses in Port Phillip Bay, Southern Australia, where these ecosystem "engineers", have a dramatic influence on biodiversity and ecosystem function. This large temperate embayment experiences extreme climatic variability, significant loading from urbanized catchments and inflows from the largest sewage treatment facility in Australia, making it a challenging case study for assessing seagrass as a suitable ecosystem metric. Studies on the influence of nutrients, light and sediments using modelling, chemical analyses and field experiments assessed characteristics of Zostera habitat within the bay. Nutrients could be obtained directly in dissolved form from the water column, or sediment, or as atmospheric nitrogen fixed by bacteria associated with the root/rhizome system. Isotopic nutrients were traced to a variety of sources including river inflows, sewage discharges, groundwater, the open ocean, the atmosphere and indirectly via phytoplankton and detritus. Broad-scale seagrass coverage is often depth limited by light, however for regions of significant wave exposure deeper beds existed adjacent to less favorable shallows. Ephemeral beds in more exposed regions showed the greatest potential for responding to change. For these beds, resilience was dependent on bed architecture, connectivity to indirect nutrient sources, and genetic interactions with seagrass communities around the bay. While observed changes in seagrass cover may be a symptomatic trigger of ecosystem health, much as high blood pressure is to the human body, this study has shown that an understanding of the relative threats, system connectivity and co-dependencies of the more vulnerable communities can provide the most accurate account of ecosystem health.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25190594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25190594"><span>Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri</p> <p>2014-12-15</p> <p>Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16491187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16491187"><span>First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter; Fehrmann, Rasmus</p> <p>2006-03-07</p> <p>A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)2I2]-[BMIM]I-SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030005569','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030005569"><span>Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.</p> <p>2002-01-01</p> <p>In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were evaluated along with a companion set of tests in normal gravity. The flow rates, fluid properties and packing properties were selected to provide a range of several orders-of-magnitude for the important dimensionless parameters. Additional information is included in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864351','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864351"><span>Cyclic process for producing methane from carbon monoxide with heat removal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Frost, Albert C.; Yang, Chang-lee</p> <p>1982-01-01</p> <p>Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865819','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865819"><span>Cyclic process for producing methane in a tubular reactor with effective heat removal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Frost, Albert C.; Yang, Chang-Lee</p> <p>1986-01-01</p> <p>Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec3482-3.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec3482-3.pdf"><span>43 CFR 3482.3 - Mining operations maps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... and up-to-date maps of the mine, drawn to scales acceptable to the authorized officer. Before a mine... boundary lines; surface buildings; dip of the coal bed(s); true north; map scale; map explanation; location...; geologic conditions as determined from outcrops, drill holes, exploration, or mining; any unusual geologic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec3482-3.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec3482-3.pdf"><span>43 CFR 3482.3 - Mining operations maps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... and up-to-date maps of the mine, drawn to scales acceptable to the authorized officer. Before a mine... boundary lines; surface buildings; dip of the coal bed(s); true north; map scale; map explanation; location...; geologic conditions as determined from outcrops, drill holes, exploration, or mining; any unusual geologic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec3482-3.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec3482-3.pdf"><span>43 CFR 3482.3 - Mining operations maps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... and up-to-date maps of the mine, drawn to scales acceptable to the authorized officer. Before a mine... boundary lines; surface buildings; dip of the coal bed(s); true north; map scale; map explanation; location...; geologic conditions as determined from outcrops, drill holes, exploration, or mining; any unusual geologic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..115..207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..115..207J"><span>Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javernick, Luke; Redolfi, Marco; Bertoldi, Walter</p> <p>2018-05-01</p> <p>New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20006713-fluidized-bed-combustion-high-volatile-solid-fuels-assessment-char-attrition-volatile-matter-segregation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20006713-fluidized-bed-combustion-high-volatile-solid-fuels-assessment-char-attrition-volatile-matter-segregation"><span>Fluidized bed combustion of high-volatile solid fuels: An assessment of char attrition and volatile matter segregation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chirone, R.; Marzocchella, A.; Salatino, P.</p> <p>1999-07-01</p> <p>A simple lumped-parameter model of a bubbling fluidized bed combustor fueled with high-volatile solid fuels is presented. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Material balances on fixed carbon, volatile matter and oxygen are set up, taking into account fuel particle fragmentation and attrition, volatile matter segregation as well as postcombustion of both carbon fines and volatiles escaping the bed. A basic assumption of the model is that the combustion pathway that foes from the raw fuel to the combustion products proceeds via the formation of three phases: volatile matter, relativelymore » large non-elutriable char particles and fine char particles of elutriable size. The study is complemented by a simplified thermal balance on the splashing zone taking into account volatiles and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard. Results from calculations with either low- or high-volatile solid fuels indicate that low-volatile bituminous coal combustion takes place essentially in the bed mostly via coarse char particles combustion, while high-volatile biomass fuel combustion occurs to comparable extents both in the bed and in the splashing region of the combustor. Depending on the extent of volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results into an increase of temperature in this region. Extensive bed solids recirculation associated to bubble bursting/solids ejection at the bed surface together with effective gas-solids heat transfer promotes thermal feedback from this region to the bed of as much as 90% of the heat release by volatile matter and elutriated fines afterburning.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1717516','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1717516"><span>Mechanical model testing of rebreathing potential in infant bedding materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carleton, J.; Donoghue, A.; Porter, W.</p> <p>1998-01-01</p> <p>Rebreathing of expired air may be a lethal hazard for prone sleeping infants. This paper describes a mechanical model to simulate infant breathing, and examines the effects of bedding on exhaled air retention. Under simulated rebreathing conditions, the model allows the monitoring of raised carbon dioxide (CO2) inside an artificial lung-trachea system. Resulting levels of CO2 (although probably exaggerated in the mechanical model compared with an infant, due to the model's fixed breathing rate and volume) suggest that common bedding materials vary widely in inherent rebreathing potential. In face down tests, maximum airway CO2 ranged from less than 5% on sheets and waterproof mattresses to over 25% on sheepskins, bean bag cushions, and some pillows and comforters. Concentrations of CO2 decreased with increasing head angle of the doll, away from the face down position. Recreations of 29infant death scenes also showed large CO2 increases on some bedding materials, suggesting these infants could have died while rebreathing.

 PMID:9623394</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.970a2019S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.970a2019S"><span>Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.</p> <p>2018-03-01</p> <p>downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26708483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26708483"><span>Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia</p> <p>2016-02-01</p> <p>To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23608748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23608748"><span>An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha</p> <p>2013-12-15</p> <p>This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23418432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23418432"><span>Do more hospital beds lead to higher hospitalization rates? a spatial examination of Roemer's Law.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delamater, Paul L; Messina, Joseph P; Grady, Sue C; WinklerPrins, Vince; Shortridge, Ashton M</p> <p>2013-01-01</p> <p>Roemer's Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer's Law. We pose the question, "Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?" We employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions. We find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis. This study provides evidence for the effects of Roemer's Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=185406&keyword=flight&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=185406&keyword=flight&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The Relative Influence of Turbulence and Turbulent Mixing on the Adsorption of Mercury within a Gas-Sorbent Suspension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA499282','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA499282"><span>Relationship Between Packing Structure and Porosity in Fixed Beds of Equilateral Cylindrical Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-09-23</p> <p>Roblee et al., 1958). Kubie (1988) derived a theoretical wall density function and compared it to experimental results. Reyes and Iglesia (1991) and...Engineering Chemistry Process Design and Development 7, 250-252. Kubie . J., 1988. Influence of containing walls on the distribution of voidage in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/792020','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/792020"><span>Responsive Copolymers for Enhanced Petroleum Recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McCormick, Charles; Hester, Roger</p> <p></p> <p>The objectives of this work was to: (1) synthesize responsive, amphiphilic systems; (2) characterize molecular structure and solution behavior; (3) measure rheological properties of the aqueous fluids including behavior in fixed geometry flow profiles and beds; and (4) to tailor polymer compositions for in situ rheology control under simulated reservoir conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000655&hterms=screw+it&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dscrew%2Bit%252C','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000655&hterms=screw+it&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dscrew%2Bit%252C"><span>Three-Point Gear/Lead Screw Positioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calco, Frank S.</p> <p>1993-01-01</p> <p>Triple-ganged-lead-screw positioning mechanism drives movable plate toward or away from fixed plate and keeps plates parallel to each other. Designed for use in tuning microwave resonant cavity. Other potential applications include adjustable bed plates and cantilever tail stocks in machine tools, adjustable platforms for optical equipment, and lifting platforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.2843E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.2843E"><span>Investigations on humic acid removal from water using surfactant-modified zeolite as adsorbent in a fixed-bed reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elsheikh, Awad F.; Ahmad, Umi Kalthom; Ramli, Zainab</p> <p>2017-10-01</p> <p>Natural organic matter (NOM) is ubiquitous in aquatic environments and has recently become an issue of worldwide concern in drinking water treatment. The major component of NOM is humic acids (HA). In this study, a natural zeolite (mordenite) was modified employing hexadecyltrimethylammonium bromide (HDTMA) to enhance greater efficient sites for sorption of HA. The natural zeolite and surfactant-modified zeolite (SMZ) were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectrometer (FT-IR), N2 Adsorption-desorption isotherms and BET-specific surface area, thermographic analysis, derivative thermographic analysis (TGA-DTA) and Field emission scanning electron microscopy (FESEM). A fixed-bed reactor was used for the removal of HA and the effects of different experimental parameters such as HDTMA loading levels, HA solution flow rate, solution pH and eluent concentration were investigated. The results indicated that the SMZ bed with HDTMA loading of 75% of external cation exchange capacity (ECEC) at a flow rate of 2 BV/h and pH of 10 showed the greatest enhanced removal efficiency of HA while ethanol solutions (25%v/v) with feed flow rate of 2 BV/h were sufficient for complete regeneration of SMZ and desorption of HA. Measurements of surface area of SMZ indicated that a monolayer formation of the surfactant at those conditions allowed the optimum removal of HA.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1408912-characterization-reactive-caco3-crystallization-fluidized-bed-reactor-central-process-direct-air-capture','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1408912-characterization-reactive-caco3-crystallization-fluidized-bed-reactor-central-process-direct-air-capture"><span>Characterization of reactive CaCO 3 crystallization in a fluidized bed reactor as a central process of direct air capture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor</p> <p></p> <p>A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1408912-characterization-reactive-caco3-crystallization-fluidized-bed-reactor-central-process-direct-air-capture','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1408912-characterization-reactive-caco3-crystallization-fluidized-bed-reactor-central-process-direct-air-capture"><span>Characterization of reactive CaCO 3 crystallization in a fluidized bed reactor as a central process of direct air capture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...</p> <p>2017-10-25</p> <p>A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010pot..book..675C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010pot..book..675C"><span>Experiment Investigation of the Influencing Factors on Bed Agglomeration During Fluidized-Bed Gasification of Biomass Fuels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Y. Q.; Chen, H. P.; Yang, H. P.; Wang, X. H.; Zhang, S. H.</p> <p></p> <p>With the depleting of fossil fuel and environmental polluting increasing, the utilization of biomass resources caught increasing concern. Biomass gasification in fluidized bed, as one promising technology, developed quickly. However, serious agglomeration was displayed as biomass ash reacted with bed material (silica sand) at higher temperature. It hindered the wide utilization of CFB gasifier. The objective ofthis work is to investigate the agglomeration behavior between biomass ash and silica sand, and catch the inherent mechanism. Firstly, the influence of ash compounds on the agglomeration behavior was analyzed with biomass ash and synthesis ash compounds addition in fixed bed as ash sample mixed with bed material evenly before every trial. The reaction temperature was set 850°C that is the operated temperature for many fluidized bed gasificated biomass fuels. Then the influence of reaction time was analyzed. The characteristics of the agglomerated silica sand particles were analyzed by the XRD. Finally, it was simulated with HSC computer mode based on thermodynamic equilibrium. It was observed that when the ratio of the biomass ash to the silica sand was above 0.2, the agglomeration was observed. With the increase of the reaction time, more silica sand particles agglomerated with the biomass ash. There are two kinds of silicate eutecticum investigated by the XRD. It is of great significance for the running ofCFB biomass gasifier and the development ofbiomass utilization technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..345a2022A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..345a2022A"><span>Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun</p> <p>2018-04-01</p> <p>In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSG...108..121C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSG...108..121C"><span>Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corradetti, A.; Tavani, S.; Parente, M.; Iannace, A.; Vinci, F.; Pirmez, C.; Torrieri, S.; Giorgioni, M.; Pignalosa, A.; Mazzoli, S.</p> <p>2018-03-01</p> <p>Through-going joints cutting across beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues, favouring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements with a digital outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP41B3523V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP41B3523V"><span>The Devil is in the Details: Using X-Ray Computed Tomography to Develop Accurate 3D Grain Characteristics and Bed Structure Metrics for Gravel Bed Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voepel, H.; Hodge, R. A.; Leyland, J.; Sear, D. A.; Ahmed, S. I.</p> <p>2014-12-01</p> <p>Uncertainty for bedload estimates in gravel bed rivers is largely driven by our inability to characterize the arrangement and orientation of the sediment grains within the bed. The characteristics of the surface structure are produced by the water working of grains, which leads to structural differences in bedforms through differential patterns of grain sorting, packing, imbrication, mortaring and degree of bed armoring. Until recently the technical and logistical difficulties of characterizing the arrangement of sediment in 3D have prohibited a full understanding of how grains interact with stream flow and the feedback mechanisms that exist. Micro-focus X-ray CT has been used for non-destructive 3D imaging of grains within a series of intact sections of river bed taken from key morphological units (see Figure 1). Volume, center of mass, points of contact, protrusion and spatial orientation of individual surface grains are derived from these 3D images, which in turn, facilitates estimates of 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we can compare and contrast bed stability at a macro-scale with respect to stream bed morphology. Understanding differences in bed stability through representative metrics derived at the grain-scale will ultimately lead to improved bedload estimates with reduced uncertainty and increased understanding of interactions between grain-scale properties on channel morphology. Figure 1. CT-Scans of a water worked gravel-filled pot. a. 3D rendered scan showing the outer mesh, and b. the same pot with the mesh removed. c. vertical change in porosity of the gravels sampled in 5mm volumes. Values are typical of those measured in the field and lab. d. 2-D slices through the gravels at 20% depth from surface (porosity = 0.35), and e. 75% depth from surface (porosity = 0.24), showing the presence of fine sediments 'mortaring' the larger gravels. f. shows a longitudinal slide from which pivot angle measurements can be determined for contact points between particles. g. Example of two particle extraction from the CT scan showing how particle contact areas can be measured (dark area).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4764869','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4764869"><span>Ice stream motion facilitated by a shallow-deforming and accreting bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela</p> <p>2016-01-01</p> <p>Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP21B0586V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP21B0586V"><span>Supply-Limited Bedforms in a Gravel-Sand Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venditti, J. G.; Nittrouer, J. A.; Humphries, R. P.; Allison, M. A.</p> <p>2009-12-01</p> <p>Rivers often exhibit an abrupt transition from gravel to sand-bedded conditions as river channel slopes decrease. A distinct suite of bedforms has been observed through these reaches where sand supply to the bed is limited. The suite of bedforms includes a sequence of sand ribbons, barchans, and channel spanning dunes as sediment supply increases in the downstream direction. While these bedforms have been extensively documented in laboratory channels, there are relatively few observations of this sequence of supply-limited bedforms from large natural channels. Here we examine the sequence through the gravel-sand transition of the Fraser River in Southwestern British Columbia. We mapped the bed using multi-beam swath-bathymetry (Reson 8101 Seabat) at high flow (~9,000 m3s-1) immediately following a high peak flow of 11,800 m3s-1 in June 2007 The bed material grades from >70% gravel to entirely sand through the reach. The bedforms follow the expected sequence where sand ribbons and barchanoid forms cover the bed where it is primarily gravel. Channel spanning dunes form as the sand bed coverage increases. Bedform dimensions (height and length) increase moving downstream as the sand moving on the bed increases. Supply-unlimited bedforms typically scale with the flow depth where the height is 1/5 the flow depth. The bedforms developed over the gravel are undersized by this criterion. Downstream, where the bed is dominantly sand, bedforms do scale with flow depth. These data highlight the dominant role sediment supply can play in bedform morphology and scaling, confirming patterns observed in laboratory data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhFl...11...76L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhFl...11...76L"><span>Microscopic motion of particles flowing through a porous medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jysoo; Koplik, Joel</p> <p>1999-01-01</p> <p>Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22629642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22629642"><span>Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P</p> <p>2012-01-01</p> <p>In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24659435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24659435"><span>Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva</p> <p>2014-01-01</p> <p>This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15956301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15956301"><span>Freestall maintenance: effects on lying behavior of dairy cattle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drissler, M; Gaworski, M; Tucker, C B; Weary, D M</p> <p>2005-07-01</p> <p>In a series of 3 experiments, we documented how sand-bedding depth and distribution changed within freestalls after new bedding was added and the effect of these changes on lying behavior. In experiment 1, we measured changes in bedding depth over a 10-d period at 43 points in 24 freestalls. Change in depth of sand was the greatest the day after new sand was added and decreased over time. Over time, the stall surface became concave, and the deepest part of the stall was at the center. Based on the results of experiment 1, we measured changes in lying behavior when groups of cows had access to freestalls with sand bedding that was 0, 3.5, 5.2, or 6.2 cm at the deepest point, below the curb, while other dimensions remained fixed. We found that daily lying time was 1.15 h shorter in stalls with the lowest levels of bedding compared with stalls filled with bedding. Indeed, for every 1-cm decrease in bedding, cows spent 11 min less time lying down during each 24-h period. In a third experiment, we imposed 4 treatments that reflected the variation in sand depth within stalls: 0, 6.2, 9.9, and 13.7 cm below the curb. Again, lying times reduced with decreasing bedding, such that cows using the stalls with the least amount of bedding (13.7 cm below curb) spent 2.33 h less time per day lying down than when housed with access to freestalls filled with sand (0 cm below curb).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43B1889T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43B1889T"><span>The Effect of Stem- and Canopy-Scale Turbulence on Sediment Dynamics within Submerged Vegetation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinoco, R. O.; San Juan Blanco, J. E.; Prada, A. F.</p> <p>2017-12-01</p> <p>Stem- and canopy-scale turbulence generated by submerged patches of vegetation plays a paramount role on sediment transport within aquatic ecosystems such as wetlands, marshes, mangrove forests, and coastal regions, as dense patches dampen velocities and mean bed stresses within the plants, while also increasing turbulence intensity through stem-scale wakes and canopy-scale eddies. To explore the interactions between such processes, laboratory experiments are conducted using rigid cylinders placed in a staggered configuration as vegetation elements, embedded on a non-cohesive sediment bed in a racetrack flume. Quantitative imaging is used to characterize the flow field and the associated suspended sediment concentration throughout the water column at different submergence ratios, defined as the ratio between water depth, H, and plant height, h, to investigate the role of canopy-scale eddies formed at the top of the canopy, and their interaction with near-bed flow structures, on sediment dynamics. Turbulent kinetic energy, turbulent intensity, and Reynolds stresses are quantified within and above the array to clearly identify the contributions from bed generated turbulence and vegetation generated turbulence, at both stem- and canopy-scale, as submergence ratio increases from emergent, H/h=1, to fully submerged, H/h=5, conditions. The experimental results are compared with transport models to highlight the need for a multi-scale approach to represent flow-vegetation-sediment interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868015','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868015"><span>Process for the preparation of cumene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis</p> <p>1991-01-01</p> <p>Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7281744','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7281744"><span>Process for the preparation of cumene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.</p> <p>1991-10-08</p> <p>Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 500 C, using as the catalyst a molecular sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered. 2 figures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/170452','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/170452"><span>Process for the preparation of ethyl benzene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.</p> <p>1995-12-19</p> <p>Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870213','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870213"><span>Process for the preparation of ethyl benzene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis</p> <p>1995-01-01</p> <p>Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1774R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1774R"><span>The impact of benthic fauna on fluvial bed load transport: Challenges of upscaling laboratory experiments to river and landscape scales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rice, S. P.</p> <p>2012-04-01</p> <p>The impact on sediment transport processes and channel morphology of several relatively large, iconic animals including beaver and salmon is increasingly well understood. However, many other aquatic fauna are important zoogeomorphic agents and ecosystem engineers. These somewhat overlooked "Cinderella" species include benthic aquatic insect larvae, freshwater crustaceans and many species of fish. Despite relatively modest individual effects, the ubiquity, abundance and cumulative impact of these organisms makes them a potentially significant agency, with as yet undiscovered and unquantified impacts on channel morphology and sediment fluxes. Their actions (digging, foraging, moving, burrowing), constructions and secretions modify bed sediment characteristics (grain size distribution, interlock, imbrication, protrusion), alter bed topography (thence hydraulic roughness) and contribute to biogenic restraints on grain movement. In turn, they can affect the distribution of surface particle entrainment thresholds and bed shear stresses, with implications for bed load transport. Flume experiments have measured some of these impacts and provided direct observations of the mechanisms involved, but many of the most interesting research questions pertain to the impact of these animals at reach, catchment and even landscape scales: Not least, what is the impact of small aquatic animals on bed load flux and yield? This presentation will consider some of the challenges involved in answering this question; that is, of scaling up experimental understanding of how aquatic animals affect bed load transport processes to river scales. Pertinent themes include: (1) the potential impacts of experimental arrangements on the behaviours and activities that affect hydraulic or geomorphological processes; (2) field coincidence of the spatial and temporal distributions of (a) the animals and their behaviours with (b) the physical conditions (substrates, flows) under which those animals are understood to have an effect; (3) the magnitude of any demonstrable net field impact, relative to those other factors that control bed load transport rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1010322','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1010322"><span>DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>BANNING DL</p> <p>2011-02-11</p> <p>This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS32A..08N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS32A..08N"><span>Incipient Motion of Sand and Oil Agglomerates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.</p> <p>2016-12-01</p> <p>Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830026793','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830026793"><span>Fluidized bed coal desulfurization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ravindram, M.</p> <p>1983-01-01</p> <p>Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26571333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26571333"><span>Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V</p> <p>2016-01-15</p> <p>Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92-97%), carbamazepine (80-94%), ciprofloxacin (75-95%), diclofenac (71-97%), oxazepam (74-91%) or sulfamethoxazole (56-83%). In addition, alkylphenols, artificial sweeteners, benzotriazole, bisphenol A, personal care products (triclocarban and parabens) and pesticides have removals lying in the 50 ->90% range. Overall, the fluidized bed of μGAC allows obtaining performances comparable to PAC at the same activated carbon dose. Indeed, the average removal of the 13 PPHs found at a high occurrence (>75%) in WWTP discharges is similar at 20 g/m(3) of μGAC (78-89%) and PAC (85-93%). In addition, this recycled μGAC operation leads to several operational advantages (no FeCl3, reactivable, higher SRT, higher treated flow) and has a stronger impact on the overall wastewater quality compared to PAC. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5394D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5394D"><span>Megascours: the morphodynamics of large river confluences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dixon, Simon; Sambrook Smith, Greg; Nicholas, Andrew; Best, Jim; Bull, Jon; Vardy, Mark; Goodbred, Steve; Haque Sarker, Maminul</p> <p>2015-04-01</p> <p>River confluences are wildly acknowledged as crucial controlling influences upon upstream and downstream morphology and thus landscape evolution. Despite their importance very little is known about their evolution and morphodynamics, and there is a consensus in the literature that confluences represent fixed, nodal points in the fluvial network. Confluences have been shown to generate substantial bed scours around five times greater than mean depth. Previous research on the Ganges-Jamuna junction has shown large river confluences can be highly mobile, potentially 'combing' bed scours across a large area, although the extent to which this is representative of large confluences in general is unknown. Understanding the migration of confluences and associated scours is important for multiple applications including: designing civil engineering infrastructure (e.g. bridges, laying cable, pipelines, etc.), sequence stratigraphic interpretation for reconstruction of past environmental and sea level change, and in the hydrocarbon industry where it is crucial to discriminate autocyclic confluence scours from widespread allocyclic surfaces. Here we present a wide-ranging global review of large river confluence planforms based on analysis of Landsat imagery from 1972 through to 2014. This demonstrates there is an array of confluence morphodynamic types: from freely migrating confluences such as the Ganges-Jamuna, through confluences migrating on decadal timescales and fixed confluences. Along with data from recent geophysical field studies in the Ganges-Brahmaputra-Meghna basin we propose a conceptual model of large river confluence types and hypothesise how these influence morphodynamics and preservation of 'megascours' in the rock record. This conceptual model has implications for sequence stratigraphic models and the correct identification of surfaces related to past sea level change. We quantify the abundance of mobile confluence types by classifying all large confluences in the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two basins have contrasting confluence morphodynamics. For the first time we show large river confluences have multiple scales of planform adjustment with important implications for infrastructure and interpretation of the rock record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3556150','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3556150"><span>Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: influence of water quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Background Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR) system. Results The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m2 under the influence of various water quality variables (pH, conductivity, turbidity and colour) under high solar irradiance conditions (980–1100 W m-2), at a flow rate of 4.8 L h-1 through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO2 effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7–9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. Conclusions This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low. PMID:23194331</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1353153','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1353153"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mehta, Y.; Neal, C.; Salari, K.</p> <p></p> <p>Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3561099','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3561099"><span>Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9685891','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9685891"><span>Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L</p> <p>1998-01-02</p> <p>This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850i0005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850i0005R"><span>Proof of concept of the CaO/Ca(OH)2 reaction in a continuous heat-exchanger BFB reactor for thermochemical heat storage in CSP plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rougé, Sylvie; Criado, Yolanda A.; Huille, Arthur; Abanades, J. Carlos</p> <p>2017-06-01</p> <p>The CaO/Ca(OH)2 hydration/dehydration reaction has long been identified as a attractive method for storing CSP heat. However, the technology applications are still at laboratory scale (TG or small fixed beds). The objective of this work is to investigate the hydration and dehydration reactions performance in a bubbling fluidized bed (BFB) which offers a good potential with regards to heat and mass transfers and upscaling at industrial level. The reactions are first investigated in a 5.5 kW batch BFB, the main conditions are the bed temperature (400-500°C), the molar fraction of steam in the fluidizing gas (0-0.8), the fluidizing gas velocity (0.2-0.7 m/s) and the mass of lime in the batch (1.5-3.5 kg). To assist in the interpretation of the experimental results, a standard 1D bubbling reactor model is formulated and fitted to the experimental results. The results indicate that the hydration reaction is mainly controlled by the slow kinetics of the CaO material tested while significant emulsion-bubble mass-transfer resistances are identified during dehydration due to the much faster dehydration kinetics. In the continuity of these preliminary investigations, a continuous 15.5 kW BFB set-up has been designed, manufactured and started with the objective to operate the hydration and dehydration reactions in steady state during a few hours, and to investigate conditions of faster reactivity such as higher steam molar fractions (up to 1), temperatures (up to 600°C) and velocities (up to 1.5 m/s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Sedim..63..552J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Sedim..63..552J"><span>Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jablonski, Bryce V. J.; Dalrymple, Robert W.</p> <p>2016-04-01</p> <p>Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north-eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental-scale river in the fluvial-marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine-grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine-grained beds contain rare tidal structures, and are intensely bioturbated by low-diversity ichnofossil assemblages. The alternations between the sand and fine-grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine-grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish-water conditions during times of low-river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial-marine transition that result from changes in river discharge. Sand and fine-grained beds are cyclically organized in the studied outcrops forming metre-scale cycles. A single metre-scale cycle is defined by a sharp base, an upward decrease in sand-bed thickness and upward increases in the preservation of fine-grained beds and the intensity of bioturbation. Metre-scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river-flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial-marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial-marine transition, which in turn provides a powerful tool for determining the palaeo-environmental location of a deposit within the fluvial-marine transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019469','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019469"><span>Evaluation of process errors in bed load sampling using a Dune Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gomez, Basil; Troutman, Brent M.</p> <p>1997-01-01</p> <p>Reliable estimates of the streamwide bed load discharge obtained using sampling devices are dependent upon good at-a-point knowledge across the full width of the channel. Using field data and information derived from a model that describes the geometric features of a dune train in terms of a spatial process observed at a fixed point in time, we show that sampling errors decrease as the number of samples collected increases, and the number of traverses of the channel over which the samples are collected increases. It also is preferable that bed load sampling be conducted at a pace which allows a number of bed forms to pass through the sampling cross section. The situations we analyze and simulate pertain to moderate transport conditions in small rivers. In such circumstances, bed load sampling schemes typically should involve four or five traverses of a river, and the collection of 20–40 samples at a rate of five or six samples per hour. By ensuring that spatial and temporal variability in the transport process is accounted for, such a sampling design reduces both random and systematic errors and hence minimizes the total error involved in the sampling process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1158480-verification-sub-grid-filtered-drag-models-gas-particle-fluidized-beds-immersed-cylinder-arrays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1158480-verification-sub-grid-filtered-drag-models-gas-particle-fluidized-beds-immersed-cylinder-arrays"><span>Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran</p> <p>2014-04-23</p> <p>The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410872B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410872B"><span>The role of rock anisotropy in developing non-Andersonian faults: staircase trajectories for strike-slip faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barchi, M. R.; Collettini, C.; Lena, G.</p> <p>2012-04-01</p> <p>Thrust and normal faults affecting mechanically heterogeneous multilayers often show staircase trajectories, where flat segments follow less competent units. Within flat segments the initiation/reactivation angle, θ, which is the angle that the fault makes with the σ1 direction, is different from that predicted by the Andersonian theory. This suggests that fault trajectory is mainly controlled by rock anisotropy instead of frictional properties of the material. Our study areas are located in the Umbria-Marche fold-thrust belt, within the Northern Apennines of Italy. The area is characterized by a lithologically complex multilayer, about 2000 m thick, consisting of alternated competent (mainly calcareous) and less competent (marls or evaporites) units. At the outcrop scale, some units show a significant mechanical layering, consisting of alternated limestones and shales. Due to the complex tectonic evolution of the Apennines, well developed sets of conjugate normal, thrust and strike-slip faults are exposed in the region. The study outcrop, Candigliano Gourge, is characterized by steep (dip > 60°) NE dipping beds, affected by conjugate sets of strike-slip faults, exposed in the eastern limb of a NE verging anticline. The faults develop within the Marne a Fucoidi Fm., a Cretaceous sedimentary unit, about 70 m thick, made of competent calcareous beds (about 20 cm thick), separated by marly beds (1-20 cm thick). The conjugate strike-slip faults are formed after the major folding phase: in fact the strike-slip faults cut both minor folds and striated bedding surfaces, related to syn-folding flexural slip. Faults show marked staircase trajectories, with straight segments almost parallel to the marly horizons and ramps cutting through the calcareous layers. Slip along these faults induces local block rotation of the competent strata, dilational jogs (pull-aparts), extensional duplexes and boudinage of the competent layers, while marly levels are strongly laminated. In order to reconstruct the σ1 direction, calcite veins syntectonic to strike-slip faulting, have been used to constrain the σ1-σ2 plane: fixing the σ2 direction at the conjugate fault intersection, the σ1 is oriented N15°, forming an angle of about 70° with the bedding direction. Once constrained the σ1 direction, we have calculated the θ angle that is comprised between 40° and 55°, resulting therefore larger than expected from Andersonian theory, i.e. 22°-32° for friction coefficient in the range of 0.5-1.0. Initiation/reactivation angles, θ, as a function of the different lithologies, are less than 35° for calcareous beds, 50°-70° for the marly and clayey layers, and around 60° for the black shales. Our studies, focused on strike-slip small displacement faults, show that: 1) irrespective of the σ1 orientation, ramp and flat form along competent and less competent material respectively and 2) the overall fault orientation/initiation is at high-angle to the σ1 direction. Our results suggest that rock anisotropy and layering are one of the possible causes for faulting at high angle to the σ1 direction, i.e. fault weakness. Further studies are required to up-scale the results of our outcrop-based study to crustal scale structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1039304','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1039304"><span>THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>PROJECT STAFF</p> <p>2011-10-31</p> <p>Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature andmore » electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and discharge temperatures between 1200 C and 600 C, which provides a constant output temperature of 900 C. The charge and discharge time are 8 hours each respectively. This design was integrated into a process flowsheet of a CSP plant and the system's economics were determined using AspenPlus and NREL's Solar Advisory Model. Storage cost is very sensitive to materials cost and was calculated to be based around $40/kWh for cobalt based mixed oxide. It can potentially decrease to $10/kWh based on reduced materials cost on a bulk scale. The corresponding calculated LCOE was between $0.22 and 0.30/kW-h. The high LCOE is a result of the high charging temperature required in this first design and the cost of cobalt oxide. It is expected that a moving bed reactor using manganese oxide will significantly improve the economics of the proposed concept.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=333944','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=333944"><span>Sampling interval analysis and CDF generation for grain-scale gravel bed topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In river hydraulics, there is a continuing need for characterizing bed elevations to arrive at quantitative roughness measures that can be used in predicting flow depth and for improved prediction of fine-sediment transport over and through coarse beds. Recently published prediction methods require...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7831','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7831"><span>Dynamic transport capacity in gravel-bed river systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>T. E. Lisle; B. Smith</p> <p>2003-01-01</p> <p>Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7825','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7825"><span>Overview: Channel morphology and sediment transport in steepland streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>T. E. Lisle</p> <p>1987-01-01</p> <p>Abstract - New understanding of how steepland channels formed is being pursued over a large range of scales, from entrainment of bed particles to the transfer of stored sediment down channel systems. Low submergence of bed particles during transport and wide heterogeneity in particle sizes strongly affect bedload transport. At the scale of a reach, scour-lobes are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910098P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910098P"><span>Morphodynamics of semi-alluvial streams in northern Fennoscandia: a flume experiment to determine bedform self-organization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polvi, Lina</p> <p>2017-04-01</p> <p>Streams in northern Fennoscandia have two characteristics that complicate a process-based understanding of sediment transport affecting channel form: (1) they are typically semi-alluvial, in that they contain coarse glacial legacy sediment, and (2) numerous mainstem lakes buffer sediment and water fluxes. Systematic studies of these streams are complicated because natural reference sites are lacking due to over a century of widespread channel simplification to aid timber-floating. This research is part of a larger project to determine controls on channel geometry and sediment transport at: (1) the catchment scale, examining downstream hydraulic geometry, (2) the reach scale, examining sediment transport, and (3) the bedform scale, examining the potential for predictable bedform formation. The objective of the current study, targeting the bedform scale, was to use a flume experiment to determine whether sediment self-organizes and creates bedforms in semi-alluvial channels. The prototype channels, tributaries to the unregulated Vindel River in northern Sweden that are being restored after timber-floating, contain coarse sediment (D16: 55 mm, D50:250 mm, D84:620 mm) with moderately steep slopes (2-5%) and typically experience snowmelt-flooding and flooding due to ice jams. Using a scaling factor of 8 for Froude number similitude, an 8-m long, 1.1 m wide fixed-bed flume was set up at the Colorado State University Engineering Research Center with a scaled-down sediment distribution analogous to the prototype channels. For two flume setups, with bed slopes of 2% and 5%, four runs were conducted with flows analogous to QBF, Q2, Q10 and Q50 flows in the prototype channels until equilibrium conditions were reached. Digital elevation models (DEMs) of bed topography were constructed before and after each run using structure-from-motion photogrammetry. To examine self-organization of sediment, DEMs of difference between pre-flow conditions and after each flow were created; scour and deposition in relation to large immobile clasts were examined. Preliminary results show that at high flows at the lower slope (2%), fine sediment was deposited above immobile clasts and scour was common below. High flows at the higher slope (5%) caused scour above and occasionally directly below immobile clasts, with fine sediment deposited nearby scour zones above immobile clasts. These results indicate that these channels experience a shielding effect by large immobile clasts, inhibiting bedload transport and creating pockets of fine sediment upstream of large boulders. Additionally, pools downstream of immobile boulders may experience velocity reversals, causing scour instead of deposition in low-velocity zones. In addition, the combined aggradation and degradation between the Q50 and Q10 flows was less than between the Q10 and Q2 flows. This is most likely because the snowmelt-dominated flow regime of northern Sweden with buffering capacity of lakes precludes extremely high flows, causing a small difference in intermediate- and high-recurrence interval flow magnitudes. Therefore, flows with an intermediate recurrence interval likely do the most geomorphic work, but major sediment self-organization as seen in alluvial mountain streams is unlikely barring an extreme event. In conclusion, classical slope-dependent bedform relationships found in alluvial gravel-bed streams may not be applicable in semi-alluvial channels in northern Fennoscandia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780049121&hterms=vacuum+tubes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dvacuum%2Btubes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780049121&hterms=vacuum+tubes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dvacuum%2Btubes"><span>Experimental evaluation of a fixed collector employing vee-trough concentrator and vacuum tube receivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Selcuk, M. K.</p> <p>1977-01-01</p> <p>A test bed for experimental evaluation of a fixed solar collector which combines an evacuated glass tube solar receiver with a flat plate/black chrome plated copper absorber and an asymmetric vee-trough concentrator was designed and constructed. Earlier predictions of thermal performance were compared with test data acquired for a bare vacuum tube receiver; and receiver tubes with Alzak aluminum, aluminized FEP Teflon film laminated sheet metal and second surface ordinary mirror reflectors. Test results and system economics as well as objectives of an ongoing program to obtain long-term performance data are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/30618','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/30618"><span>Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiangyang Zhou; Shankar Mahalingam; David Weise</p> <p>2007-01-01</p> <p>This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22608559-cfd-model-biomass-combustion-packed-bed-furnace','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22608559-cfd-model-biomass-combustion-packed-bed-furnace"><span>A CFD model for biomass combustion in a packed bed furnace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karim, Md. Rezwanul; Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704; Ovi, Ifat Rabbil Qudrat</p> <p></p> <p>Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is themore » most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4252573','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4252573"><span>The Flex Track: Flexible Partitioning between Low- and High-Acuity Areas of an Emergency Department</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Laker, Lauren F.; Froehle, Craig M.; Lindsell, Christopher J.; Ward, Michael J.</p> <p>2014-01-01</p> <p>Study Objective EDs with both low- and high-acuity treatment areas often have fixed allocation of resources, regardless of demand. We demonstrate the utility of discrete-event simulation to evaluate flexible partitioning between low- and high-acuity ED areas to identify the best operational strategy for subsequent implementation. Methods A discrete-event simulation was used to model patient flow through a 50-bed, urban, teaching ED that handles 85,000 patient visits annually. The ED has historically allocated ten beds to a Fast Track for low-acuity patients. We estimated the effect of a Flex Track policy, which involved switching up to five of these Fast Track beds to serving both low- and high-acuity patients, on patient waiting times. When the high-acuity beds were not at capacity, low-acuity patients were given priority access to flexible beds. Otherwise, high-acuity patients were given priority access to flexible beds. Wait times were estimated for patients by disposition and emergency severity index (ESI) score. Results A Flex Track policy using three flexible beds produced the lowest mean patient waiting of 30.9 (95% CI 30.6–31.2) minutes. The typical Fast Track approach of rigidly separating high- and low–acuity beds produced a mean patient wait time of 40.6 (95% CI 40.2–50.0) minutes, 31% higher than the three-bed Flex Track. A completely flexible ED, where all beds can accommodate any patient, produced mean wait times of 35.1 (95% CI 34.8–35.4) minutes. The results from the three-bed Flex Track scenario were robust, performing well across a range of scenarios involving higher and lower patient volumes and care durations. Conclusion Using discrete-event simulation, we have shown that adding some flexibility into bed allocation between low- and high-acuity can provide substantial reductions in overall patient waiting and a more efficient ED. PMID:24954578</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27130161','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27130161"><span>How has the extent of institutional mental healthcare changed in Western Europe? Analysis of data since 1990.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chow, Winnie S; Priebe, Stefan</p> <p>2016-04-29</p> <p>It has been suggested that since 1990, de-institutionalisation of mental healthcare in Western Europe has been reversed into re-institutionalisation with more forensic beds, places in protected housing services and people with mental disorders in prisons. This study aimed to identify changes in the numbers of places in built institutions providing mental healthcare in Western Europe from 1990 to 2012, and to explore the association between changes in psychiatric bed numbers and changes in other institutions. Data were identified from 11 countries on psychiatric hospital beds, forensic beds, protected housing places and prison populations. Fixed effects regression models tested the associations between psychiatric hospital beds with other institutions. The number of psychiatric hospital beds decreased, while forensic beds, places in protected housing and prison populations increased. Overall, the number of reduced beds exceeded additional places in other institutions. There was no evidence for an association of changes in bed numbers with changes in forensic beds and protected housing places. Panel data regression analysis showed that changes in psychiatric bed numbers were negatively associated with rising prison populations, but the significant association disappeared once adjusted for gross domestic product as a potential covariate. Institutional mental healthcare has substantially changed across Western Europe since 1990. There are ongoing overall trends of a decrease in the number of psychiatric hospital beds and an increase in the number of places in other institutions, including prisons. The exact association between these trends and their drivers remains unclear. More reliable data, information on the characteristics of patients in different institutions, long-term pathway analyses and effectiveness studies are required to arrive at evidence-based policies for the provision of institutional mental healthcare. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830001938','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830001938"><span>Literature survey of properties of synfuels derived from coal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flores, F.</p> <p>1982-01-01</p> <p>A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=68979&keyword=supercritical&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=68979&keyword=supercritical&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EXTENDED ALKYLATE PRODUCTION ACTIVITY DURING FIXED-BED SUPERCRITICAL 1-BUTENE/ISOBUTANE ALKYLATION ON SOLID ACID CATALYSTS USING CARBON DIOXIDE AS DILUENT. (R824729)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=279510','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=279510"><span>Ketonization of Cuphea oil for the production of 2-undecanone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1041083-interplay-metalloligand-organic-ligand-tune-micropores-within-isostructural-mixed-metal-organic-frameworks-mofs-highly-selective-separation-chiral-achiral-small-molecules','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1041083-interplay-metalloligand-organic-ligand-tune-micropores-within-isostructural-mixed-metal-organic-frameworks-mofs-highly-selective-separation-chiral-achiral-small-molecules"><span>Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Madhab, Das; He, Yabing; Kim, Jaheon</p> <p>2012-01-01</p> <p>Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined andmore » compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27591517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27591517"><span>Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yeshanew, Martha M; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni</p> <p>2016-11-01</p> <p>The continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3)L H2/kgVSadded and 334.7 (±18.6)L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0-5.3) for the hydrogen producing bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23376092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23376092"><span>Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Auta, M; Hameed, B H</p> <p>2013-05-01</p> <p>A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28892680','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28892680"><span>Removal and recovery of acetic acid and two furans during sugar purification of simulated phenols-free biomass hydrolysates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Sang Cheol</p> <p>2017-12-01</p> <p>A cost-effective five-step sugar purification process involving simultaneous removal and recovery of fermentation inhibitors from biomass hydrolysates was first proposed here. Only the three separation steps (PB, PC and PD) in the process were investigated here. Furfural was selectively removed up to 98.4% from a simulated five-component hydrolysate in a cross-current three-stage extraction system with n-hexane. Most of acetic acid in a simulated four-component hydrolysate was selectively removed by emulsion liquid membrane, and it could be concentrated in the stripping solution up to 4.5 times its initial concentration in the feed solution. 5-Hydroxymethylfurfural was selectively removed from a simulated three-component hydrolysate in batch and continuous fixed-bed column adsorption systems with L-493 adsorbent. Also, 5-hydroxymethylfurfural could be concentrated to about 9 times its feed concentration in the continuous adsorption system through a fixed-bed column desorption experiment with aqueous ethanol solution. These results have shown that the proposed purification process was valid. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23819972','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23819972"><span>Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Jingwei; Wu, Jinglan; Liu, Yanan; Zou, Fengxia; Wu, Jian; Li, Kechun; Chen, Yong; Xie, Jingjing; Ying, Hanjie</p> <p>2013-09-01</p> <p>The adsorption of quaternary mixtures of ethanol/glycerol/glucose/acetic acid onto a microporous hyper-cross-linked resin HD-01 was studied in fixed beds. A mass transport model based on film solid linear driving force and the competitive Langmuir isotherm equation for the equilibrium relationship was used to develop theoretical fixed bed breakthrough curves. It was observed that the outlet concentration of glucose and glycerol exceeded the inlet concentration (c/c0>1), which is an evidence of competitive adsorption. This phenomenon can be explained by the displacement of glucose and glycerol by ethanol molecules, owing to more intensive interactions with the resin surface. The model proposed was validated using experimental data and can be capable of foresee reasonably the breakthrough curve of specific component under different operating conditions. The results show that HD-01 is a promising adsorbent for recovery of ethanol from the fermentation broth due to its large capacity, high selectivity, and rapid adsorption rate. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28601774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28601774"><span>Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kabir, G; Mohd Din, A T; Hameed, B H</p> <p>2017-10-01</p> <p>Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25463787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25463787"><span>Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qian, Yangyang; Zhang, Jie; Wang, Jie</p> <p>2014-12-01</p> <p>The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time". Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11575085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11575085"><span>Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Picanço, A P; Vallero, M V; Gianotti, E P; Zaiat, M; Blundi, C E</p> <p>2001-01-01</p> <p>This paper reports on the influence of the material porosity on the anaerobic biomass adhesion on four different inert matrices: polyurethane foam, PVC, refractory brick and special ceramic. The biofilm development was performed in a fixed-bed anaerobic reactor containing all the support materials and fed with a synthetic wastewater containing protein, lipids and carbohydrates. The data obtained from microscopic analysis and kinetic assays indicated that the material porosity has a crucial importance in the retention of the anaerobic biomass. The polyurethane foam particles and the special ceramic were found to present better retentive properties than the PVC and the refractory brick. The large specific surface area, directly related to material porosity, is fundamental to provide a large amount of attached biomass. However, different supports can provide specific conditions for the adherence of distinct microorganism types. The microbiological exams revealed a distinction in the support colonization. A predominance of methanogenic archaeas resembling Methanosaeta was observed both in the refractory brick and the special ceramic. Methanosarcina-like microorganisms were predominant in the PVC and the polyurethane foam matrices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28601776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28601776"><span>Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terboven, Christiane; Ramm, Patrice; Herrmann, Christiane</p> <p>2017-10-01</p> <p>A newly developed fixed bed disc reactor (FBDR) which combines biofilm formation on biofilm carriers and reactor agitation in one single system was assessed for its applicability to demand-driven biogas production by variable feeding of sugar beet silage. Five different feeding patterns were studied at an organic loading of 4g VS L -1 d -1 under mesophilic and thermophilic conditions. High methane yields of 449-462L N kg VS were reached. Feeding variable punctual loadings caused immediate response with 1.2- to 3.5-fold increase in biogas production rates within 15min. Although variable feeding did not induce process instability, a temporary decrease in pH-value and methane concentration below 40% occurred. Thermophilic temperature was advantageous as it resulted in a more rapid, higher methane production and less pronounced decrease in methane content after feeding. The FBDR was demonstrated to be well-suited for flexible biogas production, but further research and comparison with traditional reactor systems are required. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26512669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26512669"><span>Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fremerey, Peter; Jess, Andreas; Moos, Ralf</p> <p>2015-10-23</p> <p>In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.908a2073I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.908a2073I"><span>Co-pyrolysis of rice straw and Polyethylene Terephthalate (PET) using a fixed bed drop type pyrolyzer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.</p> <p>2017-10-01</p> <p>In this work, co-pyrolysis of rice straw and polyethylene terephthalate (PET) was carried out at different temperatures (450,500,550, and 600°C) at ratio 1:1 by using fixed bed drop-type pyrolyzer. The purpose of this work is to determine the effect of pyrolysis temperature on the product yield. As the temperature increased, the pyrolysis oil increased until it reaches certain high temperature (600°C), the pyrolysis oil decreased as of more NCG were produced. The temperature 550°C is considered as the optimum pyrolysis temperature since it produced the highest amount of pyrolysis oil with 36 wt.%. In pyrolysis oil, the calorific value (13.98kJ/g) was low because of the presence of high water content (52.46 wt.%). Main chemicals group from pyrolysis oil were an aldehyde, ketones, acids, aromatics, and phenol and all compound have abundant of hydrogen and carbon were identified. Co-pyrolysis of rice straw and PET produced a higher amount of carbon oxides and recycling back the NCG could increase liquid and char yields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6652302','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6652302"><span>Programmed temperature gasification study. Final report, October 1, 1979-November 30, 1980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Spoon, M.J.; Gardner, M.P.; Starkovich, J.A.</p> <p></p> <p>An experimental, modeling and conceptual engineering analysis study has been performed to assess the feasibility of TRW's Programmed Temperature Gasification (PTG) concept for carbonizing caking coals without severe agglomeration. The concept involves control of carbonizing heating rate to maintain metaplast concentration at a level equal to or slightly below that which causes agglomeration. The experimental studies required the contruction of a novel programmed temperature, elevated pressure, hot stage video microscope for observation of coal particle changes during heating. This system was used to develop a minimum-time heating schedule capable of carbonizing the coal at elevated pressures in the presence ofmore » hydrogen without severe agglomeration. Isothermal fixed heating rate data for a series of coals were subsequently used to calibrate and verify the mathematical model for the PTG process. These results showed good correlation between experimental data and mathematical predictions. Commercial application of the PTG concept to batch, moving bed and fluid bed processing schemes was then evaluated. Based on the calibrated model programmed temperature gasification of the coal without severe agglomeration could be carried out on a commercial batch reaction in 4 to 12 minutes. The next step in development of the PTG concept for commercial application would require testing on a bench scale (3-inch diameter) gasifier coupled with a full commercial assessment to determine size and cost of various gasification units.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESSD....9..267G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESSD....9..267G"><span>A high-resolution synthetic bed elevation grid of the Antarctic continent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, Felicity S.; Roberts, Jason L.; Galton-Fenzi, Ben K.; Young, Duncan; Blankenship, Donald; Siegert, Martin J.</p> <p>2017-05-01</p> <p>Digital elevation models of Antarctic bed topography are smoothed and interpolated onto low-resolution ( > 1 km) grids as current observed topography data are generally sparsely and unevenly sampled. This issue has potential implications for numerical simulations of ice-sheet dynamics, especially in regions prone to instability where detailed knowledge of the topography, including fine-scale roughness, is required. Here, we present a high-resolution (100 m) synthetic bed elevation terrain for Antarctica, encompassing the continent, continental shelf, and seas south of 60° S. Although not identically matching observations, the synthetic bed surface - denoted as HRES - preserves topographic roughness characteristics of airborne and ground-based ice-penetrating radar data measured by the ICECAP (Investigating the Cryospheric Evolution of the Central Antarctic Plate) consortium or used to create the Bedmap1 compilation. Broad-scale ( > 5 km resolution) features of the Antarctic landscape are incorporated using a low-pass filter of the Bedmap2 bed elevation data. HRES has applicability in high-resolution ice-sheet modelling studies, including investigations of the interaction between topography, ice-sheet dynamics, and hydrology, where processes are highly sensitive to bed elevations and fine-scale roughness. The data are available for download from the Australian Antarctic Data Centre (<a href="http://dx.doi.org/10.4225/15/57464ADE22F50" target="_blank">doi:10.4225/15/57464ADE22F50</a>).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP31E..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP31E..06V"><span>Self-formed meandering river created in the laboratory using an upstream migrating boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Dijk, W. M.; van de Lageweg, W. I.; Kleinhans, M. G.</p> <p>2010-12-01</p> <p>Braided rivers are relatively easily formed in the laboratory, whereas self-formed meandering rivers in the lab have proven very difficult to form, indicating a lack of understanding of the necessary and sufficient conditions for meandering. Our objective is to create self-formed dynamic meandering rivers and floodplains in a laboratory. Early experiments attempted to initiate meandering with upstream inflow at a fixed angle different from the general flow direction. The resulting bends were fixed at one position, which is not the dynamic meandering observed in nature. Another important condition for meandering is to have banks stronger than the non-cohesive bed sediment, which has been attained by growing vegetation. Furthermore, finer or light-weight sediment has been used to let chute channels fill up where otherwise multi-thread channels would have evolved, which is braiding. Yet the fixed-angle inflow kept meander migration and channel belt width and complexity limited. We accomplished dynamic meandering in the laboratory by using an upstream migrating boundary, which simulates a meander migrating into the flume. Our experiments were conducted in a circulated flume of 11x6 meter, with a constant discharge and sediment feed consisting of a sediment mixture ranging from silt to fine gravel (Kleinhans et al., 2010, this conference). The downstream boundary is a lake into which the river built a branched fan delta (Van de Lageweg et al., 2010, this conference). The morphology was recorded by high-resolution (0.5 mm) line-laser scanning and digital Single Lens Reflex (SLR) camera used for channel-floodplain segmentation and particle size estimation, at an interval of 8 hours. Furthermore a large number of smaller-scale auxiliary experiments were conducted to explore meandering tendency in a large range of parameters. Initial alternate ‘forced’ bars were formed at fixed positions with low sinuosity when the upstream boundary was at one fixed position. Migration of the upstream boundary caused further erosion of the outer banks and formation of point bars in inner bends, so that sinuosity increased to about 1.25. When the upstream boundary reversed migration direction chute cut-offs formed and meander bends reformed in the opposite direction. Hence in the first meander sweep the reworked floodplain showed nodes and antinodes at a wave length in agreement with linear bar stability analysis. After 260 hours experimental time the floodplain had become much more complex, exhibiting meandering channels, point bars, chutes, abandoned and partially filled channels, and slightly cohesive floodplains similar to natural meandering gravel-bed rivers such as the Allier near Moulins (France) and the Rhine near Emmerich (Germany). The flow became even more confined to a single-thread channel when pulses of silica flour were fed during short flood events, which significantly enhanced cohesive floodplain formation. The strengthened floodplains decreased channel mobility, however. We conclude that the necessary and sufficient conditions for meandering are a dynamic upstream boundary and active floodplain formation by fines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1339639','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1339639"><span>Sorption Modeling and Verification for Off-Gas Treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas</p> <p>2016-12-20</p> <p>This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO 2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO 2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO 2 absorption. A computer code was developed to implement CO 2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ983644.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ983644.pdf"><span>Multiple Intelligence and Digital Learning Awareness of Prospective B.Ed Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gracious, F. L. Antony; Shyla, F. L. Jasmine Anne</p> <p>2012-01-01</p> <p>The present study Multiple Intelligence and Digital Learning Awareness of prospective B.Ed teachers was probed to find the relationship between Multiple Intelligence and Digital Learning Awareness of Prospective B.Ed Teachers. Data for the study were collected using self made Multiple Intelligence Inventory and Digital Learning Awareness Scale.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20905879-meat-bone-meal-secondary-fuel-fluidized-bed-combustion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20905879-meat-bone-meal-secondary-fuel-fluidized-bed-combustion"><span>Meat and bone meal as secondary fuel in fluidized bed combustion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>L. Fryda; K. Panopoulos; P. Vourliotis</p> <p>2007-07-01</p> <p>Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20830924','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20830924"><span>Effects of natural organic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fairey, Julian L; Wahman, David G; Lowry, Gregory V</p> <p>2010-01-01</p> <p>In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3572098','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3572098"><span>Do More Hospital Beds Lead to Higher Hospitalization Rates? A Spatial Examination of Roemer’s Law</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Delamater, Paul L.; Messina, Joseph P.; Grady, Sue C.; WinklerPrins, Vince; Shortridge, Ashton M.</p> <p>2013-01-01</p> <p>Background Roemer’s Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer’s Law. We pose the question, “Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?” Methods We employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions. Results We find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis. Conclusions This study provides evidence for the effects of Roemer’s Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified. PMID:23418432</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53F..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53F..03D"><span>Unexpected consequences of bedload diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devauchelle, O.; Abramian, A.; Lajeunesse, E.</p> <p>2017-12-01</p> <p>Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021544','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021544"><span>Spatially averaged flow over a wavy boundary revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McLean, S.R.; Wolfe, S.R.; Nelson, J.M.</p> <p>1999-01-01</p> <p>Vertical profiles of streamwise velocity measured over bed forms are commonly used to deduce boundary shear stress for the purpose of estimating sediment transport. These profiles may be derived locally or from some sort of spatial average. Arguments for using the latter procedure are based on the assumption that spatial averaging of the momentum equation effectively removes local accelerations from the problem. Using analogies based on steady, uniform flows, it has been argued that the spatially averaged velocity profiles are approximately logarithmic and can be used to infer values of boundary shear stress. This technique of using logarithmic profiles is investigated using detailed laboratory measurements of flow structure and boundary shear stress over fixed two-dimensional bed forms. Spatial averages over the length of the bed form of mean velocity measurements at constant distances from the mean bed elevation yield vertical profiles that are highly logarithmic even though the effect of the bottom topography is observed throughout the water column. However, logarithmic fits of these averaged profiles do not yield accurate estimates of the measured total boundary shear stress. Copyright 1999 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28836237','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28836237"><span>Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salvi, Harshada M; Kamble, Manoj P; Yadav, Ganapati D</p> <p>2018-02-01</p> <p>With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1818317B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1818317B"><span>Lagrangian and Eulerian description of bed-load particle kinematics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballio, Francesco; Sadabadi, Seyed Abbas Hosseini; Pokrajac, Dubravka; Radice, Alessio</p> <p>2016-04-01</p> <p>The motion of bed-load sediment particles transported by a flow can be analyzed within a Lagrangian or an Eulerian framework. In the former case, we consider the particles as individual objects in motion and we study their kinematic properties. The latter approach is instead referred to suitably chosen control volumes. Quantities describing sediment motion in the two frameworks are different, and the relationships among the two approaches are not straightforward. In this work, we intend to discuss the kinematic properties of sediment transport: first, a set of quantities is univocally defined; then, relationships among different representations are explored. Proof-of-concept results presented in the study are from a recent experiment involving weak bed-load sediment transport, where the moving particles were released over a fixed rough bed. The bulk flow velocity was 1.4 times the critical value for incipient particle motion, and particles were mostly moving by rolling and sliding, with limited saltation. The particle motion was filmed from the top and the measurements were conducted by image-based methods, obtaining extensive samples of virtually-instantaneous quantities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MAR.V1290M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MAR.V1290M"><span>Lagrangian Approach to Study Catalytic Fluidized Bed Reactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration</p> <p>2013-03-01</p> <p>Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20400226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20400226"><span>Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer-clay composite adsorbent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Unuabonah, Emmanuel I; Olu-Owolabi, Bamidele I; Fasuyi, Esther I; Adebowale, Kayode O</p> <p>2010-07-15</p> <p>Kaolinite clay was treated with polyvinyl alcohol to produce a novel water-stable composite called polymer-clay composite adsorbent. The modified adsorbent was found to have a maximum adsorption capacity of 20,400+/-13 mg/L (1236 mg/g) and a maximum adsorption rate constant of approximately = 7.45x10(-3)+/-0.0002 L/(min mg) at 50% breakthrough. Increase in bed height increased both the breakpoint and exhaustion point of the polymer-clay composite adsorbent. The time for the movement of the Mass Transfer Zone (delta) down the column was found to increase with increasing bed height. The presence of preadsorbed electrolyte and regeneration were found to reduce this time. Increased initial Cd(2+) concentration, presence of preadsorbed electrolyte, and regeneration of polymer-clay composite adsorbent reduced the volume of effluent treated. Premodification of polymer-clay composite adsorbent with Ca- and Na-electrolytes reduced the rate of adsorption of Cd(2+) onto polymer-clay composite and lowered the breakthrough time of the adsorbent. Regeneration and re-adsorption studies on the polymer-clay composite adsorbent presented a decrease in the bed volume treated at both the breakpoint and exhaustion points of the regenerated bed. Experimental data were observed to show stronger fits to the Bed Depth Service Time (BDST) model than the Thomas model. 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17513048','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17513048"><span>Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quintanilla, A; Fraile, A F; Casas, J A; Rodríguez, J J</p> <p>2007-07-31</p> <p>Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T=23-100 degrees C, P(T)=1-8atm, W=0-2.5g, and tau=20-320g(CAT)h/g(Phenol)). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 degrees C, 2atm, and 40g(CAT)h/g(Phenol). However, TOC conversion values remain fairly low, (around 5% at 40g(CAT)h/g(Phenol)), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 degrees C and 8atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25714631','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25714631"><span>Evaluation of different configurations of hybrid membrane bioreactors for treatment of domestic wastewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cuevas-Rodríguez, G; Cervantes-Avilés, P; Torres-Chávez, I; Bernal-Martínez, A</p> <p>2015-01-01</p> <p>Four membrane bioreactors (MBRs) with the same dimensions were studied for 180 days: three hybrid growth membrane bioreactors with biofilm attached in different packing media and a conventional MBR (C-MBR). The four MBRs had an identical membrane module of hollow fiber with a nominal porous diameter of 0.4 μm. The MBRs were: (1) a C-MBR; (2) a moving bed membrane bioreactor (MB-MBR), which was packed with 2 L of carrier Kaldnes-K1, presenting an exposed surface area of 678.90 m²/m³; (3) a non-submerged organic fixed bed (OFB-MBR) packed with 6.5 L of organic packing media composed of a mixture of cylindrical pieces of wood, providing an exposed surface area of 178.05 m²/m³; and (4) an inorganic fixed bed non-submerged membrane bioreactor (IFB-MBR) packed with 6 L of spherical volcanic pumice stone with an exposed surface area of 526.80 m²/m³. The four MBRs were fed at low organic loading (0.51 ± 0.19 kgCOD/m³ d). The results were recorded according to the behavior of the total resistance, transmembrane pressure (TMP), permeability, and removal percentages of the nutrients during the experimental time. The results showed that the MB-MBR presented the better performance on membrane filtration, while the higher nutrient removals were detected in the OFB-MBR and IFB-MBR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25151243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25151243"><span>Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guimarães, Damaris; Leão, Versiane A</p> <p>2014-09-15</p> <p>This paper investigated sulphate removal from aqueous solutions by Amberlyst A21, a polystyrene weak base ion exchange resin. Both the pH and initial sulphate concentration were observed to strongly affect sorption yields, which were largest in acidic environments. Working under optimum operational conditions, sulphate sorption by Amberlyst A21 was relatively fast and reached equilibrium after 45 min of contact between the solid and liquid phases. Sorption kinetics could be described by either the pseudo-first order (k1=3.05 × 10(-5)s(-1)) or pseudo-second order model (k2=1.67 × 10(-4)s(-1)), and both the Freundlich and Langmuir models successfully fitted the equilibrium data. Sulphate uptake by Amberlyst A21 was a physisorption process (ΔH=-25.06 kJ mol(-1)) that occurred with entropy reduction (ΔS=-0.042 kJ mol(-1)K(-1)). Elution experiments showed that sulphate is easily desorbed (∼ 100%) from the resin by sodium hydroxide solutions at pH 10 or pH 12. Fixed-bed experiments assessed the effects of the initial sulphate concentration, bed height and flow rate on the breakthrough curves and the efficiency of the Amberlyst A21 in the treatment of a real effluent. In all studied conditions, the maximum sulphate loading resin varied between 8 and 40 mg(SO4(2-))mL(resin)(-1). Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998RScI...69.1850W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998RScI...69.1850W"><span>Design of a laboratory scale fluidized bed reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wikström, E.; Andersson, P.; Marklund, S.</p> <p>1998-04-01</p> <p>The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20969883-pilot-scale-so-sub-control-dry-sodium-bicarbonate-injection-electrostatic-precipitator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20969883-pilot-scale-so-sub-control-dry-sodium-bicarbonate-injection-electrostatic-precipitator"><span>Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pliat, M.J.; Wilder, J.M.</p> <p>2007-10-15</p> <p>A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations weremore » measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9007V"><span>Comparisons of Derived Metrics from Computed Tomography (CT) Scanned Images of Fluvial Sediment from Gravel-Bed Flume Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David</p> <p>2016-04-01</p> <p>Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=106813&Lab=NERL&keyword=chemical+AND+engineering+AND+reactions&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=106813&Lab=NERL&keyword=chemical+AND+engineering+AND+reactions&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17223249','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17223249"><span>Anaerobic-aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pophali, G R; Khan, R; Dhodapkar, R S; Nandy, T; Devotta, S</p> <p>2007-12-01</p> <p>This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26061904','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26061904"><span>Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Yong-Ho; Chung, Jinwook</p> <p>2015-01-01</p> <p>This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1114762','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1114762"><span>CFD-DEM study of effect of bed thickness for bubbling fluidized beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul</p> <p>2011-10-01</p> <p>The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001243','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001243"><span>Advanced CO2 Removal and Reduction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.</p> <p>2011-01-01</p> <p>An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........66G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........66G"><span>An adaptable, low cost test-bed for unmanned vehicle systems research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goppert, James M.</p> <p>2011-12-01</p> <p>An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28034420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28034420"><span>Water softening by induced crystallization in fluidized bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel</p> <p>2016-12-01</p> <p>Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5371367','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5371367"><span>Efficiency and optimal size of hospitals: Results of a systematic search</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Guglielmo, Annamaria</p> <p>2017-01-01</p> <p>Background National Health Systems managers have been subject in recent years to considerable pressure to increase concentration and allow mergers. This pressure has been justified by a belief that larger hospitals lead to lower average costs and better clinical outcomes through the exploitation of economies of scale. In this context, the opportunity to measure scale efficiency is crucial to address the question of optimal productive size and to manage a fair allocation of resources. Methods and findings This paper analyses the stance of existing research on scale efficiency and optimal size of the hospital sector. We performed a systematic search of 45 past years (1969–2014) of research published in peer-reviewed scientific journals recorded by the Social Sciences Citation Index concerning this topic. We classified articles by the journal’s category, research topic, hospital setting, method and primary data analysis technique. Results showed that most of the studies were focussed on the analysis of technical and scale efficiency or on input / output ratio using Data Envelopment Analysis. We also find increasing interest concerning the effect of possible changes in hospital size on quality of care. Conclusions Studies analysed in this review showed that economies of scale are present for merging hospitals. Results supported the current policy of expanding larger hospitals and restructuring/closing smaller hospitals. In terms of beds, studies reported consistent evidence of economies of scale for hospitals with 200–300 beds. Diseconomies of scale can be expected to occur below 200 beds and above 600 beds. PMID:28355255</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7378P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7378P"><span>Experimental implementation of parallel riverbed erosion to study vegetation uprooting by flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît</p> <p>2014-05-01</p> <p>In nature, flow erosion leading to the uprooting of vegetation is often a delayed process that gradually reduces anchoring by root exposure and correspondingly increases drag on the exposed biomass. The process determining scouring or deposition of the riverbed, and consequently plant root exposure is complex and scale dependent. At the local scale, it is hydrodynamically driven and depends on obstacle porosity, as well as sediment vs obstacle size ratio. At a larger scale it results from morphodynamic conditions, which mostly depend on riverbed topography and stream bedload transport capacity. In the latter case, ablation of sediment gradually reduces local bed elevation around the obstacle at a scale larger than the obstacle size, and uprooting eventually occurs when flow drag exceeds the residual anchoring. Ideally, one would study the timescales of vegetation uprooting by flow by inducing parallel bed erosion. This condition is not trivial to obtain experimentally because bed elevation adjustments occur in relation to longitudinal changes in sediment apportion as described by Exner's equation. In this work, we study the physical conditions leading to parallel bed erosion by reducing Exner equation closed for bedload transport to a nonlinear partial differential equation, and showing that this is a particular "boundary value" problem. Eventually, we use the data of Edmaier (2014) from a small scale mobile-bed flume setup to verify the proposed theoretical framework, and to show how such a simple experiment can provide useful insights into the timescales of the uprooting process (Edmaier et al., 2011). REFERENCES - Edmaier, K., P. Burlando, and P. Perona (2011). Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment. Hydrology and Earth System Sciences, vol. 15, p. 1615-1627. - Edmaier, K. Uprooting mechanisms of juvenile vegetation by flow. PhD thesis, EPFL, in preparation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044403','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044403"><span>Thresholds of flow-induced bed disturbances and their effects on stream metabolism in an agricultural river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Connor, Ben L.; Harvey, Judson W.; McPhillips, Lauren E.</p> <p>2012-01-01</p> <p>Storm-driven flow pulses in rivers destroy and restructure sediment habitats that affect stream metabolism. This study examined thresholds of bed disturbances that affected patch- and reach-scale sediment conditions and metabolism rates. A 4 year record of discharge and diel changes in dissolved oxygen concentrations (ΔDO) was analyzed for disturbances and recovery periods of the ΔDO signal. Disturbances to the ΔDO signal were associated with flow pulses, and the recovery times for the ΔDO signal were found to be in two categories: less than 5 days (30% of the disturbances) or greater than 15 days (70% of the disturbances). A field study was performed during the fall of 2007, which included a storm event that increased discharge from 3.1 to 6.9 m3/s over a 7 h period. During stable flow conditions before the storm, variability in patch-scale stream metabolism values were associated with sediment texture classes with values ranging from −16.4 to 2.3 g O22/d (negative sign indicates net respiration) that bounded the reach-averaged rate of −5.6 g O22/d. Hydraulic modeling of bed shear stresses demonstrated a storm-induced flow pulse mobilized approximately 25% of the bed and reach-scale metabolism rates shifted from −5 to −40 g O22/d. These results suggest that storm-induced bed disturbances led to threshold behavior with respect to stream metabolism. Small flow pulses resulted in partial-bed mobilization that disrupted stream metabolism by increased turbidity with short recovery times. Large flow pulses resulted in full-bed mobilization that disrupted stream metabolism by destroying periphyton habitats with long recovery times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14006019M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14006019M"><span>Fluidization of spherocylindrical particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.</p> <p>2017-06-01</p> <p>Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRF..117.0A05E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRF..117.0A05E"><span>Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eaton, B. C.; Hassan, M. A.; Davidson, S. L.</p> <p>2012-12-01</p> <p>In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive physical habitats than efforts using LW pieces that are free to move, interact, and form LW jams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA428648','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA428648"><span>Occupational Survey Report. AFSC 4A2X1 Biomedical Equipment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2004-05-01</p> <p>Electrocardiograms 70 Hospital Beds, Electric 67 Surgical Lamps 67 Hospital Beds, Manual 66 Audiometers 64 Dental Curing Units 63 Dental Handpieces 63...Pumps 78 Pulse Oximeters 78 Dental Chairs 76 Blood Pressure Monitors, Automatic 74 Examination Lamps 72 Examination Tables 72 Blood Pressure Cuffs 71...Exercise Bicycles 63 Dental Amalgamators 62 Scales or Balances, other than Pediatric 62 Scales or Balances, Pediatric 61 First-Enlistment Personnel</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019678','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019678"><span>Characterisation of physical environmental factors on an intertidal sandflat, Manukau Harbour, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bell, R.G.; Hume, T.M.; Dolphin, T.J.; Green, M.O.; Walters, R.A.</p> <p>1997-01-01</p> <p>Physical environmental factors, including sediment characteristics, inundation time, tidal currents and wind waves, likely to influence the structure of the benthic community at meso-scales (1-100 m) were characterised for a sandflat off Wiroa Island (Manukau Harbour, New Zealand). In a 500 x 250 m study site, sediment characteristics and bed topography were mostly homogenous apart from patches of low-relief ridges and runnels. Field measurements and hydrodynamic modelling portray a complex picture of sediment or particulate transport on the intertidal flat, involving interactions between the larger scale tidal processes and the smaller scale wave dynamics (1-4 s; 1-15 m). Peak tidal currents in isolation are incapable of eroding bottom sediments, but in combination with near-bed orbital currents generated by only very small wind waves, sediment transport can be initiated. Work done on the bed integrated over an entire tidal cycle by prevailing wind waves is greatest on the elevated and flatter slopes of the study site, where waves shoal over a wider surf zone and water depths remain shallow e enough for wave-orbital currents to disturb the bed. The study also provided physical descriptors quantifying static and hydrodynamic (tidal and wave) factors which were used in companion studies on ecological spatial modelling of bivalve distributions and micro-scale sediment reworking and transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........21M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........21M"><span>Small-scale fixed wing airplane software verification flight test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Natasha R.</p> <p></p> <p>The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24954578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24954578"><span>The flex track: flexible partitioning between low- and high-acuity areas of an emergency department.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laker, Lauren F; Froehle, Craig M; Lindsell, Christopher J; Ward, Michael J</p> <p>2014-12-01</p> <p>Emergency departments (EDs) with both low- and high-acuity treatment areas often have fixed allocation of resources, regardless of demand. We demonstrate the utility of discrete-event simulation to evaluate flexible partitioning between low- and high-acuity ED areas to identify the best operational strategy for subsequent implementation. A discrete-event simulation was used to model patient flow through a 50-bed, urban, teaching ED that handles 85,000 patient visits annually. The ED has historically allocated 10 beds to a fast track for low-acuity patients. We estimated the effect of a flex track policy, which involved switching up to 5 of these fast track beds to serving both low- and high-acuity patients, on patient waiting times. When the high-acuity beds were not at capacity, low-acuity patients were given priority access to flexible beds. Otherwise, high-acuity patients were given priority access to flexible beds. Wait times were estimated for patients by disposition and Emergency Severity Index score. A flex track policy using 3 flexible beds produced the lowest mean patient waiting time of 30.9 minutes (95% confidence interval [CI] 30.6 to 31.2 minutes). The typical fast track approach of rigidly separating high- and low-acuity beds produced a mean patient wait time of 40.6 minutes (95% CI 40.2 to 50.0 minutes), 31% higher than that of the 3-bed flex track. A completely flexible ED, in which all beds can accommodate any patient, produced mean wait times of 35.1 minutes (95% CI 34.8 to 35.4 minutes). The results from the 3-bed flex track scenario were robust, performing well across a range of scenarios involving higher and lower patient volumes and care durations. Using discrete-event simulation, we have shown that adding some flexibility into bed allocation between low and high acuity can provide substantial reductions in overall patient waiting and a more efficient ED. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19369066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19369066"><span>Sludge dewatering and stabilization in drying reed beds: characterization of three full-scale systems in Catalonia, Spain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uggetti, Enrica; Llorens, Esther; Pedescoll, Anna; Ferrer, Ivet; Castellnou, Roger; García, Joan</p> <p>2009-09-01</p> <p>Optimization of sludge management can help reducing sludge handling costs in wastewater treatment plants. Sludge drying reed beds appear as a new and alternative technology which has low energy requirements, reduced operating and maintenance costs, and causes little environmental impact. The objective of this work was to evaluate the efficiency of three full-scale drying reed beds in terms of sludge dewatering, stabilization and hygienisation. Samples of influent sludge and sludge accumulated in the reed beds were analysed for pH, Electrical Conductivity, Total Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand, Biochemical Oxygen Demand, nutrients (Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP)), heavy metals and faecal bacteria indicators (Escherichiacoli and Salmonella spp.). Lixiviate samples were also collected. There was a systematic increase in the TS concentration from 1-3% in the influent to 20-30% in the beds, which fits in the range obtained with conventional dewatering technologies. Progressive organic matter removal and sludge stabilization in the beds was also observed (VS concentration decreased from 52-67% TS in the influent to 31-49% TS in the beds). Concentration of nutrients of the sludge accumulated in the beds was quite low (TKN 2-7% TS and TP 0.04-0.7% TS), and heavy metals remained below law threshold concentrations. Salmonella spp. was not detected in any of the samples, while E. coli concentration was generally lower than 460MPN/g in the sludge accumulated in the beds. The studied systems demonstrated a good efficiency for sludge dewatering and stabilization in the context of small remote wastewater treatment plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16853786','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16853786"><span>Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leinweber, Felix C; Tallarek, Ulrich</p> <p>2005-11-24</p> <p>We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11088412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11088412"><span>Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Höfler, K; Schwarzer, S</p> <p>2000-06-01</p> <p>Building on an idea of Fogelson and Peskin [J. Comput. Phys. 79, 50 (1988)] we describe the implementation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three dimensions for (i) single falling particles and (ii) a fluid flowing through a bed of fixed spheres. In the context of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results are compared with experimental and other numerical results both in the viscous and inertial regime and we find very satisfactory agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14003078J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14003078J"><span>Scaling of wet granular flows in a rotating drum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jarray, Ahmed; Magnanimo, Vanessa; Ramaioli, Marco; Luding, Stefan</p> <p>2017-06-01</p> <p>In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling) yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3053/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3053/"><span>Geologic Map of Upper Cretaceous and Tertiary Strata and Coal Stratigraphy of the Paleocene Fort Union Formation, Rawlins-Little Snake River Area, South-Central Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hettinger, R.D.; Honey, J.G.; Ellis, M.S.; Barclay, C.S.V.; East, J.A.</p> <p>2008-01-01</p> <p>This report provides a map and detailed descriptions of geologic formations for a 1,250 square mile region in the Rawlins-Little Snake River coal field in the eastern part of the Washakie and Great Divide Basins of south-central Wyoming. Mapping of geologic formations and coal beds was conducted at a scale of 1:24,000 and compiled at a scale of 1:100,000. Emphasis was placed on coal-bearing strata of the China Butte and Overland Members of the Paleocene Fort Union Formation. Surface stratigraphic sections were measured and described and well logs were examined to determine the lateral continuity of individual coal beds; the coal-bed stratigraphy is shown on correlation diagrams. A structure contour and overburden map constructed on the uppermost coal bed in the China Butte Member is also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29172962','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29172962"><span>Treatment of mature landfill leachate using hybrid processes of hydrogen peroxide and adsorption in an activated carbon fixed bed column.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eljaiek-Urzola, Monica; Guardiola-Meza, Luis; Ghafoori, Samira; Mehrvar, Mehrab</p> <p>2018-02-23</p> <p>In this study, the treatment of mature landfill leachate is evaluated by oxidation with hydrogen peroxide (H 2 O 2 ) combined with adsorption in a granular activated carbon (GAC) fixed bed column to determinate the increase in the biodegradability index, the reduction of chemical oxygen demand (COD) as well as the increase in the useful life of the GAC bed. The sample leachate from Loma de Los Cocos Landfill (Cartagena de Indias, Colombia) has a very low biodegradability ratio ranging from 0.034 to 0.048 that makes it difficult to meet the required water quality level according to the regulations. The COD removal is initially monitored in the H 2 O 2 oxidation treatment process. The operating conditions such as pH, H 2 O 2 dosage, and the reaction time are optimized in this process based on the percentage of COD removal. A maximum COD removal of 29.9% is achieved at an initial H 2 O 2 concentration of 5000 mg L -1 with a pH of 8 and the reaction time of 60 min. The hybrid treatment by H 2 O 2 -GAC achieved 97.3% COD removal and 116% increase in the biodegradability ratio (from 0.072 to 0.134) while this ratio was increased by 6.5% with H 2 O 2 alone. Moreover, the useful life of the GAC bed is increased from 45 min in the column fed with raw leachate to 170 min in the column fed with pretreated leachate and 5000 mg L -1 of H 2 O 2 at pH of 8 that subsequently increased the activated carbon adsorption capacity. An adsorption model for leachate treated with H 2 O 2 is also developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=106954&keyword=Leading+AND+Change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=106954&keyword=Leading+AND+Change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>AN INVESTIGATION OF CFC12 (CCI2F2) DECOMPOSITION ON TIO2 CATALYST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The catalytic oxidation of CFC12 was studied over a titania (TiO2) catalyst in a fixed-bed reactor at temperatures ranging from 200 to 400 degrees C and space velocity of 10,500 h-1. Results showed substantially complete conversion of CFC12 (>90%) to CO2 and halogen acids at and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=277751','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=277751"><span>Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..262..102T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..262..102T"><span>Water equivalent hydrogen estimates from the first 200 sols of Curiosity's traverse (Bradbury Landing to Yellowknife Bay): Results from the Dynamic Albedo of Neutrons (DAN) passive mode experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tate, C. G.; Moersch, J.; Jun, I.; Ming, D. W.; Mitrofanov, I.; Litvak, M.; Behar, A.; Boynton, W. V.; Deflores, L.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Malakhov, A.; Milliken, R.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Varenikov, A.; Vostrukhin, A.; Zeitlin, C.</p> <p>2015-12-01</p> <p>The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory (MSL) rover Curiosity is designed to detect neutrons to determine hydrogen abundance within the subsurface of Mars (Mitrofanov, I.G. et al. [2012]. Space Sci. Rev. 170, 559-582. http://dx.doi.org/10.1007/s11214-012-9924-y; Litvak, M.L. et al. [2008]. Astrobiology 8, 605-613. http://dx.doi.org/10.1089/ast.2007.0157). While DAN has a pulsed neutron generator for active measurements, in passive mode it only measures the leakage spectrum of neutrons produced by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Galactic Cosmic Rays (GCR). DAN passive measurements provide better spatial coverage than the active measurements because they can be acquired while the rover is moving. Here we compare DAN passive-mode data to models of the instrument's response to compositional differences in a homogeneous regolith in order to estimate the water equivalent hydrogen (WEH) content along the first 200 sols of Curiosity's traverse in Gale Crater, Mars. WEH content is shown to vary greatly along the traverse. These estimates range from 0.5 ± 0.1 wt.% to 3.9 ± 0.2 wt.% for fixed locations (usually overnight stops) investigated by the rover and 0.6 ± 0.2 wt.% to 7.6 ± 1.3 wt.% for areas that the rover has traversed while continuously acquiring DAN passive data between fixed locations. Estimates of WEH abundances at fixed locations based on passive mode data are in broad agreement with those estimated at the same locations using active mode data. Localized (meter-scale) anomalies in estimated WEH values from traverse measurements have no particular surface expression observable in co-located images. However at a much larger scale, the hummocky plains and bedded fractured units are shown to be distinct compositional units based on the hydrogen content derived from DAN passive measurements. DAN passive WEH estimates are also shown to be consistent with geologic models inferred from other MSL instruments, which indicate that fluvial/lacustrine activity occurred at certain locations (e.g., Yellowknife Bay).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868406','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868406"><span>Apparatus for fixed bed coal gasification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Sadowski, Richard S.</p> <p>1992-01-01</p> <p>An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868080','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868080"><span>Two-stage coal gasification and desulfurization apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bissett, Larry A.; Strickland, Larry D.</p> <p>1991-01-01</p> <p>The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27011471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27011471"><span>Honey: A Skin Graft Fixator Convenient for Both Patient and Surgeon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maghsoudi, Hemmat; Moradi, Sohrab</p> <p>2015-12-01</p> <p>Skin grafts can be used effectively to cover burn injuries. A critical element of this treatment is the adherence of the graft to the wound bed. Honey has been shown to increase the adherence of skin grafts to wound beds and have antibacterial and anti-inflammatory effects and increase healing rate of wounds. We therefore devised a clinical trial to determine the effect of honey on skin graft fixation in burn injuries. Sixty patients were included in this study (in 30 patients, graft was fixed with medical honey, and in 30 patients, it was fixed with dressing or suturing). All patients in two groups were evaluated for infection, graft loss, graft contraction, severity of pain, and need for re-operation. The most common cause of burn was kerosene. Honey significantly decreased infection rate on fifth day and reduced the patient pain. The mean hospital stay was shorter in honey group. Contraction of graft was significantly less in honey group. Honey has strong adhesive properties for skin graft fixation. Medical honey is a natural material, not synthetic. For this reason, we can advise the application of medical honey for the fixation of split thickness skin graft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1814b0069D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1814b0069D"><span>Development of a fixed bed gasifier model and optimal operating conditions determination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahmani, Manel; Périlhon, Christelle; Marvillet, Christophe; Hajjaji, Noureddine; Houas, Ammar; Khila, Zouhour</p> <p>2017-02-01</p> <p>The main objective of this study was to develop a fixed bed gasifier model of palm waste and to identify the optimal operating conditions to produce electricity from synthesis gas. First, the gasifier was simulated using Aspen PlusTM software. Gasification is a thermo-chemical process that has long been used, but it remains a perfectible technology. It means incomplete combustion of biomass solid fuel into synthesis gas through partial oxidation. The operating parameters (temperature and equivalence ratio (ER)) were thereafter varied to investigate their effect on the synthesis gas composition and to provide guidance for future research and development efforts in process design. The equivalence ratio is defined as the ratio of the amount of air actually supplied to the gasifier and the stoichiometric amount of air. Increasing ER decreases the production of CO and H2 and increases the production of CO2 and H2O while an increase in temperature increases the fraction of CO and H2. The results show that the optimum temperature to have a syngas able to be effectively used for power generation is 900°C and the optimum equivalence ratio is 0.1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1851b0088F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1851b0088F"><span>Biofuel from jute stick by pyrolysis technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.</p> <p>2017-06-01</p> <p>In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24951937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24951937"><span>Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Guanyi; Liu, Cong; Ma, Wenchao; Zhang, Xiaoxiong; Li, Yanbin; Yan, Beibei; Zhou, Weihong</p> <p>2014-08-01</p> <p>Corn cob (CC) and waste cooking oil (WCO) were co-pyrolyzed in a fixed bed. The effects of various temperatures of 500 °C, 550 °C, 600 °C and CC/WCO mass ratios of 1:0, 1:0.1, 1:0.5, 1:1 and 0:1 were investigated, respectively. Results show that co-pyrolysis of CC/WCO produce more liquid and less bio-char than pyrolysis of CC individually. Bio-oil and bio-char yields were found to be largely dependent on temperature and CC/WCO ratios. GC/MS of bio-oil show it consists of different classes and amounts of organic compounds other than that from CC pyrolysis. Temperature of 550 °C and CC/WCO ratio of 1:1 seem to be the optimum considering high bio-oil yields (68.6 wt.%) and good bio-oil properties (HHV of 32.78 MJ/kg). In this case, bio-char of 24.96 MJ/kg appears attractive as a renewable source, while gas with LHV of 16.06 MJ/Nm(3) can be directly used in boilers as fuel. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28692929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28692929"><span>A new recycling technique for the waste tires reuse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Derakhshan, Zahra; Ghaneian, Mohammad Taghi; Mahvi, Amir Hossein; Oliveri Conti, Gea; Faramarzian, Mohammad; Dehghani, Mansooreh; Ferrante, Margherita</p> <p>2017-10-01</p> <p>In this series of laboratory experiments, the feasibility of using fixed bed biofilm carriers (FBBC) manufactured from existing reclaimed waste tires (RWTs) for wastewater treatment was evaluated. To assess polyamide yarn waste tires as a media, the fixed bed sequence batch reactor (FBSBR) was evaluated under different organic loading rate (OLRs). An experimental model was used to study the kinetics of substrate consumption in biofilm. Removal efficiency of soluble chemical oxygen demand (SCOD) ranged by 76-98% for the FBSBR compared to 71-96% in a sequencing batch reactor (SBR). Removal efficiency of FBBC was significantly increased by inoculating these RWTs carriers. The results revealed that the sludge production yield (Y obs ) was significantly less in the FBSBR compared to the SBR (p < 0.01). It also produced less sludge and recorded a lower stabilization ratio (VSS/TSS). The findings show that the Stover-Kincannon model was the best fit (R 2 > 99%) in a FBSBR. Results from this study suggest that RWTs to support biological activity for a variety of wastewater treatment applications as a biofilm carrier have high potential that better performance as COD and TSS removal and sludge settling properties and effluent quality supported these findings. Copyright © 2017. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634427','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634427"><span>Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fremerey, Peter; Jess, Andreas; Moos, Ralf</p> <p>2015-01-01</p> <p>In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions. PMID:26512669</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PhFl....7.1915W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PhFl....7.1915W"><span>Resonant generation of internal waves on the soft sea bed by a surface water wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen, Feng</p> <p>1995-08-01</p> <p>The nonlinear response of an initially flat sea bed to a monochromatic surface progressive wave was studied using the multiple scale perturbation method. Two opposite-traveling subliminal internal ``mud'' waves are selectively excited and form a resonant triad with the surface wave. The amplitudes of the internal waves grow on a time scale much longer than the period of the surface wave. It was found that the sea bed response is critically dependent on the density ratio of water and soil, depth of water, and depth and viscosity of the saturated soil. The result of instability analysis is in qualitative agreement with the result of a wave flume experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016416','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016416"><span>Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir</p> <p>2011-01-01</p> <p>Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38809','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38809"><span>A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>D.R. Weise; E. Koo; X. Zhou; S. Mahalingam</p> <p>2011-01-01</p> <p>Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70119659','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70119659"><span>Suspended particulate layers and internal waves over the southern Monterey Bay continental shelf: an important control on shelf mud belts?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Shaw, William J.; Stanton, Timothy P.; Bellingham, James G.; Storlazzi, Curt D.</p> <p>2014-01-01</p> <p>Physical and optical measurements taken over the mud belt on the southern continental shelf of Monterey Bay, California documented the frequent occurrence of suspended particulate matter features, the majority of which were detached from the seafloor, centered 9–33 m above the bed. In fall 2011, an automated profiling mooring and fixed instrumentation, including a thermistor chain and upward-looking acoustic Doppler current profiler, were deployed at 70 m depth for 5 weeks, and from 12 to 16 October a long-range autonomous underwater vehicle performed across-shelf transects. Individual SPM events were uncorrelated with local bed shear stress caused by surface waves and bottom currents. Nearly half of all observed SPM layers occurred during 1 week of the study, 9–16 October 2011, and were advected past the fixed profiling mooring by the onshore phase of semidiurnal internal tide bottom currents. At the start of the 9–16 October period, we observed intense near-bed vertical velocities capable of lifting particulates into the middle of the water column. This “updraft” event appears to have been associated with nonlinear adjustment of high-amplitude internal tides over the mid and outer shelf. These findings suggest that nonlinear internal tidal motions can erode material over the outer shelf and that, once suspended, this SPM can then be transported shoreward to the middle and shallow sections of the mud belt. This represents a fundamental broadening of our understanding of how shelf mud belts may be built up and sustained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119..428C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119..428C"><span>Suspended particulate layers and internal waves over the southern Monterey Bay continental shelf: An important control on shelf mud belts?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Shaw, William J.; Stanton, Timothy P.; Bellingham, James G.; Storlazzi, Curt D.</p> <p>2014-01-01</p> <p>Physical and optical measurements taken over the mud belt on the southern continental shelf of Monterey Bay, California documented the frequent occurrence of suspended particulate matter features, the majority of which were detached from the seafloor, centered 9-33 m above the bed. In fall 2011, an automated profiling mooring and fixed instrumentation, including a thermistor chain and upward-looking acoustic Doppler current profiler, were deployed at 70 m depth for 5 weeks, and from 12 to 16 October a long-range autonomous underwater vehicle performed across-shelf transects. Individual SPM events were uncorrelated with local bed shear stress caused by surface waves and bottom currents. Nearly half of all observed SPM layers occurred during 1 week of the study, 9-16 October 2011, and were advected past the fixed profiling mooring by the onshore phase of semidiurnal internal tide bottom currents. At the start of the 9-16 October period, we observed intense near-bed vertical velocities capable of lifting particulates into the middle of the water column. This "updraft" event appears to have been associated with nonlinear adjustment of high-amplitude internal tides over the mid and outer shelf. These findings suggest that nonlinear internal tidal motions can erode material over the outer shelf and that, once suspended, this SPM can then be transported shoreward to the middle and shallow sections of the mud belt. This represents a fundamental broadening of our understanding of how shelf mud belts may be built up and sustained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18946715','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18946715"><span>The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uesugi, R; Kunimoto, Y; Osakabe, Mh</p> <p>2009-02-01</p> <p>The fine-scale genetic structure of Tetranychus urticae Koch was studied to estimate local gene flow within a rose tree habitat in a commercial greenhouse using seven microsatellite markers. Two beds of rose trees with different population densities were selected and 18 consecutive quadrats of 1.2 m length were sequentially established in each bed. Heterozygote deficiency was positive within quadrats, which was most likely a result of the Wahlund effect because the mites usually form small breeding colonies. Low population density and frequent inbreeding could also accelerate genetic differentiation among the breeding colonies. A short-range (2.4-3.6 m) positive autocorrelation and clear genetic cline among quadrat populations was detected within a bed. This suggests that gene flow was limited to a short range even if population density was substantially increased. Therefore, large-scale dispersal such as aerial dispersal contributed very little to gene flow in the greenhouse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.1883C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.1883C"><span>Morphodynamics: Rivers beyond steady state</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Church, M.; Ferguson, R. I.</p> <p>2015-04-01</p> <p>The morphology of an alluvial river channel affects the movement of water and sediment along it, but in the longer run is shaped by those processes. This interplay has mostly been investigated empirically within the paradigm of Newtonian mechanics. In rivers, this has created an emphasis on equilibrium configurations with simple morphology and uniform steady flow. But transient adjustment, whether between equilibrium states or indefinitely, is to be expected in a world in which hydrology, sediment supply, and base level are not fixed. More fundamentally, water flows and all the phenomena that accompany them are inherently unsteady, and flows in natural channels are characteristically nonuniform. The morphodynamics of alluvial river channels is the striking consequence. In this paper, we develop the essential connection between the episodic nature of bed material transport and the production of river morphology, emphasizing the fundamental problems of sediment transport, the role of bar evolution in determining channel form, the role of riparian vegetation, and the wide range of time scales for change. As the key integrative exercise, we emphasize the importance of physics-based modeling of morphodynamics. We note consequences that can be of benefit to society if properly understood. These include the possibility to better be able to model how varying flows drive morphodynamic change, to understand the influence of the sediments themselves on morphodynamics, and to recognize the inherent necessity for rivers that transport bed material to deform laterally. We acknowledge pioneering contributions in WRR and elsewhere that have introduced some of these themes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/321244','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/321244"><span>Method for immobilizing particulate materials in a packed bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.</p> <p>1999-02-02</p> <p>The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28784943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28784943"><span>Image-based Lagrangian Particle Tracking in Bed-load Experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Radice, Alessio; Sarkar, Sankar; Ballio, Francesco</p> <p>2017-07-20</p> <p>Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two action-cameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872128','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872128"><span>Method for immobilizing particulate materials in a packed bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas</p> <p>1999-01-01</p> <p>The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28b1301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28b1301S"><span>Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sotiropoulos, Fotis; Khosronejad, Ali</p> <p>2016-02-01</p> <p>Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8928H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8928H"><span>How does sediment affect the hydraulics of bedrock-alluvial rivers?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodge, Rebecca; Hoey, Trevor; Maniatis, George; Leprêtre, Emilie</p> <p>2016-04-01</p> <p>Relationships between flow, sediment transport and channel morphology are relatively well established in coarse-grained alluvial channels. Developing equivalent relationships for bedrock-alluvial channels is complicated by the two different components that comprise the channel morphology: bedrock and sediment. These two components usually have very different response times to hydraulic forcing, meaning that the bedrock morphology may be inherited from previous conditions. The influence of changing sediment cover on channel morphology and roughness will depend on the relative magnitudes of the sediment size and the spatial variations in bedrock elevation. We report results from experiments in a 0.9m wide flume designed to quantify the interactions between flow and sediment patch morphology using two contrasting bedrock topographies. The first topography is a plane bed with sand-scale roughness, and the second is a 1:10 scale, 3D printed, model of a bedrock channel with spatially variable roughness (standard deviation of elevations = 12 mm in the flume). In all experiments, a sediment pulse was added to the flume (D50 between 7 and 15 mm) and sediment patches were allowed to stabilise under constant flow conditions. The flow was then incrementally increased in order to identify the discharges at which sediment patches and isolated grains were eroded. In the plane bed experiments ˜20% sediment cover is sufficient to alter the channel hydraulics through the increased roughness of the bed; this impact is expressed as the increased discharge at which isolated grains are entrained. In the scaled bed experiments, partial sediment cover decreased local flow velocities on a relatively smooth area of the bed. At the scale of the entire channel, the bed morphology, and the hydraulics induced by it, was a primary control on sediment cover stability at lower sediment inputs. At higher inputs, where sediment infilled the local bed topography, patches were relatively more stable, suggesting an increased impact on the hydraulics and the role of grain-grain interactions. We draw together these experiments using a theoretical framework to express the impact of sediment cover on channel roughness and hence hydraulics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/46587','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/46587"><span>Generalized thickness of the confining bed overlying the Floridan Aquifer, Southwest Florida Water Management District</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buono, Anthony; Spechler, R.M.; Barr, G.L.; Wolansky, R.M.</p> <p>1979-01-01</p> <p>This map presents the thickness of the confining bed overlying the Floridan aquifer in the Southwest Florida Water Management District and adjacent areas. The bed separates the surficial aquifer from the underlying Floridan aquifer. Lithologic logs and information from quarries were used in conjunction with an unpublished map to compile this map at 1:250,000 scale. Units included in the confining bed are: clay, sandy clay and marl, undifferentiated with respect to age, the Hawthorn Formation, and the unconsolidated sections of the Tampa Limestone. (Kosco-USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29781059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29781059"><span>Water decontamination containing nitrate using biosorption with Moringa oleifera in dynamic mode.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paixão, Rebecca Manesco; Reck, Isabela Maria; Gomes, Raquel Guttierres; Bergamasco, Rosângela; Vieira, Marcelo Fernandes; Vieira, Angélica Marquetotti Salcedo</p> <p>2018-05-20</p> <p>This study was conducted to assess the feasibility of using Moringa oleifera Lam. (MO) seeds in the biosorption of nitrate present in aqueous solutions by means of batch and fixed-bed column biosorption processes. The batch assays showed that nitrate biosorption is enhanced under experimental conditions of pH 3 and a biosorbent mass of 0.05 g. For the experiments in dynamic mode, the results obtained from the statistical parameters showed that lesser pH, lesser feed flow rate, and higher initial concentration will result in an increase of the maximum capacity of the bed. These conditions were confirmed by experimental analysis. The best experimental conditions, according to the values for percentage removal (91.09%) and maximum capacity (7.69 mg g -1 ) of the bed, were those used in assay 1, which utilized pH 3, feed flow rate of 1 mL min -1 , and initial nitrate concentration of 100 mg L -1 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP53A3614L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP53A3614L"><span>Flow over gravel beds with clusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Little, M.; Venditti, J. G.</p> <p>2014-12-01</p> <p>The structure of a gravel bed has been shown to alter the entrainment threshold. Structures such as clusters, reticulate stone cells and other discrete structures lock grains together, making it more difficult for them to be mobilized. These structures also generate form drag, reducing the shear stress available for mobilization. Form drag over gravel beds is often assumed to be negligible, but this assumption is not well supported. Here, we explore how cluster density and arrangement affect flow resistance and the flow structure over a fixed gravel bed in a flume experiment. Cluster density was varied from 6 to 68.3 clusters per square meter which corresponds to areal bed coverages of 2 to 17%. We used regular, irregular and random arrangements of the clusters. Our results show that flow resistance over a planar gravel bed initially declines, then increases with flow depth. The addition of clusters increases flow resistance, but the effect is dependent on cluster density, flow depth and arrangement. At the highest density, clusters can increase flow resistance as by as much as 8 times when compared to flat planar bed with no grain-related form drag. Spatially resolved observations of flow over the clusters indicate that a well-defined wake forms in the lee of each cluster. At low cluster density, the wakes are isolated and weak. As cluster density increases, the wakes become stronger. At the highest density, the wakes interact and the within cluster flow field detaches from the overlying flow. This generates a distinct shear layer at the height of the clusters. In spite of this change in the flow field at high density, our results suggest that flow resistance simply increases with cluster density. Our results suggest that the form drag associated with a gravel bed can be substantial and that it depends on the arrangement of the grains on the bed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11B0871M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11B0871M"><span>Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, S.; Conklin, M. H.; Bales, R. C.</p> <p>2014-12-01</p> <p>High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or sink. Overall, these sensors show promise for collecting continuous data for high gradient, forested, mountain streams. Additional benefits include their relatively low cost both monetarily (under $1000) and in labor compared to traditional methods as well as not requiring the trade-off between temporal resolution and length of study that traditional methods do.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP33D1010J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP33D1010J"><span>The balance between keystone clustering and bed roughness in experimental step-pool stabilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, J. P.</p> <p>2016-12-01</p> <p>Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5080/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5080/"><span>Hydraulic Characteristics of Bedrock Constrictions and Evaluation of One- and Two-Dimensional Models of Flood Flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.</p> <p>2007-01-01</p> <p>A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/413429-transient-behavior-coconut-shell-pyrolyzer-mathematical-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/413429-transient-behavior-coconut-shell-pyrolyzer-mathematical-analysis"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bandyopadhyay, S.; Chowdhury, R.; Biswas, G.K.</p> <p></p> <p>A mathematical model based on the mechanistic approach to the reaction kinetics of pyrolysis reactions and the realistic analysis of the interaction between simultaneous heat and mass transfer along with the chemical reaction has been developed for the design of smoothly running pyrolyzers. The model of a fixed-bed pyrolysis reactor has been proposed on the basis of the dimensionless parameters with respect to time and radial position. The variation of physical parameters like bed voidage, heat capacity, diffusivity, density, thermal conductivity, etc., on temperature and conversion has been taken into account. A deactivation model has also been incorporated to explainmore » the behavior of pyrolysis reactions at temperatures above 673 K. The simulated results of the model have been explained by comparing them with the experimental results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29494162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29494162"><span>Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian</p> <p>2018-03-15</p> <p>The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ExFl...55.1767P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ExFl...55.1767P"><span>Direct measurements of local bed shear stress in the presence of pressure gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pujara, Nimish; Liu, Philip L.-F.</p> <p>2014-07-01</p> <p>This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3b4606M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3b4606M"><span>Predictive model for local scour downstream of hydrokinetic turbines in erodible channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Musa, Mirko; Heisel, Michael; Guala, Michele</p> <p>2018-02-01</p> <p>A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSG....95..160M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSG....95..160M"><span>Mechanical stratigraphic controls on natural fracture spacing and penetration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGinnis, Ronald N.; Ferrill, David A.; Morris, Alan P.; Smart, Kevin J.; Lehrmann, Daniel</p> <p>2017-02-01</p> <p>Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as unconventional hydrocarbon reservoirs. Fracturing - both natural and induced - is extremely important for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed between fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into the vertically adjacent mudrock beds. In contrast, fractures in the mudrock beds rarely penetrate beyond the bed boundaries into the adjacent carbonate beds. Consequently, natural bed-perpendicular fracture connectivity through the mechanically layered sequence generally is poor. Fracture connectivity strongly influences permeability architecture, and fracture prediction should consider thin bed-scale control on fracture heights and the strong lithologic control on fracture spacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26592045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26592045"><span>[Microwave In-situ Regeneration of Cu-Mn-Ce/ZSM Catalyst Adsorbed Toluene and Distribution of Bed Temperature].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long</p> <p>2015-08-01</p> <p>Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21073646-heat-transfer-small-horizontal-cylinders-immersed-fluidized-bed','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21073646-heat-transfer-small-horizontal-cylinders-immersed-fluidized-bed"><span>Heat transfer to small horizontal cylinders immersed in a fluidized bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Friedman, J.; Koundakjian, P.; Naylor, D.</p> <p>2006-10-15</p> <p>Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA243935','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA243935"><span>Annual Report for 1990: Laboratory Graduate Fellowship Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-04-30</p> <p>Statitiocs of feasureeint~ ad Sam- the qitadrature approximation of the axial pluvg. 700 pp.. American Society of Agronomy, Madison . Wis.. integral...numerical solutions for solid diffusion in fixed Amewrican Society of Agronomy. Madison . Wis., 190%6. beds. hId. Eng. Chem.. 46(g). 1590-1594. 1954...Department of Engineering Professional Development, University of Wisconsin- Madison , Madison , Wisconsin, September 20-21, 1989. "Review of Soil Vapor</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=276132&keyword=tio2&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=276132&keyword=tio2&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5–WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6155433-israeli-co-retorting-coal-oil-shale-would-break-even-barrel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6155433-israeli-co-retorting-coal-oil-shale-would-break-even-barrel"><span>Israeli co-retorting of coal and oil shale would break even at 22/barrel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p></p> <p>Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090010034&hterms=adsorption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dadsorption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090010034&hterms=adsorption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dadsorption"><span>PLSS Scale Demonstration of MTSA Temperature Swing Adsorption Bed Concept for CO2 Removal/Rejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iacomini, Christine S.; Powers, Aaron; Paul, Heather L.</p> <p>2009-01-01</p> <p>Metabolic heat regenerated temperature swing adsorption (MTSA) incorporated into a portable life support system (PLSS) is being explored as a viable means of removing and rejecting carbon dioxide (CO2) from an astronaut s ventilation loop. Sorbent pellets used in previous work are inherently difficult to quickly heat and cool. Further, their use in packed beds create large undesirable pressure drop. Thus work has been done to assess the application and performance of aluminum foam wash coated with a layer of sorbent. A to-scale sorbent bed, as envisioned studying use by a Martian PLSS, was designed, built, and tested. Performance of the assembly in regards to CO2 adsorption and pressure drop were assessed and the results are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P14B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P14B..01G"><span>Sedimentary architecture of the Shaler outcrop, Gale Crater, Mars: paleoenvironmental and sediment transport implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, S.; Edgar, L. A.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Muller, J.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.</p> <p>2013-12-01</p> <p>Sedimentary rocks are archives of ancient depositional processes and environments on planetary surfaces. Reconstructing such processes and environments requires observations of sedimentary structures and architecture (the large-scale geometry and organisation of sedimentary bedsets). We report the analysis of the distinct Shaler outcrop, a prominent stratified unit located between the Bathurst Inlet outcrop and the floor of Yellowknife bay. The Shaler outcrop is an ~1 m thick stratal unit that spans approximately 30 m outcrop in length, and was examined by Curiosity on sols 120-121 and more recently on sols 309-324. Detailed stereo observations of the outcrop across most of its entire lateral extent were made using Navigation and Mast Cameras. These data permit detailed analysis of stratal geometries, distribution of sedimentary structures, and broad grain size trends. Overall the Shaler outcrop comprises a heterogeneous assemblage of interstratified platy sandstones separated by recessive, likely finer-grained beds. Coarser-grained beds are characterised by decimeter-scale trough cross-bedding. The north-eastern section of the outcrop shows greater abundance of interstratified sandstones and finer-grained beds. The southwestern section is characterised by darker bedsets that are likely coarser grained interstratified with finer-grained sandstones. The darker bedsets appear to comprise stacked trough-cross stratified bedsets. Finer-grained recessive intervals are not apparent in this section. The presence and scale of trough cross-stratification indicates that sediment was transported by the migration of sinuous crested dunes. Bedding geometries indicate sub-critical angles of climb. We examine the large-scale bedset architecture to evaluate the original depositional geometry of the Shaler sedimentary system, and consider its plausible depositional processes and paleoenvironmental setting. Finally, we consider its relationship to the sedimentary succession exposed in the Yellowknife bay region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=39995&Lab=ORD&keyword=treatment+AND+water+AND+grey&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=39995&Lab=ORD&keyword=treatment+AND+water+AND+grey&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>