Sample records for scale geographic structure

  1. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.

    PubMed

    Scalfi, Marta; Mosca, Elena; Di Pierro, Erica Adele; Troggio, Michela; Vendramin, Giovanni Giuseppe; Sperisen, Christoph; La Porta, Nicola; Neale, David B

    2014-01-01

    Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F(ST)-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F(ST)-outlier methods detected together 11 F(ST)-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F(ST)-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an integrative approach combining different outlier detection methods and population sampling at different geographic scales is useful to identify loci potentially involved in adaptation.

  2. Micro- and Macro-Geographic Scale Effect on the Molecular Imprint of Selection and Adaptation in Norway Spruce

    PubMed Central

    Scalfi, Marta; Mosca, Elena; Di Pierro, Erica Adele; Troggio, Michela; Vendramin, Giovanni Giuseppe; Sperisen, Christoph; La Porta, Nicola; Neale, David B.

    2014-01-01

    Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F ST-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F ST-outlier methods detected together 11 F ST-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F ST-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an integrative approach combining different outlier detection methods and population sampling at different geographic scales is useful to identify loci potentially involved in adaptation. PMID:25551624

  3. Global isolation by distance despite strong regional phylogeography in a small metazoan

    PubMed Central

    Mills, Scott; Lunt, David H; Gómez, Africa

    2007-01-01

    Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates that geographic speciation, contrary to historical views, is likely to be very important in microorganisms. By presenting compelling evidence for geographic speciation in a small eukaryote we add to the growing body of evidence that is forcing us to rethink our views of global biodiversity. PMID:17999774

  4. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa

    PubMed Central

    2011-01-01

    Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view. PMID:22151746

  5. A geographic comparison of selected large-scale planetary surface features

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1984-01-01

    Photographic and cartographic comparisons of geographic features on Mercury, the Moon, Earth, Mars, Ganymede, Callisto, Mimas, and Tethys are presented. Planetary structures caused by impacts, volcanism, tectonics, and other natural forces are included. Each feature is discussed individually and then those of similar origin are compared at the same scale.

  6. A planktonic diatom displays genetic structure over small spatial scales.

    PubMed

    Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna

    2018-04-03

    Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae)

    PubMed Central

    Zhang, Yong-Hua; Wang, Ian J.; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-01-01

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels – phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important – climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors. PMID:27137438

  8. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae).

    PubMed

    Zhang, Yong-Hua; Wang, Ian J; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-05-03

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels - phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important - climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors.

  9. Population Explosion in the Yellow-Spined Bamboo Locust Ceracris kiangsu and Inferences for the Impact of Human Activity

    PubMed Central

    Fan, Zhou; Jiang, Guo-Fang; Liu, Yu-Xiang; He, Qi-Xin; Blanchard, Benjamin

    2014-01-01

    Geographic distance and geographical barriers likely play a considerable role in structuring genetic variation in species, although some migratory species may have less phylogeographic structure on a smaller spatial scale. Here, genetic diversity and the phylogenetic structure among geographical populations of the yellow-spined bamboo locust, Ceracris kiangsu, were examined with 16S rDNA and amplified fragment length polymorphisms (AFLPs). In this study, no conspicuous phylogeographical structure was discovered from either Maximum parsimony (MP) and Neighbor-joining (NJ) phylogenetic analyses. The effect of geographical isolation was not conspicuous on a large spatial scale.At smaller spatial scales local diversity of some populations within mountainous areas were detected using Nei's genetic distance and AMOVA. There is a high level of genetic diversity and a low genetic differentiation among populations in the C. kiangsu of South and Southeast China. Our analyses indicate that C. kiangsu is a monophyletic group. Our results also support the hypothesis that the C. kiangsu population is in a primary differentiation stage. Given the mismatch distribution, it is likely that a population expansion in C. kiangsu occurred about 0.242 Ma during the Quaternary interglaciation. Based on historical reports, we conjecture that human activities had significant impacts on the C. kiangsu gene flow. PMID:24603526

  10. Money circulation networks reveal emerging geographical communities

    NASA Astrophysics Data System (ADS)

    Brockmann, D.; Theis, F.; David, V.

    2008-03-01

    Geographical communities and their boundaries are key determinants of various spatially extended dynamical phenomena. Examples are migration dynamics of species, the spread of infectious diseases, bioinvasive processes, and the spatial evolution of language. We address the question to what extend multiscale human transportation networks encode geographical community structures, how they differ from geopolitical classifications, whether they are spatially coherent, and analyse their structure as a function of length scale. Our analysis is based on a proxy network for human transportation obtained from the geographic circulation of more than 10 million dollar bills in the United States recorded at the bill tracking website www.wheresgeorge.com. The data extends that of a previous study (Brockmann et al., Nature 2006) on the discovery of scaling laws of human travel by an order of magnitude and permits an approach to multiscale human transportation from a network perspective.

  11. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean.

    PubMed

    Planes, S; Fauvelot, C

    2002-02-01

    We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.

  12. Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies.

    PubMed

    Hoh, Boon-Peng; Deng, Lian; Julia-Ashazila, Mat Jusoh; Zuraihan, Zakaria; Nur-Hasnah, Ma'amor; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Endom, Ismail; Zilfalil, Bin Alwi; Khalid, Yusoff; Xu, Shuhua

    2015-07-22

    Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.

  13. Structural and geographic shifts in the Washington warehousing industry : transportation impacts for the Green River Valley.

    DOT National Transportation Integrated Search

    2009-07-01

    Establishment level employment data indicate that the warehousing industry has experienced rapid growth and : restructuring since 1998. This restructuring has resulted in geographic shifts at the national, regional, and local scales. : Uneven growth ...

  14. Fine-scale genetic structure of whitebark pine (Pinus albicaulis) associations with watershed and growth form

    Treesearch

    Deborah L. Rogers; Constance I. Millar; Robert D. Westfall

    1999-01-01

    The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...

  15. The Structure of Borders in a Small World

    PubMed Central

    Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk

    2010-01-01

    Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity. PMID:21124970

  16. The structure of borders in a small world.

    PubMed

    Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk

    2010-11-18

    Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity.

  17. The problem and promise of scale dependency in community phylogenetics.

    PubMed

    Swenson, Nathan G; Enquist, Brian J; Pither, Jason; Thompson, Jill; Zimmerman, Jess K

    2006-10-01

    The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.

  18. Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales

    PubMed Central

    Eiserhardt, Wolf L.; Svenning, Jens-Christian; Kissling, W. Daniel; Balslev, Henrik

    2011-01-01

    Background The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity. Scope This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies. Conclusions Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation. PMID:21712297

  19. Requirements and principles for the implementation and construction of large-scale geographic information systems

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Menon, Sudhakar; Star, Jeffrey L.; Estes, John E.

    1987-01-01

    This paper provides a brief survey of the history, structure and functions of 'traditional' geographic information systems (GIS), and then suggests a set of requirements that large-scale GIS should satisfy, together with a set of principles for their satisfaction. These principles, which include the systematic application of techniques from several subfields of computer science to the design and implementation of GIS and the integration of techniques from computer vision and image processing into standard GIS technology, are discussed in some detail. In particular, the paper provides a detailed discussion of questions relating to appropriate data models, data structures and computational procedures for the efficient storage, retrieval and analysis of spatially-indexed data.

  20. Limited Phylogeographic Signal in Sex-Linked and Autosomal Loci Despite Geographically, Ecologically, and Phenotypically Concordant Structure of mtDNA Variation in the Holarctic Avian Genus Eremophila

    PubMed Central

    Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.

    2014-01-01

    Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139

  1. Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan.

    PubMed

    Blanco Gonzalez, Enrique; Aritaki, Masato; Knutsen, Halvor; Taniguchi, Nobuhiko

    2015-01-01

    Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (F(ST) = 0.002, p < 0.001). Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.

  2. Latitude delineates patterns of biogeography in terrestrial Streptomyces.

    PubMed

    Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H

    2016-12-01

    The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada

    Treesearch

    Scott L. Stephens; Jamie M. Lydersen; Brandon M. Collins; Danny L. Fry; Marc D. Meyer

    2015-01-01

    Many managers today are tasked with restoring forests to mitigate the potential for uncharacteristically severe fire. One challenge to this mandate is the lack of large-scale reference information on forest structure prior to impacts from Euro-American settlement. We used a robust 1911 historical dataset that covers a large geographic extent (>10,000 ha) and has...

  4. Local topography shapes fine-scale spatial genetic structure in the Arkansas Valley evening primrose, Oenothera harringtonii (Onagraceae).

    PubMed

    Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A

    2014-01-01

    Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    USGS Publications Warehouse

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  6. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P

    2014-02-01

    The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.

  7. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?

    PubMed

    Alexander, Alana; Steel, Debbie; Hoekzema, Kendra; Mesnick, Sarah L; Engelhaupt, Daniel; Kerr, Iain; Payne, Roger; Baker, C Scott

    2016-06-01

    The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long-lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394-bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event <80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male-mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization. © 2016 John Wiley & Sons Ltd.

  8. Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale.

    PubMed

    Lounnas, M; Correa, A C; Vázquez, A A; Dia, A; Escobar, J S; Nicot, A; Arenas, J; Ayaqui, R; Dubois, M P; Gimenez, T; Gutiérrez, A; González-Ramírez, C; Noya, O; Prepelitchi, L; Uribe, N; Wisnivesky-Colli, C; Yong, M; David, P; Loker, E S; Jarne, P; Pointier, J P; Hurtrez-Boussès, S

    2017-02-01

    Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self-fertilizing species. We here focus on the self-fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none-to-low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large-scale flash invasion may affect the spread of fasciolosis. © 2016 John Wiley & Sons Ltd.

  9. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Treesearch

    Colin M. Callahan; Carol A. Rowe; Ronald J. Ryel; John D. Shaw; Michael D. Madritch; Karen E. Mock

    2013-01-01

    Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene...

  10. Restricted gene flow at the micro- and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism.

    PubMed

    Pujolar, José M; Lucarda, Alvise N; Simonato, Mauro; Patarnello, Tomaso

    2011-04-14

    The genetic structure of the marble trout Salmo trutta marmoratus, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA) and microsatellite data. Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers) and macro-geographic (among river systems) scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes. While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.

  11. Broad-scale trophic shift in the pelagic North Pacific revealed by an oceanic seabird

    PubMed Central

    Wiley, Anne E.; James, Helen F.; Rossman, Sam; Walker, William A.; Zipkin, Elise F.; Chikaraishi, Yoshito

    2017-01-01

    Human-induced ecological change in the open oceans appears to be accelerating. Fisheries, climate change and elevated nutrient inputs are variously blamed, at least in part, for altering oceanic ecosystems. Yet it is challenging to assess the extent of anthropogenic change in the open oceans, where historical records of ecological conditions are sparse, and the geographical scale is immense. We developed millennial-scale amino acid nitrogen isotope records preserved in ancient animal remains to understand changes in food web structure and nutrient regimes in the oceanic realm of the North Pacific Ocean (NPO). Our millennial-scale isotope records of amino acids in bone collagen in a wide-ranging oceanic seabird, the Hawaiian petrel (Pterodroma sandwichensis), showed that trophic level declined over time. The amino acid records do not support a broad-scale increase in nitrogen fixation in the North Pacific subtropical gyre, rejecting an earlier interpretation based on bulk and amino acid specific δ15N chronologies for Hawaiian deep-sea corals and bulk δ15N chronologies for the Hawaiian petrel. Rather, our work suggests that the food web structure in the NPO has shifted at a broad geographical scale, a phenomenon potentially related to industrial fishing. PMID:28356448

  12. Genes mirror geography in Daphnia magna.

    PubMed

    Fields, Peter D; Reisser, Céline; Dukić, Marinela; Haag, Christoph R; Ebert, Dieter

    2015-09-01

    Identifying the presence and magnitude of population genetic structure remains a major consideration in evolutionary biology as doing so allows one to understand the demographic history of a species as well as make predictions of how the evolutionary process will proceed. Next-generation sequencing methods allow us to reconsider previous ideas and conclusions concerning the distribution of genetic variation, and what this distribution implies about a given species evolutionary history. A previous phylogeographic study of the crustacean Daphnia magna suggested that, despite strong genetic differentiation among populations at a local scale, the species shows only moderate genetic structure across its European range, with a spatially patchy occurrence of individual lineages. We apply RAD sequencing to a sample of D. magna collected across a wide swath of the species' Eurasian range and analyse the data using principle component analysis (PCA) of genetic variation and Procrustes analytical approaches, to quantify spatial genetic structure. We find remarkable consistency between the first two PCA axes and the geographic coordinates of individual sampling points, suggesting that, on a continent-wide scale, genetic differentiation is driven to a large extent by geographic distance. The observed pattern is consistent with unimpeded (i.e. no barriers, landscape or otherwise) migration at large spatial scales, despite the fragmented and patchy nature of favourable habitats at local scales. With high-resolution genetic data similar patterns may be uncovered for other species with wide geographic distributions, allowing an increased understanding of how genetic drift and selection have shaped their evolutionary history. © 2015 John Wiley & Sons Ltd.

  13. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow.

    PubMed

    Whittaker, Kerry A; Rynearson, Tatiana A

    2017-03-07

    The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations ( F ST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a , a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.

  14. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  15. The anatomy of urban social networks and its implications in the searchability problem

    PubMed Central

    Herrera-Yagüe, C.; Schneider, C. M.; Couronné, T.; Smoreda, Z.; Benito, R. M.; Zufiria, P. J.; González, M. C.

    2015-01-01

    The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure. PMID:26035529

  16. The anatomy of urban social networks and its implications in the searchability problem.

    PubMed

    Herrera-Yagüe, C; Schneider, C M; Couronné, T; Smoreda, Z; Benito, R M; Zufiria, P J; González, M C

    2015-06-02

    The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure.

  17. Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers.

    PubMed

    Deu, M; Sagnard, F; Chantereau, J; Calatayud, C; Hérault, D; Mariac, C; Pham, J-L; Vigouroux, Y; Kapran, I; Traore, P S; Mamadou, A; Gerard, B; Ndjeunga, J; Bezançon, G

    2008-05-01

    Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa.

  18. Genus age, provincial area and the taxonomic structure of marine faunas.

    PubMed

    Harnik, Paul G; Jablonski, David; Krug, Andrew Z; Valentine, James W

    2010-11-22

    Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf-Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area.

  19. Genus age, provincial area and the taxonomic structure of marine faunas

    PubMed Central

    Harnik, Paul G.; Jablonski, David; Krug, Andrew Z.; Valentine, James W.

    2010-01-01

    Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf–Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area. PMID:20534619

  20. Genetic structure of Zymoseptoria tritici in northern France at region, field, plant and leaf layer scales.

    PubMed

    Siah, Ali; Bomble, Myriam; Tisserant, Benoit; Cadalen, Thierry; Holvoet, Maxime; Hilbert, Jean-Louis; Halama, Patrice; Reignault, Philippe Lucien

    2018-04-16

    Population genetic structure of the worldwide-distributed wheat pathogen Zymoseptoria tritici has been extensively studied at large geographical scales, but to a much less extent at small or local spatial scales. A total of 627 single-conidial fungal isolates were sampled from several locations in northern France (Hauts-de-France Region) to assess fungal genetic structure at region, field, plant and leaf layer scales, using highly polymorphic microsatellite markers and mating type idiomorphs. Important and overall similar levels of both gene and genotype diversities (gene diversity values ≥ 0.44 and haplotype frequencies ≥ 94 %) were found at all the examined scales. Such rates of diversity are likely due to an active sexual recombination in the investigated areas, as revealed by equal proportions of the two mating types scored in all sampled populations. Interestingly, a rare occurrence of clones among lesions from a same leaf, as well as among leaves from different plant leaf layers (e.g. upper vs lower leaves), was highlighted, indicating that ascospores contribute much more than expected to Z. tritci epidemics, compared to pycnidiospores. Population structure and AMOVA analyses revealed significant genetic differentiation at the regional scale (GST = 0.23) and, as expected, not at the other more local scales (GST ≤ 0.01). Further analyses using Bayesian and unweighted neighbor-joining statistical methods detected six genetic clusters within the regional population, overall distributed according to the locations from which the isolates were sampled. Neither clear directional relative migration linked to the geographical distribution of the locations, nor isolation by distance, were observed. Separate evolutionary trajectories caused by selection and adaptations to habitat heterogeneity could be the main forces shaping such structuration. This study provides new insights into the epidemiology and the genetic structure of Z. tritici at small local and, for the first time, at single plant and leaf layer scales. Such findings would be helpful in implementing effective control strategies.

  1. Mapping human genetic diversity in Asia.

    PubMed

    Abdulla, Mahmood Ameen; Ahmed, Ikhlak; Assawamakin, Anunchai; Bhak, Jong; Brahmachari, Samir K; Calacal, Gayvelline C; Chaurasia, Amit; Chen, Chien-Hsiun; Chen, Jieming; Chen, Yuan-Tsong; Chu, Jiayou; Cutiongco-de la Paz, Eva Maria C; De Ungria, Maria Corazon A; Delfin, Frederick C; Edo, Juli; Fuchareon, Suthat; Ghang, Ho; Gojobori, Takashi; Han, Junsong; Ho, Sheng-Feng; Hoh, Boon Peng; Huang, Wei; Inoko, Hidetoshi; Jha, Pankaj; Jinam, Timothy A; Jin, Li; Jung, Jongsun; Kangwanpong, Daoroong; Kampuansai, Jatupol; Kennedy, Giulia C; Khurana, Preeti; Kim, Hyung-Lae; Kim, Kwangjoong; Kim, Sangsoo; Kim, Woo-Yeon; Kimm, Kuchan; Kimura, Ryosuke; Koike, Tomohiro; Kulawonganunchai, Supasak; Kumar, Vikrant; Lai, Poh San; Lee, Jong-Young; Lee, Sunghoon; Liu, Edison T; Majumder, Partha P; Mandapati, Kiran Kumar; Marzuki, Sangkot; Mitchell, Wayne; Mukerji, Mitali; Naritomi, Kenji; Ngamphiw, Chumpol; Niikawa, Norio; Nishida, Nao; Oh, Bermseok; Oh, Sangho; Ohashi, Jun; Oka, Akira; Ong, Rick; Padilla, Carmencita D; Palittapongarnpim, Prasit; Perdigon, Henry B; Phipps, Maude Elvira; Png, Eileen; Sakaki, Yoshiyuki; Salvador, Jazelyn M; Sandraling, Yuliana; Scaria, Vinod; Seielstad, Mark; Sidek, Mohd Ros; Sinha, Amit; Srikummool, Metawee; Sudoyo, Herawati; Sugano, Sumio; Suryadi, Helena; Suzuki, Yoshiyuki; Tabbada, Kristina A; Tan, Adrian; Tokunaga, Katsushi; Tongsima, Sissades; Villamor, Lilian P; Wang, Eric; Wang, Ying; Wang, Haifeng; Wu, Jer-Yuarn; Xiao, Huasheng; Xu, Shuhua; Yang, Jin Ok; Shugart, Yin Yao; Yoo, Hyang-Sook; Yuan, Wentao; Zhao, Guoping; Zilfalil, Bin Alwi

    2009-12-11

    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.

  2. Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations.

    PubMed

    Jones, Kenneth L; Krapu, Gary L; Brandt, David A; Ashley, Mary V

    2005-08-01

    Previous studies of migratory sandhill cranes (Grus canadensis) have made significant progress explaining evolution of this group at the species scale, but have been unsuccessful in explaining the geographically partitioned variation in morphology seen on the population scale. The objectives of this study were to assess the population structure and gene flow patterns among migratory sandhill cranes using microsatellite DNA genotypes and mitochondrial DNA haplotypes of a large sample of individuals across three populations. In particular, we were interested in evaluating the roles of Pleistocene glaciation events and postglaciation gene flow in shaping the present-day population structure. Our results indicate substantial gene flow across regions of the Midcontinental population that are geographically adjacent, suggesting that gene flow for most of the region follows an isolation-by-distance model. Male-mediated gene flow and strong female philopatry may explain the differing patterns of nuclear and mitochondrial variation. Taken in context with precise geographical information on breeding locations, the morphologic and microsatellite DNA variation shows a gradation from the Arctic-nesting subspecies G. c. canadensis to the nonArctic subspecies G. c. tabida. Analogous to other Arctic-nesting birds, it is probable that the population structure seen in Midcontinental sandhill cranes reflects the result of postglacial secondary contact. Our data suggest that subspecies of migratory sandhills experience significant gene flow and therefore do not represent distinct and independent genetic entities.

  3. Variation in the population structure of Yukon River chum and coho salmon: Evaluating the potential impact of localized habitat degradation

    USGS Publications Warehouse

    Olsen, J.B.; Spearman, William J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.

    2004-01-01

    We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.

  4. Continental-scale distributions of dust-associated bacteria and fungi

    PubMed Central

    Barberán, Albert; Ladau, Joshua; Pollard, Katherine S.; Menninger, Holly L.; Dunn, Robert R.; Fierer, Noah

    2015-01-01

    It has been known for centuries that microorganisms are ubiquitous in the atmosphere, where they are capable of long-distance dispersal. Likewise, it is well-established that these airborne bacteria and fungi can have myriad effects on human health, as well as the health of plants and livestock. However, we have a limited understanding of how these airborne communities vary across different geographic regions or the factors that structure the geographic patterns of near-surface microbes across large spatial scales. We collected dust samples from the external surfaces of ∼1,200 households located across the United States to understand the continental-scale distributions of bacteria and fungi in the near-surface atmosphere. The microbial communities were highly variable in composition across the United States, but the geographic patterns could be explained by climatic and soil variables, with coastal regions of the United States sharing similar airborne microbial communities. Although people living in more urbanized areas were not found to be exposed to distinct outdoor air microbial communities compared with those living in more rural areas, our results do suggest that urbanization leads to homogenization of the airborne microbiota, with more urban communities exhibiting less continental-scale geographic variability than more rural areas. These results provide our first insight into the continental-scale distributions of airborne microbes, which is information that could be used to identify likely associations between microbial exposures in outdoor air and incidences of disease in crops, livestock, and humans. PMID:25902536

  5. Broad-scale trophic shift in the pelagic North Pacific revealed by an oceanic seabird.

    PubMed

    Ostrom, Peggy H; Wiley, Anne E; James, Helen F; Rossman, Sam; Walker, William A; Zipkin, Elise F; Chikaraishi, Yoshito

    2017-03-29

    Human-induced ecological change in the open oceans appears to be accelerating. Fisheries, climate change and elevated nutrient inputs are variously blamed, at least in part, for altering oceanic ecosystems. Yet it is challenging to assess the extent of anthropogenic change in the open oceans, where historical records of ecological conditions are sparse, and the geographical scale is immense. We developed millennial-scale amino acid nitrogen isotope records preserved in ancient animal remains to understand changes in food web structure and nutrient regimes in the oceanic realm of the North Pacific Ocean (NPO). Our millennial-scale isotope records of amino acids in bone collagen in a wide-ranging oceanic seabird, the Hawaiian petrel ( Pterodroma sandwichensis ), showed that trophic level declined over time. The amino acid records do not support a broad-scale increase in nitrogen fixation in the North Pacific subtropical gyre, rejecting an earlier interpretation based on bulk and amino acid specific δ 15 N chronologies for Hawaiian deep-sea corals and bulk δ 15 N chronologies for the Hawaiian petrel. Rather, our work suggests that the food web structure in the NPO has shifted at a broad geographical scale, a phenomenon potentially related to industrial fishing. © 2017 The Author(s).

  6. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  7. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    PubMed

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  8. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands

    PubMed Central

    Rodriguez-Artigas, Sandra M.; Ballester, Rodrigo

    2016-01-01

    Beta-diversity, defined as spatial replacement in species composition, is crucial to the understanding of how local communities assemble. These changes can be driven by environmental or geographic factors (such as geographic distance), or a combination of the two. Spiders have been shown to be good indicators of environmental quality. Accordingly, spiders are used in this work as model taxa to establish whether there is a decrease in community similarity that corresponds to geographic distance in the grasslands of the Campos & Malezales ecoregion (Corrientes). Furthermore, the influence of climactic factors and local vegetation heterogeneity (environmental factors) on assemblage composition was evaluated. Finally, this study evaluated whether the differential dispersal capacity of spider families is a factor that influences their community structure at a regional scale. Spiders were collected with a G-Vac from vegetation in six grassland sites in the Campos & Malezales ecoregion that were separated by a minimum of 13 km. With this data, the impact of alpha-diversity and different environmental variables on the beta-diversity of spider communities was analysed. Likewise, the importance of species replacement and nesting on beta-diversity and their contribution to the regional diversity of spider families with different dispersion capacities was evaluated. The regional and site-specific inventories obtained were complete. The similarity between spider communities declined as the geographic distance between sites increased. Environmental variables also influenced community composition; stochastic events and abiotic forces were the principal intervening factors in assembly structure. The differential dispersal capacity of spider groups also influenced community structure at a regional scale. The regional beta-diversity, as well as species replacement, was greater in high and intermediate vagility spiders; while nesting was greater in spiders with low dispersion capacity. Geographic distance, among other factors (climate, and active and passive dispersion capacity), explains assembly structure and the decrease spider community similarity between geographically distant sites. Spiders with the highest dispersal capacity showed greater species replacement. This may be due to the discontinuity (both natural and anthropic) of the grasslands in this ecoregion, which limits the dispersal capacity of these spiders, and their close dependence on microhabitats. The dispersal capacity of the least vagile spiders is limited by geographic distance and biotic factors, such as competition, which could explain the nesting observed between their communities. PMID:27123380

  9. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

  10. Uncertainty of large-area estimates of indicators of forest structural gamma diversity: A study based on national forest inventory data

    Treesearch

    Susanne Winter; Andreas Böck; Ronald E. McRoberts

    2012-01-01

    Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...

  11. A representation of place attachment: A study of spatial cognition in Latvia

    NASA Astrophysics Data System (ADS)

    Skilters, Jurgis; Zarina, Liga; Raita, Liva

    2017-04-01

    Perception of geographical space is reflected in place attachment, i.e., a multidimensional cognitive-affective link between humans and their spatial environment. Place attachment balances emotions, conception of proximity. It is both social and spatial cognitive structure. Place attachment has an impact on people's actions, which in turn reversibly affect the environment in which people live. Place attachment provides emotional regulation for humans linking local - neighborhood-scale and country and world-scale environments. In Latvia a large-scale spatial cognition study has been conducted within participatory research project „Telpas pavasaris" ("Spatial Spring") by foundation Viegli. In the study 1523 respondents reported their associations characterizing certain type of places (e.g., safe place, dangerous place, far place, close place, dear place). The answers were analyzed according to several cognitive-affective categories including modes of experience, emotional valence, geographical distance, and perceptual modality. The current results indicate that socio-cognitive and affective information are primary in respect to purely spatial information (referring to spatial objects or regions and their relations). However, different types of geographical places and spatial objects (natural or artefactual) have to be distinguished and are significant to a different degree. Our results are important for environmental and urban planning because they show the ways how socio-cognitive and affective knowledge shapes the spatial cognition of geographic environment.

  12. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus.

    PubMed

    Schmidt, Thomas L; Rašić, Gordana; Zhang, Dongjing; Zheng, Xiaoying; Xi, Zhiyong; Hoffmann, Ary A

    2017-10-01

    Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations.

  13. Microallopatry caused strong diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa).

    PubMed

    Habel, Jan C; Husemann, Martin; Schmitt, Thomas; Zachos, Frank E; Honnen, Ann-Christin; Petersen, Britt; Parmakelis, Aristeidis; Stathi, Iasmi

    2012-01-01

    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale.

  14. Geographic variation in Northwest Atlantic fin whale (Balaenoptera physalus) song: implications for stock structure assessment.

    PubMed

    Delarue, Julien; Todd, Sean K; Van Parijs, Sofie M; Di Iorio, Lucia

    2009-03-01

    Passive acoustic data are increasingly being used as a tool for helping to define marine mammal populations and stocks. Fin whale (Balaenoptera physalus) songs present a unique opportunity to determine interstock differences. Their highly stereotyped interpulse interval has been shown to vary between geographic areas and to remain stable over time in some areas. In this study the structure of songs recorded at two geographically close feeding aggregations in the Gulf of St. Lawrence (GSL) and Gulf of Maine (GoM) was compared. Recordings were made from September 2005 through February 2006 in the GSL and intermittently between January 2006 and September 2007 at two locations in the GoM. 6257 pulse intervals corresponding to 19 GSL and 29 GoM songs were measured to characterize songs from both areas. Classification trees showed that GSL songs differ significantly from those in the GoM. The results are consistent with those derived from other stock structure assessment methodologies, such as chemical signature and photoidentification analysis, suggesting that fin whales in these areas may form separate management stocks. Song structure analysis could therefore provide a useful and cost-efficient tool for defining conservation units over temporal and geographical scales relevant to management objectives in fin whales.

  15. Microallopatry Caused Strong Diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa)

    PubMed Central

    Habel, Jan C.; Husemann, Martin; Schmitt, Thomas; Zachos, Frank E.; Honnen, Ann-Christin; Petersen, Britt; Parmakelis, Aristeidis; Stathi, Iasmi

    2012-01-01

    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale. PMID:22383951

  16. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  17. Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States

    PubMed Central

    Shiro, Sokichi; Matsuura, Syota; Saiki, Rina; Sigua, Gilbert C.; Yamamoto, Akihiro; Umehara, Yosuke; Hayashi, Masaki

    2013-01-01

    We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj2Rj3, and Rj4). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically. PMID:23563944

  18. Negative Symptom Dimensions of the Positive and Negative Syndrome Scale Across Geographical Regions

    PubMed Central

    Liharska, Lora; Harvey, Philip D.; Atkins, Alexandra; Ulshen, Daniel; Keefe, Richard S.E.

    2017-01-01

    Objective: Recognizing the discrete dimensions that underlie negative symptoms in schizophrenia and how these dimensions are understood across localities might result in better understanding and treatment of these symptoms. To this end, the objectives of this study were to 1) identify the Positive and Negative Syndrome Scale negative symptom dimensions of expressive deficits and experiential deficits and 2) analyze performance on these dimensions over 15 geographical regions to determine whether the items defining them manifest similar reliability across these regions. Design: Data were obtained for the baseline Positive and Negative Syndrome Scale visits of 6,889 subjects across 15 geographical regions. Using confirmatory factor analysis, we examined whether a two-factor negative symptom structure that is found in schizophrenia (experiential deficits and expressive deficits) would be replicated in our sample, and using differential item functioning, we tested the degree to which specific items from each negative symptom subfactor performed across geographical regions in comparison with the United States. Results: The two-factor negative symptom solution was replicated in this sample. Most geographical regions showed moderate-to-large differential item functioning for Positive and Negative Syndrome Scale expressive deficit items, especially N3 Poor Rapport, as compared with Positive and Negative Syndrome Scale experiential deficit items, showing that these items might be interpreted or scored differently in different regions. Across countries, except for India, the differential item functioning values did not favor raters in the United States. Conclusion: These results suggest that the Positive and Negative Syndrome Scale negative symptom factor can be better represented by a two-factor model than by a single-factor model. Additionally, the results show significant differences in responses to items representing the Positive and Negative Syndrome Scale expressive factors, but not the experiential factors, across regions. This could be due to a lack of equivalence between the original and translated versions, cultural differences with the interpretation of items, dissimilarities in rater training, or diversity in the understanding of scoring anchors. Knowing which items are challenging for raters across regions can help to guide Positive and Negative Syndrome Scale training and improve the results of international clinical trials aimed at negative symptoms. PMID:29410935

  19. Geographic Information for Analysis of Highway Runoff-Quality Data on a National or Regional Scale in the Conterminous United States

    USGS Publications Warehouse

    Smieszek, Tomas W.; Granato, Gregory E.

    2000-01-01

    Spatial data are important for interpretation of water-quality information on a regional or national scale. Geographic information systems (GIS) facilitate interpretation and integration of spatial data. The geographic information and data compiled for the conterminous United States during the National Highway Runoff Water-Quality Data and Methodology Synthesis project is described in this document, which also includes information on the structure, file types, and the geographic information in the data files. This 'geodata' directory contains two subdirectories, labeled 'gisdata' and 'gisimage.' The 'gisdata' directory contains ArcInfo coverages, ArcInfo export files, shapefiles (used in ArcView), Spatial Data Transfer Standard Topological Vector Profile format files, and meta files in subdirectories organized by file type. The 'gisimage' directory contains the GIS data in common image-file formats. The spatial geodata includes two rain-zone region maps and a map of national ecosystems originally published by the U.S. Environmental Protection Agency; regional estimates of mean annual streamflow, and water hardness published by the Federal Highway Administration; and mean monthly temperature, mean annual precipitation, and mean monthly snowfall modified from data published by the National Climatic Data Center and made available to the public by the Oregon Climate Service at Oregon State University. These GIS files were compiled for qualitative spatial analysis of available data on a national and(or) regional scale and therefore should be considered as qualitative representations, not precise geographic location information.

  20. Beyond the Census Tract: Patterns and Determinants of Racial Segregation at Multiple Geographic Scales*

    PubMed Central

    Lee, Barrett A.; Reardon, Sean F.; Firebaugh, Glenn; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David

    2014-01-01

    The census tract-based residential segregation literature rests on problematic assumptions about geographic scale and proximity. We pursue a new tract-free approach that combines explicitly spatial concepts and methods to examine racial segregation across egocentric local environments of varying size. Using 2000 census data for the 100 largest U.S. metropolitan areas, we compute a spatially modified version of the information theory index H to describe patterns of black-white, Hispanic-white, Asian-white, and multi-group segregation at different scales. The metropolitan structural characteristics that best distinguish micro-segregation from macro-segregation for each group combination are identified, and their effects are decomposed into portions due to racial variation occurring over short and long distances. A comparison of our results to those from tract-based analyses confirms the value of the new approach. PMID:25324575

  1. Do more hospital beds lead to higher hospitalization rates? a spatial examination of Roemer's Law.

    PubMed

    Delamater, Paul L; Messina, Joseph P; Grady, Sue C; WinklerPrins, Vince; Shortridge, Ashton M

    2013-01-01

    Roemer's Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer's Law. We pose the question, "Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?" We employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions. We find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis. This study provides evidence for the effects of Roemer's Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified.

  2. Nestedness in assemblages of helminth parasites of bats: a function of geography, environment, or host nestedness?

    PubMed

    Warburton, Elizabeth M; Van Der Mescht, Luther; Khokhlova, Irina S; Krasnov, Boris R; Vonhof, Maarten J

    2018-05-01

    Nested subsets occur in ecological communities when species-poor communities are subsets of larger, species-rich communities. Understanding this pattern can help elucidate species colonization abilities, extinction risks, and general structuring of biological communities. Here, we evaluate nestedness in a poorly studied host-parasite system, bats and their helminths, across the Japanese archipelago and within its different bioclimatic regions. We hypothesized that (1) if helminth communities are nested across geographic sites at the level of the archipelago, then broad-scale processes, like colonization-extinction dynamics, mainly structure parasite assemblages; (2) if helminth communities are nested across geographic sites at the level of the bioclimatic region, then fine-scale environmental variation plays a significant role in species nestedness; (3) if helminth community nestedness mirrors host species nestedness, then communities are nested because the habitats they occupy are nested; and (4) if nestedness does not occur or if it is not correlated with any geographical or host data, then passive sampling could be responsible for the patterns of parasite assemblage in our sample. We found that helminth communities were nested across host species throughout the archipelago but, when considering each bioclimatic region, helminths in only one region were significantly more nested than the null model. Helminth communities were also nested across sites within all four bioclimatic regions. These results suggest that helminths form nested subsets across the archipelago due to broad-scale processes that reflect the overall lineages of their mammalian hosts; however, at the regional scale, environmental processes related to nestedness of their habitats drive parasite community nestedness.

  3. Interplay between geo-population factors and hierarchy of cities in multilayer urban networks.

    PubMed

    Makarov, Vladimir V; Hramov, Alexander E; Kirsanov, Daniil V; Maksimenko, Vladimir A; Goremyko, Mikhail V; Ivanov, Alexey V; Yashkov, Ivan A; Boccaletti, Stefano

    2017-12-08

    Only taking into consideration the interplay between processes occurring at different levels of a country can provide the complete social and geopolitical plot of its urban system. We study the interaction of the administrative structure and the geographical connectivity between cities with the help of a multiplex network approach. We found that a spatially-distributed geo-network imposes its own ranking to the hierarchical administrative network, while the latter redistributes the shortest paths between nodes in the geographical layer. Using both real demographic data of population censuses of the Republic of Kazakhstan and theoretical models, we show that in a country-scale urban network and for each specific city, the geographical neighbouring with highly populated areas is more important than its political setting. Furthermore, the structure of political subordination is instead crucial for the wealth of transportation network and communication between populated regions of the country.

  4. Hierarchical Genetic Analysis of German Cockroach (Blattella germanica) Populations from within Buildings to across Continents

    PubMed Central

    Vargo, Edward L.; Crissman, Jonathan R.; Booth, Warren; Santangelo, Richard G.; Mukha, Dmitry V.; Schal, Coby

    2014-01-01

    Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species. PMID:25020136

  5. There and back again: a review of residency and return migrations in sharks, with implications for population structure and management.

    PubMed

    Chapman, Demian D; Feldheim, Kevin A; Papastamatiou, Yannis P; Hueter, Robert E

    2015-01-01

    The overexploitation of sharks has become a global environmental issue in need of a comprehensive and multifaceted management response. Tracking studies are beginning to elucidate how shark movements shape the internal dynamics and structure of populations, which determine the most appropriate scale of these management efforts. Tracked sharks frequently either remain in a restricted geographic area for an extended period of time (residency) or return to a previously resided-in area after making long-distance movements (site fidelity). Genetic studies have shown that some individuals of certain species preferentially return to their exact birthplaces (natal philopatry) or birth regions (regional philopatry) for either parturition or mating, even though they make long-distance movements that would allow them to breed elsewhere. More than 80 peer-reviewed articles, constituting the majority of published shark tracking and population genetic studies, provide evidence of at least one of these behaviors in a combined 31 shark species from six of the eight extant orders. Residency, site fidelity, and philopatry can alone or in combination structure many coastal shark populations on finer geographic scales than expected based on their potential for dispersal. This information should therefore be used to scale and inform assessment, management, and conservation activities intended to restore depleted shark populations.

  6. Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease

    USDA-ARS?s Scientific Manuscript database

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographic and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in clim...

  7. Mathematical Ecology Analysis of Geographical Distribution of Soybean-Nodulating Bradyrhizobia in Japan

    PubMed Central

    Saeki, Yuichi; Shiro, Sokichi; Tajima, Toshiyuki; Yamamoto, Akihiro; Sameshima-Saito, Reiko; Sato, Takashi; Yamakawa, Takeo

    2013-01-01

    We characterized the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia from weakly acidic soils in Japan and their geographical distribution in an ecological study of indigenous soybean rhizobia. We isolated bradyrhizobia from three kinds of Rj-genotype soybeans. Their genetic diversity and community structure were analyzed by PCR-RFLP analysis of the 16S–23S rRNA gene internal transcribed spacer (ITS) region with 11 Bradyrhizobium USDA strains as references. We used data from the present study and previous studies to carry out mathematical ecological analyses, multidimensional scaling analysis with the Bray-Curtis index, polar ordination analysis, and multiple regression analyses to characterize the relationship between soybean-nodulating bradyrhizobial community structures and their geographical distribution. The mathematical ecological approaches used in this study demonstrated the presence of ecological niches and suggested the geographical distribution of soybean-nodulating bradyrhizobia to be a function of latitude and the related climate, with clusters in the order Bj123, Bj110, Bj6, and Be76 from north to south in Japan. PMID:24240318

  8. Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China.

    PubMed

    Xu, Tianle; Veresoglou, Stavros D; Chen, Yongliang; Rillig, Matthias C; Xiang, Dan; Ondřej, Daniel; Hao, Zhipeng; Liu, Lei; Deng, Ye; Hu, Yajun; Chen, Weiping; Wang, Juntao; He, Jizheng; Chen, Baodong

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualists of terrestrial plants and play key roles in regulating various ecosystem processes, but little is known about AMF biogeography at regional scale. This study aims at exploring the key predictors of AMF communities across a 5000-km transect in northern China. We determined the soil AMF species richness and community composition at 47 sites representative of four vegetation types (meadow steppe, typical steppe, desert steppe and desert) and related them to plant community characteristics, abiotic factors and geographic distance. The results showed that soil pH was the strongest predictor of AMF richness and phylogenetic diversity. However, abiotic factors only have a low predictive effect on AMF community composition or phylogenetic patterns. By contrast, we found a significant relationship between community composition of AMF and plants, which was a surprising result given the extent of heterogeneity in the plant community across this transect. Moreover, the geographic distance predominantly explained the AMF phylogenetic structure, implying that history evolutionary may play a role in shaping AMF biogeographic patterns. This study highlighted the different roles of main factors in predicting AMF biogeography, and bridge landscape-scale studies to more recent global-scale efforts. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus)

    PubMed Central

    Lopes, C M; Ximenes, S S F; Gava, A; de Freitas, T R O

    2013-01-01

    Identifying factors and the extent of their roles in the differentiation of populations is of great importance for understanding the evolutionary process in which a species is involved. Ctenomys minutus is a highly karyotype–polymorphic subterranean rodent, with diploid numbers ranging from 42 to 50 and autosomal arm numbers (ANs) ranging from 68 to 80, comprising a total of 45 karyotypes described so far. This species inhabits the southern Brazilian coastal plain, which has a complex geological history, with several potential geographical barriers acting on different time scales. We assessed the geographical genetic structure of C. minutus, examining 340 individuals over the entire distributional range and using information from chromosomal rearrangements, mitochondrial DNA (mtDNA) sequences and 14 microsatellite loci. The mtDNA results revealed seven main haplogroups, with the most recent common ancestors dating from the Pleistocene, whereas clustering methods defined 12 populations. Some boundaries of mtDNA haplogroups and population clusters can be associated with potential geographical barriers to gene flow. The isolation-by-distance pattern also has an important role in fine-scale genetic differentiation, which is strengthened by the narrowness of the coastal plain and by common features of subterranean rodents (that is, small fragmented populations and low dispersal rates), which limit gene flow among populations. A step-by-step mechanism of chromosomal evolution can be suggested for this species, mainly associated with the metapopulation structure, genetic drift and the geographical features of the southern Brazilian coastal plain. However, chromosomal variations have no or very little role in the diversification of C. minutus populations. PMID:23759727

  10. Field-aligned Currents' Scale Analysis Performed by the Swarm Constellation

    NASA Astrophysics Data System (ADS)

    Luhr, H.; Park, J.; Gjerloev, J. W.; Rauberg, J.; Michaelis, I.; Le, G.; Merayo, J. M. G.; Brauer, P.

    2014-12-01

    We present a statistical study of the temporal and spatial scale characteristics of different field-aligned current (FAC) types. Very suitable for this purpose is the closely spaced Swarm satellite formation, which existed shortly after launch during the commissioning phase. As dataset we use the standard Level 2 product, Single Satellite FAC, which comes at a data rate of 1 Hz, corresponding to an along-track distance of 7.5 km. FACs are known to cover a wide range of scales from 1km to several hundred kilometres, the smaller the scale the larger the amplitude. We like to divide the FACs into two classes. Those of intermediate scale, some tens of kilometres, which are carried predominantly by kinetic Alfvén waves, while the large-scale FACs are assumed to be stationary current structures on the timescales of a satellite crossing. For distinguishing between the two we first look how the temporal variability changes with scale. For that we consider subsequent measurements at the same point, the orbital cross-over near the geographic poles, and interpret the temporal current changes. Here we focus on observations in the southern hemisphere at locations where the geographic pole lies within the auroral region. In a next step the latitudinal and longitudinal scales of the larger-scale FAC structures are investigated. FACs related to Alfvén waves cannot be studied in this way because we have no simultaneous measurements at the same latitude and longitude. The results from this analysis are different for dayside and nightside. Implications for the FAC characteristics resulting from these observations are interpreted in the end.

  11. Tree community variation in a tropical continental island according to slope aspect and human interference.

    PubMed

    Gonçalves, Nathan B; Nettesheim, Felipe C; Conde, Marilena M S

    2018-01-01

    Associating description of unrecorded tropical tree community structure to sampling approaches that can help determine mechanisms behind floristic variation is important to further the comprehension of how plant species coexist at tropical forests. Thus, this study had the goals of (i) evaluating tree community structure on the continental island of Marambaia (23°4'37.09"S; 43°59'2.15"W) and (ii) testing the prediction that there are local scale changes in a tropical tree community structure between slopes facing different geographic orientation and with distinct human interference history. We established 60 (0.6 ha) sampling units in three different slope sites with distinct predominant geographic orientation and human interference. We sampled all woody trees with diameter at breast height (dbh) ≥ 5 cm. We found a total of 1.170 individuals representing 220 species, 120 genera and 50 families. The overall tree community structure and structural descriptors (abundance of individuals, basal area, species richness and diversity) varied extensively between the sites. The evidence presented here supports that local scale topography variations and human interference history can be important factors contributing to the known floristic heterogeneity of the Atlantic Rainforest. Future work on the study area should focus on disentangling effects from distinct causal factors over tree community variation and species occurrence.

  12. ANALYTICAL TOOL INTERFACE FOR LANDSCAPE ASSESSMENTS (ATIILA): AN ARCVIEW EXTENSION FOR THE ANALYSIS OF LANDSCAPE PATTERNS, COMPOSITION, AND STRUCTURE

    EPA Science Inventory

    Environmental management practices are trending away from simple, local- scale assessments toward complex, multiple-stressor regional assessments. Landscape ecology provides the theory behind these assessments while geographic information systems (GIS) supply the tools to impleme...

  13. Negative Symptom Dimensions of the Positive and Negative Syndrome Scale Across Geographical Regions: Implications for Social, Linguistic, and Cultural Consistency.

    PubMed

    Khan, Anzalee; Liharska, Lora; Harvey, Philip D; Atkins, Alexandra; Ulshen, Daniel; Keefe, Richard S E

    2017-12-01

    Objective: Recognizing the discrete dimensions that underlie negative symptoms in schizophrenia and how these dimensions are understood across localities might result in better understanding and treatment of these symptoms. To this end, the objectives of this study were to 1) identify the Positive and Negative Syndrome Scale negative symptom dimensions of expressive deficits and experiential deficits and 2) analyze performance on these dimensions over 15 geographical regions to determine whether the items defining them manifest similar reliability across these regions. Design: Data were obtained for the baseline Positive and Negative Syndrome Scale visits of 6,889 subjects across 15 geographical regions. Using confirmatory factor analysis, we examined whether a two-factor negative symptom structure that is found in schizophrenia (experiential deficits and expressive deficits) would be replicated in our sample, and using differential item functioning, we tested the degree to which specific items from each negative symptom subfactor performed across geographical regions in comparison with the United States. Results: The two-factor negative symptom solution was replicated in this sample. Most geographical regions showed moderate-to-large differential item functioning for Positive and Negative Syndrome Scale expressive deficit items, especially N3 Poor Rapport, as compared with Positive and Negative Syndrome Scale experiential deficit items, showing that these items might be interpreted or scored differently in different regions. Across countries, except for India, the differential item functioning values did not favor raters in the United States. Conclusion: These results suggest that the Positive and Negative Syndrome Scale negative symptom factor can be better represented by a two-factor model than by a single-factor model. Additionally, the results show significant differences in responses to items representing the Positive and Negative Syndrome Scale expressive factors, but not the experiential factors, across regions. This could be due to a lack of equivalence between the original and translated versions, cultural differences with the interpretation of items, dissimilarities in rater training, or diversity in the understanding of scoring anchors. Knowing which items are challenging for raters across regions can help to guide Positive and Negative Syndrome Scale training and improve the results of international clinical trials aimed at negative symptoms.

  14. Eyjafjallajökull and 9/11: The Impact of Large-Scale Disasters on Worldwide Mobility

    PubMed Central

    Woolley-Meza, Olivia; Grady, Daniel; Thiemann, Christian; Bagrow, James P.; Brockmann, Dirk

    2013-01-01

    Large-scale disasters that interfere with globalized socio-technical infrastructure, such as mobility and transportation networks, trigger high socio-economic costs. Although the origin of such events is often geographically confined, their impact reverberates through entire networks in ways that are poorly understood, difficult to assess, and even more difficult to predict. We investigate how the eruption of volcano Eyjafjallajökull, the September 11th terrorist attacks, and geographical disruptions in general interfere with worldwide mobility. To do this we track changes in effective distance in the worldwide air transportation network from the perspective of individual airports. We find that universal features exist across these events: airport susceptibilities to regional disruptions follow similar, strongly heterogeneous distributions that lack a scale. On the other hand, airports are more uniformly susceptible to attacks that target the most important hubs in the network, exhibiting a well-defined scale. The statistical behavior of susceptibility can be characterized by a single scaling exponent. Using scaling arguments that capture the interplay between individual airport characteristics and the structural properties of routes we can recover the exponent for all types of disruption. We find that the same mechanisms responsible for efficient passenger flow may also keep the system in a vulnerable state. Our approach can be applied to understand the impact of large, correlated disruptions in financial systems, ecosystems and other systems with a complex interaction structure between heterogeneous components. PMID:23950904

  15. Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient

    PubMed Central

    Wu, Zhigang; Yu, Dan; Wang, Zhong; Li, Xing; Xu, Xinwei

    2015-01-01

    Understanding how natural processes affect population genetic structures is an important issue in evolutionary biology. One effective method is to assess the relative importance of environmental and geographical factors in the genetic structure of populations. In this study, we examined the spatial genetic variation of thirteen Myriophyllum spicatum populations from the Qinghai-Tibetan Plateau (QTP) and adjacent highlands (Yunnan-Guizhou Plateau, YGP) by using microsatellite loci and environmental and geographical factors. Bioclim layers, hydrological properties and elevation were considered as environmental variables and reduced by principal component analysis. The genetic isolation by geographic distance (IBD) was tested by Mantel tests and the relative importance of environmental variables on population genetic differentiation was determined by a partial Mantel test and multiple matrix regression with randomization (MMRR). Two genetic clusters corresponding to the QTP and YGP were identified. Both tests and MMRR revealed a significant and strong correlation between genetic divergence and geographic isolation under the influence of environmental heterogeneity at the overall and finer spatial scales. Our findings suggested the dominant role of geography on the evolution of M. spicatum under a steep environmental gradient in the alpine landscape as a result of dispersal limitation and genetic drift. PMID:26494202

  16. US GeoData

    USGS Publications Warehouse

    ,

    1992-01-01

    US GeoData tapes are computer tapes which contain cartographic data in digital form. The 1:2,000,000-scale data are available in two forms. The graphic form can be used to generate computer-plotted maps. The content and scale of the maps can be varied to meet your needs. The topologically-structured form of US GeoData is suitable for input to geographic information systems for use in spatial analysis and geographic studies. Both forms must be used in conjunction with appropriate software. US GeoData tapes offer convenience, accuracy, flexibility, and cost effectiveness to many map users. Business, industry, and government users who are involved in network planning and analysis, transportation, demography, land use, or any activity where data can be related to, or plotted on a map will find US GeoData a valuable resource.

  17. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    PubMed Central

    Emch, Michael; Jobe, R. Todd; Moody, Aaron

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. Methodology/Principal Findings In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. Conclusions/Significance The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by distance pattern is observed. This study is the first to characterize the geographic structure of influenza viral evolution at the sub-national scale in Vietnam and can shed light on how H5N1 HPAIVs evolve in certain geographic settings. PMID:20072619

  18. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by distance pattern is observed. This study is the first to characterize the geographic structure of influenza viral evolution at the sub-national scale in Vietnam and can shed light on how H5N1 HPAIVs evolve in certain geographic settings.

  19. Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    PubMed Central

    2010-01-01

    Background The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales. Results Our results show that dispersal in C. australis is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females. Conclusions Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females. PMID:20109219

  20. Review and synthesis of problems and directions for large scale geographic information system development

    NASA Technical Reports Server (NTRS)

    Boyle, A. R.; Dangermond, J.; Marble, D.; Simonett, D. S.; Tomlinson, R. F.

    1983-01-01

    Problems and directions for large scale geographic information system development were reviewed and the general problems associated with automated geographic information systems and spatial data handling were addressed.

  1. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa.

    PubMed

    Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve

    2009-05-01

    This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.

  2. Geographic scale matters in detecting the relationship between neighbourhood food environments and obesity risk: an analysis of driver license records in Salt Lake County, Utah.

    PubMed

    Fan, Jessie X; Hanson, Heidi A; Zick, Cathleen D; Brown, Barbara B; Kowaleski-Jones, Lori; Smith, Ken R

    2014-08-19

    Empirical studies of the association between neighbourhood food environments and individual obesity risk have found mixed results. One possible cause of these mixed findings is the variation in neighbourhood geographic scale used. The purpose of this paper was to examine how various neighbourhood geographic scales affected the estimated relationship between food environments and obesity risk. Cross-sectional secondary data analysis. Salt Lake County, Utah, USA. 403,305 Salt Lake County adults 25-64 in the Utah driver license database between 1995 and 2008. Utah driver license data were geo-linked to 2000 US Census data and Dun & Bradstreet business data. Food outlets were classified into the categories of large grocery stores, convenience stores, limited-service restaurants and full-service restaurants, and measured at four neighbourhood geographic scales: Census block group, Census tract, ZIP code and a 1 km buffer around the resident's house. These measures were regressed on individual obesity status using multilevel random intercept regressions. Obesity. Food environment was important for obesity but the scale of the relevant neighbourhood differs for different type of outlets: large grocery stores were not significant at all four geographic scales, limited-service restaurants at the medium-to-large scale (Census tract or larger) and convenience stores and full-service restaurants at the smallest scale (Census tract or smaller). The choice of neighbourhood geographic scale can affect the estimated significance of the association between neighbourhood food environments and individual obesity risk. However, variations in geographic scale alone do not explain the mixed findings in the literature. If researchers are constrained to use one geographic scale with multiple categories of food outlets, using Census tract or 1 km buffer as the neighbourhood geographic unit is likely to allow researchers to detect most significant relationships. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. ESRI applications of GIS technology: Mineral resource development

    NASA Technical Reports Server (NTRS)

    Derrenbacher, W.

    1981-01-01

    The application of geographic information systems technology to large scale regional assessment related to mineral resource development, identifying candidate sites for related industry, and evaluating sites for waste disposal is discussed. Efforts to develop data bases were conducted at scales ranging from 1:3,000,000 to 1:25,000. In several instances, broad screening was conducted for large areas at a very general scale with more detailed studies subsequently undertaken in promising areas windowed out of the generalized data base. Increasingly, the systems which are developed are structured as the spatial framework for the long-term collection, storage, referencing, and retrieval of vast amounts of data about large regions. Typically, the reconnaissance data base for a large region is structured at 1:250,000 scale, data bases for smaller areas being structured at 1:25,000, 1:50,000 or 1:63,360. An integrated data base for the coterminous US was implemented at a scale of 1:3,000,000 for two separate efforts.

  4. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    PubMed

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Do More Hospital Beds Lead to Higher Hospitalization Rates? A Spatial Examination of Roemer’s Law

    PubMed Central

    Delamater, Paul L.; Messina, Joseph P.; Grady, Sue C.; WinklerPrins, Vince; Shortridge, Ashton M.

    2013-01-01

    Background Roemer’s Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer’s Law. We pose the question, “Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?” Methods We employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions. Results We find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis. Conclusions This study provides evidence for the effects of Roemer’s Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified. PMID:23418432

  6. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)

    PubMed Central

    Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species. PMID:27736863

  7. Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America.

    PubMed

    Sproul, John S; Houston, Derek D; Nelson, C Riley; Evans, R Paul; Crandall, Keith A; Shiozawa, Dennis K

    2015-12-12

    Phylogeographic studies of aquatic insects provide valuable insights into mechanisms that shape the genetic structure of communities, yet studies that include broad geographic areas are uncommon for this group. We conducted a broad scale phylogeographic analysis of the least salmonfly Pteronarcella badia (Plecoptera) across western North America. We tested hypotheses related to mode of dispersal and the influence of historic climate oscillations on population genetic structure. In order to generate a larger mitochondrial data set, we used 454 sequencing to reconstruct the complete mitochondrial genome in the early stages of the project. Our analysis revealed high levels of population structure with several deeply divergent clades present across the sample area. Evidence from five mitochondrial genes and one nuclear locus identified a potentially cryptic lineage in the Pacific Northwest. Gene flow estimates and geographic clade distributions suggest that overland flight during the winged adult stage is an important dispersal mechanism for this taxon. We found evidence of multiple glacial refugia across the species distribution and signs of secondary contact within and among major clades. This study provides a basis for future studies of aquatic insect phylogeography at the inter-basin scale in western North America. Our findings add to an understanding of the role of historical climate isolations in shaping assemblages of aquatic insects in this region. We identified several geographic areas that may have historical importance for other aquatic organisms with similar distributions and dispersal strategies as P. badia. This work adds to the ever-growing list of studies that highlight the potential of next-generation DNA sequencing in a phylogenetic context to improve molecular data sets from understudied groups.

  8. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans).

    PubMed

    Lewallen, Eric A; Bohonak, Andrew J; Bonin, Carolina A; van Wijnen, Andre J; Pitman, Robert L; Lovejoy, Nathan R

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species.

  9. Small-scale genetic structure in an endangered wetland specialist: possible effects of landscape change and population recovery

    USGS Publications Warehouse

    van Rees, Charles B.; Reed, J. Michael; Wilson, Robert E.; Underwood, Jared G.; Sonsthagen, Sarah A.

    2018-01-01

    The effects of anthropogenic landscape change on genetic population structure are well studied, but the temporal and spatial scales at which genetic structure can develop, especially in taxa with high dispersal capabilities like birds, are less well understood. We investigated population structure in the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered wetland specialist bird on the island of O`ahu (Hawai`i, USA). Hawaiian gallinules have experienced a gradual population recovery from near extinction in the 1950s, and have recolonized wetlands on O`ahu in the context of a rapidly urbanizing landscape. We genotyped 152 Hawaiian gallinules at 12 microsatellite loci and sequenced a 520 base-pair fragment of the ND2 region of mitochondrial DNA (mtDNA) from individuals captured at 13 wetland locations on O`ahu in 2014–2016. We observed moderate to high genetic structuring (overall microsatellite FST = 0.098, mtDNA FST = 0.248) among populations of Hawaiian gallinules occupying wetlands at very close geographic proximity (e.g., 1.5–55 km). Asymmetry in gene flow estimates suggests that Hawaiian gallinules may have persisted in 2–3 strongholds which served as source populations that recolonized more recently restored habitats currently supporting large numbers of birds. Our results highlight that genetic structure can develop in taxa that are expanding their range after severe population decline, and that biologically significant structuring can occur over small geographic distances, even in avian taxa.

  10. Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C

    2008-02-01

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.

  11. Genetic structure of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) on the transvolcanic Mexican belt.

    PubMed

    Alcalá, Raúl E; Domínguez, César A

    2012-06-01

    Most species of Pinguicula present a montane distribution with populations located at high altitudes. In this context, we proposed that populations of Pinguicula species could be genetically differentiated even at a local scale. This study supported that prediction, as a RAPD-based analysis of molecular variance revealed a high degree of genetic structure (Φ (st) = 0.157, P = 0.001) and low gene flow (Nm = 1.0) among four central populations of Pinguicula moranensis in Mexico, with a maximum geographic separation of about 140 km. The four populations also exhibited high levels of genetic diversity (mean Nei's genetic diversity = 0.3716; % polymorphism = 95.45%). The evolutionary implications of the genetic structure found in P. moranensis for other species in the genus are discussed in the context of the naturally fragmented distribution and a set of life history traits shared by most Pinguicula species that could promote geographic isolation and limited gene flow.

  12. Synoptic-scale Rossby waves and the geographic distribution of lateral transport routes between the tropics and the extratropics in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Horinouchi, Takeshi; Sassi, Fabrizio; Boville, Byron A.

    2000-11-01

    Atmospheric transport between the tropics and the extratropics, in the lowest part of the stratosphere during Northern Hemisphere winter, is investigated. The role of synoptic-scale disturbances that propagate laterally into the tropics is examined using the middle atmosphere version of the National Center for Atmospheric Research Community Climate Model Version 3 general circulation model. In the lower stratosphere, synoptic-scale Rossby waves propagate vigorously from the northern (i.e., winter) extratropics through two ``westerly ducts,'' where the westerly zonal mean winds near the equator are favorable to Rossby wave propagation. The waves break in the westerly ducts and modify the mean potential vorticity (PV) structure to connect subtropical and equatorial regions of sharp PV gradients. Frequent wave breaking and the wave -induced PV structure create distinct routes where transport occurs vigorously between the tropics and the northern extratropics. Interhemispheric transport also occurs through regions associated with the westerly ducts. In the Southern (summer) Hemisphere lower stratosphere, synoptic-scale disturbances propagate mainly as ``tongues'' of PV elongated from extratropical disturbances. The transport between the tropics and the southern extratropics has a strong geographic preference but is dominated by the monsoon circulation, as was shown for the upper troposphere by Chen [1995]. PV tongues and other transient anomalies are of secondary importance.

  13. A national geographic framework for guiding conservation on a landscape scale

    USGS Publications Warehouse

    Millard, Michael J.; Czarnecki, Craig A.; Morton, John M.; Brandt, Laura A.; Briggs, Jennifer S.; Shipley, Frank S.; Sayre, Roger G.; Sponholtz, Pamela J.; Perkins, David; Simpkins, Darin G.; Taylor, Janith

    2012-01-01

    The U.S. Fish and Wildlife Service, along with the global conservation community, has recognized that the conservation challenges of the 21st century far exceed the responsibilities and footprint of any individual agency or program. The ecological effects of climate change and other anthropogenic stressors do not recognize geopolitical boundaries and, as such, demand a national geographic framework to provide structure for cross-jurisdictional and landscape-scale conservation strategies. In 2009, a new map of ecologically based conservation regions in which to organize capacity and implement strategic habitat conservation was developed using rapid prototyping and expert elicitation by an interagency team of U.S. Fish and Wildlife Service and U.S. Geological Survey scientists and conservation professionals. Incorporating Bird Conservation Regions, Freshwater Ecoregions, and U.S. Geological Survey hydrologic unit codes, the new geographic framework provides a spatial template for building conservation capacity and focusing biological planning and conservation design efforts. The Department of Interior's Landscape Conservation Cooperatives are being organized in these new conservation regions as multi-stakeholder collaborations for improved conservation science and management.

  14. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  15. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  16. Population structure of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) assessed on a global scale using Amplified Fragment Length Polymorphism

    USDA-ARS?s Scientific Manuscript database

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is a major pest of livestock in the United States and worldwide. To assess the genetic variability in geographically distant stable flies, samples were obtained from four biogeographical regions: Nearctic, Neotropical, Palearctic, and Aus...

  17. Comparative population genetic structure and diversity of Yellow Perch and Walleye: Broad- and fine-scale patterns across North America

    USDA-ARS?s Scientific Manuscript database

    The yellow perch Perca flavescens and the walleye Sander vitreus are native North American percid fishes, which have considerable fishery and ecological importance across their wide geographic ranges. Over the past century, they were stocked into new habitats, often with relative disregard for conse...

  18. Geographic approaches to biodiversity conservation: implications of scale and error to landscape planning

    Treesearch

    Curtis H. Flather; Kenneth R. Wilson; Susan A. Shriner

    2009-01-01

    Conservation science is concerned with understanding why distribution and abundance patterns of species vary in time and space. Although these patterns have strong signatures tied to the availability of energy and nutrients, variation in climate, physiographic heterogeneity, and differences in the structural complexity of natural vegetation, it is becoming more...

  19. Burning through organizational boundaries? Examining inter-organizational communication networks in policy-mandated collaborative bushfire planning groups

    Treesearch

    Rachel F. Brummel; Kristen C. Nelson; Pamela J. Jakes

    2012-01-01

    Collaboration can enhance cooperation across geographic and organizational scales, effectively "burning through" those boundaries. Using structured social network analysis (SNA) and qualitative in-depth interviews, this study examined three collaborative bushfire planning groups in New South Wales, Australia and asked: How does participation in policy-...

  20. Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales.

    PubMed

    Lemaire, Benny; Chimphango, Samson B M; Stirton, Charles; Rafudeen, Suhail; Honnay, Olivier; Smets, Erik; Chen, Wen-Ming; Sprent, Janet; James, Euan K; Muasya, A Muthama

    2016-09-01

    Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales

    PubMed Central

    Chimphango, Samson B. M.; Stirton, Charles; Rafudeen, Suhail; Honnay, Olivier; Smets, Erik; Chen, Wen-Ming; Sprent, Janet; James, Euan K.; Muasya, A. Muthama

    2016-01-01

    ABSTRACT Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678T and B. phymatum STM815T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D. lignosus, I. filifolia, and P. calyptrata) nodulated only in their native soils, the invasive neotropical species M. pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. PMID:27316955

  2. Regional and local species richness in an insular environment: Serpentine plants in California

    USGS Publications Warehouse

    Harrison, S.; Safford, H.D.; Grace, J.B.; Viers, J.H.; Davies, K.F.

    2006-01-01

    We asked how the richness of the specialized (endemic) flora of serpentine rock outcrops in California varies at both the regional and local scales. Our study had two goals: first, to test whether endemic richness is affected by spatial habitat structure (e.g., regional serpentine area, local serpentine outcrop area, regional and local measures of outcrop isolation), and second, to conduct this test in the context of a broader assessment of environmental influences (e.g., climate, soils, vegetation, disturbance) and historical influences (e.g., geologic age, geographic province) on local and regional species richness. We measured endemic and total richness and environmental variables in 109 serpentine sites (1000-m2 paired plots) in 78 serpentine-containing regions of the state. We used structural equation modeling (SEM) to simultaneously relate regional richness to regionalscale predictors, and local richness to both local-scale and regional-scale predictors. Our model for serpentine endemics explained 66% of the variation in local endemic richness based on local environment (vegetation, soils, rock cover) and on regional endemic richness. It explained 73% of the variation in regional endemic richness based on regional environment (climate and productivity), historical factors (geologic age and geographic province), and spatial structure (regional total area of serpentine, the only significant spatial variable in our analysis). We did not find a strong influence of spatial structure on species richness. However, we were able to distinguish local vs. regional influences on species richness to a novel extent, despite the existence of correlations between local and regional conditions. ?? 2006 by the Ecological Society of America.

  3. Genetic Variation and Structure in Contrasting Geographic Distributions: Widespread Versus Restricted Black-Tailed Prairie Dogs (Subgenus Cynomys).

    PubMed

    Castellanos-Morales, Gabriela; Ortega, Jorge; Castillo-Gámez, Reyna A; Sackett, Loren C; Eguiarte, Luis E

    2015-01-01

    Species of restricted distribution are considered more vulnerable to extinction because of low levels of genetic variation relative to widespread taxa. Species of the subgenus Cynomys are an excellent system to compare genetic variation and degree of genetic structure in contrasting geographic distributions. We assessed levels of genetic variation, genetic structure, and genetic differentiation in widespread Cynomys ludovicianus and restricted C. mexicanus using 1997bp from the cytochrome b and control region (n = 223 C. ludovicianus; 77 C. mexicanus), and 10 nuclear microsatellite loci (n = 207 and 78, respectively). Genetic variation for both species was high, and genetic structure in the widespread species was higher than in the restricted species. C. mexicanus showed values of genetic variation, genetic structure, and genetic differentiation similar to C. ludovicianus at smaller geographic scales. Results suggest the presence of at least 2 historical refuges for C. ludovicianus and that the Sierra Madre Occidental represents a barrier to gene flow. Chihuahua and New Mexico possess high levels of genetic diversity and should be protected, while Sonora should be treated as an independent management unit. For C. mexicanus, connectivity among colonies is very important and habitat fragmentation and habitat loss should be mitigated to maintain gene flow. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba

    PubMed Central

    2011-01-01

    Background Southern Ocean fauna represent a significant amount of global biodiversity, whose origin may be linked to glacial cycles determining local extinction/eradication with ice advance, survival of refugee populations and post-glacial re-colonization. This pattern implies high potential for differentiation in benthic shelf species with limited dispersal, yet consequences for pelagic organisms are less clear. The present study investigates levels of genetic variation and population structure of the Antarctic krill Euphausia superba using mitochondrial DNA and EST-linked microsatellite markers for an unprecedentedly comprehensive sampling of its populations over a circum-Antarctic range. Results MtDNA (ND1) sequences and EST-linked microsatellite markers indicated no clear sign of genetic structure among populations over large geographic scales, despite considerable power to detect differences inferred from forward-time simulations. Based on ND1, few instances of genetic heterogeneity, not significant after correction for multiple tests, were detected between geographic or temporal samples. Neutrality tests and mismatch distribution based on mtDNA sequences revealed strong evidence of past population expansion. Significant positive values of the parameter g (a measure of population growth) were obtained from microsatellite markers using a coalescent-based genealogical method and suggested a recent start (60 000 - 40 000 years ago) for the expansion. Conclusions The results provide evidence of lack of genetic heterogeneity of Antarctic krill at large geographic scales and unequivocal support for recent population expansion. Lack of genetic structuring likely reflects the tight link between krill and circum-Antarctic ocean currents and is consistent with the hypothesis that differentiation processes in Antarctic species are largely influenced by dispersal potential, whereas small-scale spatial and temporal differentiation might be due to local conditions leading to genetic patchiness. The signal of recent population growth suggests differential impact of glacial cycles on pelagic Antarctic species, which experienced population expansion during glaciations with increased available habitat, versus sedentary benthic shelf species. EST-linked microsatellites provide new perspectives to complement the results based on mtDNA and suggest that data-mining of EST libraries will be a useful approach to facilitate use of microsatellites for additional species. PMID:21486439

  5. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies

    PubMed Central

    Bao, Wenquan; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-e

    2017-01-01

    Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%–36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau. PMID:29186199

  6. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies.

    PubMed

    Bao, Wenquan; Wuyun, Tana; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-E

    2017-01-01

    Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%-36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau.

  7. Genetic Population Structure of Tectura paleacea: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

    PubMed Central

    Begovic, Emina; Lindberg, David R.

    2011-01-01

    The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near shore marine environments. PMID:21490969

  8. Influence of habitat discontinuity, geographical distance, and oceanography on fine-scale population genetic structure of copper rockfish (Sebastes caurinus).

    PubMed

    Johansson, M L; Banks, M A; Glunt, K D; Hassel-Finnegan, H M; Buonaccorsi, V P

    2008-07-01

    The copper rockfish is a benthic, nonmigratory, temperate rocky reef marine species with pelagic larvae and juveniles. A previous range-wide study of the population-genetic structure of copper rockfish revealed a pattern consistent with isolation-by-distance. This could arise from an intrinsically limited dispersal capability in the species or from regularly-spaced extrinsic barriers that restrict gene flow (offshore jets that advect larvae offshore and/or habitat patchiness). Tissue samples were collected along the West Coast of the contiguous USA between Neah Bay, WA and San Diego, CA, with dense sampling along Oregon. At the whole-coast scale (approximately 2200 km), significant population subdivision (F(ST) = 0.0042), and a significant correlation between genetic and geographical distance were observed based on 11 microsatellite DNA loci. Population divergence was also significant among Oregon collections (approximately 450 km, F(ST) = 0.001). Hierarchical amova identified a weak but significant 130-km habitat break as a possible barrier to gene flow within Oregon, across which we estimated that dispersal (N(e)m) is half that of the coast-wide average. However, individual-based Bayesian analyses failed to identify more than a single population along the Oregon coast. In addition, no correlation between pairwise population genetic and geographical distances was detected at this scale. The offshore jet at Cape Blanco was not a significant barrier to gene flow in this species. These findings are consistent with low larval dispersal distances calculated in previous studies on this species, support a mesoscale dispersal model, and highlight the importance of continuity of habitat and adult population size in maintaining gene flow.

  9. Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia

    PubMed Central

    Pizarro, Juan Carlos; Gilligan, Lauren M.; Stevens, Lori

    2008-01-01

    Background For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by identifying and characterizing vector populations and then developing effective intervention strategies. Methods and Findings The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23 localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population structure, estimated using analysis of molecular variance (AMOVA) to estimate FST (infinite alleles model) and RST (stepwise mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant, even in the case of adjacent households within a single locality (R ST = 0.14, F ST = 0.07). On the largest geographic scale, among five communities up to 100 km apart, R ST = 0.12 and F ST = 0.06. Cluster analysis combined with assignment tests identified five clusters within the five communities. Conclusions Some houses are colonized by insects from several genetic clusters after spraying, whereas other households are colonized predominately by insects from a single cluster. Significant population structure, measured by both R ST and F ST, supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide spraying). Suggestions for using these results in vector control strategies are made. PMID:18365033

  10. Spatio-Temporal Story Mapping Animation Based On Structured Causal Relationships Of Historical Events

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Tsuruoka, K.; Arikawa, M.

    2014-04-01

    In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.

  11. Network communities within and across borders

    PubMed Central

    Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo

    2014-01-01

    We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index. PMID:24686380

  12. Network communities within and across borders.

    PubMed

    Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo

    2014-04-01

    We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.

  13. Up and down the blind alley: population divergence with scant gene flow in an endangered tropical lineage of Andean palms (Ceroxylon quindiuense clade: Ceroxyloideae).

    PubMed

    Sanín, María José; Zapata, Patricia; Pintaud, Jean-Christophe; Galeano, Gloria; Bohórquez, Adriana; Tohme, Joseph; Hansen, Michael Møller

    2017-02-10

    Given the geographical complexity of the Andes, species distributions hold interesting information regarding the history of isolation and gene flow across geographic barriers and ecological gradients. Moreover, current threats to the region’s enormous plant diversity pose an additional challenge to the understanding of these patterns. We explored the geographic structure of genetic diversity within the Ceroxylon quindiuense species complex (wax palms) at a regional scale, using a model-based approach to disentangle the historical mechanisms by which these species have dispersed over a range encompassing 17° of latitude in the tropical Andes. A total of 10 microsatellite loci were cross-amplified in 8 populations of the 3 species comprising the C. quindiuense complex. Analyses performed include estimates of molecular diversity and genetic structure, testing for genetic bottlenecks and an evaluation of the colonization scenario under approximate Bayesian computation. We showed that there was a geographical diversity gradient reflecting the orogenetic pattern of the northern Andes and its end at the cordilleras facing the Caribbean Sea. A general pattern of diversity suggests that the cordilleras of Colombia have served as historical recipients of gene flow occurring only scantly along the northern Andes. We provided evidence of important isolation between the largest populations of this complex, suggesting that both historical constraints to dispersal but also current anthropogenic effects might explain the high levels of population structuring. We provide a list of advisable measures for conservation stakeholders.

  14. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  15. Unravelling the structure of species extinction risk for predictive conservation science.

    PubMed

    Lee, Tien Ming; Jetz, Walter

    2011-05-07

    Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life history and geography. For predictive conservation science to be effective, large datasets and integrative models that quantify the relative importance of potential factors and separate rapidly changing from relatively static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living birds. Extinction risk varies significantly with species' broad-scale environmental niche, geographical range size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging height. Even at this broad scale, simple quantifications of past human encroachment across species' ranges emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimating future threat in an integrative setting. A final joint model explains much of the interspecific variation in extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of disentangling static from changing components of current and future threat. This reconciliation of intrinsic and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more continuous, forward-looking assessment of species' threat status based on geographically explicit environmental change projections, potentially advancing global predictive conservation science.

  16. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    PubMed

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  17. Geographical Scale Effects on the Analysis of Leptospirosis Determinants

    PubMed Central

    Gracie, Renata; Barcellos, Christovam; Magalhães, Mônica; Souza-Santos, Reinaldo; Barrocas, Paulo Rubens Guimarães

    2014-01-01

    Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence. PMID:25310536

  18. History, ocean channels, and distance determine phylogeographic patterns in three widespread Philippine fruit bats (Pteropodidae).

    PubMed

    Roberts, Trina E

    2006-07-01

    The comparative phylogeography of widespread, codistributed species provides unique insights into regional biodiversity and diversification patterns. I used partial DNA sequences of the mitochondrial genes ND2 and cyt b to investigate phylogeographic structure in three widespread Philippine fruit bats. Ptenochirus jagori is endemic to the oceanic region of the Philippines and is most abundant in lowland primary forest. Macroglossus minimus and Cynopterus brachyotis are most common in disturbed and open habitats and are not endemic. In all three, genetic differentiation is present at multiple spatial scales and is associated to some degree with Pleistocene landbridge island groups. In P. jagori and C. brachyotis, genetic distance is correlated with geographic distance; in C. brachyotis and M. minimus, it is correlated with the sea-crossing distance between islands. P. jagori has the least overall genetic structure of these three species, whereas C. brachyotis and M. minimus have more geographic association among haplotypes, suggesting that phylogeographic patterns are linked to ecology and habitat preference. However, contrary to expectation, the two widespread, disturbed habitat species have more structure than the endemic species. Mismatch distributions suggest rapid changes in effective population size in C. brachyotis and P. jagori, whereas M. minimus appears to be demographically more stable. Geologic and geographic history are important in structuring variation, and phylogeographic patterns are the result of dynamic long-term processes rather than simply reflecting current conditions.

  19. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient

    PubMed Central

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369

  20. Application Perspective of 2D+SCALE Dimension

    NASA Astrophysics Data System (ADS)

    Karim, H.; Rahman, A. Abdul

    2016-09-01

    Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.

  1. A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL AREAS WITH R-INLA.

    PubMed

    Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret

    2018-01-01

    Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.

  2. Contrasting effects of landscape features on genetic structure in different geographic regions in the ornate dragon lizard, Ctenophorus ornatus.

    PubMed

    Levy, Esther; Tomkins, Joseph L; Lebas, Natasha R; Kennington, W Jason

    2013-08-01

    Habitat fragmentation can have profound effects on the distribution of genetic variation within and between populations. Previously, we showed that in the ornate dragon lizard, Ctenophorus ornatus, lizards residing on outcrops that are separated by cleared agricultural land are significantly more isolated and hold less genetic variation than lizards residing on neighbouring outcrops connected by undisturbed native vegetation. Here, we extend the fine-scale study to examine the pattern of genetic variation and population structure across the species' range. Using a landscape genetics approach, we test whether land clearing for agricultural purposes has affected the population structure of the ornate dragon lizard. We found significant genetic differentiation between outcrop populations (FST  = 0.12), as well as isolation by distance within each geographic region. In support of our previous study, land clearing was associated with higher genetic divergences between outcrops and lower genetic variation within outcrops, but only in the region that had been exposed to intense agriculture for the longest period of time. No other landscape features influenced population structure in any geographic region. These results show that the effects of landscape features can vary across species' ranges and suggest there may be a temporal lag in response to contemporary changes in land use. These findings therefore highlight the need for caution when assessing the impact of contemporary land use practices on genetic variation and population structure. © 2013 John Wiley & Sons Ltd.

  3. Have I Been a Data Scientist from the Start? Parallels from the Geographic Information Science Community in the Early 1990s

    NASA Astrophysics Data System (ADS)

    Wright, D. J.

    2013-12-01

    In the early 1990s the author came of age as the technology driving the geographic information system or GIS was beginning to successfully 'handle' geospatial data at a range of scales and formats, and a wide array of information technology products emerged from an expanding GIS industry. However, that small community struggled to reflect the diverse research efforts at play in understanding the deeper issues surrounding geospatial data, and the impediments to that effective use of that data. It was from this need that geographic information science or GIScience arose, to ensure in part that GIS did not fall into the trap of being a technology in search of applications, a one-time, one-off, non-intellectual 'bag of tricks' with no substantive theory underpinning it, and suitable only for a static period of time (e.g., Goodchild, 1992). The community has since debated the issue of "tool versus science' which has also played a role in defining GIS as an actual profession. In turn, GIS has contributed to "methodological versus substantive" questions in science, leading to understandings of how the Earth works versus how the Earth should look. In the author's experience, the multidimensional structuring and scaling data, with integrative and innovative approaches to analyzing, modeling, and developing extensive and spatial data from selected places on land and at sea, have revealed how theory and application are in no way mutually exclusive, and it may often be application that advances theory, rather than vice versa. Increasingly, both the system and science of geographic information have welcomed strong collaborations among computer scientists, information scientists, and domain scientists to solve complex scientific questions. As such, they have paralleled the emergence and acceptance of "data science." And now that we are squarely in an era of regional- to global-scale observation and simulation of the Earth, produce data that are too big, move too fast, and do not fit the structures and processing capacity of conventional database systems, and the author reflects on how the potential of the GIS/GIScience world to contribute to the training and professional advancement of data science.

  4. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny

    Treesearch

    Kasey K. Pham; Andrew L. Hipp; Paul S. Manos; Richard C. Cronn

    2017-01-01

    Owing to high rates of introgressive hybridization, the plastid genome is poorly suited to fine-scale DNA barcoding and phylogenetic studies of the oak genus (Quercus, Fagaceae). At the tips of the oak plastome phylogeny, recent gene migration and reticulation generally cause topology to reflect geographic structure, while deeper branches reflect...

  5. Phylogeny, phylogeography, phylobetadiversity and the molecular analysis of biological communities

    PubMed Central

    Emerson, Brent C.; Cicconardi, Francesco; Fanciulli, Pietro P.; Shaw, Peter J. A.

    2011-01-01

    There has been much recent interest and progress in the characterization of community structure and community assembly processes through the application of phylogenetic methods. To date most focus has been on groups of taxa for which some relevant detail of their ecology is known, for which community composition is reasonably easily quantified and where the temporal scale is such that speciation is not likely to feature. Here, we explore how we might apply a molecular genetic approach to investigate community structure and assembly at broad taxonomic and geographical scales, where we have little knowledge of species ecology, where community composition is not easily quantified, and where speciation is likely to be of some importance. We explore these ideas using the class Collembola as a focal group. Gathering molecular evidence for cryptic diversity suggests that the ubiquity of many species of Collembola across the landscape may belie greater community complexity than would otherwise be assumed. However, this morphologically cryptic species-level diversity poses a challenge for attempts to characterize diversity both within and among local species assemblages. Recent developments in high throughput parallel sequencing technology, combined with mtDNA barcoding, provide an advance that can bring together the fields of phylogenetic and phylogeographic analysis to bear on this problem. Such an approach could be standardized for analyses at any geographical scale for a range of taxonomic groups to quantify the formation and composition of species assemblages. PMID:21768154

  6. The Geographic Distribution of a Tropical Montane Bird Is Limited by a Tree: Acorn Woodpeckers (Melanerpes formicivorus) and Colombian Oaks (Quercus humboldtii) in the Northern Andes

    PubMed Central

    2015-01-01

    Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species’ broad geographic distributions, while biotic factors regulate species’ abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America. North American populations of Acorn Woodpeckers consume acorns from Quercus oaks and are limited by the presence of Quercus oaks. However, Acorn Woodpeckers in the Northern Andes seldom consume Colombian oak acorns (though may regularly drink sap from oak trees) and have been observed at sites without Colombian oaks, the sole species of Quercus found in South America. We found that climate-only models overpredicted Acorn Woodpecker distribution, suggesting that suitable abiotic conditions (e.g. in northern Ecuador) exist beyond the woodpecker’s southern range margin. In contrast, models that incorporate Colombian oak presence outperformed climate-only models and more accurately predicted the location of the Acorn Woodpecker’s southern range margin in southern Colombia. These findings support the hypothesis that a biotic interaction with Colombian oaks sets Acorn Woodpecker’s broad-scale geographic limit in South America, probably because Acorn Woodpeckers rely on Colombian oaks as a food resource (possibly for the oak’s sap rather than for acorns). Although empirical examples of particular plants limiting tropical birds’ distributions are scarce, we predict that similar biotic interactions may play an important role in structuring the geographic distributions of many species of tropical montane birds with specialized foraging behavior. PMID:26083262

  7. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  8. Broad-scale latitudinal variation in female reproductive success contributes to the maintenance of a geographic range boundary in bagworms (Lepidoptera: Psychidae).

    PubMed

    Rhainds, Marc; Fagan, William F

    2010-11-30

    Geographic range limits and the factors structuring them are of great interest to biologists, in part because of concerns about how global change may shift range boundaries. However, scientists lack strong mechanistic understanding of the factors that set geographic range limits in empirical systems, especially in animals. Across dozens of populations spread over six degrees of latitude in the American Midwest, female mating success of the evergreen bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae) declines from ∼100% to ∼0% near the edge of the species range. When coupled with additional latitudinal declines in fecundity and in egg and pupal survivorship, a spatial gradient of bagworm reproductive success emerges. This gradient is associated with a progressive decline in local abundance and an increased risk of local population extinction, up to a latitudinal threshold where extremely low female fitness meshes spatially with the species' geographic range boundary. The reduction in fitness of female bagworms near the geographic range limit, which concords with the abundant centre hypothesis from biogeography, provides a concrete, empirical example of how an Allee effect (increased pre-reproductive mortality of females in sparsely populated areas) may interact with other demographic factors to induce a geographic range limit.

  9. DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel

    PubMed Central

    Bedada, G; Westerbergh, A; Nevo, E; Korol, A; Schmid, K J

    2014-01-01

    Wild barley Hordeum spontaneum (L.) shows a wide geographic distribution and ecological diversity. A key question concerns the spatial scale at which genetic differentiation occurs and to what extent it is driven by natural selection. The Levant region exhibits a strong ecological gradient along the North–South axis, with numerous small canyons in an East–West direction and with small-scale environmental gradients on the opposing North- and South-facing slopes. We sequenced 34 short genomic regions in 54 accessions of wild barley collected throughout Israel and from the opposing slopes of two canyons. The nucleotide diversity of the total sample is 0.0042, which is about two-thirds of a sample from the whole species range (0.0060). Thirty accessions collected at ‘Evolution Canyon' (EC) at Nahal Oren, close to Haifa, have a nucleotide diversity of 0.0036, and therefore harbor a large proportion of the genetic diversity. There is a high level of genetic clustering throughout Israel and within EC, which roughly differentiates the slopes. Accessions from the hot and dry South-facing slope have significantly reduced genetic diversity and are genetically more distinct from accessions from the North-facing slope, which are more similar to accessions from other regions in Northern Israel. Statistical population models indicate that wild barley within the EC consist of three separate genetic clusters with substantial gene flow. The data indicate a high level of population structure at large and small geographic scales that shows isolation-by-distance, and is also consistent with ongoing natural selection contributing to genetic differentiation at a small geographic scale. PMID:24619177

  10. Geographic information analysis: An ecological approach for the management of wildlife on the forest landscape

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    This document is a summary of the project funded by NAGw-1460 as part of the Earth Observation Commericalization/Applications Program (EOCAP) directed by NASA's Earth Science and Applications Division. The goal was to work with several agencies to focus on forest structure and landscape characterizations for wildlife habitat applications. New analysis techniques were used in remote sensing and landscape ecology with geographic information systems (GIS). The development of GIS and the emergence of the discipline of landscape ecology provided us with an opportunity to study forest and wildlife habitat resources from a new perspective. New techniques were developed to measure forest structure across scales from the canopy to the regional level. This paper describes the project team, technical advances, and technology adoption process that was used. Reprints of related refereed journal articles are in the Appendix.

  11. Population genetic structure of the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), from China and Southeast Asia.

    PubMed

    Hu, Jian; Zhang, Jun L; Nardi, Francesco; Zhang, Run J

    2008-11-01

    The melon fly, Bactrocera cucurbitae Coquillett, is a species of fruit flies of significant agricultural interest. Of supposed Indian origin, the melon fly is now widely distributed throughout South East Asia up to China, while it has been recently eradicated from Japan. The population structure of seven geographic populations from coastal China, as well as samples from other regions of South East Asia and Japan, including lab colonies, have been studied using a 782 bp fragment of mitochondrial cytochrome oxidase I (COI) gene sequence. The observed genetic diversity was exceedingly low, considering the geographic scale of the sampling, and one single haplotype was found to be predominant from Sri Lanka to China. We confirm that Bactrocera cucurbitae exists in South East Asia as a single phyletic lineage, that Chinese populations are genetically uniform, and that no apparent genetic differentiation exists between these and three available Japanese melon fly sequences.

  12. Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation

    PubMed Central

    Chen, Jieming; Zheng, Houfeng; Bei, Jin-Xin; Sun, Liangdan; Jia, Wei-hua; Li, Tao; Zhang, Furen; Seielstad, Mark; Zeng, Yi-Xin; Zhang, Xuejun; Liu, Jianjun

    2009-01-01

    Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional “north-south” population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused “outliers,” probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future. PMID:19944401

  13. Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean.

    PubMed

    Huyghe, Filip; Kochzius, Marc

    2018-01-01

    In this contribution, we determine the genetic population structure in the Skunk Clownfish (Amphiprion akallopsisos) across the Indian Ocean, and on a smaller geographic scale in the Western Indian Ocean (WIO). Highly restricted gene flow was discovered between populations on either side of the Indian Ocean using the control region as a mitochondrial marker (mtDNA). We verify this conclusion using 13 microsatellite markers and infer fine scale genetic structuring within the WIO. In total 387 samples from 21 sites were analysed using mtDNA and 13 microsatellite loci. Analysis included estimation of genetic diversity and population differentiation. A haplotype network was inferred using mtDNA. Nuclear markers were used in Bayesian clustering and a principal component analysis. Both markers confirmed strong genetic differentiation between WIO and Eastern Indian Ocean (EIO) populations, and a shallower population structure among Malagasy and East African mainland populations. Limited gene flow across the Mozambique Channel may be explained by its complex oceanography, which could cause local retention of larvae, limiting dispersal between Madagascar and the East African coast. Two other potential current-mediated barriers to larval dispersal suggested in the WIO, the split of the SEC at approximately 10° S and the convergence of the Somali Current with the East African Coast Current at approximately 3° S, were not found to form a barrier to gene flow in this species.

  14. Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean

    PubMed Central

    Kochzius, Marc

    2018-01-01

    In this contribution, we determine the genetic population structure in the Skunk Clownfish (Amphiprion akallopsisos) across the Indian Ocean, and on a smaller geographic scale in the Western Indian Ocean (WIO). Highly restricted gene flow was discovered between populations on either side of the Indian Ocean using the control region as a mitochondrial marker (mtDNA). We verify this conclusion using 13 microsatellite markers and infer fine scale genetic structuring within the WIO. In total 387 samples from 21 sites were analysed using mtDNA and 13 microsatellite loci. Analysis included estimation of genetic diversity and population differentiation. A haplotype network was inferred using mtDNA. Nuclear markers were used in Bayesian clustering and a principal component analysis. Both markers confirmed strong genetic differentiation between WIO and Eastern Indian Ocean (EIO) populations, and a shallower population structure among Malagasy and East African mainland populations. Limited gene flow across the Mozambique Channel may be explained by its complex oceanography, which could cause local retention of larvae, limiting dispersal between Madagascar and the East African coast. Two other potential current-mediated barriers to larval dispersal suggested in the WIO, the split of the SEC at approximately 10° S and the convergence of the Somali Current with the East African Coast Current at approximately 3° S, were not found to form a barrier to gene flow in this species. PMID:29522547

  15. Fine-scale population structure in Atlantic salmon from Maine's Penobscot River drainage

    USGS Publications Warehouse

    Spidle, A.P.; Bane, Schill W.; Lubinski, B.A.; King, T.L.

    2001-01-01

    We report a survey of micro satellite DNA variation in Atlantic salmon from the unimpounded lower reaches of Maine's Penobscot River. Our analysis indicates that Atlantic salmon in the Penobscot River are distinct from other populations that have little or no history of human-mediated repopulation, including two of its tributaries, Cove Brook and Kenduskeag Stream, another Maine river, the Ducktrap, and Canada's Miramichi and Gander rivers. Significant heterogeneity was detected in allele frequency among all three subpopulations sampled in the Penobscot drainage. The high resolution of the 12-locus suite was quantified using maximum likelihood assignment tests, which correctly identified the source of 90.4-96.1% of individuals from within the Penobscot drainage. Current populations are clearly isolated from each other, however we are unable to determine from the present data whether the populations in Cove Brook and Kenduskeag Stream are recently diverged from populations stocked into the Penobscot River over the last century, or are aboriginal in origin. The degree of population structure identified in the Penobscot drainage is noteworthy in light of its lengthy history of systematic restocking, the geographic proximity of the subpopulations, and the extent of the differentiation. Similar population structure on this extremely limited geographic scale could exist among Atlantic salmon runs elsewhere in Maine and throughout the species' range and should be taken into account for future management decisions.

  16. Interactions of multi-scale heterogeneity in the lithosphere: Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.

    2017-10-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.

  17. Anomalous diffusion and the structure of human transportation networks

    NASA Astrophysics Data System (ADS)

    Brockmann, D.

    2008-04-01

    The dispersal of individuals of a species is the key driving force of various spatiotemporal phenomena which occur on geographical scales. It can synchronise populations of interacting species, stabilise them, and diversify gene pools [1-3]. The geographic spread of human infectious diseases such as influenza, measles and the recent severe acute respiratory syndrome (SARS) is essentially promoted by human travel which occurs on many length scales and is sustained by a variety of means of transportation [4-8]. In the light of increasing international trade, intensified human traffic, and an imminent influenza A pandemic the knowledge of dynamical and statistical properties of human dispersal is of fundamental importance and acute [7,9,10]. A quantitative statistical theory for human travel and concomitant reliable forecasts would substantially improve and extend existing prevention strategies. Despite its crucial role, a quantitative assessment of human dispersal remains elusive and the opinion that humans disperse diffusively still prevails in many models [11]. In this chapter I will report on a recently developed technique which permits a solid and quantitative assessment of human dispersal on geographical scales [11]. The key idea is to infer the statistical properties of human travel by analysing the geographic circulation of individual bank notes for which comprehensive datasets are collected at the online bill-tracking website www.wheresgeorge.com. The analysis shows that the distribution of travelling distances decays as a power law, indicating that the movement of bank notes is reminiscent of superdiffusive, scale free random walks known as Lèvy flights [13]. Secondly, the probability of remaining in a small, spatially confined region for a time T is dominated by heavy tails which attenuate superdiffusive dispersal. I will show that the dispersal of bank notes can be described on many spatiotemporal scales by a two parameter continuous time random walk (CTRW) model to a surprising accuracy. To this end, I will provide a brief introduction to continuous time random walk theory [14] and will show that human dispersal is an ambivalent, effectively superdiffusive process.

  18. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    PubMed Central

    Viel, Alessia; Legras, Jean-Luc; Nadai, Chiara; Carlot, Milena; Lombardi, Angiolella; Crespan, Manna; Migliaro, Daniele; Giacomini, Alessio; Corich, Viviana

    2017-01-01

    In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota. PMID:28883812

  19. Fine-scale human genetic structure in Western France.

    PubMed

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian

    2015-06-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.

  20. Spatiotemporal property and predictability of large-scale human mobility

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  1. Environmental Complexity and Biodiversity: The Multi-Layered Evolutionary History of a Log-Dwelling Velvet Worm in Montane Temperate Australia

    PubMed Central

    Garrick, Ryan C.; Gardner, Michael G.; Tait, Noel N.; Briscoe, David A.; Rowell, David M.; Sunnucks, Paul

    2013-01-01

    Phylogeographic studies provide a framework for understanding the importance of intrinsic versus extrinsic factors in shaping patterns of biodiversity through identifying past and present microevolutionary processes that contributed to lineage divergence. Here we investigate population structure and diversity of the Onychophoran (velvet worm) Euperipatoides rowelli in southeastern Australian montane forests that were not subject to Pleistocene glaciations, and thus likely retained more forest cover than systems under glaciation. Over a ~100 km transect of structurally-connected forest, we found marked nuclear and mitochondrial (mt) DNA genetic structuring, with spatially-localised groups. Patterns from mtDNA and nuclear data broadly corresponded with previously defined geographic regions, consistent with repeated isolation in refuges during Pleistocene climatic cycling. Nevertheless, some E. rowelli genetic contact zones were displaced relative to hypothesized influential landscape structures, implying more recent processes overlying impacts of past environmental history. Major impacts at different timescales were seen in the phylogenetic relationships among mtDNA sequences, which matched geographic relationships and nuclear data only at recent timescales, indicating historical gene flow and/or incomplete lineage sorting. Five major E. rowelli phylogeographic groups were identified, showing substantial but incomplete reproductive isolation despite continuous habitat. Regional distinctiveness, in the face of lineages abutting within forest habitat, could indicate pre- and/or postzygotic gene flow limitation. A potentially functional phenotypic character, colour pattern variation, reflected the geographic patterns in the molecular data. Spatial-genetic patterns broadly match those in previously-studied, co-occurring low-mobility organisms, despite a variety of life histories. We suggest that for E. rowelli, the complex topography and history of the region has led to interplay among limited dispersal ability, historical responses to environmental change, local adaptation, and some resistance to free admixture at geographic secondary contact, leading to strong genetic structuring at fine spatial scale. PMID:24358365

  2. Spatially-explicit models of global tree density.

    PubMed

    Glick, Henry B; Bettigole, Charlie; Maynard, Daniel S; Covey, Kristofer R; Smith, Jeffrey R; Crowther, Thomas W

    2016-08-16

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.

  3. Local variations in spatial synchrony of influenza epidemics.

    PubMed

    Stark, James H; Cummings, Derek A T; Ermentrout, Bard; Ostroff, Stephen; Sharma, Ravi; Stebbins, Samuel; Burke, Donald S; Wisniewski, Stephen R

    2012-01-01

    Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation=62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. These findings highlight the complex nature of influenza spread across multiple geographic scales.

  4. Local Variations in Spatial Synchrony of Influenza Epidemics

    PubMed Central

    Stark, James H.; Cummings, Derek A. T.; Ermentrout, Bard; Ostroff, Stephen; Sharma, Ravi; Stebbins, Samuel; Burke, Donald S.; Wisniewski, Stephen R.

    2012-01-01

    Background Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. Methodology and Findings We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation = 62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. Conclusions These findings highlight the complex nature of influenza spread across multiple geographic scales. PMID:22916274

  5. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    PubMed

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  6. Drivers of protogynous sex change differ across spatial scales.

    PubMed

    Taylor, Brett M

    2014-01-22

    The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.

  7. Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages.

    PubMed

    Asefa, Mengesha; Cao, Min; Zhang, Guocheng; Ci, Xiuqin; Li, Jie; Yang, Jie

    2017-03-09

    Environmental filtering consistently shapes the functional and phylogenetic structure of species across space within diverse forests. However, poor descriptions of community functional and lineage distributions across space hamper the accurate understanding of coexistence mechanisms. We combined environmental variables and geographic space to explore how traits and lineages are filtered by environmental factors using extended RLQ and fourth-corner analyses across different spatial scales. The dispersion patterns of traits and lineages were also examined in a 20-ha tropical rainforest dynamics plot in southwest China. We found that environmental filtering was detected across all spatial scales except the largest scale (100 × 100 m). Generally, the associations between functional traits and environmental variables were more or less consistent across spatial scales. Species with high resource acquisition-related traits were associated with the resource-rich part of the plot across the different spatial scales, whereas resource-conserving functional traits were distributed in limited-resource environments. Furthermore, we found phylogenetic and functional clustering at all spatial scales. Similar functional strategies were also detected among distantly related species, suggesting that phylogenetic distance is not necessarily a proxy for functional distance. In summary, environmental filtering considerably structured the trait and lineage assemblages in this species-rich tropical rainforest.

  8. Bacterial community assembly in activated sludge: mapping beta diversity across environmental variables.

    PubMed

    Isazadeh, Siavash; Jauffur, Shameem; Frigon, Dominic

    2016-12-01

    Effect of ecological variables on community assembly of heterotrophic bacteria at eight full-scale and two pilot-scale activated sludge wastewater treatment plants (AS-WWTPs) were explored by pyrosequencing of 16S rRNA gene amplicons. In total, 39 samples covering a range of abiotic factors spread over space and time were analyzed. A core bacterial community of 24 families detected in at least six of the eight AS-WWTPs was defined. In addition to the core families, plant-specific families (observed at <50% AS-WWTPs) were found to be also important in the community structure. Observed beta diversity was partitioned with respect to ecological variables. Specifically, the following variables were considered: influent wastewater characteristics, season (winter vs. summer), process operations (conventional, oxidation ditch, and sequence batch reactor), reactor sizes (pilot-scale vs. full-scale reactors), chemical stresses defined by ozonation of return activated sludge, interannual variation, and geographical locations. Among the assessed variables, influent wastewater characteristics and geographical locations contributed more in explaining the differences between AS-WWTP bacterial communities with a maximum of approximately 26% of the observed variations. Partitioning of beta diversity is necessary to interpret the inherent variability in microbial community assembly and identify the driving forces at play in engineered microbial ecosystem. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird.

    PubMed

    Fletcher, Robert J; Robertson, Ellen P; Wilcox, Rebecca C; Reichert, Brian E; Austin, James D; Kitchens, Wiley M

    2015-09-07

    Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark-resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals. © 2015 The Author(s).

  10. Population genetic structure and its implications for adaptive variation in memory and the hippocampus on a continental scale in food-caching black-capped chickadees.

    PubMed

    Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S

    2012-09-01

    Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.

  11. Geographic variation of Trypanosoma cruzi discrete typing units from Triatoma infestans at different spatial scales.

    PubMed

    Fernández, María Del Pilar; Cecere, María Carla; Lanati, Leonardo Alejandro; Lauricella, Marta Alicia; Schijman, Alejandro Gabriel; Gürtler, Ricardo Esteban; Cardinal, Marta Victoria

    2014-12-01

    We assessed the diversity and distribution of Trypanosoma cruzi discrete typing units (DTU) in Triatoma infestans populations and its association with local vector-borne transmission levels at various geographic scales. At a local scale, we found high predominance (92.4%) of TcVI over TcV in 68 microscope-positive T. infestans collected in rural communities in Santiago del Estero province in northern Argentina. TcV was more often found in communities with higher house infestation prevalence compatible with active vector-borne transmission. Humans and dogs were the main bloodmeal sources of the TcV- and TcVI-infected bugs. At a broader scale, the greatest variation in DTU diversity was found within the Argentine Chaco (227 microscope-positive bugs), mainly related to differences in equitability between TcVI and TcV among study areas. At a country-wide level, a meta-analysis of published data revealed clear geographic variations in the distribution of DTUs across countries. A correspondence analysis showed that DTU distributions in domestic T. infestans were more similar within Argentina (dominated by TcVI) and within Bolivia (where TcI and TcV had similar relative frequencies), whereas large heterogeneity was found within Chile. DTU diversity was lower in the western Argentine Chaco region and Paraguay (D=0.14-0.22) than in the eastern Argentine Chaco, Bolivia and Chile (D=0.20-0.68). Simultaneous DTU identifications of T. cruzi-infected hosts and triatomines across areas differing in epidemiological status are needed to shed new light on the structure and dynamics of parasite transmission cycles. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Discordant coral-symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina

    NASA Astrophysics Data System (ADS)

    Leydet, Karine Posbic; Hellberg, Michael E.

    2016-06-01

    Understanding the factors that help shape the association between corals and their algal symbionts, zooxanthellae ( Symbiodinium), is necessary to better understand the functional diversity and acclimatization potential of the coral host. However, most studies focus on tropical zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of coral-algal symbiont associations. Here, we examine algal associations in a facultative zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker ( psbA coding region) and three fine-scale markers ( cp23S- rDNA, b7sym15 flanking region, and b2sym17). We ask whether Oculina spp. harbor geographically different Symbiodinium communities across their geographic range and, if so, whether the host's genetics or habitat differences are correlated with this geographical variation. We found that Oculina corals harbor different Symbiodinium communities across their geographical range. Of the habitat differences (including chlorophyll a concentration and depth), sea surface temperature is better correlated with this geographical variation than the host's genetics, a pattern most evident in the Mediterranean. Our results suggest that although facultative zooxanthellate corals may be less dependent on their algal partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they harbor may nevertheless reflect acclimatization to environmental variation among habitats.

  13. Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses

    PubMed Central

    2014-01-01

    Background Wild boar, Sus scrofa, is an extant wild ancestor of the domestic pig as an agro-economically important mammal. Wild boar has a worldwide distribution with its geographic origin in Southeast Asia, but genetic diversity and genetic structure of wild boar in East Asia are poorly understood. To characterize the pattern and amount of genetic variation and population structure of wild boar in East Asia, we genotyped and analyzed microsatellite loci for a total of 238 wild boar specimens from ten locations across six countries in East and Southeast Asia. Results Our data indicated that wild boar populations in East Asia are genetically diverse and structured, showing a significant correlation of genetic distance with geographic distance and implying a low level of gene flow at a regional scale. Bayesian-based clustering analysis was indicative of seven inferred genetic clusters in which wild boars in East Asia are geographically structured. The level of genetic diversity was relatively high in wild boars from Southeast Asia, compared with those from Northeast Asia. This gradient pattern of genetic diversity is consistent with an assumed ancestral population of wild boar in Southeast Asia. Genetic evidences from a relationship tree and structure analysis suggest that wild boar in Jeju Island, South Korea have a distinct genetic background from those in mainland Korea. Conclusions Our results reveal a diverse pattern of genetic diversity and the existence of genetic differentiation among wild boar populations inhabiting East Asia. This study highlights the potential contribution of genetic variation of wild boar to the high genetic diversity of local domestic pigs during domestication in East Asia. PMID:25034725

  14. Global value chains: Building blocks and network dynamics

    NASA Astrophysics Data System (ADS)

    Tsekeris, Theodore

    2017-12-01

    The paper employs measures and tools from complex network analysis to enhance the understanding and interpretation of structural characteristics pertaining to the Global Value Chains (GVCs) during the period 1995-2011. The analysis involves the country, sector and country-sector value chain networks to identify main drivers of structural change. The results indicate significant intertemporal changes, mirroring the increased globalization in terms of network size, strength and connectivity. They also demonstrate higher clustering and increased concentration of the most influential countries and country-sectors relative to all others in the GVC network, with the geographical dimension to prevail over the sectoral dimension in the formation of value chains. The regionalization and less hierarchical organization drive country-sector production sharing, while the sectoral value chain network has become more integrated and more competitive over time. The findings suggest that the impact of country-sector policies and/or shocks may vary with the own-group and network-wide influence of each country, take place in multiple geographical scales, as GVCs have a block structure, and involve time dynamics.

  15. Multiscale measurement error models for aggregated small area health data.

    PubMed

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin

    2016-08-01

    Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.

  16. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    PubMed

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  17. The local environment determines the assembly of root endophytic fungi at a continental scale.

    PubMed

    Glynou, Kyriaki; Ali, Tahir; Buch, Ann-Katrin; Haghi Kia, Sevda; Ploch, Sebastian; Xia, Xiaojuan; Çelik, Ali; Thines, Marco; Maciá-Vicente, Jose G

    2016-09-01

    Root endophytic fungi are found in a great variety of plants and ecosystems, but the ecological drivers of their biogeographic distribution are poorly understood. Here, we investigate the occurrence of root endophytes in the non-mycorrhizal plant genus Microthlaspi, and the effect of environmental factors and geographic distance in structuring their communities at a continental scale. We sampled 52 plant populations across the northern Mediterranean and central Europe and used a cultivation approach to study their endophytic communities. Cultivation of roots yielded 2601 isolates, which were grouped into 296 operational taxonomic units (OTUs) by internal transcribed spacer sequencing of 1998 representative colonies. Climatic and spatial factors were the best descriptors of the structure of endophytic communities, outweighing soil characteristics, host genotype and geographical distance. OTU richness was negatively affected by precipitation, and the composition of communities followed latitudinal gradients of precipitation and temperature. Only six widespread OTUs belonging to the orders Pleosporales, Hypocreales and Helotiales represented about 50% of all isolates. Assessments of their individual distribution revealed particular ecological preferences or a cosmopolitan occurrence. Our findings support a strong influence of the local environment in determining root endophytic communities, and show a different niche occupancy by individual endophytes. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Contextual effects and cancer outcomes in the United States: a systematic review of characteristics in multilevel analyses.

    PubMed

    Zahnd, Whitney E; McLafferty, Sara L

    2017-11-01

    There is increasing call for the utilization of multilevel modeling to explore the relationship between place-based contextual effects and cancer outcomes in the United States. To gain a better understanding of how contextual factors are being considered, we performed a systematic review. We reviewed studies published between January 1, 2002 and December 31, 2016 and assessed the following attributes: (1) contextual considerations such as geographic scale and contextual factors used; (2) methods used to quantify contextual factors; and (3) cancer type and outcomes. We searched PubMed, Scopus, and Web of Science and initially identified 1060 studies. One hundred twenty-two studies remained after exclusions. Most studies utilized a two-level structure; census tracts were the most commonly used geographic scale. Socioeconomic factors, health care access, racial/ethnic factors, and rural-urban status were the most common contextual factors addressed in multilevel models. Breast and colorectal cancers were the most common cancer types, and screening and staging were the most common outcomes assessed in these studies. Opportunities for future research include deriving contextual factors using more rigorous approaches, considering cross-classified structures and cross-level interactions, and using multilevel modeling to explore understudied cancers and outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evolution of natural history information in the 21st century – developing an integrated framework for biological and geographical data

    USGS Publications Warehouse

    Reusser, Deborah A.; Lee, Henry

    2011-01-01

    Threats to marine and estuarine species operate over many spatial scales, from nutrient enrichment at the watershed/estuarine scale to invasive species and climate change at regional and global scales. To help address research questions across these scales, we provide here a standardized framework for a biogeographical information system containing queriable biological data that allows extraction of information on multiple species, across a variety of spatial scales based on species distributions, natural history attributes and habitat requirements. As scientists shift from research on localized impacts on individual species to regional and global scale threats, macroecological approaches of studying multiple species over broad geographical areas are becoming increasingly important. The standardized framework described here for capturing and integrating biological and geographical data is a critical first step towards addressing these macroecological questions and we urge organizations capturing biogeoinformatics data to consider adopting this framework.

  20. Predicting habitat suitability for wildlife in southeastern Arizona using Geographic Information Systems: scaled quail, a case study

    Treesearch

    Kirby D. Bristow; Susan R. Boe; Richard A. Ockenfels

    2005-01-01

    Studies have used Geographic Information Systems (GIS) to evaluate habitat suitability for wildlife on a landscape scale, yet few have established the accuracy of these models. Based on documented habitat selection patterns of scaled quail (Callipepla squamata pallida), we produced GIS covers for several habitat parameters to create a map of...

  1. Small-scale monitoring - can it be integrated with large-scale programs?

    Treesearch

    C. M. Downes; J. Bart; B. T. Collins; B. Craig; B. Dale; E. H. Dunn; C. M. Francis; S. Woodley; P. Zorn

    2005-01-01

    There are dozens of programs and methodologies for monitoring and inventory of bird populations, differing in geographic scope, species focus, field methods and purpose. However, most of the emphasis has been placed on large-scale monitoring programs. People interested in assessing bird numbers and long-term trends in small geographic areas such as a local birding area...

  2. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    PubMed

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical Society of America.

  3. Ecosystem extent and fragmentation

    USGS Publications Warehouse

    Sayre, Roger; Hansen, Matt

    2017-01-01

    One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.

  4. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations.

    PubMed

    Wollenberg, M S; Ruby, E G

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.

  5. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    PubMed Central

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  6. Natural Scales in Geographical Patterns

    NASA Astrophysics Data System (ADS)

    Menezes, Telmo; Roth, Camille

    2017-04-01

    Human mobility is known to be distributed across several orders of magnitude of physical distances, which makes it generally difficult to endogenously find or define typical and meaningful scales. Relevant analyses, from movements to geographical partitions, seem to be relative to some ad-hoc scale, or no scale at all. Relying on geotagged data collected from photo-sharing social media, we apply community detection to movement networks constrained by increasing percentiles of the distance distribution. Using a simple parameter-free discontinuity detection algorithm, we discover clear phase transitions in the community partition space. The detection of these phases constitutes the first objective method of characterising endogenous, natural scales of human movement. Our study covers nine regions, ranging from cities to countries of various sizes and a transnational area. For all regions, the number of natural scales is remarkably low (2 or 3). Further, our results hint at scale-related behaviours rather than scale-related users. The partitions of the natural scales allow us to draw discrete multi-scale geographical boundaries, potentially capable of providing key insights in fields such as epidemiology or cultural contagion where the introduction of spatial boundaries is pivotal.

  7. Ecological Processes of Isolated Wetlands: Ecosystem Services and the Significant Nexus (Invited)

    NASA Astrophysics Data System (ADS)

    Lane, C.; Autrey, B.; D'Amico, E.

    2013-12-01

    Geographically isolated wetlands occur throughout the US and are characterized by a wetland system completely surrounded by uplands. Examples include prairie potholes, woodland seasonal (i.e., vernal) pools, cypress domes, playas, and other such systems. Decisions by the US Supreme Court in 2001 and 2006 have affected the jurisdictional status of geographically isolated wetlands such that those failing to have a demonstrable 'significant nexus' to navigable waters may have no federal protection under the Clean Water Act. These systems are typically small and, as such, may be under-counted in assessments of area and abundance. Areal extent is a portion of the information required to characterize the functions associated with geographically isolated wetlands and understanding both site-specific and larger-scale processes are also required to better quantify those functions. In addition, quantifying anthropogenic effects on system processing informs our understanding of the contributions and the connectivity of geographically isolated wetlands to other waters. This presentation focuses on both efforts to quantify the contribution of geographically isolated wetlands to system-scale processes, focusing on nutrient assimilation and hydrologic storage, as well as concurrent research to identify their locations at multiple scales. Findings from this research may help elucidate the link between geographically isolated wetlands and other systems, and may inform discussions on ecosystem services provided by geographically isolated wetlands.

  8. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    PubMed Central

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  9. Modeling the adoption of innovations in the presence of geographic and media influences.

    PubMed

    Toole, Jameson L; Cha, Meeyoung; González, Marta C

    2012-01-01

    While there is a large body of work examining the effects of social network structure on innovation adoption, models to date have lacked considerations of real geography or mass media. In this article, we show these features are crucial to making more accurate predictions of a social contagion and technology adoption at a city-to-city scale. Using data from the adoption of the popular micro-blogging platform, Twitter, we present a model of adoption on a network that places friendships in real geographic space and exposes individuals to mass media influence. We show that homophily both among individuals with similar propensities to adopt a technology and geographic location is critical to reproducing features of real spatiotemporal adoption. Furthermore, we estimate that mass media was responsible for increasing Twitter's user base two to four fold. To reflect this strength, we extend traditional contagion models to include an endogenous mass media agent that responds to those adopting an innovation as well as influencing agents to adopt themselves.

  10. Large-scale patterns of benthic marine communities in the Brazilian Province.

    PubMed

    Aued, Anaide W; Smith, Franz; Quimbayo, Juan P; Cândido, Davi V; Longo, Guilherme O; Ferreira, Carlos E L; Witman, Jon D; Floeter, Sergio R; Segal, Bárbara

    2018-01-01

    As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas.

  11. Large-scale patterns of benthic marine communities in the Brazilian Province

    PubMed Central

    Smith, Franz; Quimbayo, Juan P.; Cândido, Davi V.; Longo, Guilherme O.; Ferreira, Carlos E. L.; Witman, Jon D.; Floeter, Sergio R.; Segal, Bárbara

    2018-01-01

    As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas. PMID:29883496

  12. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143

  13. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.

  14. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  15. Geographic structure evidenced in the toxic dinoflagellate Alexandrium pacificum Litaker (A. catenella - group IV (Whedon & Kofoid) Balech) along Japanese and Chinese coastal waters.

    PubMed

    Genovesi, Benjamin; Berrebi, Patrick; Nagai, Satoshi; Reynaud, Nathalie; Wang, Jinhui; Masseret, Estelle

    2015-09-15

    The intra-specific diversity and genetic structure within the Alexandrium pacificum Litaker (A. catenella - Group IV) populations along the Temperate Asian coasts, were studied among individuals isolated from Japan to China. The UPGMA dendrogram and FCA revealed the existence of 3 clusters. Assignment analysis suggested the occurrence of gene flows between the Japanese Pacific coast (cluster-1) and the Chinese Zhejiang coast (cluster-2). Human transportations are suspected to explain the lack of genetic difference between several pairs of distant Japanese samples, hardly explained by a natural dispersal mechanism. The genetic isolation of the population established in the Sea of Japan (cluster-3) suggested the existence of a strong ecological and geographical barrier. Along the Pacific coasts, the South-North current allows limited exchanges between Chinese and Japanese populations. The relationships between Temperate Asian and Mediterranean individuals suggested different scenario of large-scale dispersal mechanisms. Copyright © 2015. Published by Elsevier Ltd.

  16. The SERGISAI procedure for seismic risk assessment

    NASA Astrophysics Data System (ADS)

    Zonno, G.; Garcia-Fernandez, M.; Jimenez, M.J.; Menoni, S.; Meroni, F.; Petrini, V.

    The European project SERGISAI developed a computational tool where amethodology for seismic risk assessment at different geographical scales hasbeen implemented. Experts of various disciplines, including seismologists,engineers, planners, geologists, and computer scientists, co-operated in anactual multidisciplinary process to develop this tool. Standard proceduralcodes, Geographical Information Systems (GIS), and Artificial Intelligence(AI) techniques compose the whole system, that will enable the end userto carry out a complete seismic risk assessment at three geographical scales:regional, sub-regional and local. At present, single codes or models thathave been incorporated are not new in general, but the modularity of theprototype, based on a user-friendly front-end, offers potential users thepossibility of updating or replacing any code or model if desired. Theproposed procedure is a first attempt to integrate tools, codes and methodsfor assessing expected earthquake damage, and it was mainly designedto become a useful support for civil defence and land use planning agencies.Risk factors have been treated in the most suitable way for each one, interms of level of detail, kind of parameters and units of measure.Identifying various geographical scales is not a mere question of dimension;since entities to be studied correspond to areas defined by administrativeand geographical borders. The procedure was applied in the following areas:Toscana in Italy, for the regional scale, the Garfagnana area in Toscana, forthe sub-regional scale, and a part of Barcelona city, Spain, for the localscale.

  17. The role of river drainages in shaping the genetic structure of capybara populations.

    PubMed

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  18. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds' most traded snake species.

    PubMed

    Murray-Dickson, Gillian; Ghazali, Muhammad; Ogden, Rob; Brown, Rafe; Auliya, Mark

    2017-01-01

    As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins-which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python's native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley's modification of Wallace's line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans.

  19. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species

    PubMed Central

    Ghazali, Muhammad; Ogden, Rob; Brown, Rafe; Auliya, Mark

    2017-01-01

    As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins—which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python’s native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley’s modification of Wallace’s line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans. PMID:28817588

  20. Bedrock geologic map of the Hartland and North Hartland quadrangles, Windsor County, Vermont, and Sullivan and Grafton Counties, New Hampshire

    USGS Publications Warehouse

    Walsh, Gregory J.

    2016-08-16

    This report consists of sheets 1 and 2 as well as an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs. Sheet 2 of this report shows three cross sections, a tectonic map, and two brittle features maps that show measured outcrop-scale strike and dip results with summary stereonets and rose diagrams.

  1. GIS Modeling of Air Toxics Releases from TRI-Reporting and Non-TRI-Reporting Facilities: Impacts for Environmental Justice

    PubMed Central

    Dolinoy, Dana C.; Miranda, Marie Lynn

    2004-01-01

    The Toxics Release Inventory (TRI) requires facilities with 10 or more full-time employees that process > 25,000 pounds in aggregate or use > 10,000 pounds of any one TRI chemical to report releases annually. However, little is known about releases from non-TRI-reporting facilities, nor has attention been given to the very localized equity impacts associated with air toxics releases. Using geographic information systems and industrial source complex dispersion modeling, we developed methods for characterizing air releases from TRI-reporting as well as non-TRI-reporting facilities at four levels of geographic resolution. We characterized the spatial distribution and concentration of air releases from one representative industry in Durham County, North Carolina (USA). Inclusive modeling of all facilities rather than modeling of TRI sites alone significantly alters the magnitude and spatial distribution of modeled air concentrations. Modeling exposure receptors at more refined levels of geographic resolution reveals localized, neighborhood-level exposure hot spots that are not apparent at coarser geographic scales. Multivariate analysis indicates that inclusive facility modeling at fine levels of geographic resolution reveals exposure disparities by income and race. These new methods significantly enhance the ability to model air toxics, perform equity analysis, and clarify conflicts in the literature regarding environmental justice findings. This work has substantial implications for how to structure TRI reporting requirements, as well as methods and types of analysis that will successfully elucidate the spatial distribution of exposure potentials across geographic, income, and racial lines. PMID:15579419

  2. Intense sub-kilometer-scale boundary layer rolls observed in hurricane fran

    PubMed

    Wurman; Winslow

    1998-04-24

    High-resolution observations obtained with the Doppler On Wheels (DOW) mobile weather radar near the point of landfall of hurricane Fran (1996) revealed the existence of intense, sub-kilometer-scale, boundary layer rolls that strongly modulated the near-surface wind speed. It is proposed that these structures are one cause of geographically varying surface damage patterns that have been observed after some landfalling hurricanes and that they cause much of the observed gustiness, bringing high-velocity air from aloft to the lowest observable levels. High-resolution DOW radar observations are contrasted with lower-resolution observations obtained with an operational weather radar, which underestimated peak low-level wind speeds.

  3. The Potential of Spaceborne Remote Sensing for Deriving Canopy Structure Metrics and Informing Biodiversity and Habitat Mapping

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.; Dubayah, R.

    2016-12-01

    Research on characterization of canopy structure with remote sensing has exploded as airborne data sets have become more widely available to the biodiversity science and habitat management communities. While these advances are important in the context of increasing pressure on both habitat and wildlife, airborne data acquisitions are necessarily limited in geographic scope and thus in their general applicability to biome-scale biodiversity research initiatives, including international programs striving to implement the United Nations Convention on Biological Diversity (CBD) and the associated Aichi Biodiversity Targets. The lack of systematic metrics of canopy structure across large geographic domains also makes it difficult to implement the CBD Strategic Plan systematically across nations, as outlined in National Biodiversity Strategies and Action Plans. The Group on Earth Observations, Biodiversity Observation Network (GEO BON) has proposed a set of Essential Biodiversity Variables (EBVs) that could be used as a global-scale basis for biodiversity monitoring, but several of those EBVs are still limited by the availability of data on habitat 3D structure. Those limitations will be overcome in the near future with a suite of satellite missions that will provide an unprecedented level of active remote sensing measurements useful for deriving structure information, including Tandem-X, ICESat-2, BIOMASS and the Global Ecosystem Dynamics Investigation (GEDI). We will provide a brief overview of the rapid advance of measurements of canopy structure and the applications that have evolved in recent years in terms of 3D habitat characterization, species-specific habitat utilization, and the potential of these new space-based measurements. In this talk we will focus primarily on GEDI, a lidar mission to be installed on the International Space Station that is optimized for retrieving 3D canopy structure. GEDI and the other new missions will provide long-desired consistent and systematic information on EBVs from space, and thereby facilitate the implementation of international biodiversity policy objectives.

  4. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  5. Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng

    2017-11-01

    Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.

  6. Social and Population Structure in the Ant Cataglyphis emmae

    PubMed Central

    Jowers, Michael J.; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R.

    2013-01-01

    Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827

  7. Spatial Fingerprints of Community Structure in Human Interaction Network for an Extensive Set of Large-Scale Regions

    PubMed Central

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization. PMID:25993329

  8. The application of geography markup language (GML) to the geological sciences

    NASA Astrophysics Data System (ADS)

    Lake, Ron

    2005-11-01

    GML 3.0 became an adopted specification of the Open Geospatial Consortium (OGC) in January 2003, and is rapidly emerging as the world standard for the encoding, transport and storage of all forms of geographic information. This paper looks at the application of GML to one of the more challenging areas of automated geography, namely the geological sciences. Specific features of GML of interest to geologists are discussed and then illustrated through a series of geological case studies. We conclude the paper with a discussion of anticipated geological web services that GML will enable. GML is written in XML and makes use of XML Schema for extensibility. It can be used both to represent or model geographic objects and to transport them across the Internet. In this way it serves as the foundation for all manner of geographic web services. Unlike vertical application grammars such as LandXML, GML was intended to define geographic application languages, and hence is applicable to any geographic domain including forestry, environmental sciences, geology and oceanography. This paper provides a review of the basic features of GML that are fundamental to the geological sciences including geometry, coverages, observations, reference systems and temporality. These constructs are then employed in a series of simple geological case studies including structural geological description, surficial geology, representation of geological time scales, mineral occurrences, geohazards and geochemical reconnaissance.

  9. Environmental and Spatial Influences on Biogeography and Community Structure of Benthic Diatoms

    NASA Astrophysics Data System (ADS)

    Plante, C.; Hill-Spanik, K.; Lowry, J.

    2016-02-01

    Several theoretical and practical reasons suggest that benthic microalgae could be useful bioindicators. For instance, an ideal indicator species or community would be associated with a given habitat due to local physical conditions or biotic interactions (i.e., `environmental filtering'), not due to dispersal limitation. Due to their small size, immense abundances, and reliance on passive dispersal, the popular notion about micro-organisms is that `Everything is everywhere, but, the environment selects' (Baas-Becking 1934). Although much recent research concerning planktonic bacteria and dispersal limitation has been conducted, very little in this regard is known about microeukaryotes, especially benthic microbes. The purpose of our study was to identify and compare spatial and environmental influences on benthic diatom community structure and biogeography. In summer 2015, sediment was sampled at various spatial scales from four barrier island beaches in South Carolina, USA, and high-throughput (Ion Torrent) DNA sequencing was used to characterize diatom assemblages. ANOSIM and principal coordinates analysis revealed that communities were statistically distinct on the four islands. Community dissimilarity was compared to both spatial distance and environmental differences to determine potential influences of these variables on community structure. We found that geographic distance had the strongest correlation with community similarity, with and without one anomalous location, while differences in temperature (air, water, and sediment), nutrients, organic matter, and turbidity also had significant but weaker relationships with community structure. Surprisingly, air temperature, which changes on very short time scales, appeared to be the environmental factor most strongly related to diatom species composition, potentially implicating some unmeasured variable (e.g., cloud cover). However, we also found that temperature and geographic distance were strongly correlated. Future research will expand the spatial scope of this preliminary study and employ techniques (partial Mantel tests) to control for co-variation among variables.

  10. Climate change alters stability and species potential interactions in a large marine ecosystem.

    PubMed

    Griffith, Gary P; Strutton, Peter G; Semmens, Jayson M

    2018-01-01

    We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current, but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change. © 2017 John Wiley & Sons Ltd.

  11. Zoonotic Babesia microti in the northeastern U.S.: Evidence for the expansion of a specific parasite lineage

    PubMed Central

    Molloy, Philip; Weeks, Karen

    2018-01-01

    The recent range expansion of human babesiosis in the northeastern United States, once found only in restricted coastal sites, is not well understood. This study sought to utilize a large number of samples to examine the population structure of the parasites on a fine scale to provide insights into the mode of emergence across the region. 228 B. microti samples collected in endemic northeastern U.S. sites were genotyped using published Variable number tandem repeat (VNTR) markers. The genetic diversity and population structure were analysed on a geographic scale using Phyloviz and TESS, programs that utilize two different methods to identify population membership without predefined population data. Three distinct populations were detected in northeastern US, each dominated by a single ancestral type. In contrast to the limited range of the Nantucket and Cape Cod populations, the mainland population dominated from New Jersey eastward to Boston. Ancestral populations of B. microti were sufficiently isolated to differentiate into distinct populations. Despite this, a single population was detected across a large geographic area of the northeast that historically had at least 3 distinct foci of transmission, central New Jersey, Long Island and southeastern Connecticut. We conclude that a single B. microti genotype has expanded across the northeastern U.S. The biological attributes associated with this parasite genotype that have contributed to such a selective sweep remain to be identified. PMID:29565993

  12. A Small-Scale Survey of the Views and Attitudes of Junior High School Teachers in China toward Geographical Fieldwork

    ERIC Educational Resources Information Center

    Yang, Daihu; Wang, Ziying; Xu, Di; Deng, Zhenzhen

    2014-01-01

    Although geographical fieldwork can be viewed as an integral component of geographical education, it fell out of favor in Chinese secondary schools in the recent past. However, the new junior high school geography standards established in 2001 stress the importance of conducting geographical fieldwork for students' learning of geography. Now…

  13. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  14. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  15. Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models.

    PubMed

    Relun, Anne; Grosbois, Vladimir; Alexandrov, Tsviatko; Sánchez-Vizcaíno, Jose M; Waret-Szkuta, Agnes; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz

    2017-01-01

    In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful to simplify trade networks analysis and better inform European policy makers on risk-based and more cost-effective prevention and control against swine diseases such as African swine fever, classical swine fever, or porcine reproductive and respiratory syndrome.

  16. Application of LOD technology to the economic residence GIS for industry and commerce administration

    NASA Astrophysics Data System (ADS)

    Song, Yongjun; Feng, Xuezhi; Zhao, Shuhe; Yin, Haiwei; Li, Yulin; Cui, Hongxia; Zhang, Hui; Zhong, Quanbao

    2007-06-01

    The LOD technology has an impact upon the multi-scale representation of spatial database. This paper takes advantage of LOD technology to express the multi-scale geographical data, and establish the exchange of multi-scale electronic map, further attain the goal that the details of geographic features such as point, line and polygon can be displayed more and more clearly with the display scale being enlarged to be convenient for the personnel of all offices of industry and commerce administration to label the locations of the corporations or enterprises.

  17. The relationship between observational scale and explained variance in benthic communities

    PubMed Central

    Flood, Roger D.; Frisk, Michael G.; Garza, Corey D.; Lopez, Glenn R.; Maher, Nicole P.

    2018-01-01

    This study addresses the impact of spatial scale on explaining variance in benthic communities. In particular, the analysis estimated the fraction of community variation that occurred at a spatial scale smaller than the sampling interval (i.e., the geographic distance between samples). This estimate is important because it sets a limit on the amount of community variation that can be explained based on the spatial configuration of a study area and sampling design. Six benthic data sets were examined that consisted of faunal abundances, common environmental variables (water depth, grain size, and surficial percent cover), and sonar backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analysis was coupled with spatial variograms generated by multiscale ordination to quantify the explained and residual variance at different spatial scales and within and between acoustic provinces. The amount of community variation below the sampling interval of the surveys (< 100 m) was estimated to be 36–59% of the total. Once adjusted for this small-scale variation, > 71% of the remaining variance was explained by the environmental and province variables. Furthermore, these variables effectively explained the spatial structure present in the infaunal community. Overall, no scale problems remained to compromise inferences, and unexplained infaunal community variation had no apparent spatial structure within the observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m) below the observational scale may be present. PMID:29324746

  18. Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories

    NASA Astrophysics Data System (ADS)

    Ojaghi, Mobin; Martínez, Ignacio Lamata; Dietz, Matt S.; Williams, Martin S.; Blakeborough, Anthony; Crewe, Adam J.; Taylor, Colin A.; Madabhushi, S. P. Gopal; Haigh, Stuart K.

    2018-01-01

    Distributed Hybrid Testing (DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented.

  19. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  20. Estimating tree species diversity across geographic scales

    Treesearch

    Susanne Winter; Andreas Böck; Ronald E. McRoberts

    2012-01-01

    The relationship between number of species and area observed has been described using numerous approaches and has been discussed for more than a century. The general objectives of our study were fourfold: (1) to evaluate the behaviour of species-area curves across geographic scales, (2) to determine sample sizes necessary to produce acceptably precise estimates of tree...

  1. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici

    PubMed Central

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen. PMID:24465211

  2. Evidence of segregated spawning in a single marine fish stock: Sympatric divergence of ecotypes in icelandic cod?

    USGS Publications Warehouse

    Grabowski, T.B.; Thorsteinsson, Vilhjalmur; McAdam, B.J.; Marteinsdottir, G.

    2011-01-01

    There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty ???1 year to evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two geographically distinct populations. Despite being captured together on the same spawning grounds, we show the behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth. Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-spawning marine fishes.

  3. Genetic co-structuring in host-parasite systems: Empirical data from raccoons and raccoon ticks

    DOE PAGES

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.; ...

    2016-03-31

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  4. Continental synchronicity of human influenza virus epidemics despite climatic variation.

    PubMed

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the event of the emergence of a novel, human-to-human transmissible, virus.

  5. Geographical origin of Amazonian freshwater fishes fingerprinted by ⁸⁷Sr/⁸⁶Sr ratios on fish otoliths and scales.

    PubMed

    Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V

    2014-08-19

    Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin).

  6. Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia.

    PubMed

    Ansmann, Ina C; Parra, Guido J; Lanyon, Janet M; Seddon, Jennifer M

    2012-09-01

    Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F(ST) = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ(ST) = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure among bottlenose dolphins in Moreton Bay. © 2012 Blackwell Publishing Ltd.

  7. mvMapper: statistical and geographical data exploration and visualization of multivariate analysis of population structure

    USDA-ARS?s Scientific Manuscript database

    Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...

  8. Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies.

    PubMed

    Henne, Karsten; Li, Jing; Stoneking, Mark; Kessler, Olga; Schilling, Hildegard; Sonanini, Anne; Conrads, Georg; Horz, Hans-Peter

    2014-08-22

    The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events.

  9. Geographical distribution of genetic diversity in Secale landrace and wild accessions.

    PubMed

    Hagenblad, Jenny; Oliveira, Hugo R; Forsberg, Nils E G; Leino, Matti W

    2016-01-19

    Rye, Secale cereale L., has historically been a crop of major importance and is still a key cereal in many parts of Europe. Single populations of cultivated rye have been shown to capture a large proportion of the genetic diversity present in the species, but the distribution of genetic diversity in subspecies and across geographical areas is largely unknown. Here we explore the structure of genetic diversity in landrace rye and relate it to that of wild and feral relatives. A total of 567 SNPs were analysed in 434 individuals from 76 accessions of wild, feral and cultivated rye. Genetic diversity was highest in cultivated rye, slightly lower in feral rye taxa and significantly lower in the wild S. strictum Presl. and S. africanum Stapf. Evaluation of effects from ascertainment bias suggests underestimation of diversity primarily in S. strictum and S. africanum. Levels of ascertainment bias, STRUCTURE and principal component analyses all supported the proposed classification of S. africanum and S. strictum as a separate species from S. cereale. S. afghanicum (Vav.) Roshev, S. ancestrale Zhuk., S. dighoricum (Vav.) Roshev, S. segetale (Zhuk.) Roshev and S. vavilovii Grossh. seemed, in contrast, to share the same gene pool as S. cereale and their genetic clustering was more dependent on geographical origin than taxonomic classification. S. vavilovii was found to be the most likely wild ancestor of cultivated rye. Among cultivated rye landraces from Europe, Asia and North Africa five geographically discrete genetic clusters were identified. These had only limited overlap with major agro-climatic zones. Slash-and-burn rye from the Finnmark area in Scandinavia formed a distinct cluster with little similarity to other landrace ryes. Regional studies of Northern and South-West Europe demonstrate different genetic distribution patterns as a result of varying cultivation intensity. With the exception of S. strictum and S. africanum different rye taxa share the majority of the genetic variation. Due to the vast sharing of genetic diversity within the S. cereale clade, ascertainment bias seems to be a lesser problem in rye than in predominantly selfing species. By exploiting within accession diversity geographic structure can be shown on a much finer scale than previously reported.

  10. Remotely sensed indicators of habitat heterogeneity and biological diversity: A preliminary report

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc; Sisk, Thomas; Milne, Anthony; Morgan, Garth; Orr, Tony

    1995-01-01

    The relationship between habitat area, spatial dynamics of the landscape, and species diversity is an important theme in population and conservation biology. Of particular interest is how populations of various species are affected by increasing habitat edges due to fragmentation. Over the last decade, assumptions regarding the effects of habitat edges on biodiversity have fluctuated wildly, from the belief that they have a positive effect to the belief that they have a clearly negative effect. This change in viewpoint has been brought about by an increasing recognition of the importance of geographic scale and a reinterpretation of natural history observations. In this preliminary report from an ongoing project, we explore the use of remote sensing technology and geographic information systems to further our understanding of how species diversity and population density are affected by habitat heterogeneity and landscape composition. A primary feature of this study is the investigation of SAR for making more rigorous investigations of habitat structure by exploiting the interaction between radar backscatter and vegetation structure and biomass. A major emphasis will be on the use of SAR data to define relative structural types based on measures of structural consolidation using the vegetation surface area to volume ratio (SA/V). Past research has shown that SAR may be sensitive to this form of structural expression which may affect biodiversity.

  11. Distinct Phylogeographic Structures of Wild Radish (Raphanus sativus L. var. raphanistroides Makino) in Japan

    PubMed Central

    Han, Qingxiang; Higashi, Hiroyuki; Mitsui, Yuki; Setoguchi, Hiroaki

    2015-01-01

    Coastal plants with simple linear distribution ranges along coastlines provide a suitable system for improving our understanding of patterns of intra-specific distributional history and genetic variation. Due to the combination of high seed longevity and high dispersibility of seeds via seawater, we hypothesized that wild radish would poorly represent phylogeographic structure at the local scale. On the other hand, we also hypothesized that wild radish populations might be geographically differentiated, as has been exhibited by their considerable phenotypic variations along the islands of Japan. We conducted nuclear DNA microsatellite loci and chloroplast DNA haplotype analyses for 486 samples and 144 samples, respectively, from 18 populations to investigate the phylogeographic structure of wild radish in Japan. Cluster analysis supported the existence of differential genetic structures between the Ryukyu Islands and mainland Japan populations. A significant strong pattern of isolation by distance and significant evidence of a recent bottleneck were detected. The chloroplast marker analysis resulted in the generation of eight haplotypes, of which two haplotypes (A and B) were broadly distributed in most wild radish populations. High levels of variation in microsatellite loci were identified, whereas cpDNA displayed low levels of genetic diversity within populations. Our results indicate that the Kuroshio Current would have contributed to the sculpting of the phylogeographic structure by shaping genetic gaps between isolated populations. In addition, the Tokara Strait would have created a geographic barrier between the Ryukyu Islands and mainland Japan. Finally, extant habitat disturbances (coastal erosion), migration patterns (linear expansion), and geographic characteristics (small islands and sea currents) have influenced the expansion and historical population dynamics of wild radish. Our study is the first to record the robust phylogeographic structure in wild radish between the Ryukyu Islands and mainland Japan, and might provide new insight into the genetic differentiation of coastal plants across islands. PMID:26247202

  12. Geographically pervasive effects of urban noise on frequency and syllable rate of songs and calls in silvereyes (Zosterops lateralis).

    PubMed

    Potvin, Dominique A; Parris, Kirsten M; Mulder, Raoul A

    2011-08-22

    Recent studies in the Northern Hemisphere have shown that songbirds living in noisy urban environments sing at higher frequencies than their rural counterparts. However, several aspects of this phenomenon remain poorly understood. These include the geographical scale over which such patterns occur (most studies have compared local populations), and whether they involve phenotypic plasticity or microevolutionary change. We conducted a field study of silvereye (Zosterops lateralis) vocalizations over more than 1 million km(2) of urban and rural south-eastern Australia, and compared possible effects of urban noise on songs (which are learned) and contact calls (which are innate). Across 14 paired urban and rural populations, silvereyes consistently sang both songs and contact calls at higher frequencies in urban environments. Syllable rate (syllables per second) decreased in urban environments, consistent with the hypothesis that reflective structures degrade song and encourage longer intervals between syllables. This comprehensive study is, to our knowledge, the first to demonstrate varied adaptations of urban bird vocalizations over a vast geographical area, and to provide insight into the mechanism responsible for these changes.

  13. Forensic genetic analysis of bio-geographical ancestry.

    PubMed

    Phillips, Chris

    2015-09-01

    With the great strides made in the last ten years in the understanding of human population variation and the detailed characterization of the genome, it is now possible to identify sets of ancestry informative markers suitable for relatively small-scale PCR-based assays and use them to analyze the ancestry of an individual from forensic DNA. This review outlines some of the current understanding of past human population structure and how it may have influenced the complex distribution of contemporary human diversity. A simplified description of human diversity can provide a suitable basis for choosing the best ancestry-informative markers, which is important given the constraints of multiplex sizes in forensic DNA tests. It is also important to decide the level of geographic resolution that is realistic to ensure the balance between informativeness and an over-simplification of complex human diversity patterns. A detailed comparison is made of the most informative ancestry markers suitable for forensic use and assessments are made of the data analysis regimes that can provide statistical inferences of a DNA donor's bio-geographical ancestry. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Identification of genetically and oceanographically distinct blooms of jellyfish

    PubMed Central

    Lee, Patricia L. M.; Dawson, Michael N; Neill, Simon P.; Robins, Peter E.; Houghton, Jonathan D. R.; Doyle, Thomas K.; Hays, Graeme C.

    2013-01-01

    Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear. A persistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. PMID:23287405

  15. Multiscale analysis of restoration priorities for marine shoreline planning.

    PubMed

    Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K

    2009-10-01

    Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.

  16. Bird diversity along a gradient of fragmented habitats of the Cerrado.

    PubMed

    Jesus, Shayana DE; Pedro, Wagner A; Bispo, Arthur A

    2018-01-01

    Understanding the factors that affect biodiversity is of central interest to ecology, and essential to species conservation and ecosystems management. We sampled bird communities in 17 forest fragments in the Cerrado biome, the Central-West region of Brazil. We aimed to know the communities structure pattern and the influence of geographical distance and environmental variables on them, along a gradient of fragmented habitats at both local and landscape scales. Eight structural variables of the fragments served as an environmental distance measurement at the local scale while five metrics served as an environmental distance measurement at the landscape scale. Species presence-absence data were used to calculate the dissimilarity index. Beta diversity was calculated using three indices (βsim, βnes and βsor), representing the spatial species turnover, nestedness and total beta diversity, respectively. Spatial species turnover was the predominant pattern in the structure of the communities. Variations in beta diversity were explained only by the environmental variables of the landscape with spatial configuration being more important than the composition. This fact indicates that, in Cerrado of Goiás avian communities structure, deterministic ecological processes associated to differences in species responses to landscape fragmentation are more important than stochastic processes driven by species dispersal.

  17. The Spectrum of Wind Power Fluctuations

    NASA Astrophysics Data System (ADS)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  18. At which geographic scale does ethnic diversity affect intra-neighborhood social capital?

    PubMed

    Sluiter, Roderick; Tolsma, Jochem; Scheepers, Peer

    2015-11-01

    The claim that ethnic diversity within the living environment would hamper bonding and bridging social capital has been studied extensively, producing highly inconsistent findings. We studied whether ethnic diversity effects depend on the geographic scale at which ethnic diversity is measured. We examined ethnic diversity effects on intra- and inter-ethnic contacts in the neighborhood, respectively on opposition to ethnic in- and out-group neighbors. Hypotheses were derived from Blau's meeting opportunities thesis and contact theory, ethnic competition theory, and constrict theory. Using information about 2545 Dutch respondents with their locality defined as egohoods and administrative units, we found that ethnic diversity effects vary with the geographic scale. Ethnic diversity of smaller localities is positively associated with bridging social capital. At larger scales, the findings are mixed: ethnic diversity is positively related to inter-ethnic contacts and opposition to out-group neighbors. Ethnic diversity of smaller localities is negatively related to bonding social capital. In contrast to often-made claims that diversity within the local context would matter most, estimates of diversity effects are not always stronger when diversity measures are aggregated to smaller geographic areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities

    PubMed Central

    Hansen, Oskar Liset Pryds; Bowden, Joseph J.; Treier, Urs A.; Normand, Signe; Høye, Toke

    2016-01-01

    The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level. Here, we investigate how arthropod assemblages of spiders and beetles respond to variation in habitat structure at small spatial scales. We sampled transitions in shrub dominance and soil moisture between three different habitats (fen, dwarf shrub heath, and tall shrub tundra) at three different sites along a fjord gradient in southwest Greenland, using yellow pitfall cups. We identified 2,547 individuals belonging to 47 species. We used species richness estimation, indicator species analysis and latent variable modeling to examine differences in arthropod community structure in response to habitat variation at local (within site) and regional scales (between sites). We estimated species responses to the environment by fitting species-specific generalized linear models with environmental covariates. Species assemblages were segregated at the habitat and site level. Each habitat hosted significant indicator species, and species richness and diversity were significantly lower in fen habitats. Assemblage patterns were significantly linked to changes in soil moisture and vegetation height, as well as geographic location. We show that meter-scale variation among habitats affects arthropod community structure, supporting the notion that the Arctic tundra is a heterogeneous environment. To gain sufficient insight into temporal biodiversity change, we require studies of species distributions detailing species habitat preferences. PMID:27478709

  20. A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration.

    PubMed

    Lee, Noah; Laine, Andrew F; Smith, R Theodore

    2007-01-01

    Fundus auto-fluorescence (FAF) images with hypo-fluorescence indicate geographic atrophy (GA) of the retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Manual quantification of GA is time consuming and prone to inter- and intra-observer variability. Automatic quantification is important for determining disease progression and facilitating clinical diagnosis of AMD. In this paper we describe a hybrid segmentation method for GA quantification by identifying hypo-fluorescent GA regions from other interfering retinal vessel structures. First, we employ background illumination correction exploiting a non-linear adaptive smoothing operator. Then, we use the level set framework to perform segmentation of hypo-fluorescent areas. Finally, we present an energy function combining morphological scale-space analysis with a geometric model-based approach to perform segmentation refinement of false positive hypo- fluorescent areas due to interfering retinal structures. The clinically apparent areas of hypo-fluorescence were drawn by an expert grader and compared on a pixel by pixel basis to our segmentation results. The mean sensitivity and specificity of the ROC analysis were 0.89 and 0.98%.

  1. Genetic structure in village dogs reveals a Central Asian domestication origin.

    PubMed

    Shannon, Laura M; Boyko, Ryan H; Castelhano, Marta; Corey, Elizabeth; Hayward, Jessica J; McLean, Corin; White, Michelle E; Abi Said, Mounir; Anita, Baddley A; Bondjengo, Nono Ikombe; Calero, Jorge; Galov, Ana; Hedimbi, Marius; Imam, Bulu; Khalap, Rajashree; Lally, Douglas; Masta, Andrew; Oliveira, Kyle C; Pérez, Lucía; Randall, Julia; Tam, Nguyen Minh; Trujillo-Cornejo, Francisco J; Valeriano, Carlos; Sutter, Nathan B; Todhunter, Rory J; Bustamante, Carlos D; Boyko, Adam R

    2015-11-03

    Dogs were the first domesticated species, originating at least 15,000 y ago from Eurasian gray wolves. Dogs today consist primarily of two specialized groups--a diverse set of nearly 400 pure breeds and a far more populous group of free-ranging animals adapted to a human commensal lifestyle (village dogs). Village dogs are more genetically diverse and geographically widespread than purebred dogs making them vital for unraveling dog population history. Using a semicustom 185,805-marker genotyping array, we conducted a large-scale survey of autosomal, mitochondrial, and Y chromosome diversity in 4,676 purebred dogs from 161 breeds and 549 village dogs from 38 countries. Geographic structure shows both isolation and gene flow have shaped genetic diversity in village dog populations. Some populations (notably those in the Neotropics and the South Pacific) are almost completely derived from European stock, whereas others are clearly admixed between indigenous and European dogs. Importantly, many populations--including those of Vietnam, India, and Egypt-show minimal evidence of European admixture. These populations exhibit a clear gradient of short--range linkage disequilibrium consistent with a Central Asian domestication origin.

  2. Genetic structure in village dogs reveals a Central Asian domestication origin

    PubMed Central

    Shannon, Laura M.; Boyko, Ryan H.; Castelhano, Marta; Corey, Elizabeth; Hayward, Jessica J.; McLean, Corin; White, Michelle E.; Abi Said, Mounir; Anita, Baddley A.; Bondjengo, Nono Ikombe; Calero, Jorge; Galov, Ana; Hedimbi, Marius; Imam, Bulu; Khalap, Rajashree; Lally, Douglas; Masta, Andrew; Oliveira, Kyle C.; Pérez, Lucía; Randall, Julia; Tam, Nguyen Minh; Trujillo-Cornejo, Francisco J.; Valeriano, Carlos; Sutter, Nathan B.; Todhunter, Rory J.; Bustamante, Carlos D.; Boyko, Adam R.

    2015-01-01

    Dogs were the first domesticated species, originating at least 15,000 y ago from Eurasian gray wolves. Dogs today consist primarily of two specialized groups—a diverse set of nearly 400 pure breeds and a far more populous group of free-ranging animals adapted to a human commensal lifestyle (village dogs). Village dogs are more genetically diverse and geographically widespread than purebred dogs making them vital for unraveling dog population history. Using a semicustom 185,805-marker genotyping array, we conducted a large-scale survey of autosomal, mitochondrial, and Y chromosome diversity in 4,676 purebred dogs from 161 breeds and 549 village dogs from 38 countries. Geographic structure shows both isolation and gene flow have shaped genetic diversity in village dog populations. Some populations (notably those in the Neotropics and the South Pacific) are almost completely derived from European stock, whereas others are clearly admixed between indigenous and European dogs. Importantly, many populations—including those of Vietnam, India, and Egypt—show minimal evidence of European admixture. These populations exhibit a clear gradient of short-range linkage disequilibrium consistent with a Central Asian domestication origin. PMID:26483491

  3. Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae)

    PubMed Central

    Hsieh, Y-C; Chung, J-D; Wang, C-N; Chang, C-T; Chen, C-Y; Hwang, S-Y

    2013-01-01

    Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168–13,092 years ago and ending 1584–3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale. PMID:23591517

  4. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-01-29

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. The Effect of Geographical Proximity on Scientific Cooperation among Chinese Cities from 1990 to 2010

    PubMed Central

    Ma, Haitao; Fang, Chuanglin; Pang, Bo; Li, Guangdong

    2014-01-01

    Background The relations between geographical proximity and spatial distance constitute a popular topic of concern. Thus, how geographical proximity affects scientific cooperation, and whether geographically proximate scientific cooperation activities in fact exhibit geographic scale features should be investigated. Methodology Selected statistics from the ISI database on cooperatively authored papers, the authors of which resided in 60 typical cites in China, and which were published in the years 1990, 1995, 2000, 2005, and 2010, were used to establish matrices of geographic distance and cooperation levels between cities. By constructing a distance-cooperation model, the degree of scientific cooperation based on spatial distance was calculated. The relationship between geographical proximity and scientific cooperation, as well as changes in that relationship, was explored using the fitting function. Result (1) Instead of declining, the role of geographical proximity in inter-city scientific cooperation has increased gradually but significantly with the popularization of telecommunication technologies; (2) the relationship between geographical proximity and scientific cooperation has not followed a perfect declining curve, and at certain spatial scales, the distance-decay regularity does not work; (3) the Chinese scientific cooperation network gathers around different regional center cities, showing a trend towards a regional network; within this cooperation network the amount of inter-city cooperation occurring at close range increased greatly. Conclusion The relationship between inter-city geographical distance and scientific cooperation has been enhanced and strengthened over time. PMID:25365449

  6. [Adaptation and psychometric proprieties study for the Portuguese version of the Adolescent Coping Scale - Escala de Coping para Adolescentes].

    PubMed

    Guerreiro, Diogo Frasquilho; Cruz, Diana; Figueira, Maria Luísa; Sampaio, Daniel

    2014-01-01

    Coping is a psychological process that prompts the individual to adapt to stressful situations. The Adolescent Coping Scale is a widely used research and clinical tool. This study aimed to develop a Portuguese version of the Adolescent Coping Scale and to analyze the strategies and coping styles of young people in our sample. An anonymous questionnaire comprising the Adolescent Coping Scale was submitted and replied by 1 713 students (56% female, from 12 to 20 years, average age 16) The validity study of the scale included: principal component and reliability analysis; confirmatory analysis using structural equation modelling Subsequently, a gender comparison of both the strategies and the coping styles was conducted through independent samples t tests. The final structure of the Adolescent Coping Scale adaptation retained 70 items assessing 16 coping strategies grouped into three major styles. The scales showed good internal consistency (Cronbach alpha values between 0.63. and 0.86, with the exception of one dimension that as shown a value of 0.55) and the confirmatory model showed a good fit (goodness of fit index values between 0.94 e 0.96). Two coping strategies were eliminated on statistical grounds (insufficient saturations of items in the corresponding dimensions). We found that the style of coping focused on problem solving is the most used by youths from our sample, in both sexes. Females had higher mean values in non-productive coping style and reference to others. This adapted version has high similarity with the original scale, with expectable minor changes, given that coping is influenced by cultural, geographical and socio-economic variables. The present study represents an important part of the validation protocol Portuguese Adolescent Coping Scale, including its linguistic adaptation and its internal consistency and factor structure studies.

  7. Spatial analysis of bus transport networks using network theory

    NASA Astrophysics Data System (ADS)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison of the simulation and the empirical data provides useful information on how bus operators can better plan their routes and deploy stops considering the geographically significant nodes.

  8. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico.

    PubMed

    Domínguez-Contreras, José F; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha P; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides . These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.

  9. How patients perceive the therapeutic communications skills of their general practitioners, and how that perception affects adherence: use of the TCom-skill GP scale in a specific geographical area.

    PubMed

    Baumann, Michèle; Baumann, Cédric; Le Bihan, Etienne; Chau, Nearkasen

    2008-12-01

    To study: (1) the structure and test-retest reliability of a measure of how patients perceive the therapeutic communications skills of their general practitioners (TCom-skill GP), and (2) the associations of that scale with socio-demographic and health-related characteristics, and adherence. A total of 393 people who lived in the same geographic area and invited to attend a preventive medical centre for a check up were asked to complete a self-administered questionnaire concerning TCom-skill GP (15 items), socio-demographic and health-related characteristics, and to answer two questions on perceived adherence. The average age of respondents was 46.8 years (SD 14), and 50.4% were men. The TCom-skill GP score was one-dimensional, had high internal coherence (Cronbach alpha 0.92), and good test-retest reliability (intra-class correlation coefficient 0.74). The overall score was positively related to increasing age. Respondents aged 60+ were more likely to be adherent. The higher the score, the higher the probability of adherence. Multivariate analysis showed that the TCom-skill score was associated with advancing age and the number of consultations with the GP during the previous 3 months, but not with gender, living alone, being employed, job category or educational level. Multivariate analysis also showed that adherence was associated with TCom-skill GP score which concealed the association between adherence and advancing age observed in univariate analysis. The TCom-skill GP scale probably has value in assessing the quality of doctor-patient relationships and therapeutic communications. The psychometric properties of the TCom-skill GP scale were appropriate for its use in this context. Adherence related to the TCom-skill GP and the latter related to the age of patients and the number of their previous consultations. The TCom-skill GP scale may be a useful way to assess, in a specific geographical location, the impact of medical professional training on therapeutic communication.

  10. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    USGS Publications Warehouse

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.

  11. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.

    PubMed

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-03-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis ('everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.

  12. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale

    PubMed Central

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-01-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition. PMID:23096401

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  14. Cities and regions in Britain through hierarchical percolation

    NASA Astrophysics Data System (ADS)

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A. Paolo; Batty, Michael

    2016-04-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North-South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.

  15. Assessment of Geographic and Host-Associated Population Variations of the Carob Moth, Ectomyelois ceratoniae, on Pomegranate, Fig, Pistachio and Walnut, Using AFLP Markers

    PubMed Central

    Mozaffarian, Fariba; Mardi, Mohsen; Sarafrazi, Alimorad; Nouri Ganbalani, Gadir

    2008-01-01

    The carob moth, Ectomyelois ceratoniae (Zeller 1839) (Lepidoptera: Pyralidae) is the most important pest of pomegranate, Punica granatum L. (Myrtales: Ponicaceae), in Iran. In this study, 6 amplified fragment length polymorphism primer combinations were used to survey the genetic structure of the geographic and putative host-associated populations of this pest in Iran. An AMOVA was performed on test populations. Pairwise differences, Mantel test, multidimensional analysis, cluster analysis and migration rate were calculated for 5 geographic populations of E. ceratoniae sharing the same host, pomegranate. In another part of the study, 3 comparisons were performed on pairwise populations that were collected on different hosts (pomegranate, fig, pistachio and walnut) in same geographic regions. The results showed high within population variation (85.51% of total variation), however geographic populations differed significantly. The Mantel test did not show correlations between genetic and geographic distances. The probable factors that affect genetic distances are discussed. Multidimensional scaling analysis, migration rate and cluster analysis on geographic populations showed that the Arsanjan population was the most different from the others while the Saveh population was more similar to the Sabzevar population. The comparisons didn't show any host fidelity in test populations. It seems that the ability of E. ceratoniae to broaden its host range with no fidelity to hosts can decrease the efficiency of common control methods that are used on pomegranate. The results of this study suggest that in spite of the effects of geographic barriers, high within-population genetic variation, migration rate and gene flow can provide the opportunity for emerging new phenotypes or behaviors in pest populations, such as broadening host range, changing egg lying places, or changing over-wintering sites to adapt to difficult conditions such as those caused by intensive control methods. PMID:20345296

  16. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change

    USGS Publications Warehouse

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land-management units. Heuristic models provide a means by which to integrate understanding of ecosystem structure, composition, and function, in the midst of numerous ecosystem drivers.

  17. Bananas, pesticides and health in southwestern Ecuador: A scalar narrative approach to targeting public health responses.

    PubMed

    Brisbois, Benjamin

    2016-02-01

    Public health responses to agricultural pesticide exposure are often informed by ethnographic or other qualitative studies of pesticide risk perception. In addition to highlighting the importance of structural determinants of exposure, such studies can identify the specific scales at which pesticide-exposed individuals locate responsibility for their health issues, with implications for study and intervention design. In this study, an ethnographic approach was employed to map scalar features within explanatory narratives of pesticides and health in Ecuador's banana-producing El Oro province. Unstructured observation, 14 key informant interviews and 15 in-depth semi-structured interviews were carried out during 8 months of fieldwork in 2011-2013. Analysis of interview data was informed by human geographic literature on the social construction of scale. Individual-focused narratives of some participants highlighted characteristics such as carelessness and ignorance, leading to suggestions for educational interventions. More structural explanations invoked farm-scale processes, such as uncontrolled aerial fumigations on plantations owned by elites. Organization into cooperatives helped to protect small-scale farmers from 'deadly' banana markets, which in turn were linked to the Ecuadorian nation-state and actors in the banana-consuming world. These scalar elements interacted in complex ways that appear linked to social class, as more well-off individuals frequently attributed the health problems of other (poorer) people to individual behaviours, while providing more structural explanations of their own difficulties. Such individualizing narratives may help to stabilize inequitable social structures. Research implications of this study include the possibility of using scale-focused qualitative research to generate theory and candidate levels for multi-level models. Equity implications include a need for public health researchers planning interventions to engage with scale-linked inequities, such as disparities within nation-states. Finally, the prominence of the global North in explanatory narratives is a useful reminder that 'structural factors' prominently include inequities related to the legacies of colonialism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Functional acclimation across microgeographic scales in Dodonaea viscosa

    PubMed Central

    Baruch, Zdravko; Jones, Alice R; Hill, Kathryn E; McInerney, Francesca A; Blyth, Colette; Caddy-Retalic, Stefan; Christmas, Matthew J; Gellie, Nicholas J C; Lowe, Andrew J; Martin-Fores, Irene; Nielson, Kristine E

    2018-01-01

    Abstract Intraspecific plant functional trait variation provides mechanistic insight into persistence and can infer population adaptive capacity. However, most studies explore intraspecific trait variation in systems where geographic and environmental distances co-vary. Such a design reduces the certainty of trait–environment associations, and it is imperative for studies that make trait–environment associations be conducted in systems where environmental distance varies independently of geographic distance. Here we explored trait variation in such a system, and aimed to: (i) quantify trait variation of parent and offspring generations, and associate this variation to parental environments; (ii) determine the traits which best explain population differences; (iii) compare parent and offspring trait–trait relationships. We characterized 15 plant functional traits in eight populations of a shrub with a maximum separation ca. 100 km. Populations differed markedly in aridity and elevation, and environmental distance varied independently of geographic distance. We measured traits in parent populations collected in the field, as well as their offspring reared in greenhouse conditions. Parent traits regularly associated with their environment. These associations were largely lost in the offspring generation, indicating considerable phenotypic plasticity. An ordination of parent traits showed clear structure with strong influence of leaf area, specific leaf area, stomatal traits, isotope δ13C and δ15N ratios, and Narea, whereas the offspring ordination was less structured. Parent trait–trait correlations were in line with expectations from the leaf economic spectrum. We show considerable trait plasticity in the woody shrub over microgeographic scales (<100 km), indicating it has the adaptive potential within a generation to functionally acclimate to a range of abiotic conditions. Since our study shrub is commonly used for restoration in southern Australia and local populations do not show strong genetic differentiation in functional traits, the potential risks of transferring seed across the broad environmental conditions are not likely to be a significant issue.

  19. Genetic structure of colline and montane populations of an endangered plant species

    PubMed Central

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  20. Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata.

    PubMed

    Polato, Nicholas R; Concepcion, Gregory T; Toonen, Robert J; Baums, Iliana B

    2010-11-01

    There is an ongoing debate on the scale of pelagic larval dispersal in promoting connectivity among populations of shallow, benthic marine organisms. The linearly arranged Hawaiian Islands are uniquely suited to study scales of population connectivity and have been used extensively as a natural laboratory in terrestrial systems. Here, we focus on Hawaiian populations of the lobe coral Porites lobata, an ecosystem engineer of shallow reefs throughout the Pacific. Patterns of recent gene flow and population structure in P. lobata samples (n = 318) from two regions, the Hawaiian Islands (n = 10 sites) and from their nearest neighbour Johnston Atoll, were analysed with nine microsatellite loci. Despite its massive growth form, ∼ 6% of the samples from both regions were the product of asexual reproduction via fragmentation. Cluster analysis and measures of genetic differentiation indicated that P. lobata from the Hawaiian Islands are strongly isolated from those on Johnston Atoll (F(ST)  = 0.311; P < 0.001), with the descendants of recent migrants (n = 6) being clearly identifiable. Within the Hawaiian Islands, P. lobata conforms to a pattern of isolation by distance. Here, over 37% (P = 0.001) of the variation in genetic distance was explained by geographical distance. This pattern indicates that while the majority of ongoing gene flow in Hawaiian P. lobata occurs among geographically proximate reefs, inter-island distances are insufficient to generate strong population structure across the archipelago. © 2010 Blackwell Publishing Ltd.

  1. In situ genetic differentiation in a Hispaniolan lizard (Ameiva chrysolaema): a multilocus perspective.

    PubMed

    Gifford, Matthew E; Larson, Allan

    2008-10-01

    A previous phylogeographic study of mitochondrial haplotypes for the Hispaniolan lizard Ameiva chrysolaema revealed deep genetic structure associated with seawater inundation during the late Pliocene/early Pleistocene and evidence of subsequent population expansion into formerly inundated areas. We revisit hypotheses generated by our previous study using increased geographic sampling of populations and analysis of three nuclear markers (alpha-enolase intron 8, alpha-cardiac-actin intron 4, and beta-actin intron 3) in addition to mitochondrial haplotypes (ND2). Large genetic discontinuities correspond spatially and temporally with historical barriers to gene flow (sea inundations). NCPA cross-validation analysis and Bayesian multilocus analyses of divergence times (IMa and MCMCcoal) reveal two separate episodes of fragmentation associated with Pliocene and Pleistocene sea inundations, separating the species into historically separate Northern, East-Central, West-Central, and Southern population lineages. Multilocus Bayesian analysis using IMa indicates asymmetrical migration from the East-Central to the West-Central populations following secondary contact, consistent with expectations from the more pervasive sea inundation in the western region. The West-Central lineage has a genetic signature of population growth consistent with the expectation of geographic expansion into formerly inundated areas. Within each lineage, significant spatial genetic structure indicates isolation by distance at comparable temporal scales. This study adds to the growing body of evidence that vicariant speciation may be the prevailing source of lineage accumulation on oceanic islands. Thus, prior theories of island biogeography generally underestimate the role and temporal scale of intra-island vicariant processes.

  2. Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.

    PubMed

    Cox, Christian L; Davis Rabosky, Alison R

    2013-08-01

    Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.

  3. A latitudinal phylogeographic diversity gradient in birds

    PubMed Central

    Seeholzer, Glenn F.; Harvey, Michael G.; Cuervo, Andrés M.; Brumfield, Robb T.

    2017-01-01

    High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns. PMID:28406905

  4. Influence of geographical scale on the detection of density dependence in the host-parasite system, Arvicola terrestris and Taenia taeniaeformis.

    PubMed

    Deter, J; Berthier, K; Chaval, Y; Cosson, J F; Morand, S; Charbonnel, N

    2006-04-01

    Infection by the cestode Taenia taeniaeformis was investigated within numerous cyclic populations of the fossorial water vole Arvicola terrestris sampled during 4 years in Franche-Comté (France). The relative influence of different rodent demographic parameters on the presence of this cestode was assessed by considering (1) the demographic phase of the cycle; (2) density at the local geographical scale (<0.1 km2); (3) mean density at a larger scale (>10 km2). The local scale corresponded to the rodent population (intermediate host), while the large scale corresponded to the definitive host population (wild and feral cats). General linear models based on analyses of 1804 voles revealed the importance of local density but also of year, rodent age, season and interactions between year and season and between age and season. Prevalence was significantly higher in low vole densities than during local outbreaks. By contrast, the large geographical scale density and the demographic phase had less influence on infection by the cestode. The potential impacts of the cestode on the fitness of the host were assessed and infection had no effect on the host body mass, litter size or sexual activity of voles.

  5. Time-space and cognition-space transformations for transportation network analysis based on multidimensional scaling and self-organizing map

    NASA Astrophysics Data System (ADS)

    Hong, Zixuan; Bian, Fuling

    2008-10-01

    Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.

  6. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea

    PubMed Central

    Giles, Emily C; Saenz-Agudelo, Pablo; Hussey, Nigel E; Ravasi, Timothy; Berumen, Michael L

    2015-01-01

    A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations. PMID:26257865

  7. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China.

    PubMed

    Xiang, Xian-Ling; Xi, Yi-Long; Wen, Xin-Li; Zhang, Gen; Wang, Jin-Xia; Hu, Ke

    2011-07-01

    Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization. © 2011 Blackwell Publishing Ltd.

  8. Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): implications for late Quaternary history of the taiga species in Eurasia.

    PubMed

    Fedorov, V B; Goropashnaya, A V; Boeskorov, G G; Cook, J A

    2008-01-01

    The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.

  9. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate.

    PubMed

    Johansson, M P; Quintela, M; Laurila, A

    2016-09-01

    Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  10. Families in space: relatedness in the Barents Sea population of polar bears (Ursus maritimus).

    PubMed

    Zeyl, E; Aars, J; Ehrich, D; Wiig, O

    2009-02-01

    The kin structure and dispersal pattern of polar bears (Ursus maritimus) of the Barents Sea was investigated during the spring mating season using two complementary approaches. First, individual genotypes based on the analyses of 27 microsatellite loci of 583 polar bears were related to field information gathered from 1146 bears in order to reconstruct the animals' pedigrees and to infer geographical distances between adult bears of different relatedness categories. According to the data, the median natal dispersal distance of the male animals was 52 km while that of the females was 93 km. Second, the relatedness of pairs of adult bears was estimated and correlated to the geographical distance between them. The female dyads had a much stronger kin structure than the male dyads. The 'pedigree approach' revealed a male kin structure which could not be detected using the 'relatedness approach'. This suggests that, on a broader scale, effective dispersal is slightly male biased. Despite fidelity to natal areas, male-mediated gene flow may nevertheless prevent genetic differentiation. Males might occasionally shift their home range which could therefore lead to a male-biased breeding dispersal. Our results showed that a nonterritorial species such as the polar bear that has a high dispersal potential, lives in a highly unstable environment and migrates seasonally is still able to exhibit a distinct kin structure during the mating season.

  11. Human impact in naturally patched small populations: genetic structure and conservation of the burrowing rodent, tuco-tuco (Ctenomys lami).

    PubMed

    Lopes, Carla M; de Freitas, Thales R O

    2012-01-01

    Isolated or semi-isolated small populations are commonly found among species, due to a naturally patchy occupancy of suitable habitats or also as a result of habitat alterations. These populations are subject to an increased risk of local extinction because they are more vulnerable to demographic, genetic, and environmental stochasticity. Considering that natural areas have been becoming progressively more fragmented and smaller, understanding the genetic structure and evolutionary dynamics of small populations is critical. Ctenomys lami has 26 karyotypes distributed in a small area (936 km(2)) continually modified by human actions. We assessed the genetic geographical structure of this species, examining 178 specimens sampled on a fine scale, using information from chromosomal variability, mitochondrial DNA control region and cytochrome c oxidase subunit I sequences, and 14 microsatellite loci. The observed isolation-by-distance pattern and a clinal genetic variation suggest a stepping-stone population model. The results did not indicate genetic structuring associated with distinct karyotypes. However, mitochondrial and nuclear molecular markers demonstrated the existence of 2 demes, which are not completely isolated but are probably reinforced by a geographical barrier. The vulnerability of C. lami is greater than previously supposed, and our data support the designation of one Evolutionary Significant Unit and one Management Unit, and also the inclusion of this species' conservation status as vulnerable.

  12. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds.

    PubMed

    Chen, Rubing; Holmes, Edward C

    2009-01-05

    Revealing the factors that shape the genetic structure of avian influenza viruses (AIVs) in wild bird populations is essential to understanding their evolution. However, the relationship between epidemiological dynamics and patterns of genetic diversity in AIV is not well understood, especially at the continental scale. To address this question, we undertook a phylogeographic analysis of complete genome sequences of AIV sampled from wild birds in North America. In particular, we asked whether host species, geographic location or sampling time played the major role in shaping patterns of viral genetic diversity. Strikingly, our analysis revealed no strong species effect, yet a significant viral clustering by time and place of sampling, as well as the circulation of multiple viral lineages in single locations. These results suggest that AIVs can readily infect many of the bird species that share breeding/feeding areas.

  13. An integrated framework for the geographic surveillance of chronic disease

    PubMed Central

    2009-01-01

    Background Geographic public health surveillance is concerned with describing and disseminating geographic information about disease and other measures of health to policy makers and the public. While methodological developments in the geographical analysis of disease are numerous, few have been integrated into a framework that also considers the effects of case ascertainment bias on the effectiveness of chronic disease surveillance. Results We present a framework for the geographic surveillance of chronic disease that integrates methodological developments in the spatial statistical analysis and case ascertainment. The framework uses an hierarchical approach to organize and model health information derived from an administrative health data system, and importantly, supports the detection and analysis of case ascertainment bias in geographic data. We test the framework on asthmatic data from Alberta, Canada. We observe high prevalence in south-western Alberta, particularly among Aboriginal females. We also observe that persons likely mistaken for asthmatics tend to be distributed in a pattern similar to asthmatics, suggesting that there may be an underlying social vulnerability to a variety of respiratory illnesses, or the presence of a diagnostic practice style effect. Finally, we note that clustering of asthmatics tends to occur at small geographic scales, while clustering of persons mistaken for asthmatics tends to occur at larger geographic scales. Conclusion Routine and ongoing geographic surveillance of chronic diseases is critical to developing an understanding of underlying epidemiology, and is critical to informing policy makers and the public about the health of the population. PMID:19948046

  14. Population Genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) across Multiple Spatial Scales

    PubMed Central

    Unger, Shem D.; Rhodes, Olin E.; Sutton, Trent M.; Williams, Rod N.

    2013-01-01

    Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species. PMID:24204565

  15. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  16. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.

    2018-01-01

    Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.

  17. New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian

    2016-01-01

    A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

  18. An Integrated Approach for Urban Earthquake Vulnerability Analyses

    NASA Astrophysics Data System (ADS)

    Düzgün, H. S.; Yücemen, M. S.; Kalaycioglu, H. S.

    2009-04-01

    The earthquake risk for an urban area has increased over the years due to the increasing complexities in urban environments. The main reasons are the location of major cities in hazard prone areas, growth in urbanization and population and rising wealth measures. In recent years physical examples of these factors are observed through the growing costs of major disasters in urban areas which have stimulated a demand for in-depth evaluation of possible strategies to manage the large scale damaging effects of earthquakes. Understanding and formulation of urban earthquake risk requires consideration of a wide range of risk aspects, which can be handled by developing an integrated approach. In such an integrated approach, an interdisciplinary view should be incorporated into the risk assessment. Risk assessment for an urban area requires prediction of vulnerabilities related to elements at risk in the urban area and integration of individual vulnerability assessments. However, due to complex nature of an urban environment, estimating vulnerabilities and integrating them necessities development of integrated approaches in which vulnerabilities of social, economical, structural (building stock and infrastructure), cultural and historical heritage are estimated for a given urban area over a given time period. In this study an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the smallest administrative unit, namely at neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate and decision makers seek for prioritization of their limited resources in risk reduction in the administrative districts from which they are responsible. The methodology integrates socio-economical, structural, coastal, ground condition, organizational vulnerabilities, as well as accessibility to critical services within the framework. The proposed framework has the following eight components: Seismic hazard analysis, soil response analysis, tsunami inundation analysis, structural vulnerability analysis, socio-economic vulnerability analysis, accessibility to critical services, GIS-based integrated vulnerability assessment, and visualization of vulnerabilities in 3D virtual city model The integrated model for various vulnerabilities obtained for the urban area is developed in GIS environment by using individual vulnerability assessments for considered elements at risk and serve for establishing the backbone of the spatial decision support system. The stages followed in the model are: Determination of a common mapping unit for each aspect of urban earthquake vulnerability, formation of a geo-database for the vulnerabilities, evaluation of urban vulnerability based on multi attribute utility theory with various weighting algorithms, mapping of the evaluated integrated earthquake risk in geographic information systems (GIS) in the neighborhood scale. The framework is also applicable to larger geographical mapping scales, for example, the building scale. When illustrating the results in building scale, 3-D visualizations with remote sensing data is used so that decision-makers can easily interpret the outputs. The proposed vulnerability assessment framework is flexible and can easily be applied to urban environments at various geographical scales with different mapping units. The obtained total vulnerability maps for the urban area provide a baseline for the development of risk reduction strategies for the decision makers. Moreover, as several aspects of elements at risk for an urban area is considered through vulnerability analyses, effect on changes in vulnerability conditions on the total can easily be determined. The developed approach also enables decision makers to monitor temporal and spatial changes in the urban environment due to implementation of risk reduction strategies.

  19. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA

    Treesearch

    Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly

    2007-01-01

    To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...

  20. Spatial Analysis of Phytophthora infestans Genotypes and Late Blight Severity on Tomato and Potato in the Del Fuerte Valley Using Geostatistics and Geographic Information Systems.

    PubMed

    Jaime-Garcia, R; Orum, T V; Felix-Gastelum, R; Trinidad-Correa, R; Vanetten, H D; Nelson, M R

    2001-12-01

    ABSTRACT Genetic structure of Phytophthora infestans, the causal agent of potato and tomato late blight, was analyzed spatially in a mixed potato and tomato production area in the Del Fuerte Valley, Sinaloa, Mexico. Isolates of P. infestans were characterized by mating type, allozyme analysis at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. Spatial patterns of P. infestans genotypes were analyzed by geographical information systems and geo-statistics during the seasons of 1994-95, 1995-96, and 1996-97. Spatial analysis of the genetic structure of P. infestans indicates that geographic substructuring of this pathogen occurs in this area. Maps displaying the probabilities of occurrence of mating types and genotypes of P. infestans, and of disease severity at a regional scale, were presented. Some genotypes that exhibited differences in epidemiologically important features such as metalaxyl sensitivity and aggressiveness to tomato and potato had a restricted spread and were localized in isolated areas. Analysis of late blight severity showed recurring patterns, such as the earliest onset of the disease in the area where both potato and tomato were growing, strengthening the hypothesis that infected potato tubers are the main source of primary inoculum. The information that geostatistical analysis provides might help improve management programs for late blight in the Del Fuerte Valley.

  1. Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics

    PubMed Central

    Gunn, Bee F.; Baudouin, Luc; Olsen, Kenneth M.

    2011-01-01

    As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and “niu vai” fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent. PMID:21731660

  2. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs

    PubMed Central

    Hamilton, Scott L.; Caselle, Jennifer E.; Lantz, Coulson A.; Egloff, Tiana L.; Kondo, Emi; Newsome, Seth D.; Loke-Smith, Kerri; Pondella, Daniel J.; Young, Kelly A.; Lowe, Christopher G.

    2015-01-01

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ13C and †15N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence. PMID:26246648

  3. Diversification of the rainfrog Pristimantis ornatissimus in the lowlands and Andean foothills of Ecuador.

    PubMed

    Guayasamin, Juan M; Hutter, Carl R; Tapia, Elicio E; Culebras, Jaime; Peñafiel, Nicolás; Pyron, R Alexander; Morochz, Carlos; Funk, W Chris; Arteaga, Alejandro

    2017-01-01

    Geographic barriers and elevational gradients have long been recognized as important in species diversification. Here, we illustrate an example where both mechanisms have shaped the genetic structure of the Neotropical rainfrog, Pristimantis ornatissimus, which has also resulted in speciation. This species was thought to be a single evolutionary lineage distributed throughout the Ecuadorian Chocó and the adjacent foothills of the Andes. Based on recent sampling of P. ornatissimus sensu lato, we provide molecular and morphological evidence that support the validity of a new species, which we name Pristimantis ecuadorensis sp. nov. The sister species are elevational replacements of each other; the distribution of Pristimantis ornatissimus sensu stricto is limited to the Ecuadorian Chocó ecoregion (< 1100 m), whereas the new species has only been found at Andean localities between 1450-1480 m. Given the results of the Multiple Matrix Regression with Randomization analysis, the genetic difference between P. ecuadorensis and P. ornatissimus is not explained by geographic distance nor environment, although environmental variables at a finer scale need to be tested. Therefore this speciation event might be the byproduct of stochastic historic extinction of connected populations or biogeographic events caused by barriers to dispersal such as rivers. Within P. ornatissimus sensu stricto, morphological patterns and genetic structure seem to be related to geographic isolation (e.g., rivers). Finally, we provide an updated phylogeny for the genus, including the new species, as well as other Ecuadorian Pristimantis.

  4. Diversification of the rainfrog Pristimantis ornatissimus in the lowlands and Andean foothills of Ecuador

    PubMed Central

    Hutter, Carl R.; Tapia, Elicio E.; Culebras, Jaime; Peñafiel, Nicolás; Pyron, R. Alexander; Morochz, Carlos; Funk, W. Chris; Arteaga, Alejandro

    2017-01-01

    Geographic barriers and elevational gradients have long been recognized as important in species diversification. Here, we illustrate an example where both mechanisms have shaped the genetic structure of the Neotropical rainfrog, Pristimantis ornatissimus, which has also resulted in speciation. This species was thought to be a single evolutionary lineage distributed throughout the Ecuadorian Chocó and the adjacent foothills of the Andes. Based on recent sampling of P. ornatissimus sensu lato, we provide molecular and morphological evidence that support the validity of a new species, which we name Pristimantis ecuadorensis sp. nov. The sister species are elevational replacements of each other; the distribution of Pristimantis ornatissimus sensu stricto is limited to the Ecuadorian Chocó ecoregion (< 1100 m), whereas the new species has only been found at Andean localities between 1450–1480 m. Given the results of the Multiple Matrix Regression with Randomization analysis, the genetic difference between P. ecuadorensis and P. ornatissimus is not explained by geographic distance nor environment, although environmental variables at a finer scale need to be tested. Therefore this speciation event might be the byproduct of stochastic historic extinction of connected populations or biogeographic events caused by barriers to dispersal such as rivers. Within P. ornatissimus sensu stricto, morphological patterns and genetic structure seem to be related to geographic isolation (e.g., rivers). Finally, we provide an updated phylogeny for the genus, including the new species, as well as other Ecuadorian Pristimantis. PMID:28329011

  5. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics.

    PubMed

    Gunn, Bee F; Baudouin, Luc; Olsen, Kenneth M

    2011-01-01

    As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and "niu vai" fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent.

  6. When GIS zooms in: spatio-genetic maps of multipaternity in Armadillidium vulgare.

    PubMed

    Bech, Nicolas; Depeux, Charlotte; Durand, Sylvine; Debenest, Catherine; Lafitte, Alexandra; Beltran-Bech, Sophie

    2017-12-01

    Geographic information system (GIS) tools are designed to illustrate, analyse and integrate geographic or spatial data, usually on a macroscopic scale. By contrast, genetic tools focus on a microscopic scale. Because in reality, landscapes have no predefined scale, our original study aims to develop a new approach, combining both cartographic and genetic approaches to explore microscopic landscapes. For this, we focused on Armadillidium vulgare, a terrestrial isopod model in which evolutionary pressures imposed by terrestrial life have led to the development of internal fertilisation and, consequently, to associated physiological changes. Among these, the emergence of internal receptacles, found in many taxa ranging from mammals to arthropods, allowed females to store sperm from several partners, enabling multipaternity. Among arthropods, terrestrial isopods like the polygynandrous A. vulgare present a female structure, the marsupium, in which fertilised eggs migrate and develop into mancae (larval stage). To test our innovative combined approach, we proposed different males to four independent females, and at the end of incubation in the marsupium, we mapped (using GIS methods) and genotyped (using 12 microsatellite markers) all the incubated mancae. This methodology permitted to obtain spatio-genetic maps describing heterozygosity and spatial distribution of mancae and of multipaternity within the marsupial landscape. We discussed the interest of this kind of multidisciplinary approach which could improve in this case our understanding of sexual selection mechanisms in this terrestrial crustacean. Beyond the interesting model-focused insights, the main challenge of this study was the transfer of GIS techniques to a microscopic scale and our results appear so as pioneers rendering GIS tools available for studies involving imagery whatever their study scale.

  7. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    PubMed

    Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  8. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks

    PubMed Central

    Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007

  9. The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China

    PubMed Central

    Wu, Bing; Tian, Jianqing; Bai, Chunming; Xiang, Meichun; Sun, Jingzu; Liu, Xingzhong

    2013-01-01

    Whether fungal community structure depends more on historical factors or on contemporary factors is controversial. This study used culture-dependent and -independent (polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)) methods to assess the influence of historical and contemporary factors on the distributions of fungi in the wetland sediments at 10 locations along the Changjiang River and at 10 other locations in China. The culture-dependent approach detected greater species diversity (177 operational taxonomic units (OTUs)) than PCR-DGGE analysis (145 OTUs), and the species in the genera of Penicillium (relative frequency=16.8%), Fusarium (15.4%), Aspergillus (7.6%), Trichoderma (5.8%) and Talaromyces (4.2%) were dominant. On the basis of DGGE data, fungal diversity along the Changjiang River increased from upstream to downstream; altitude explained 44.8% of this variation in diversity. And based on the data from all 20 locations, the fungal communities were geographically clustered into three groups: Southern China, Northern China and the Qinghai-Tibetan Plateau. Multivariate regression tree analysis for data from the 20 locations indicated that the fungal community was influenced primarily by location (which explained 61.8% of the variation at a large scale), followed by total potassium (9.4%) and total nitrogen (3.5%) at a local scale. These results are consistent with the concept that geographic distance is the dominant factor driving variation in fungal diversity at a regional scale (1000–4000 km), whereas environmental factors (total potassium and total nitrogen) explain variation in fungal diversity at a local scale (<1000 km). PMID:23446835

  10. Host associations and turnover of haemosporidian parasites in manakins (Aves: Pipridae).

    PubMed

    Fecchio, Alan; Svensson-Coelho, Maria; Bell, Jeffrey; Ellis, Vincenzo A; Medeiros, Matthew C; Trisos, Christopher H; Blake, John G; Loiselle, Bette A; Tobias, Joseph A; Fanti, Rebeka; Coffey, Elyse D; DE Faria, Iubatã P; Pinho, João B; Felix, Gabriel; Braga, Erika M; Anciães, Marina; Tkach, Vasyl; Bates, John; Witt, Christopher; Weckstein, Jason D; Ricklefs, Robert E; Farias, Izeni P

    2017-06-01

    Parasites of the genera Plasmodium and Haemoproteus (Apicomplexa: Haemosporida) are a diverse group of pathogens that infect birds nearly worldwide. Despite their ubiquity, the ecological and evolutionary factors that shape the diversity and distribution of these protozoan parasites among avian communities and geographic regions are poorly understood. Based on a survey throughout the Neotropics of the haemosporidian parasites infecting manakins (Pipridae), a family of Passerine birds endemic to this region, we asked whether host relatedness, ecological similarity and geographic proximity structure parasite turnover between manakin species and local manakin assemblages. We used molecular methods to screen 1343 individuals of 30 manakin species for the presence of parasites. We found no significant correlations between manakin parasite lineage turnover and both manakin species turnover and geographic distance. Climate differences, species turnover in the larger bird community and parasite lineage turnover in non-manakin hosts did not correlate with manakin parasite lineage turnover. We also found no evidence that manakin parasite lineage turnover among host species correlates with range overlap and genetic divergence among hosts. Our analyses indicate that host switching (turnover among host species) and dispersal (turnover among locations) of haemosporidian parasites in manakins are not constrained at this scale.

  11. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease

    PubMed Central

    Hoberg, Eric P.; Brooks, Daniel R.

    2015-01-01

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. PMID:25688014

  12. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.

  13. Speciation in parasites: a population genetics approach.

    PubMed

    Huyse, Tine; Poulin, Robert; Théron, André

    2005-10-01

    Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.

  14. [Development of the Feelings toward Nature Scale and relationship between feelings toward nature and proximity to nature].

    PubMed

    Shibata, Seiji

    2016-04-01

    In the field of environmental psychology, there is rapidly growing interest in the concept of connectivity with nature, describing an individual's sense of being connected with nature. The author developed a new scale for assessing feelings toward nature, including connectedness. Confirmatory factor analysis indicated a five-factor model consisting of restorativeness, oneness, mystery, care, and aversion. Then, the relationships among availability of nature in respondents' neighborhood, age, and each subscale score of the Feelings toward Nature Scale, were analyzed using structural equation modeling. The availability of nature in neighborhoods was assessed using a geographic information system and respondents' subjective evaluations. Results indicate that overall connectedness to nature is weaker as availability of nature decreases, as assessed by subjective evaluation. Results also suggest that aversion toward nature in younger people is relatively stronger than in older generations.

  15. Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil.

    PubMed

    Reis, Talita Soares; Ciampi-Guillardi, Maísa; Bajay, Miklos Maximiliano; de Souza, Anete Pereira; Dos Santos, Flavio Antonio Maës

    2015-05-01

    Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self-compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80-216 m) and an upland site (1010-1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (F ST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation-by-distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ∼10-20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for bottleneck.

  16. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment heterogeneity at scales beyond the local environment. This underpins the role of alpine lakes as sensors of local and large-scale environmental changes, which can be used in monitoring networks to evaluate further impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    PubMed

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  19. Spatial variation in the climatic predictors of species compositional turnover and endemism.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-08-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.

  20. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  1. Speciation has a spatial scale that depends on levels of gene flow.

    PubMed

    Kisel, Yael; Barraclough, Timothy G

    2010-03-01

    Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.

  2. Phylogeography and alpha taxonomy of the common dolphin (Delphinus sp.).

    PubMed

    Natoli, A; Cañadas, A; Peddemors, V M; Aguilar, A; Vaquero, C; Fernández-Piqueras, P; Hoelzel, A R

    2006-05-01

    The resolution of taxonomic classifications for delphinid cetaceans has been problematic, especially for species in the genera Delphinus, Tursiops and Stenella. The frequent lack of correspondence between morphological and genetic differentiation in these species raises questions about the mechanisms responsible for their evolution. In this study we focus on the genus Delphinus, and use molecular markers to address questions about speciation and the evolution of population structure. Delphinus species have a worldwide distribution and show a high degree of morphological variation. Two distinct morphotypes, long-beaked and short-beaked, have been considered different species named D. capensis and D. delphis, respectively. However, genetic differentiation between these two forms has only been demonstrated in the Pacific. We analysed samples from eight different geographical regions, including two morphologically defined long-beaked form populations, and compared these with the eastern North Pacific populations. We found high differentiation among the populations described as long-beaked instead of the expected monophyly, suggesting that these populations may have evolved from independent events converging on the same morphotype. We observed low genetic differentiation among the short-beaked populations across a large geographical scale. We interpret these phylogeographical patterns in the context of life history and population structure in related species.

  3. Hierarchical Distributed-Lag Models: Exploring Varying Geographic Scale and Magnitude in Associations Between the Built Environment and Health

    PubMed Central

    Baek, Jonggyu; Sanchez-Vaznaugh, Emma V.; Sánchez, Brisa N.

    2016-01-01

    It is well known that associations between features of the built environment and health depend on the geographic scale used to construct environmental attributes. In the built environment literature, it has long been argued that geographic scales may vary across study locations. However, this hypothesized variation has not been systematically examined due to a lack of available statistical methods. We propose a hierarchical distributed-lag model (HDLM) for estimating the underlying overall shape of food environment–health associations as a function of distance from locations of interest. This method enables indirect assessment of relevant geographic scales and captures area-level heterogeneity in the magnitudes of associations, along with relevant distances within areas. The proposed model was used to systematically examine area-level variation in the association between availability of convenience stores around schools and children's weights. For this case study, body mass index (weight kg)/height (m)2) z scores (BMIz) for 7th grade children collected via California's 2001–2009 FitnessGram testing program were linked to a commercial database that contained locations of food outlets statewide. Findings suggested that convenience store availability may influence BMIz only in some places and at varying distances from schools. Future research should examine localized environmental or policy differences that may explain the heterogeneity in convenience store–BMIz associations. PMID:26888753

  4. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia.

    PubMed

    Suosaari, E P; Reid, R P; Playford, P E; Foster, J S; Stolz, J F; Casaburi, G; Hagan, P D; Chirayath, V; Macintyre, I G; Planavsky, N J; Eberli, G P

    2016-02-03

    A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world's most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight 'Stromatolite Provinces'. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth.

  5. First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Yamamoto, Mamoru; Tsunoda, Roland T.; Otsuka, Yuichi; Tsugawa, Takuya; Uemoto, Jyunpei; Ishii, Mamoru

    2009-09-01

    First observations of large-scale wave structure (LSWS) and the subsequent development of equatorial spread F (ESF), using total electron content (TEC) derived from the ground based reception of beacon signals from the CERTO (Coherent Electromagnetic Radio Tomography) radio beacon on board C/NOFS (Communications/Navigation Outage Forecasting System) satellite, are presented. Selected examples of TEC variations, using measurements made during January 2009 from Bac Lieu, Vietnam (9.2°N, 105.6°E geographic, 1.7°N magnetic dip latitude) are presented to illustrate two key findings: (1) LSWS appears to play a more important role in the development of ESF than the post-sunset rise (PSSR) of the F-layer, and (2) LSWS can appear well before E region sunset. Other findings, that LSWS does not have significant zonal drift in the initial stages of growth, and can have zonal wavelengths of several hundred kilometers, corroborate earlier reports.

  6. Managing distance and covariate information with point-based clustering.

    PubMed

    Whigham, Peter A; de Graaf, Brandon; Srivastava, Rashmi; Glue, Paul

    2016-09-01

    Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley's K and applied to the problem of clustering with deliberate self-harm (DSH), is presented. Point-based Monte-Carlo simulation of Ripley's K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years' emergency hospital presentations (n = 136) in a New Zealand town (population ~50,000). Study area was defined by residential (housing) land parcels representing a finite set of possible point addresses. Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley's K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for covariate measures that exhibit spatial clustering, such as deprivation, are crucial when assessing point-based clustering.

  7. Continental synchronicity of human influenza virus epidemics despite climactic variation

    PubMed Central

    Sullivan, Sheena; Barr, Ian

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007–2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the event of the emergence of a novel, human-to-human transmissible, virus. PMID:29324895

  8. Genetic structure of Chinese indigenous goats and the special geographical structure in the Southwest China as a geographic barrier driving the fragmentation of a large population.

    PubMed

    Wei, Caihong; Lu, Jian; Xu, Lingyang; Liu, Gang; Wang, Zhigang; Zhao, Fuping; Zhang, Li; Han, Xu; Du, Lixin; Liu, Chousheng

    2014-01-01

    China has numerous native domestic goat breeds, however, extensive studies are focused on the genetic diversity within the fewer breeds and limited regions, the population demographic history and origin of Chinese goats are still unclear. The roles of geographical structure have not been analyzed in Chinese goat domestic process. In this study, the genetic relationships of Chinese indigenous goat populations were evaluated using 30 microsatellite markers. Forty Chinese indigenous populations containing 2078 goats were sampled from different geographic regions of China. Moderate genetic diversity at the population level (H(S) of 0.644) and high population diversity at the species level (H(T) value of 0.737) were estimated. Significant moderate population differentiation was detected (F(ST) value of 0.129). Significant excess homozygosity (F(IS) of 0.105) and recent population bottlenecks were detected in thirty-six populations. Neighbour-joining tree, principal components analysis and Bayesian clusters all revealed that Chinese goat populations could be subdivided into at least four genetic clusters: Southwest China, South China, Northwest China and East China. It was observed that the genetic diversity of Northern China goats was highest among these clusters. The results here suggested that the goat populations in Southwest China might be the earliest domestic goats in China. Our results suggested that the current genetic structure of Chinese goats were resulted from the special geographical structure, especially in the Western China, and the Western goat populations had been separated by the geographic structure (Hengduan Mountains and Qinling Mountains-Huaihe River Line) into two clusters: the Southwest and Northwest. It also indicated that the current genetic structure was caused by the geographical origin mainly, in close accordance with the human's migration history throughout China. This study provides a fundamental genetic profile for the conservation of these populations and better to understand the domestication process and origin of Chinese goats.

  9. Genetic Structure of Chinese Indigenous Goats and the Special Geographical Structure in the Southwest China as a Geographic Barrier Driving the Fragmentation of a Large Population

    PubMed Central

    Xu, Lingyang; Liu, Gang; Wang, Zhigang; Zhao, Fuping; Zhang, Li; Han, Xu; Du, Lixin; Liu, Chousheng

    2014-01-01

    Background China has numerous native domestic goat breeds, however, extensive studies are focused on the genetic diversity within the fewer breeds and limited regions, the population demograogic history and origin of Chinese goats are still unclear. The roles of geographical structure have not been analyzed in Chinese goat domestic process. In this study, the genetic relationships of Chinese indigenous goat populations were evaluated using 30 microsatellite markers. Methodology/Principal Findings Forty Chinese indigenous populations containing 2078 goats were sampled from different geographic regions of China. Moderate genetic diversity at the population level (HS of 0.644) and high population diversity at the species level (HT value of 0.737) were estimated. Significant moderate population differentiation was detected (FST value of 0.129). Significant excess homozygosity (FIS of 0.105) and recent population bottlenecks were detected in thirty-six populations. Neighbour-joining tree, principal components analysis and Bayesian clusters all revealed that Chinese goat populations could be subdivided into at least four genetic clusters: Southwest China, South China, Northwest China and East China. It was observed that the genetic diversity of Northern China goats was highest among these clusters. The results here suggested that the goat populations in Southwest China might be the earliest domestic goats in China. Conclusions/Significance Our results suggested that the current genetic structure of Chinese goats were resulted from the special geographical structure, especially in the Western China, and the Western goat populations had been separated by the geographic structure (Hengduan Mountains and Qinling Mountains-Huaihe River Line) into two clusters: the Southwest and Northwest. It also indicated that the current genetic structure was caused by the geographical origin mainly, in close accordance with the human’s migration history throughout China. This study provides a fundamental genetic profile for the conservation of these populations and better to understand the domestication process and origin of Chinese goats. PMID:24718092

  10. Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus).

    PubMed

    Reding, Dawn M; Bronikowski, Anne M; Johnson, Warren E; Clark, William R

    2012-06-01

    The potential for widespread, mobile species to exhibit genetic structure without clear geographic barriers is a topic of growing interest. Yet the patterns and mechanisms of structure--particularly over broad spatial scales--remain largely unexplored for these species. Bobcats occur across North America and possess many characteristics expected to promote gene flow. To test whether historical, topographic or ecological factors have influenced genetic differentiation in this species, we analysed 1 kb mtDNA sequence and 15 microsatellite loci from over 1700 samples collected across its range. The primary signature in both marker types involved a longitudinal cline with a sharp transition, or suture zone, occurring along the Great Plains. Thus, the data distinguished bobcats in the eastern USA from those in the western half, with no obvious physical barrier to gene flow. Demographic analyses supported a scenario of expansion from separate Pleistocene refugia, with the Great Plains representing a zone of secondary contact. Substructure within the two main lineages likely reflected founder effects, ecological factors, anthropogenic/topographic effects or a combination of these forces. Two prominent topographic features, the Mississippi River and Rocky Mountains, were not supported as significant genetic barriers. Ecological regions and environmental correlates explained a small but significant proportion of genetic variation. Overall, results implicate historical processes as the primary cause of broad-scale genetic differentiation, but contemporary forces seem to also play a role in promoting and maintaining structure. Despite the bobcat's mobility and broad niche, large-scale landscape changes have contributed to significant and complex patterns of genetic structure. © 2012 Blackwell Publishing Ltd.

  11. Remote sensing and geographically based information systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. C.

    1977-01-01

    A structure is proposed for a geographically-oriented computer-based information system applicable to the analysis of remote sensing digital data. The structure, intended to answer a wide variety of user needs, would permit multiple views of the data, provide independent management of data security, quality and integrity, and rely on automatic data filing. Problems in geographically-oriented data systems, including those related to line encoding and cell encoding, are considered.

  12. Engineering web maps with gradual content zoom based on streaming vector data

    NASA Astrophysics Data System (ADS)

    Huang, Lina; Meijers, Martijn; Šuba, Radan; van Oosterom, Peter

    2016-04-01

    Vario-scale data structures have been designed to support gradual content zoom and the progressive transfer of vector data, for use with arbitrary map scales. The focus to date has been on the server side, especially on how to convert geographic data into the proposed vario-scale structures by means of automated generalisation. This paper contributes to the ongoing vario-scale research by focusing on the client side and communication, particularly on how this works in a web-services setting. It is claimed that these functionalities are urgently needed, as many web-based applications, both desktop and mobile, require gradual content zoom, progressive transfer and a high performance level. The web-client prototypes developed in this paper make it possible to assess the behaviour of vario-scale data and to determine how users will actually see the interactions. Several different options of web-services communication architectures are possible in a vario-scale setting. These options are analysed and tested with various web-client prototypes, with respect to functionality, ease of implementation and performance (amount of transmitted data and response times). We show that the vario-scale data structure can fit in with current web-based architectures and efforts to standardise map distribution on the internet. However, to maximise the benefits of vario-scale data, a client needs to be aware of this structure. When a client needs a map to be refined (by means of a gradual content zoom operation), only the 'missing' data will be requested. This data will be sent incrementally to the client from a server. In this way, the amount of data transferred at one time is reduced, shortening the transmission time. In addition to these conceptual architecture aspects, there are many implementation and tooling design decisions at play. These will also be elaborated on in this paper. Based on the experiments conducted, we conclude that the vario-scale approach indeed supports gradual content zoom and the progressive web transfer of vector data. This is a big step forward in making vector data at arbitrary map scales available to larger user groups.

  13. Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.

    PubMed

    Warburton, Elizabeth M; van der Mescht, Luther; Stanko, Michal; Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P; Khokhlova, Irina S; Krasnov, Boris R

    2017-06-01

    Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.

  14. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  15. Scale effects in food environment research: Implications from assessing socioeconomic dimensions of supermarket accessibility in an eight-county region of South Carolina

    PubMed Central

    Barnes, Timothy L.; Colabianchi, Natalie; Hibbert, James D.; Porter, Dwayne E.; Lawson, Andrew B.; Liese, Angela D.

    2016-01-01

    Choice of neighborhood scale affects associations between environmental attributes and health-related outcomes. This phenomenon, a part of the modifiable areal unit problem, has been described fully in geography but not as it relates to food environment research. Using two administrative-based geographic boundaries (census tracts and block groups), supermarket geographic measures (density, cumulative opportunity and distance to nearest) were created to examine differences by scale and associations between three common U.S. Census–based socioeconomic status (SES) characteristics (median household income, percentage of population living below poverty and percentage of population with at least a high school education) and a summary neighborhood SES z-score in an eight-county region of South Carolina. General linear mixed-models were used. Overall, both supermarket density and cumulative opportunity were higher when using census tract boundaries compared to block groups. In analytic models, higher median household income was significantly associated with lower neighborhood supermarket density and lower cumulative opportunity using either the census tract or block group boundaries, and neighborhood poverty was positively associated with supermarket density and cumulative opportunity. Both median household income and percent high school education were positively associated with distance to nearest supermarket using either boundary definition, whereas neighborhood poverty had an inverse association. Findings from this study support the premise that supermarket measures can differ by choice of geographic scale and can influence associations between measures. Researchers should consider the most appropriate geographic scale carefully when conducting food environment studies. PMID:27022204

  16. Scale effects in food environment research: Implications from assessing socioeconomic dimensions of supermarket accessibility in an eight-county region of South Carolina.

    PubMed

    Barnes, Timothy L; Colabianchi, Natalie; Hibbert, James D; Porter, Dwayne E; Lawson, Andrew B; Liese, Angela D

    2016-03-01

    Choice of neighborhood scale affects associations between environmental attributes and health-related outcomes. This phenomenon, a part of the modifiable areal unit problem, has been described fully in geography but not as it relates to food environment research. Using two administrative-based geographic boundaries (census tracts and block groups), supermarket geographic measures (density, cumulative opportunity and distance to nearest) were created to examine differences by scale and associations between three common U.S. Census-based socioeconomic status (SES) characteristics (median household income, percentage of population living below poverty and percentage of population with at least a high school education) and a summary neighborhood SES z-score in an eight-county region of South Carolina. General linear mixed-models were used. Overall, both supermarket density and cumulative opportunity were higher when using census tract boundaries compared to block groups. In analytic models, higher median household income was significantly associated with lower neighborhood supermarket density and lower cumulative opportunity using either the census tract or block group boundaries, and neighborhood poverty was positively associated with supermarket density and cumulative opportunity. Both median household income and percent high school education were positively associated with distance to nearest supermarket using either boundary definition, whereas neighborhood poverty had an inverse association. Findings from this study support the premise that supermarket measures can differ by choice of geographic scale and can influence associations between measures. Researchers should consider the most appropriate geographic scale carefully when conducting food environment studies.

  17. Population connectivity of deep-sea corals: Chapter 12

    USGS Publications Warehouse

    Morrison, Cheryl L.; Baco, Amy; Nizinski, Martha S.; Coykendall, D. Katharine; Demopoulos, Amanda W. J.; Cho, Walter; Shank, Tim

    2015-01-01

    Identifying the scale of dispersal among habitats has been a challenge in marine ecology for decades (Grantham et al., 2003; Kinlan & Gaines, 2003; Hixon, 2011). Unlike terrestrial habitats in which barriers to dispersal may be obvious (e.g. mountain ranges, rivers), few absolute barriers to dispersal are recognizable in the sea. Additionally, most marine species have complex life cycles in which juveniles are more mobile than adults. As such, the dynamics of populations may involve processes in distant habitats that are coupled by a transport mechanism. Studies of population connectivity try to quantify the transport, or dispersal of individuals, among geographically separated populations. For benthic marine species, such as corals and demersal fishes, colonization of new populations occurs primarily by dispersal of larvae (Figure 1; Shank, 2010). Successful dispersal and recruitment, followed by maturation and reproduction of these new migrants ensures individuals contribute to the gene pool (Hedgecock, 2007). Thus, successful dispersal links and cohesively maintains spatially separated sub-populations. At shorter time scales (10-100s years), connectivity regulates community structure by influencing the genetic composition, diversity and demographic stability of the population, whereas at longer time scales (1000s years), geographic distributions are affected (McClain and Hardy, 2010). Alternatively, populations may become extinct or speciation may occur if connectivity ceases (Cowen et al., 2007). Therefore, the genetic exchange of individuals between populations is fundamental to the short-term resilience and long-term maintenance of the species. However, for the vast majority of marine species, population connectivity remains poorly understood.

  18. Biogeography

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2002-01-01

    As a field of study, biogeography may be considered a bricolage - it has been constructed from many different facets from an array of research disciplines including biology, botany, zoology, geography, and geology. Biogeography focuses on the study of the constantly changing ranges of plants and animals, over multitude of space and time scales. It also includes the study of the structure and dynamics of biotic communities and ecosystems as they relate to both natural and anthropogenic processes. As it exists today, biogeography is an interdisciplinary research area founded in both the biological and Earth sciences. From a purely biological perspective, biogeography may be perceived as one of two types of studies: 1. biotic distributions and broad scales, and interpretations of the evolutionary and dispersal history of a single taxon or a few taxa; or 2. biotic distributions at local-to-regional scales, and interpretations of these distributions in relation to contemporary environments and rates of immigration or extinction. The first type of study is what is most usually associated with the term "biogeography" as disciplinary research field. It is conventionally termed "classical biogeography" because it reflects the continuity of research foci on which biogeography was founded in the nineteenth-century. The second type of biogeographical study has more modern day roots and is termed "geographical ecology" to reflect the theoretical predilections of ecologists and population biologists. Geographical ecology for all intents has become merged with ecology and exists as a sub discipline within this larger field of study.

  19. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico

    PubMed Central

    Ceballos-Vázquez, Bertha P.; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J.; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures. PMID:29472993

  20. The effect of geographical indices on left ventricular structure in healthy Han Chinese population

    NASA Astrophysics Data System (ADS)

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  1. The effect of geographical indices on left ventricular structure in healthy Han Chinese population.

    PubMed

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  2. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems.

    PubMed

    Lepère, Cécile; Domaizon, Isabelle; Taïb, Najwa; Mangot, Jean-François; Bronner, Gisèle; Boucher, Delphine; Debroas, Didier

    2013-07-01

    Understanding the spatial distribution of aquatic microbial diversity and the underlying mechanisms causing differences in community composition is a challenging and central goal for ecologists. Recent insights into protistan diversity and ecology are increasing the debate over their spatial distribution. In this study, we investigate the importance of spatial and environmental factors in shaping the small protists community structure in lakes. We analyzed small protists community composition (beta-diversity) and richness (alpha-diversity) at regional scale by different molecular methods targeting the gene coding for 18S rRNA gene (T-RFLP and 454 pyrosequencing). Our results show a distance-decay pattern for rare and dominant taxa and the spatial distribution of the latter followed the prediction of the island biogeography theory. Furthermore, geographic distances between lakes seem to be the main force shaping the protists community composition in the lakes studied here. Finally, the spatial distribution of protists was discussed at the global scale (11 worldwide distributed lakes) by comparing these results with those present in the public database. UniFrac analysis showed 18S rRNA gene OTUs compositions significantly different among most of lakes, and this difference does not seem to be related to the trophic status. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    PubMed Central

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  4. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.

    PubMed

    Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide

    2017-07-01

    Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. An Ancient Divide in a Contiguous Rainforest: Endemic Earthworms in the Australian Wet Tropics.

    PubMed

    Moreau, Corrie S; Hugall, Andrew F; McDonald, Keith R; Jamieson, Barrie G M; Moritz, Craig

    2015-01-01

    Understanding the factors that shape current species diversity is a fundamental aim of ecology and evolutionary biology. The Australian Wet Tropics (AWT) are a system in which much is known about how the rainforests and the rainforest-dependent organisms reacted to late Pleistocene climate changes, but less is known about how events deeper in time shaped speciation and extinction in this highly endemic biota. We estimate the phylogeny of a species-rich endemic genus of earthworms (Terrisswalkerius) from the region. Using DEC and DIVA historical biogeography methods we find a strong signal of vicariance among known biogeographical sub-regions across the whole phylogeny, congruent with the phylogeography of less diverse vertebrate groups. Absolute dating estimates, in conjunction with relative ages of major biogeographic disjunctions across Australia, indicate that diversification in Terrisswalkerius dates back before the mid-Miocene shift towards aridification, into the Paleogene era of isolation of mesothermal Gondwanan Australia. For the Queensland endemic Terrisswalkerius earthworms, the AWT have acted as both a museum of biological diversity and as the setting for continuing geographically structured diversification. These results suggest that past events affecting organismal diversification can be concordant across phylogeographic to phylogenetic levels and emphasize the value of multi-scale analysis, from intra- to interspecies, for understanding the broad-scale processes that have shaped geographic diversity.

  6. Spatial Estimation of Populations at Risk from Radiological Dispersion Device Terrorism Incidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regens, J.L.; Gunter, J.T.

    2008-07-01

    Delineation of the location and size of the population potentially at risk of exposure to ionizing radiation is one of the key analytical challenges in estimating accurately the severity of the potential health effects associated with a radiological terrorism incident. Regardless of spatial scale, the geographical units for which population data commonly are collected rarely coincide with the geographical scale necessary for effective incident management and medical response. This paper identifies major government and commercial open sources of U.S. population data and presents a GIS-based approach for allocating publicly available population data, including age distributions, to geographical units appropriate formore » planning and implementing incident management and medical response strategies. In summary: The gravity model offers a straight-forward, empirical tool for estimating population flows, especially when geographical areas are relatively well-defined in terms of accessibility and spatial separation. This is particularly important for several reasons. First, the spatial scale for the area impacted by a RDD terrorism event is unlikely to match fully the spatial scale of available population data. That is, the plume spread typically will not uniformly overlay the impacted area. Second, the number of people within the impacted area varies as a function whether an attack occurs during the day or night. For example, the population of a central business district or industrial area typically is larger during the day while predominately residential areas have larger night time populations. As a result, interpolation techniques that link population data to geographical units and allocate those data based on time-frame at a spatial scale that is relevant to enhancing preparedness and response. The gravity model's main advantage is that it efficiently allocates readily available, open source population data to geographical units appropriate for planning and implementing incident management and medical monitoring strategies. The importance of being able to link population estimates to geographic areas during the course of an RDD incident can be understood intuitively: - The spatial distribution of actual total dose equivalents of ionizing radiation is likely to vary due to changes in meteorological parameters as an event evolves over time; - The size of the geographical area affected also is likely to vary as a function of the actual release scenario; - The ability to identify the location and size of the populations that may be exposed to doses of ionizing radiation is critical to carrying out appropriate treatment and post-event medical monitoring; - Once a spatial interaction model has been validated for a city or a region, it can then be used for simulation and prediction purposes to assess the possible human health consequences of different release scenarios. (authors)« less

  7. Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.

  8. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales.

    PubMed

    Pratt, Bethany; Chang, Heejun

    2012-03-30

    The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan Vee; Delgado-Frias, Jose

    Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less

  10. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    PubMed

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia

    PubMed Central

    Waleckx, Etienne; Woods, Adrienne S.; Monroy, Maria Carlota; Stevens, Lori

    2017-01-01

    Little is known about the strains of Trypanosoma cruzi circulating in Central America and specifically in the most important vector in this region, Triatoma dimidiata. Approximately six million people are infected with T. cruzi, the causative agent of Chagas disease, which has the greatest negative economic impact and is responsible for ~12,000 deaths annually in Latin America. By international consensus, strains of T. cruzi are divided into six monophyletic clades called discrete typing units (DTUs TcI-VI) and a seventh DTU first identified in bats called TcBat. TcI shows the greatest geographic range and diversity. Identifying strains present and diversity within these strains is important as different strains and their genotypes may cause different pathologies and may circulate in different localities and transmission cycles, thus impacting control efforts, treatment and vaccine development. To determine parasite strains present in T. dimidiata across its geographic range from Mexico to Colombia, we isolated abdominal DNA from T. dimidiata and determined which specimens were infected with T. cruzi by PCR. Strains from infected insects were determined by comparing the sequence of the 18S rDNA and the spliced-leader intergenic region to typed strains in GenBank. Two DTUs were found: 94% of infected T. dimidiata contained TcI and 6% contained TcIV. TcI exhibited high genetic diversity. Geographic structure of TcI haplotypes was evident by Principal Component and Median-Joining Network analyses as well as a significant result in the Mantel test, indicating isolation by distance. There was little evidence of association with TcI haplotypes and host/vector or ecotope. This study provides new information about the strains circulating in the most important Chagas vector in Central America and reveals considerable variability within TcI as well as geographic structuring at this large geographic scale. The lack of association with particular vectors/hosts or ecotopes suggests the parasites are moving among vectors/hosts and ecotopes therefore a comprehensive approach, such as the Ecohealth approach that makes houses refractory to the vectors will be needed to successfully halt transmission of Chagas disease. PMID:28957315

  12. Geographical variation in dementia: systematic review with meta-analysis

    PubMed Central

    Russ, Tom C; Batty, G David; Hearnshaw, Gena F; Fenton, Candida; Starr, John M

    2012-01-01

    Background Geographical variation in dementia prevalence and incidence may indicate important socio-environmental contributions to dementia aetiology. However, previous comparisons have been hampered by combining studies with different methodologies. This review systematically collates and synthesizes studies examining geographical variation in the prevalence and incidence of dementia based on comparisons of studies using identical methodologies. Methods Papers were identified by a comprehensive electronic search of relevant databases, scrutinising the reference sections of identified publications, contacting experts in the field and re-examining papers already known to us. Identified articles were independently reviewed against inclusion/exclusion criteria and considered according to geographical scale. Rural/urban comparisons were meta-analysed. Results Twelve thousand five hundred and eighty records were reviewed and 51 articles were included. Dementia prevalence and incidence varies at a number of scales from the national down to small areas, including some evidence of an effect of rural living [prevalence odds ratio (OR) = 1.11, 90% confidence interval (CI) 0.79–1.57; incidence OR = 1.20, 90% CI 0.84–1.71]. However, this association of rurality was stronger for Alzheimer disease, particularly when early life rural living was captured (prevalence OR = 2.22, 90% CI 1.19–4.16; incidence OR = 1.64, 90% CI 1.08–2.50). Conclusions There is evidence of geographical variation in rates of dementia in affluent countries at a variety of geographical scales. Rural living is associated with an increased risk of Alzheimer disease, and there is a suggestion that early life rural living further increases this risk. However, the fact that few studies have been conducted in resource-poor countries limits conclusions. PMID:22798662

  13. Translation from the collaborative OSM database to cartography

    NASA Astrophysics Data System (ADS)

    Hayat, Flora

    2018-05-01

    The OpenStreetMap (OSM) database includes original items very useful for geographical analysis and for creating thematic maps. Contributors record in the open database various themes regarding amenities, leisure, transports, buildings and boundaries. The Michelin mapping department develops map prototypes to test the feasibility of mapping based on OSM. To translate the OSM database structure into a database structure fitted with Michelin graphic guidelines a research project is in development. It aims at defining the right structure for the Michelin uses. The research project relies on the analysis of semantic and geometric heterogeneities in OSM data. In that order, Michelin implements methods to transform the input geographical database into a cartographic image dedicated for specific uses (routing and tourist maps). The paper focuses on the mapping tools available to produce a personalised spatial database. Based on processed data, paper and Web maps can be displayed. Two prototypes are described in this article: a vector tile web map and a mapping method to produce paper maps on a regional scale. The vector tile mapping method offers an easy navigation within the map and within graphic and thematic guide- lines. Paper maps can be partly automatically drawn. The drawing automation and data management are part of the mapping creation as well as the final hand-drawing phase. Both prototypes have been set up using the OSM technical ecosystem.

  14. Visualization of small scale structures on high resolution DEMs

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof

    2015-04-01

    Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky-view factor, for example, is an essential variable in many fields, e.g. in meteorology. RVT produces two types of results: 1) the original files have a full range of values and are intended for further analyses in geographic information systems, 2) the simplified versions are histogram stretched for visualization purposes and saved as 8-bit GeoTIFF files. This means that they can be explored in non-GIS software, e.g. with simple picture viewers, which is essential when a larger community of non-specialists needs to be considered, e.g. in public collaborative projects. The tool recognizes all frequently used single band raster formats and supports elevation raster file data conversion.

  15. Development and Application of the Key Technologies for the Quality Control and Inspection of National Geographical Conditions Survey Products

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Ma, W.; Zhang, P.; Zhao, T.

    2018-04-01

    The First National Geographical Condition Survey is a predecessor task to dynamically master basic situations of the nature, ecology and human activities on the earth's surface and it is the brand-new mapping geographic information engineering. In order to ensure comprehensive, real and accurate survey results and achieve the quality management target which the qualified rate is 100 % and the yield is more than 80 %, it is necessary to carry out the quality control and result inspection for national geographical conditions survey on a national scale. To ensure that achievement quality meets quality target requirements, this paper develops the key technology method of "five-in-one" quality control that is constituted by "quality control system of national geographical condition survey, quality inspection technology system, quality evaluation system, quality inspection information management system and national linked quality control institutions" by aiming at large scale, wide coverage range, more undertaking units, more management levels, technical updating, more production process and obvious regional differences in the national geographical condition survey and combining with novel achievement manifestation, complicated dependency, more special reference data, and large data size. This project fully considering the domestic and foreign related research results and production practice experience, combined with the technology development and the needs of the production, it stipulates the inspection methods and technical requirements of each stage in the quality inspection of the geographical condition survey results, and extends the traditional inspection and acceptance technology, and solves the key technologies that are badly needed in the first national geographic survey.

  16. Little genetic differentiation as assessed by uniparental markers in the presence of substantial language variation in peoples of the Cross River region of Nigeria

    PubMed Central

    2010-01-01

    Background The Cross River region in Nigeria is an extremely diverse area linguistically with over 60 distinct languages still spoken today. It is also a region of great historical importance, being a) adjacent to the likely homeland from which Bantu-speaking people migrated across most of sub-Saharan Africa 3000-5000 years ago and b) the location of Calabar, one of the largest centres during the Atlantic slave trade. Over 1000 DNA samples from 24 clans representing speakers of the six most prominent languages in the region were collected and typed for Y-chromosome (SNPs and microsatellites) and mtDNA markers (Hypervariable Segment 1) in order to examine whether there has been substantial gene flow between groups speaking different languages in the region. In addition the Cross River region was analysed in the context of a larger geographical scale by comparison to bordering Igbo speaking groups as well as neighbouring Cameroon populations and more distant Ghanaian communities. Results The Cross River region was shown to be extremely homogenous for both Y-chromosome and mtDNA markers with language spoken having no noticeable effect on the genetic structure of the region, consistent with estimates of inter-language gene flow of 10% per generation based on sociological data. However the groups in the region could clearly be differentiated from others in Cameroon and Ghana (and to a lesser extent Igbo populations). Significant correlations between genetic distance and both geographic and linguistic distance were observed at this larger scale. Conclusions Previous studies have found significant correlations between genetic variation and language in Africa over large geographic distances, often across language families. However the broad sampling strategies of these datasets have limited their utility for understanding the relationship within language families. This is the first study to show that at very fine geographic/linguistic scales language differences can be maintained in the presence of substantial gene flow over an extended period of time and demonstrates the value of dense sampling strategies and having DNA of known and detailed provenance, a practice that is generally rare when investigating sub-Saharan African demographic processes using genetic data. PMID:20356404

  17. Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics.

    PubMed

    Wen, Tzai-Hung; Hsu, Ching-Shun; Hu, Ming-Che

    2018-05-03

    Dengue fever is a vector-borne infectious disease that is transmitted by contact between vector mosquitoes and susceptible hosts. The literature has addressed the issue on quantifying the effect of individual mobility on dengue transmission. However, there are methodological concerns in the spatial regression model configuration for examining the effect of intercity-scale human mobility on dengue diffusion. The purposes of the study are to investigate the influence of neighborhood structures on intercity epidemic progression from pre-epidemic to epidemic periods and to compare definitions of different neighborhood structures for interpreting the spread of dengue epidemics. We proposed a framework for assessing the effect of model configurations on dengue incidence in 2014 and 2015, which were the most severe outbreaks in 70 years in Taiwan. Compared with the conventional model configuration in spatial regression analysis, our proposed model used a radiation model, which reflects population flow between townships, as a spatial weight to capture the structure of human mobility. The results of our model demonstrate better model fitting performance, indicating that the structure of human mobility has better explanatory power in dengue diffusion than the geometric structure of administration boundaries and geographic distance between centroids of cities. We also identified spatial-temporal hierarchy of dengue diffusion: dengue incidence would be influenced by its immediate neighboring townships during pre-epidemic and epidemic periods, and also with more distant neighbors (based on mobility) in pre-epidemic periods. Our findings suggest that the structure of population mobility could more reasonably capture urban-to-urban interactions, which implies that the hub cities could be a "bridge" for large-scale transmission and make townships that immediately connect to hub cities more vulnerable to dengue epidemics.

  18. Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis.

    PubMed

    Lukoschek, V; Waycott, M; Keogh, J S

    2008-07-01

    Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.

  19. A sub-national scale geospatial analysis of diamond deposit lootability: the case of the Central African Republic

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2014-01-01

    The Central African Republic (CAR), a country with rich diamond deposits and a tumultuous political history, experienced a government takeover by the Seleka rebel coalition in 2013. It is within this context that we developed and implemented a geospatial approach for assessing the lootability of high value-to-weight resource deposits, using the case of diamonds in CAR as an example. According to current definitions of lootability, or the vulnerability of deposits to exploitation, CAR's two major diamond deposits are similarly lootable. However, using this geospatial approach, we demonstrate that the deposits experience differing political geographic, spatial location, and cultural geographic contexts, rendering the eastern deposits more lootable than the western deposits. The patterns identified through this detailed analysis highlight the geographic complexities surrounding the issue of conflict resources and lootability, and speak to the importance of examining these topics at the sub-national scale, rather than relying on national-scale statistics.

  20. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  1. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model

    EPA Science Inventory

    Geographically isolated wetlands (GIWs), defined as wetlands surrounded by uplands, provide an array of ecosystem goods and services. Within the United States, federal regulatory protections for GIWs are contingent, in part, on the quantification of their singular or aggregate ef...

  2. Collecting, Visualising, Communicating and Modelling Geographic Data for the Sciences

    NASA Astrophysics Data System (ADS)

    Crooks, A.; Hudson-Smith, A.; Milton, R.; Smith, D.; Batty, M.; Neuhaus, F.

    2009-12-01

    New web technologies and task specific software packages and services are fundamentally changing the way we share, collect, visualise, communicate and distribute geographic information. Coupled with these new technologies is the emergence of rich fine scale and extensive geographical datasets of the built environment. Such technologies and data are providing opportunities for both the social and physical sciences that were unimaginable ten years ago. Within this paper we discus such change from our own experiences at the Centre of Advanced Spatial Analysis. Specifically, how it is now possible to harness the crowd to collect peoples’ opinions about topical events such as the current financial crisis, in real time and map the results, through the use of our GMapCreator software and the MapTube website. Furthermore, such tools allow for widespread dissemination and visualisation of geographic data to whoever has an internet connection. We will explore how one can use new datasets to visualise the city using our Virtual London model as an example. Within the model individual buildings are tagged with multiple attributes providing a lens to explore the urban structure offering a plethora of research applications. We then turn to how one can visualise and communicate such data through low cost software and virtual worlds such as Crysis and Second Life with a look into their potential for modelling and finally how we disseminated much of this information through weblogs (blogs) such as Digital Urban, GIS and Agent-based modelling and Urban Tick.

  3. Geographic distance affects dispersal of the patchy distributed greater long-tailed hamster (Tscherskia triton).

    PubMed

    Xue, Huiliang; Zhong, Min; Xu, Jinhui; Xu, Laixiang

    2014-01-01

    Dispersal is a fundamental process in ecology influencing the genetic structure and the viability of populations. Understanding how variable factors influence the dispersal of the population is becoming an important question in animal ecology. To date, geographic distance and geographic barriers are often considered as main factors impacting dispersal, but their effects are variable depending on different conditions. In general, geographic barriers affect more significantly than geographic distance on dispersal. In rapidly expanding populations, however, geographic barriers have less effect on dispersal than geographic distance. The effects of both geographic distance and geographic barriers in low-density populations with patchy distributions are poorly understood. By using a panel of 10 microsatellite loci we investigated the genetic structure of three patchy-distributed populations of the Greater long-tailed hamster (Tscherskia triton) from Raoyang, Guan and Shunyi counties of the North China Plain. The results showed that (i) high genetic diversity and differentiation exist in three geographic populations with patchy distributions; (ii) gene flow occurs among these three populations with physical barriers of Beijing city and Hutuo River, which potentially restricted the dispersal of the animal; (iii) the gene flow is negatively correlated with the geographic distance, while the genetic distance shows the positive correlation. Our results suggest that the effect of the physical barriers is conditional-dependent, including barrier capacity or individual potentially dispersal ability. Geographic distance also acts as an important factor affecting dispersal for the patchy distributed geographic populations. So, gene flow is effective, even at relatively long distances, in balancing the effect of geographic barrier in this study.

  4. Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity

    PubMed Central

    Naderi, Saeid; Rezaei, Hamid-Reza; Taberlet, Pierre; Zundel, Stéphanie; Rafat, Seyed-Abbas; Naghash, Hamid-Reza; El-Barody, Mohamed A. A.; Ertugrul, Okan; Pompanon, François

    2007-01-01

    Background From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. Methodology/Principal Findings The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. Conclusions/Significance We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of reference. Such a method could be also applied for clarifying the nomenclature of mitochondrial haplogroups in other domestic species. PMID:17925860

  5. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGES

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f -1.23 to f -1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f -1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f -1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  6. The importance of regional models in assessing canine cancer incidences in Switzerland

    PubMed Central

    Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina

    2018-01-01

    Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships. PMID:29652921

  7. The importance of regional models in assessing canine cancer incidences in Switzerland.

    PubMed

    Boo, Gianluca; Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina

    2018-01-01

    Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships.

  8. DNA barcoding gap: reliable species identification over morphological and geographical scales.

    PubMed

    Čandek, Klemen; Kuntner, Matjaž

    2015-03-01

    The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a 'barcoding gap' by comparing intra- and interspecific means, medians and overlap in more than 75,000 computed Kimura 2-parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information. © 2014 John Wiley & Sons Ltd.

  9. United States Forest Disturbance Trends Observed Using Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Goward, Samuel N.; Kennedy, Robert E.; Cohen, Warren B.; Moisen, Gretchen G.; Schleeweis, Karen; Huang, Chengquan

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing U.S. land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest disturbance across the conterminous United States for 1985-2005. The geographic sample design used a probability-based scheme to encompass major forest types and maximize geographic dispersion. For each sample location disturbance was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm. The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed annually, representing 1.09%/yr of US forestland. These satellite-based national disturbance rates estimates tend to be lower than those derived from land management inventories, reflecting both methodological and definitional differences. In particular the VCT approach used with a biennial time step has limited sensitivity to low-intensity disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by nearly a factor of two between high and low years. High western US disturbance rates were associated with active fire years and insect activity, while variability in the east is more strongly related to harvest rates in managed forests. We note that generating a geographic sample based on representing forest type and variability may be problematic since the spatial pattern of disturbance does not necessarily correlate with forest type. We also find that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the application of a biennial geographic sample problematic. Future satellite-based studies of disturbance at regional and national scales should focus on wall-to-wall analyses with annual time step for improved accuracy.

  10. Beyond Serial Founder Effects: The Impact of Admixture and Localized Gene Flow on Patterns of Regional Genetic Diversity.

    PubMed

    Hunley, Keith L; Cabana, Graciela S

    2016-07-01

    Geneticists have argued that the linear decay in within-population genetic diversity with increasing geographic distance from East Africa is best explained by a phylogenetic process of repeated founder effects, growth, and isolation. However, this serial founder effect (SFE) process has not yet been adequately vetted against other evolutionary processes that may also affect geospatial patterns of diversity. Additionally, studies of the SFE process have been largely based on a limited 52-population sample. Here, we assess the effects of founder effect, admixture, and localized gene flow processes on patterns of global and regional diversity using a published data set of 645 autosomal microsatellite genotypes from 5,415 individuals in 248 widespread populations. We used a formal tree-fitting approach to explore the role of founder effects. The approach involved fitting global and regional population trees to extant patterns of gene diversity and then systematically examining the deviations in fit. We also informally tested the SFE process using linear models of gene diversity versus waypoint geographic distances from Africa. We tested the role of localized gene flow using partial Mantel correlograms of gene diversity versus geographic distance controlling for the confounding effects of treelike genetic structure. We corroborate previous findings that global patterns of diversity, both within and between populations, are the product of an out-of-Africa SFE process. Within regions, however, diversity within populations is uncorrelated with geographic distance from Africa. Here, patterns of diversity have been largely shaped by recent interregional admixture and secondary range expansions. Our detailed analyses of the pattern of diversity within and between populations reveal that the signatures of different evolutionary processes dominate at different geographic scales. These findings have important implications for recent publications on the biology of race.

  11. Range size heritability and diversification patterns in the liverwort genus Radula.

    PubMed

    Patiño, Jairo; Wang, Jian; Renner, Matt A M; Gradstein, S Robbert; Laenen, Benjamin; Devos, Nicolas; Shaw, A Jonathan; Vanderpoorten, Alain

    2017-01-01

    Why some species exhibit larger geographical ranges than others, and to what extent does variation in range size affect diversification rates, remains a fundamental, but largely unanswered question in ecology and evolution. Here, we implement phylogenetic comparative analyses and ancestral area estimations in Radula, a liverwort genus of Cretaceous origin, to investigate the mechanisms that explain differences in geographical range size and diversification rates among lineages. Range size was phylogenetically constrained in the two sub-genera characterized by their almost complete Australasian and Neotropical endemicity, respectively. The congruence between the divergence time of these lineages and continental split suggests that plate tectonics could have played a major role in their present distribution, suggesting that a strong imprint of vicariance can still be found in extant distribution patterns in these highly mobile organisms. Amentuloradula, Volutoradula and Metaradula species did not appear to exhibit losses of dispersal capacities in terms of dispersal life-history traits, but evidence for significant phylogenetic signal in macroecological niche traits suggests that niche conservatism accounts for their restricted geographic ranges. Despite their greatly restricted distribution to Australasia and Neotropics respectively, Amentuloradula and Volutoradula did not exhibit significantly lower diversification rates than more widespread lineages, in contrast with the hypothesis that the probability of speciation increases with range size by promoting geographic isolation and increasing the rate at which novel habitats are encountered. We suggest that stochastic long-distance dispersal events may balance allele frequencies across large spatial scales, leading to low genetic structure among geographically distant areas or even continents, ultimately decreasing the diversification rates in highly mobile, widespread lineages. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    PubMed

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  13. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression

    PubMed Central

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-01-01

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745

  14. Odour dialects among wild mammals.

    PubMed

    Kean, Eleanor Freya; Bruford, Michael William; Russo, Isa-Rita M; Müller, Carsten Theodor; Chadwick, Elizabeth Anna

    2017-10-19

    Across multiple taxa, population structure and dynamics depend on effective signalling between individuals. Among mammals, chemical communication is arguably the most important sense, underpinning mate choice, parental care, territoriality and even disease transmission. There is a growing body of evidence that odours signal genetic information that may confer considerable benefits including inbreeding avoidance and nepotism. To date, however, there has been no clear evidence that odours encode population-level information in wild mammals. Here we demonstrate for the first time the existence of 'odour dialects' in genetically distinct mammalian subpopulations across a large geographical scale. We found that otters, Lutra lutra, from across the United Kingdom possess sex and biogeography-specific odours. Subpopulations with the most distinctive odour profiles are also the most genetically diverse but not the most genetically differentiated. Furthermore, geographic distance between individuals does not explain regional odour differences, refuting other potential explanations such as group odour sharing behaviour. Differences in the language of odours between subpopulations have the potential to affect individual interactions, which could impact reproduction and gene-flow.

  15. Studies of Resurgent Bed Bugs: Population Genetic Structure, Impact of Aggregation on Development and Molecular Screening for Bartonella

    NASA Astrophysics Data System (ADS)

    Saenz, Virna Lisa

    The recent resurgence of bed bugs (Cimex lectularius L.) has created an unprecedented demand for research on its biology. The main objectives of this dissertation research were to investigate several aspects of bed bug biology: infestation and dispersal dynamics at a large and small geographical scale using molecular markers, to determine the impact of aggregation on bed bug development and to screen bed bug populations for a re-emergent pathogen. First, we studied the infestation and dispersal dynamics of bed bugs at large geographical scale (e.g., across cities, states). Although bed bug infestations are on the rise, there is a poor understanding of their dispersal patterns and sources of infestation. We conducted a genetic study of 21 bed bug infestations from the eastern United States. We genotyped samples comprised of 8 - 10 individuals per infestation at nine polymorphic microsatellite loci. Despite high genetic diversity across all infestations, with 5 -- 17 alleles per locus (mean = 10.3), we found low genetic diversity (1 -- 4 alleles per locus) within all but one of the infestations. These results suggest that nearly all the studied infestations were started by a small propagule possibly consisting of a singly mated female and/or her progeny. All infestations were strongly genetically differentiated from each other (mean pairwise FST between populations = 0.68) and we did not find strong evidence of a geographic pattern of structuring. The high level of genetic diversity across infestations from the eastern United States together with the lack of geographically organized structure is consistent with multiple introductions into the United States from foreign sources. This work is described in Chapter 2 and was published in the Journal of Medical Entomology in 2012. Second, we investigated dispersal and infestation dynamics of bed bugs at a fine geographical scale within three multistory apartment buildings: one from Raleigh, NC and two from Jersey City, NJ. Here we describe the development of 24 high resolution microsatellite markers and their application to elucidate infestation dynamics within three multistory apartment buildings in the United States. Results reveal contrasting characteristics potentially representative of geographic or locale differences. In Raleigh, NC, an infestation within an apartment building seemed to have started from a single introduction followed by extensive spread throughout the building. In Jersey City, NJ, two or more introductions followed by extensive spread. Populations within single apartments in all buildings showed low levels of genetic diversity suggesting that few individuals are starting these infestations, possibly a singly mated female or her progeny. This work is described in Chapter 3 and was published in the Journal of Medical Entomology in 2012. Third, we studied the impact of aggregation in bed bug development. Although it is well known that bed bugs live in aggregations, the adaptive benefits of this behavior are not well understood. In this study, we reared first instars either in isolation or in groups of five from hatching to adult eclosion and recorded their development time. Additionally, we investigated the effects of group-housing on same age nymphs versus nymphs reared with adults. Nymphal development was 2.2 d faster in grouped nymphs than in solitary-housed nymphs, representing 7.3% faster overall development. However, this grouping effect did not appear to be influenced by group composition (nymphs vs. adults). Thus, similar to other gregarious insect species, nymph development in bed bugs is faster in aggregations than in isolation. This work is described in Chapter 4. Fourth, we investigated the prevalence of a re-emergent bacterial pathogen in United States bed bugs populations. Because reports of both bed bugs and Bartonella have been increasing in the United States, and because their host ranges can overlap, we investigated whether the resurgence of these two medically important species are linked by screening for Bartonella spp. in bed bugs collected from geographic areas where these pathogens are prevalent. We screened a total of 331 bed bugs from 39 unique collections in 30 geographic locations in 13 states for Bartonella spp. DNA using a polymerase chain reaction assay targeting the 16S-23S rRNA intergenic transcribed spacer region. Bartonella spp. DNA was not amplified from any bed bug, but five bed bugs from four different units of an elderly housing building in North Carolina contained Burkholderia multivorans, an important pathogen in nosocomial infections that was not previously linked to an arthropod vector. This work is described in Chapter 5.

  16. Space and Place: Recognizing Ties that Bind.

    ERIC Educational Resources Information Center

    Whiteford, Gary T.

    1980-01-01

    Suggests methods to test whether students have acquired a sense of place or spatial understanding. Knowledge of the concepts of map representation, the region, man/land notations, spatial relations, location, and scale are vital to geographic understanding. Concludes that geographic ideas should relate to particular maps. (Author/KC)

  17. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  18. Large stationary wave features appearing repeatedly at the cloud top of Venus

    NASA Astrophysics Data System (ADS)

    Kouyama, Toru; Imamura, Takeshi; Taguchi, Makoto; Fukuhara, Tetsuya; Sato, Takao M.; Hashimoto, George L.; Futaguchi, Masahiko; Takamura, Mao; Yamada, Takeru; Satoh, Takehiko; Nakamura, Masato; Akatsuki Science Team

    2017-10-01

    At the first observation sequence after Akatsuki’s Venus orbiter re-insertion (VOI-R) on December 7, 2015, Akatsuki revealed an existence of a large-scale “bow-shaped” feature staying at almost same geographic location (above Aphrodite Terra) at the cloud top level with the Longwave Infrared Camera (LIR) and Ultra Violet Imager (UVI). It expanded ~10,000 km from south to north and bended to downstream side of the super-rotation of Venus. A numerical calculation in Fukuhara et al. (2017) suggested that a gravity wave generated in the lower atmosphere can propagate upward to the cloud top and reproduce the observed bow-shape structure. Because the wave can transport momentum to the upper atmosphere which possibly decelerates the super-rotation, it is an interesting topic whether the stationary wave event is regular or just an occasional event. For more than three Venus years, or four Venus solar days, Akatsuki has observed huge stationary wave features in LIR images again and again since the VOI-R. It has been confirmed that four high-altitude regions, east and west part of Aphrodite Terra, Atra Regio, and Beta Regio, accompany with the large stationary features. All four regions are located in lower latitudes (< 30°), while no clear stationary feature has been confirmed above Maxwell Mountain, which is the highest mountain but located at a high latitude (60°), indicating geographical and latitudinal dependencies of the generation of the stationary waves. Akatsuki also reveals the stationary features can be considered as "daily" phenomena in Venus atmosphere. At every timing when the four high-altitude regions were passing afternoon region of Venus, huge stationary waves became clearer. On the other hand, when the high mountains were located around mid-night and morning, stationary features were much weaker than that in afternoon, or cannot be confirmed, indicating strong local time dependency of the appearance. Since lower latitude has more incident solar flux and afternoon area experiences longer solar heating than morning area, the geographical and the local time dependencies indicate that interaction between mountains and solar heating or solar fixed atmospheric structure may cause the large-scale features.

  19. Scaling Coastal Ecosystems to Oceanographic and Climatic Drivers: Making Sense of Community Variation on Rocky Shores Using the Comparative-Experimental Approach in Upwelling and Downwelling Systems

    NASA Astrophysics Data System (ADS)

    Menge, B. A.; Gouhier, T.; Chan, F.; Hacker, S.; Menge, D.; Nielsen, K. J.

    2016-02-01

    Ecology focuses increasingly on the issue of matching spatial and temporal scales responsible for ecosystem pattern and dynamics. Benthic coastal communities traditionally were studied at local scales using mostly short-term research, while environmental (oceanographic, climatic) drivers were investigated at large scales (e.g., regional to oceanic, mostly offshore) using combined snapshot and monitoring (time series) research. The comparative-experimental approach combines local-scale studies at multiple sites spanning large-scale environmental gradients in combination with monitoring of inner shelf oceanographic conditions including upwelling/downwelling wind forcing and their consequences (e.g., temperature), and inputs of subsidies (larvae, phytoplankton, detritus). Temporal scale varies depending on the questions, but can extend from years to decades. We discuss two examples of rocky intertidal ecosystem dynamics, one at a regional scale (California Current System, CCS) and one at an interhemispheric scale. In the upwelling-dominated CCS, 52% and 32% of the variance in local community structure (functional group abundances at 13 sites across 725 km) was explained by external factors (ecological subsidies, oceanographic conditions, geographic location), and species interactions, respectively. The interhemispheric study tested the intermittent upwelling hypothesis (IUH), which predicts that key ecological processes will vary unimodally along a persistent downwelling to persistent upwelling gradient. Using 14-22 sites, unimodal relationships between ecological subsidies (phytoplankton, prey recruitment), prey responses (barnacle colonization, mussel growth) and species interactions (competition rate, predation rate and effect) and the Bakun upwelling index calculated at each site accounted for 50% of the variance. Hence, external factors can account for about half of locally-expressed community structure and dynamics.

  20. Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate

    PubMed Central

    Hoffman, Joseph I.; Clarke, Andrew; Clark, Melody S.; Peck, Lloyd S.

    2013-01-01

    Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs) to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive F st values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales. PMID:23691125

  1. Structural approaches to knowledge exchange: comparing practices across five centres of excellence in public health.

    PubMed

    Van der Graaf, P; Francis, O; Doe, E; Barrett, E; O'Rorke, M; Docherty, G

    2018-03-01

    In 2008, five UKCRC Public Health Research Centres of Excellence were created to develop a coordinated approach to policy and practice engagement and knowledge exchange. The five Centres have developed their own models and practices for achieving these aims, which have not been compared in detail to date. We applied an extended version of Saner's model for the interface between science and policy to compare five case studies of knowledge exchanges, one from each centre. We compared these practices on three dimensions within our model (focus, function and type/scale) to identify barriers and facilitators for knowledge exchange. The case studies shared commonalities in their range of activities (type) but illustrated different ways of linking these activities (function). The Centres' approaches ranged from structural to more organic, and varied in the extent that they engaged internal audiences (focus). Each centre addressed policymakers at different geographical levels and scale. This article emphasizes the importance of linking a range of activities that engage policymakers at different levels, intensities and points in their decision-making processes to build relationships. Developing a structural approach to knowledge exchange activities in different contexts presents challenges of resource, implementation and evaluation.

  2. Calls reveal population structure of blue whales across the southeast Indian Ocean and the southwest Pacific Ocean.

    PubMed

    Balcazar, Naysa E; Tripovich, Joy S; Klinck, Holger; Nieukirk, Sharon L; Mellinger, David K; Dziak, Robert P; Rogers, Tracey L

    2015-11-24

    For effective species management, understanding population structure and distribution is critical. However, quantifying population structure is not always straightforward. Within the Southern Hemisphere, the blue whale ( Balaenoptera musculus ) complex is extremely diverse but difficult to study. Using automated detector methods, we identified "acoustic populations" of whales producing region-specific call types. We examined blue whale call types in passive acoustic data at sites spanning over 7,370 km across the southeast Indian Ocean and southwest Pacific Ocean (SWPO) from 2009 to 2012. In the absence of genetic resolution, these acoustic populations offer unique information about the blue whale population complex. We found that the Australian continent acts as a geographic boundary, separating Australia and New Zealand blue whale acoustic populations at the junction of the Indian and Pacific Ocean basins. We located blue whales in previously undocumented locations, including the far SWPO, in the Tasman Sea off the east coast of Australia, and along the Lau Basin near Tonga. Our understanding of population dynamics across this broad scale has significant implications to recovery and conservation management for this endangered species, at a regional and global scale.

  3. COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES

    EPA Science Inventory

    Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...

  4. Spatial variation in the climatic predictors of species compositional turnover and endemism

    PubMed Central

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-01-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species–environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile–climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r2 = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r2 = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses. PMID:25473479

  5. The origin and phylogeography of dog rabies virus

    PubMed Central

    Bourhy, Hervé; Reynes, Jean-Marc; Dunham, Eleca J.; Dacheux, Laurent; Larrous, Florence; Huong, Vu Thi Que; Xu, Gelin; Yan, Jiaxin; Miranda, Mary Elizabeth G.; Holmes, Edward C.

    2012-01-01

    Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV. PMID:18931062

  6. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.

    PubMed

    Hoberg, Eric P; Brooks, Daniel R

    2015-04-05

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Enhancing robustness and immunization in geographical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Liang; Department of Physics, Lanzhou University, Lanzhou 730000; Yang Kongqing

    2007-03-15

    We find that different geographical structures of networks lead to varied percolation thresholds, although these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and immunization of a geographical network are proposed. Using the generating function formalism, we obtain an explicit form of the percolation threshold q{sub c} for networks containing arbitrary order cycles. For three-cycles, the dependence of q{sub c} on the clustering coefficients is ascertained. The analysis substantiates the validity of the strategies with analytical evidence.

  8. The Geographic Structure of Viruses in the Cuatro Ciénegas Basin, a Unique Oasis in Northern Mexico, Reveals a Highly Diverse Population on a Small Geographic Scale.

    PubMed

    Taboada, B; Isa, P; Gutiérrez-Escolano, A L; Del Ángel, R M; Ludert, J E; Vázquez, N; Tapia-Palacios, M A; Chávez, P; Garrido, E; Espinosa, A C; Eguiarte, L E; López, S; Souza, V; Arias, C F

    2018-06-01

    The Cuatro Ciénegas Basin (CCB) is located in the Chihuahuan desert in the Mexican state of Coahuila; it has been characterized as a site with high biological diversity despite its extreme oligotrophic conditions. It has the greatest number of endemic species in North America, containing abundant living microbialites (including stromatolites and microbial mats) and diverse microbial communities. With the hypothesis that this high biodiversity and the geographic structure should be reflected in the virome, the viral communities in 11 different locations of three drainage systems, Churince, La Becerra, and Pozas Rojas, and in the intestinal contents of 3 different fish species, were analyzed for both eukaryotic and prokaryotic RNA and DNA viruses using next-generation sequencing methods. Double-stranded DNA (dsDNA) virus families were the most abundant (72.5% of reads), followed by single-stranded DNA (ssDNA) viruses (2.9%) and ssRNA and dsRNA virus families (0.5%). Thirteen families had dsDNA genomes, five had ssDNA, three had dsRNA, and 16 had ssRNA. A highly diverse viral community was found, with an ample range of hosts and a strong geographical structure, with very even distributions and signals of endemicity in the phylogenetic trees from several different virus families. The majority of viruses found were bacteriophages but eukaryotic viruses were also frequent, and the large diversity of viruses related to algae were a surprise, since algae are not evident in the previously analyzed aquatic systems of this ecosystem. Animal viruses were also frequently found, showing the large diversity of aquatic animals in this oasis, where plants, protozoa, and archaea are rare. IMPORTANCE In this study, we tested whether the high biodiversity and geographic structure of CCB is reflected in its virome. CCB is an extraordinarily biodiverse oasis in the Chihuahuan desert, where a previous virome study suggested that viruses had followed the marine ancestry of the marine bacteria and, as a result of their long isolation, became endemic to the site. In this study, which includes a larger sequencing coverage and water samples from other sites within the valley, we confirmed the high virus biodiversity and uniqueness as well as the strong biogeographical diversification of the CCB. In addition, we also analyzed fish intestinal contents, finding that each fish species eats different prey and, as a result, presents different viral compositions even if they coexist in the same pond. These facts highlight the high and novel virus diversity of CCB and its "lost world" status. Copyright © 2018 American Society for Microbiology.

  9. Status and Trends of Narragansett Bay and its Watershed: A Geographical Approach

    EPA Science Inventory

    The Narragansett Bay Estuary Program developed 24 environmental indicators for its 2017 State of the Bay and its Watershed report with the collaboration of over 50 bi-state and regional partners. A geographical approach was undertaken at different scales using an array of geospat...

  10. Multi-Scale Residential Segregation: Black Exceptionalism and America's Changing Color Line

    ERIC Educational Resources Information Center

    Parisi, Domenico; Lichter, Daniel T.; Taquino, Michael C.

    2011-01-01

    America's changing color line is perhaps best expressed in shifting patterns of neighborhood residential segregation--the geographic separation of races. This research evaluates black exceptionalism by using the universe of U.S. blocks from the 1990 and 2000 decennial censuses to provide a "single" geographically inclusive national…

  11. Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment.

    Treesearch

    Peter H. Singleton; William L. Gaines; John F. Lehmkuhl

    2002-01-01

    We conducted a regional-scale evaluation of landscape permeability for large carnivores in Washington and adjacent portions of British Columbia and Idaho. We developed geographic information system based landscape permeability models for wolves (Canis lupus), wolverine (Gulo gulo), lynx (Lynx canadensis),...

  12. Landscape-scale geographic variations in microbial indices and labile phosphorus in Hapludults

    USDA-ARS?s Scientific Manuscript database

    Long-term soil and nutrient management practices can have lasting effects on the geographic distribution of soil microorganisms, function, and non-mobile nutrients such as phosphorus (P). The non-random redistribution can influence nutrient turnover rate and use efficiency of crops, in comparison to...

  13. Study of phase clustering method for analyzing large volumes of meteorological observation data

    NASA Astrophysics Data System (ADS)

    Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.

  14. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran

    PubMed Central

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among Iranian P. pectinatus than previously observed for temperate European regions, due to regional differences across mountain ranges over long distances. PMID:27560947

  15. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species. PMID:23311925

  16. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    PubMed

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among Iranian P. pectinatus than previously observed for temperate European regions, due to regional differences across mountain ranges over long distances.

  17. Changes to zooplankton community structure following colonization of a small lake by Leptodora kindti

    USGS Publications Warehouse

    McNaught, A.S.; Kiesling, R.L.; Ghadouani, A.

    2004-01-01

    The predaceous cladoceran Leptodora kindti (Focke) became established in Third Sister Lake, Michigan, after individuals escaped from experimental enclosures in 1987. By 1988, the Leptodora population exhibited seasonal dynamics characteristic of natural populations. The maximum seasonal abundance of Leptodora increased to 85 individuals m-3 3 yr following the introduction. After the appearance of Leptodora, small-bodied cladocerans (Ceriodaphnia and Bosmina) virtually disappeared from the lake. There were strong seasonal shifts in the dominance patterns of both cladocerans and copepods, and Daphnia species diversity increased. Results from this unplanned introduction suggest that invertebrate predators can have a rapid and lasting effect on prey populations, even in the presence of planktivorous fish. Small-scale (<20 km) geographic barriers might be as important as large-scale barriers to dispersal of planktonic animals.

  18. Structure and application of an interface program between a geographic-information system and a ground-water flow model

    USGS Publications Warehouse

    Van Metre, P.C.

    1990-01-01

    A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)

  19. River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data

    NASA Astrophysics Data System (ADS)

    McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.

    2016-12-01

    River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.

  20. The geography of solar energy in the United States: Market definition, industry structure, and choice in solar PV adoption

    DOE PAGES

    O’Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naïm

    2018-01-30

    The solar photovoltaic (PV) installation industry comprises thousands of firms around the world who collectively installed nearly 200 million panels in 2015. Spatial analysis of the emerging industry has received considerable attention from the literature, especially on the demand side concerning peer effects and adopter clustering. However this research area does not include similarly sophisticated spatial analysis on the supply side of the installation industry. The lack of understanding of the spatial structure of the PV installation industry leaves PV market research to rely on jurisdictional lines, such as counties, to define geographic PV markets. We develop an approach thatmore » uses the spatial distribution of installers' activity to define geographic boundaries for PV markets. Our method is useful for PV market research and applicable in the contexts of other industries. We use our approach to demonstrate that the PV industry in the United States is spatially heterogeneous. Despite the emergence of some national-scale PV installers, installers are largely local and installer communities are unique from one region to the next. The social implications of the spatial heterogeneity of the emerging PV industry involve improving understanding of issues such as market power, industry consolidation, and how much choice potential adopters have.« less

  1. The geography of solar energy in the United States: Market definition, industry structure, and choice in solar PV adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naïm

    The solar photovoltaic (PV) installation industry comprises thousands of firms around the world who collectively installed nearly 200 million panels in 2015. Spatial analysis of the emerging industry has received considerable attention from the literature, especially on the demand side concerning peer effects and adopter clustering. However this research area does not include similarly sophisticated spatial analysis on the supply side of the installation industry. The lack of understanding of the spatial structure of the PV installation industry leaves PV market research to rely on jurisdictional lines, such as counties, to define geographic PV markets. We develop an approach thatmore » uses the spatial distribution of installers' activity to define geographic boundaries for PV markets. Our method is useful for PV market research and applicable in the contexts of other industries. We use our approach to demonstrate that the PV industry in the United States is spatially heterogeneous. Despite the emergence of some national-scale PV installers, installers are largely local and installer communities are unique from one region to the next. The social implications of the spatial heterogeneity of the emerging PV industry involve improving understanding of issues such as market power, industry consolidation, and how much choice potential adopters have.« less

  2. Mountain chickadees from different elevations sing different songs: acoustic adaptation, temporal drift or signal of local adaptation?

    PubMed Central

    Branch, Carrie L.; Pravosudov, Vladimir V.

    2015-01-01

    Song in songbirds is widely thought to function in mate choice and male–male competition. Song is also phenotypically plastic and typically learned from local adults; therefore, it varies across geographical space and can serve as a cue for an individual's location of origin, with females commonly preferring males from their respective location. Geographical variation in song dialect may reflect acoustic adaptation to different environments and/or serve as a signal of local adaptation. In montane environments, environmental differences can occur over an elevation gradient, favouring local adaptations across small spatial scales. We tested whether food caching mountain chickadees, known to exhibit elevation-related differences in food caching intensity, spatial memory and the hippocampus, also sing different dialects despite continuous distribution and close proximity. Male songs were collected from high and low elevations at two different mountains (separated by 35 km) to test whether song differs between elevations and/or between adjacent populations at each mountain. Song structure varied significantly between high and low elevation adjacent populations from the same mountain and between populations from different mountains at the same elevations, despite a continuous distribution across each mountain slope. These results suggest that elevation-related differences in song structure in chickadees might serve as a signal for local adaptation. PMID:26064641

  3. The scaling law of human travel - A message from George

    NASA Astrophysics Data System (ADS)

    Brockmann, Dirk; Hufnagel, Lars

    The dispersal of individuals of a species is the key driving force of various spatiotemporal phenomena which occur on geographical scales. It can synchronize populations of interacting species, stabilize them, and diversify gene pools.1-3 The geographic spread of human infectious diseases such as influenza, measles and the recent severe acute respiratory syndrome (SARS) is essentially promoted by human travel which occurs on many length scales and is sustained by a variety of means of trans-portation4-8. In the light of increasing international trade, intensified human traffic, and an imminent influenza A pandemic the knowledge of dynamical and statistical properties of human dispersal is of fundamental importance and acute. 7,9,10 A quantitative statistical theory for human travel and concomitant reliable forecasts would substantially improve and extend existing prevention strategies. Despite its crucial role, a quantitative assessment of human dispersal remains elusive and the opinion that humans disperse diffusively still prevails in many models. 11 In this chapter we will report on a recently developed technique which permits a solid and quantitative assessment of human dispersal on geographical scales.12 The key idea is to infer the statistical properties of human travel by analysing the geographic circulation of individual bank notes for which comprehensive datasets are collected at online bill-tracking websites. The analysis shows that the distribution of traveling distances decays as a power law, indicating that the movement of bank notes is reminiscent of superdiffusive, scale free random walks known as Lévy flights.13 Secondly, the probability of remaining in a small, spatially confined region for a time T is dominated by heavy tails which attenuate superdiffusive dispersal. We will show that the dispersal of bank notes can be described on many spatiotemporal scales by a two parameter continuous time random walk (CTRW) model to a surprising accuracy. We will provide a brief introduction to continuous time random walk theory14 and will show that human disperal is an ambivalent, effectively superdiffusive process.

  4. Evolution of natural history information in the 21st Century - Developing an integrated framework for biological and geographic data

    EPA Science Inventory

    Threats to marine and estuarine species operate over many spatial scales, from nutrient enrichment at the watershed/estuarine scale to invasive species and climate change at regional and global scales. To help address research questions across these scales, we provide here a stan...

  5. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  6. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  7. Influence of Pre-Existing Structure on Sill Geometry in the San Rafael Volcanic Field, Central Utah

    NASA Astrophysics Data System (ADS)

    Ferwerda, B.; Wetmore, P. H.; Connor, C.; Kruse, S. E.; Kiyosugi, K.; Kiflu, H. G.

    2011-12-01

    Sills have been hypothesized to be formed at rigidity contrasts between layers or at the level of neutral buoyancy of the intruding magma body. Recent field observations of sills in the San Rafael Volcanic Field (SRVF) in central Utah conflict with both of these hypotheses, suggesting that something else may control the distribution of sills in the crust. This study examines the role pre-existing structure plays in determining the distribution and geometry of sills in the SRVF. Primarily, sills will be thickest in the hinge zone of synclines and thinnest towards the limbs. The SRVF consists of a series of dikes, conduits and sills intruded into the J-Kr strata of the western Colorado Plateau. The structure of the SRVF consists of a series of broad wavelength folds truncated by a major thrust fault as determined by a gravity profile across structure. There are several sill complexes in the area whose geometry and relationships with the host rock are unaccounted for by these hypotheses. At large scale, sills follow structural trends in the host rock. Sills are either oriented with regional dips, or follow the trends of folds in the area. One sill, in particular, intruded into a syncline and thins towards the limb of the fold. However, sills behave differently at smaller spatial scales. The smaller scale behavior is incongruent with sills forming at rigidity contrasts or at the level of neutral buoyancy. First, sills form tiered structures intruding at multiple stratigraphic levels within the field area, and in limited geographic extent. Geophysical surveys confirm tiered sill structures in the subsurface. Individual sills also change stratigraphic levels, sometimes, very abruptly, moving vertically up to 30 meters in short horizontal distances. Sills also form networks in anastomosing structures that cut across stratigraphy at varying angles. These observations suggest that neither the level of neutral buoyancy nor the rigidity contrasts between layers play a role in determining the distribution of sills in the crust. Broadly, sills follow pre-existing structure, but at smaller scales, sills behave drastically different, with little regard to bedding planes.

  8. Ecologic and Geographic Distribution of Filovirus Disease

    PubMed Central

    Bauer, John T.; Mills, James N.

    2004-01-01

    We used ecologic niche modeling of outbreaks and sporadic cases of filovirus-associated hemorrhagic fever (HF) to provide a large-scale perspective on the geographic and ecologic distributions of Ebola and Marburg viruses. We predicted that filovirus would occur across the Afrotropics: Ebola HF in the humid rain forests of central and western Africa, and Marburg HF in the drier and more open areas of central and eastern Africa. Most of the predicted geographic extent of Ebola HF has been observed; Marburg HF has the potential to occur farther south and east. Ecologic conditions appropriate for Ebola HF are also present in Southeast Asia and the Philippines, where Ebola Reston is hypothesized to be distributed. This first large-scale ecologic analysis provides a framework for a more informed search for taxa that could constitute the natural reservoir for this virus family. PMID:15078595

  9. Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans

    USGS Publications Warehouse

    Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.

  10. Comparative population structure of Cynopterus fruit bats in peninsular Malaysia and southern Thailand.

    PubMed

    Campbell, Polly; Schneider, Christopher J; Adnan, Adura M; Zubaid, Akbar; Kunz, Thomas H

    2006-01-01

    The extent to which response to environmental change is mediated by species-specific ecology is an important aspect of the population histories of tropical taxa. During the Pleistocene glacial cycles and associated sea level fluctuations, the Sunda region in Southeast Asia experienced concurrent changes in landmass area and the ratio of forest to open habitat, providing an ideal setting to test the expectation that habitat associations played an important role in determining species' response to the opportunity for geographic expansion. We used mitochondrial control region sequences and six microsatellite loci to compare the phylogeographic structure and demographic histories of four broadly sympatric species of Old World fruit bats in the genus, Cynopterus. Two forest-associated species and two open-habitat generalists were sampled along a latitudinal transect in Singapore, peninsular Malaysia, and southern Thailand. Contrary to expectations based on habitat associations, the geographic scale of population structure was not concordant across ecologically similar species. We found evidence for long and relatively stable demographic history in one forest and one open-habitat species, and inferred non-coincident demographic expansions in the second forest and open-habitat species. Thus, while these results indicate that Pleistocene climate change did not have a single effect on population structure across species, a correlation between habitat association and response to environmental change was supported in only two of four species. We conclude that interactions between multiple factors, including historical and contemporary environmental change, species-specific ecology and interspecific interactions, have shaped the recent evolutionary histories of Cynopterus fruit bats in Southeast Asia.

  11. Comparative genetic structure between Sedum ussuriense and S. kamtschaticum (Crassulaceae), two stonecrops co-occurring on rocky cliffs.

    PubMed

    Chung, Mi Yoon; López-Pujol, Jordi; Chung, Myong Gi

    2014-06-01

    • Premise of the study: Geographic isolation due to discontinuities of suitable habitat may have significant effects on the genetic structure of plant populations. Even within a few kilometers, physical barriers to gene flow may lead to considerable genetic differentiation among populations.• Methods: Sedum ussuriense is a boreal species that in Korea occurs only in four valleys separated by mountain ranges in Juwangsan National Park and its vicinity (a range of ∼15 km). Its congener S. kamtschaticum, by contrast, co-occurs in the four valleys but also on the intervening mountains. Using 12 allozyme loci, we comparatively assessed genetic variability and structure in 12 population pairs of the two stonecrops.• Key results: While we found high and comparable levels of within-population genetic variation for the two species, among-population divergence was significantly higher in S. ussuriense (F ST = 0.261 vs. F ST = 0.165). Sedum ussuriense also showed a much higher percentage of among-valley variation (19%) than S. kamtschaticum (4%).• Conclusions: High levels of genetic diversity in the two Sedum species are consistent with the previous hypothesis that mountains of the Korean Peninsula served as glacial refugia for many boreal species. Given that the two congeners have similar life-history traits, the lower among-population differentiation in S. kamtschaticum is attributable to its higher abundance and more continuous distribution in the study area. This study confirms the central role of geographic isolation in the genetic structure of plant species even at very small scales. © 2014 Botanical Society of America, Inc.

  12. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  13. Hierarchical Distributed-Lag Models: Exploring Varying Geographic Scale and Magnitude in Associations Between the Built Environment and Health.

    PubMed

    Baek, Jonggyu; Sanchez-Vaznaugh, Emma V; Sánchez, Brisa N

    2016-03-15

    It is well known that associations between features of the built environment and health depend on the geographic scale used to construct environmental attributes. In the built environment literature, it has long been argued that geographic scales may vary across study locations. However, this hypothesized variation has not been systematically examined due to a lack of available statistical methods. We propose a hierarchical distributed-lag model (HDLM) for estimating the underlying overall shape of food environment-health associations as a function of distance from locations of interest. This method enables indirect assessment of relevant geographic scales and captures area-level heterogeneity in the magnitudes of associations, along with relevant distances within areas. The proposed model was used to systematically examine area-level variation in the association between availability of convenience stores around schools and children's weights. For this case study, body mass index (weight kg)/height (m)2) z scores (BMIz) for 7th grade children collected via California's 2001-2009 FitnessGram testing program were linked to a commercial database that contained locations of food outlets statewide. Findings suggested that convenience store availability may influence BMIz only in some places and at varying distances from schools. Future research should examine localized environmental or policy differences that may explain the heterogeneity in convenience store-BMIz associations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.; Wiacek, Talia; Williams, Ian S.

    2005-01-01

    Genetic variation at 11 microsatellite loci described population genetic structure for Oncorhynchus mykiss in the Central Valley, California. Spatial and temporal variation was examined as well as relationships between hatchery and putative natural spawning anadromous stocks. Genetic diversity was analyzed at two distinct spatial scales: fine-scale within drainage for five populations on Clear Creek; between and among drainage diversity for 23 populations. Significant regional spatial structure was apparent, both within Clear Creek and among rainbow trout populations throughout the Central Valley. Significant differences in allelic frequencies were found among most river or drainage systems. Less than 1% of the molecular variance could be attributed to differences found between drainages. Hatchery populations were shown to carry similar genetic diversity to geographically proximate wild populations. Central Valley M = 0.626 (below the M < 0.68 threshold) supported recent population reductions within the Central Valley. However, average estimated effective population size was relatively high (Ne = 5066). Significant allelic differences were found in rainbow trout collected above and below impassable dams on the American, Yuba, Stanislaus and Tuolumne rivers. Rainbow trout sampled in Spring Creek were extremely bottlenecked with allelic variation at only two loci and an estimated effective population size of 62, suggesting some local freshwater O. mykiss stocks may be declining rapidly. These data support significant genetic population structure for steelhead and rainbow trout populations within the Central Valley across multiple scales. Careful consideration of this genetic diversity and its distribution across the landscape should be part of future conservation and restoration efforts. 

  15. Geographical Pattern and Environmental Correlates of Regional-Scale General Flowering in Peninsular Malaysia

    PubMed Central

    Numata, Shinya; Yasuda, Masatoshi; Suzuki, Ryo O.; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine D.; Hashim, Mazlan

    2013-01-01

    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF. PMID:24260159

  16. Geographical pattern and environmental correlates of regional-scale general flowering in Peninsular Malaysia.

    PubMed

    Numata, Shinya; Yasuda, Masatoshi; Suzuki, Ryo O; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine D; Hashim, Mazlan

    2013-01-01

    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF.

  17. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes

    PubMed Central

    Pittman, Simon J.; Brown, Kerry A.

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management. PMID:21637787

  18. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    PubMed

    Pittman, Simon J; Brown, Kerry A

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management.

  19. Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia

    PubMed Central

    Morgan, Geoffrey G.; Jalaludin, Bin B.; Bauman, Adrian E.

    2018-01-01

    Walkability describes the capacity of the built environment to promote walking, and has been proposed as a potential focus for community-level mental health planning. We evaluated this possibility by examining the contribution of area-level walkability to variation in psychosocial distress in a population cohort at spatial scales comparable to those used for regional planning in Sydney, Australia. Data on psychosocial distress were analysed for 91,142 respondents to the 45 and Up Study baseline survey between January 2006 and April 2009. We fit conditional auto regression models at the postal area level to obtain smoothed “disease maps” for psychosocial distress, and assess its association with area-level walkability after adjusting for individual- and area-level factors. Prevalence of psychosocial distress was 7.8%; similar for low (7.9%), low-medium (7.9%), medium-high (8.0%), and high (7.4%) walkability areas; and decreased with reducing postal area socioeconomic disadvantage: 12.2% (most), 9.3%, 7.5%, 5.9%, and 4.7% (least). Unadjusted disease maps indicated strong geographic clustering of psychosocial distress with 99.0% of excess prevalence due to unobserved and spatially structured factors, which was reduced to 55.3% in fully adjusted maps. Spatial and unstructured variance decreased by 97.3% and 39.8% after adjusting for individual-level factors, and another 2.3% and 4.2% with the inclusions of area-level factors. Excess prevalence of psychosocial distress in postal areas was attenuated in adjusted models but remained spatially structured. Postal area prevalence of high psychosocial distress is geographically clustered in Sydney, but is unrelated to postal area walkability. Area-level socioeconomic disadvantage makes a small contribution to this spatial structure; however, community-level mental health planning will likely deliver greatest benefits by focusing on individual-level contributors to disease burden and inequality associated with psychosocial distress. PMID:29415461

  20. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing.

    PubMed

    Taranto, F; D'Agostino, N; Greco, B; Cardi, T; Tripodi, P

    2016-11-21

    Knowledge on population structure and genetic diversity in vegetable crops is essential for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Herein we used the GBS approach for the genome-wide identification of SNPs in a collection of Capsicum spp. accessions and for the assessment of the level of genetic diversity in a subset of 222 cultivated pepper (Capsicum annum) genotypes. GBS analysis generated a total of 7,568,894 master tags, of which 43.4% uniquely aligned to the reference genome CM334. A total of 108,591 SNP markers were identified, of which 105,184 were in C. annuum accessions. In order to explore the genetic diversity of C. annuum and to select a minimal core set representing most of the total genetic variation with minimum redundancy, a subset of 222 C. annuum accessions were analysed using 32,950 high quality SNPs. Based on Bayesian and Hierarchical clustering it was possible to divide the collection into three clusters. Cluster I had the majority of varieties and landraces mainly from Southern and Northern Italy, and from Eastern Europe, whereas clusters II and III comprised accessions of different geographical origins. Considering the genome-wide genetic variation among the accessions included in cluster I, a second round of Bayesian (K = 3) and Hierarchical (K = 2) clustering was performed. These analysis showed that genotypes were grouped not only based on geographical origin, but also on fruit-related features. GBS data has proven useful to assess the genetic diversity in a collection of C. annuum accessions. The high number of SNP markers, uniformly distributed on the 12 chromosomes, allowed the accessions to be distinguished according to geographical origin and fruit-related features. SNP markers and information on population structure developed in this study will undoubtedly support genome-wide association mapping studies and marker-assisted selection programs.

  1. Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia.

    PubMed

    Mayne, Darren J; Morgan, Geoffrey G; Jalaludin, Bin B; Bauman, Adrian E

    2018-02-06

    Walkability describes the capacity of the built environment to promote walking, and has been proposed as a potential focus for community-level mental health planning. We evaluated this possibility by examining the contribution of area-level walkability to variation in psychosocial distress in a population cohort at spatial scales comparable to those used for regional planning in Sydney, Australia. Data on psychosocial distress were analysed for 91,142 respondents to the 45 and Up Study baseline survey between January 2006 and April 2009. We fit conditional auto regression models at the postal area level to obtain smoothed "disease maps" for psychosocial distress, and assess its association with area-level walkability after adjusting for individual- and area-level factors. Prevalence of psychosocial distress was 7.8%; similar for low (7.9%), low-medium (7.9%), medium-high (8.0%), and high (7.4%) walkability areas; and decreased with reducing postal area socioeconomic disadvantage: 12.2% (most), 9.3%, 7.5%, 5.9%, and 4.7% (least). Unadjusted disease maps indicated strong geographic clustering of psychosocial distress with 99.0% of excess prevalence due to unobserved and spatially structured factors, which was reduced to 55.3% in fully adjusted maps. Spatial and unstructured variance decreased by 97.3% and 39.8% after adjusting for individual-level factors, and another 2.3% and 4.2% with the inclusions of area-level factors. Excess prevalence of psychosocial distress in postal areas was attenuated in adjusted models but remained spatially structured. Postal area prevalence of high psychosocial distress is geographically clustered in Sydney, but is unrelated to postal area walkability. Area-level socioeconomic disadvantage makes a small contribution to this spatial structure; however, community-level mental health planning will likely deliver greatest benefits by focusing on individual-level contributors to disease burden and inequality associated with psychosocial distress.

  2. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range

    PubMed Central

    Muñoz, Joaquín; Amat, Francisco; Green, Andy J.; Figuerola, Jordi

    2013-01-01

    Since Darwin’s time, waterbirds have been considered an important vector for the dispersal of continental aquatic invertebrates. Bird movements have facilitated the worldwide invasion of the American brine shrimp Artemia franciscana, transporting cysts (diapausing eggs), and favouring rapid range expansions from introduction sites. Here we address the impact of bird migratory flyways on the population genetic structure and phylogeography of A. franciscana in its native range in the Americas. We examined sequence variation for two mitochondrial gene fragments (COI and 16S for a subset of the data) in a large set of population samples representing the entire native range of A. franciscana. Furthermore, we performed Mantel tests and redundancy analyses (RDA) to test the role of flyways, geography and human introductions on the phylogeography and population genetic structure at a continental scale. A. franciscana mitochondrial DNA was very diverse, with two main clades, largely corresponding to Pacific and Atlantic populations, mirroring American bird flyways. There was a high degree of regional endemism, with populations subdivided into at least 12 divergent, geographically restricted and largely allopatric mitochondrial lineages, and high levels of population structure (ΦST of 0.92), indicating low ongoing gene flow. We found evidence of human-mediated introductions in nine out of 39 populations analysed. Once these populations were removed, Mantel tests revealed a strong association between genetic variation and geographic distance (i.e., isolation-by-distance pattern). RDA showed that shared bird flyways explained around 20% of the variance in genetic distance between populations and this was highly significant, once geographic distance was controlled for. The variance explained increased to 30% when the factor human introduction was included in the model. Our findings suggest that bird-mediated transport of brine shrimp propagules does not result in substantial ongoing gene flow; instead, it had a significant historical role on the current species phylogeography, facilitating the colonisation of new aquatic environments as they become available along their main migratory flyways. PMID:24255814

  3. The Development and Validation of the Mood-based Indoor Tanning Scale.

    PubMed

    Carcioppolo, Nick; Chen, Yixin; John, Kevin K; Gonzalez, Andrea Martinez; King, Andy J; Morgan, Susan E; Hu, Shasa

    2017-01-01

    Research indicates that mood-based motivations may be an important predictor of indoor tanning bed use and may be related to indoor tanning dependence. Problematically, little research has been conducted to develop a psychometric measure of mood-based tanning motivations. The current study seeks to develop and validate the moodbased indoor tanning scale (MITS). Two studies were conducted to identify and verify the MITS factor structure as well as assess construct validity. Study 1 was conducted at 5 geographically diverse universities in the United States. Study 2 was conducted by using a national online sample in the United States. Results from study 1 specified the factor structure of the MITS. Results from study 2 suggest that a one-point increase in the MITS measure corresponds with using indoor tanning beds 11 more times in the past year. These findings demonstrate that moodbased tanning motivations are a strong predictor of indoor tanning intentions and behavior. Further, they suggest that health behavior researchers and healthcare practitioners can use the MITS to assess the extent to which mood-based motivations impact indoor tanning bed use.

  4. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago

    PubMed Central

    Fonzi, Eugenio; Higa, Yukiko; Bertuso, Arlene G.; Futami, Kyoko; Minakawa, Noboru

    2015-01-01

    Background Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. Methodology/principal findings Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. Conclusions/significance The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies. PMID:26039311

  5. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    PubMed

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. [Spatial scale effect of urban land use landscape pattern in Shanghai City].

    PubMed

    Xu, Li-Hua; Yue, Wen Ze; Cao, Yu

    2007-12-01

    Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.

  7. Beyond Knee-Jerk Environmental Thinking: Teaching Geographic Perspectives on Conservation, Preservation and the Hetch Hetchy Valley Controversy

    ERIC Educational Resources Information Center

    Moseley, William G.

    2009-01-01

    Attention to scale, use of space and connections between places and regions are general, yet distinctive, geographical concepts that may be employed in introductory level human-environment geography courses to distinguish them from other environmental studies offerings. This article demonstrates how attention to the aforementioned concepts…

  8. Examining the Enactment of Web GIS on Students' Geospatial Thinking and Reasoning and Tectonics Understandings

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Fu, Qiong; Bressler, Denise; Vallera, Farah L.

    2015-01-01

    Geospatially enabled learning technologies may enhance Earth science learning by placing emphasis on geographic space, visualization, scale, representation, and geospatial thinking and reasoning (GTR) skills. This study examined if and how a series of Web geographic information system investigations that the researchers developed improved urban…

  9. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    EPA Science Inventory

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 ta...

  10. Large-scale P2P network based distributed virtual geographic environment (DVGE)

    NASA Astrophysics Data System (ADS)

    Tan, Xicheng; Yu, Liang; Bian, Fuling

    2007-06-01

    Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.

  11. Research on spatial economic structure for different economic sectors from a perspective of a complex network

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Yang, Hualei; Cai, Boliang; Yang, Chunxia

    2013-09-01

    The economy system is a complex system, and the complex network is a powerful tool to study its complexity. Here we calculate the economic distance matrices based on annual GDP of nine economic sectors from 1995-2010 in 31 Chinese provinces and autonomous regions,1 then build several spatial economic networks through the threshold method and the Minimal Spanning Tree method. After the analysis on the structure of the networks and the influence of geographic distance, some conclusions are drawn. First, connectivity distribution of a spatial economic network does not follow the power law. Second, according to the network structure, nine economic sectors could be divided into two groups, and there is significant discrepancy of network structure between these two groups. Moreover, the influence of the geographic distance plays an important role on the structure of a spatial economic network, network parameters are changed with the influence of the geographic distance. At last, 2000 km is the critical value for geographic distance: for real estate and finance, the spearman’s rho with l<2000 is bigger than that with l>2000, and the case is opposite for other economic sectors.

  12. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern

    PubMed Central

    2010-01-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. He and H B were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θB values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species. PMID:21637500

  13. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern.

    PubMed

    Nascimento, Marcília A; Batalha-Filho, Henrique; Waldschmidt, Ana M; Tavares, Mara G; Campos, Lucio A O; Salomão, Tânia M F

    2010-04-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. H(e) and H (B) were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θ(B) values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species.

  14. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    USGS Publications Warehouse

    Munn, M.D.; Waite, I.R.; Larsen, D.P.; Herlihy, A.T.

    2009-01-01

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19-29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location. ?? The Author(s) 2008.

  15. Phylogeography of the tree lizard, Urosaurus ornatus: responses of populations to past climate change.

    PubMed

    Haenel, G J

    2007-10-01

    Isolation due to both geological barriers and range contractions during the Pleistocene glacial maxima has been an important cause of diversification of arid-adapted species in the North American deserts. Tree lizards, Urosaurus ornatus, are distributed across much of the southwestern arid regions and can tolerate a wide range of environments. Thus, they may have avoided large-scale shifts in distribution caused by Pleistocene climate change and any subsequent evolutionary impacts. Cytochrome b sequences were sampled from U. ornatus across the northern part of their range to test if current structure of these populations resulted from post-Pleistocene range expansion and habitat fragmentation, or prior geological isolation. Phylogenetic analyses found geographical structuring of populations consistent with a model of long-term geographical isolation corresponding to each of the desert regions. The two post-Pleistocene hypotheses were not well supported as estimated times of divergence predated the retreat of the last continental ice sheet. Populations in different regions were impacted by different processes. Southern populations of U. ornatus appear to have remained largely independent of more derived northern and eastern populations during Pleistocene climate change, while populations in regions containing more derived populations showed evidence of more recent range expansion (Colorado Plateau). As populations of U. ornatus attest to, the complex and dynamic history of the southwestern USA has left a deep-rooted and multifaceted imprint on genetic and phylogeographical structure of the species living there.

  16. Farmers without borders—genetic structuring in century old barley (Hordeum vulgare)

    PubMed Central

    Forsberg, N E G; Russell, J; Macaulay, M; Leino, M W; Hagenblad, J

    2015-01-01

    The geographic distribution of genetic diversity can reveal the evolutionary history of a species. For crop plants, phylogeographic patterns also indicate how seed has been exchanged and spread in agrarian communities. Such patterns are, however, easily blurred by the intense seed trade, plant improvement and even genebank conservation during the twentieth century, and discerning fine-scale phylogeographic patterns is thus particularly challenging. Using historical crop specimens, these problems are circumvented and we show here how high-throughput genotyping of historical nineteenth century crop specimens can reveal detailed geographic population structure. Thirty-one historical and nine extant accessions of North European landrace barley (Hordeum vulgare L.), in total 231 individuals, were genotyped on a 384 single nucleotide polymorphism assay. The historical material shows constant high levels of within-accession diversity, whereas the extant accessions show more varying levels of diversity and a higher degree of total genotype sharing. Structure, discriminant analysis of principal components and principal component analysis cluster the accessions in latitudinal groups across country borders in Finland, Norway and Sweden. FST statistics indicate strong differentiation between accessions from southern Fennoscandia and accessions from central or northern Fennoscandia, and less differentiation between central and northern accessions. These findings are discussed in the context of contrasting historical records on intense within-country south to north seed movement. Our results suggest that although seeds were traded long distances, long-term cultivation has instead been of locally available, possibly better adapted, genotypes. PMID:25227257

  17. Farmers without borders-genetic structuring in century old barley (Hordeum vulgare).

    PubMed

    Forsberg, N E G; Russell, J; Macaulay, M; Leino, M W; Hagenblad, J

    2015-02-01

    The geographic distribution of genetic diversity can reveal the evolutionary history of a species. For crop plants, phylogeographic patterns also indicate how seed has been exchanged and spread in agrarian communities. Such patterns are, however, easily blurred by the intense seed trade, plant improvement and even genebank conservation during the twentieth century, and discerning fine-scale phylogeographic patterns is thus particularly challenging. Using historical crop specimens, these problems are circumvented and we show here how high-throughput genotyping of historical nineteenth century crop specimens can reveal detailed geographic population structure. Thirty-one historical and nine extant accessions of North European landrace barley (Hordeum vulgare L.), in total 231 individuals, were genotyped on a 384 single nucleotide polymorphism assay. The historical material shows constant high levels of within-accession diversity, whereas the extant accessions show more varying levels of diversity and a higher degree of total genotype sharing. Structure, discriminant analysis of principal components and principal component analysis cluster the accessions in latitudinal groups across country borders in Finland, Norway and Sweden. FST statistics indicate strong differentiation between accessions from southern Fennoscandia and accessions from central or northern Fennoscandia, and less differentiation between central and northern accessions. These findings are discussed in the context of contrasting historical records on intense within-country south to north seed movement. Our results suggest that although seeds were traded long distances, long-term cultivation has instead been of locally available, possibly better adapted, genotypes.

  18. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor.

    PubMed

    Jorde, Per Erik; Søvik, Guldborg; Westgaard, Jon-Ivar; Albretsen, Jon; André, Carl; Hvingel, Carsten; Johansen, Torild; Sandvik, Anne Dagrun; Kingsley, Michael; Jørstad, Knut Eirik

    2015-04-01

    The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment. © 2015 John Wiley & Sons Ltd.

  19. GIS-technologies application for calculation of potential soil loss of Marha River basin (Republic of Saha)

    NASA Astrophysics Data System (ADS)

    Shynbergenov, Y.; Maltsev, K.; Sihanova, N.

    2018-01-01

    In the article the presentation of estimation methods of potential soil loss in the conditions of Siberia with application of geographical information systems is resulted. For the reference area of the Marha river basin, which is a part of the Lena river catchment, there was created a specialized geographic information database of potential soil erosion, with scale of 1: 1,000,000. Digital elevation model “GMTED2010” and the hydroset layer corresponding to the scale of 1: 1,000,000 are taken to calculate the soil loss values. The formation of the geobase data is considered in detail being constructed on the basis of the multiplicative structure which reflects the main parameters of the relief (slope steepness, exposition, slope length, erosion potential of the relief), soil, climatic characteristics and modern types of land cover. At the quantitative level with sufficiently high degree of spatial detail results were obtained for calculating the potential erosion of soils. The average value of potential soil loss in the basin without taking into account the factor of land cover types, was 12.6 t/ha/yr. The calculations carried out, taking into account the types of land cover obtained from remote sensing data from outer space resulted in an appreciable reduction of the soil loss values (0.04 t/ha/yr.).

  20. Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon

    PubMed Central

    Banaticla-Hilario, Maria Celeste N; van den Berg, Ronald G; Hamilton, Nigel Ruaraidh Sackville; McNally, Kenneth L

    2013-01-01

    Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by FST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (HE = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (HE = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species. PMID:24101993

  1. Impacts of climate change on mangrove ecosystems: A region by region overview

    USGS Publications Warehouse

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  2. Large-scale mitochondrial COI gene sequence variability reflects the complex colonization history of the invasive soft-shell clam, Mya arenaria (L.) (Bivalvia)

    NASA Astrophysics Data System (ADS)

    Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej

    2016-11-01

    The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.

  3. An Ancient Divide in a Contiguous Rainforest: Endemic Earthworms in the Australian Wet Tropics

    PubMed Central

    Moreau, Corrie S.; Hugall, Andrew F.; McDonald, Keith R.; Jamieson, Barrie G. M.; Moritz, Craig

    2015-01-01

    Understanding the factors that shape current species diversity is a fundamental aim of ecology and evolutionary biology. The Australian Wet Tropics (AWT) are a system in which much is known about how the rainforests and the rainforest-dependent organisms reacted to late Pleistocene climate changes, but less is known about how events deeper in time shaped speciation and extinction in this highly endemic biota. We estimate the phylogeny of a species-rich endemic genus of earthworms (Terrisswalkerius) from the region. Using DEC and DIVA historical biogeography methods we find a strong signal of vicariance among known biogeographical sub-regions across the whole phylogeny, congruent with the phylogeography of less diverse vertebrate groups. Absolute dating estimates, in conjunction with relative ages of major biogeographic disjunctions across Australia, indicate that diversification in Terrisswalkerius dates back before the mid-Miocene shift towards aridification, into the Paleogene era of isolation of mesothermal Gondwanan Australia. For the Queensland endemic Terrisswalkerius earthworms, the AWT have acted as both a museum of biological diversity and as the setting for continuing geographically structured diversification. These results suggest that past events affecting organismal diversification can be concordant across phylogeographic to phylogenetic levels and emphasize the value of multi-scale analysis, from intra- to interspecies, for understanding the broad-scale processes that have shaped geographic diversity. PMID:26366862

  4. A long-term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure

    PubMed Central

    Sun, Bo; Wang, Feng; Jiang, Yuji; Li, Yun; Dong, Zhixin; Li, Zhongpei; Zhang, Xue-Xian

    2014-01-01

    The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. PMID:24772284

  5. Making molehills out of mountains: landscape genetics of the Mojave desert tortoise

    USGS Publications Warehouse

    Hagerty, Bridgette E.; Nussear, Kenneth E.; Esque, Todd C.; Tracy, C. Richard

    2010-01-01

    Heterogeneity in habitat often influences how organisms traverse the landscape matrix that connects populations. Understanding landscape connectivity is important to determine the ecological processes that influence those movements, which lead to evolutionary change due to gene flow. Here, we used landscape genetics and statistical models to evaluate hypotheses that could explain isolation among locations of the threatened Mojave desert tortoise (Gopherus agassizii). Within a causal modeling framework, we investigated three factors that can influence landscape connectivity: geographic distance, barriers to dispersal, and landscape friction. A statistical model of habitat suitability for the Mojave desert tortoise, based on topography, vegetation, and climate variables, was used as a proxy for landscape friction and barriers to dispersal. We quantified landscape friction with least-cost distances and with resistance distances among sampling locations. A set of diagnostic partial Mantel tests statistically separated the hypotheses of potential causes of genetic isolation. The best-supported model varied depending upon how landscape friction was quantified. Patterns of genetic structure were related to a combination of geographic distance and barriers as defined by least-cost distances, suggesting that mountain ranges and extremely low-elevation valleys influence connectivity at the regional scale beyond the tortoises' ability to disperse. However, geographic distance was the only influence detected using resistance distances, which we attributed to fundamental differences between the two ways of quantifying friction. Landscape friction, as we measured it, did not influence the observed patterns of genetic distances using either quantification. Barriers and distance may be more valuable predictors of observed population structure for species like the desert tortoise, which has high dispersal capability and a long generation time.

  6. The roles of geography and founder effects in promoting host-associated differentiation in the generalist bogus yucca moth Prodoxus decipiens.

    PubMed

    Darwell, C T; Fox, K A; Althoff, D M

    2014-12-01

    There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Inferring Geographic Coordinates of Origin for Europeans Using Small Panels of Ancestry Informative Markers

    PubMed Central

    Paschou, Peristera

    2010-01-01

    Recent large-scale studies of European populations have demonstrated the existence of population genetic structure within Europe and the potential to accurately infer individual ancestry when information from hundreds of thousands of genetic markers is used. In fact, when genomewide genetic variation of European populations is projected down to a two-dimensional Principal Components Analysis plot, a surprising correlation with actual geographic coordinates of self-reported ancestry has been reported. This substructure can hamper the search of susceptibility genes for common complex disorders leading to spurious correlations. The identification of genetic markers that can correct for population stratification becomes therefore of paramount importance. Analyzing 1,200 individuals from 11 populations genotyped for more than 500,000 SNPs (Population Reference Sample), we present a systematic exploration of the extent to which geographic coordinates of origin within Europe can be predicted, with small panels of SNPs. Markers are selected to correlate with the top principal components of the dataset, as we have previously demonstrated. Performing thorough cross-validation experiments we show that it is indeed possible to predict individual ancestry within Europe down to a few hundred kilometers from actual individual origin, using information from carefully selected panels of 500 or 1,000 SNPs. Furthermore, we show that these panels can be used to correctly assign the HapMap Phase 3 European populations to their geographic origin. The SNPs that we propose can prove extremely useful in a variety of different settings, such as stratification correction or genetic ancestry testing, and the study of the history of European populations. PMID:20805874

  8. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  9. The evolution of Zipf's law indicative of city development

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2016-02-01

    Zipf's law of city-size distributions can be expressed by three types of mathematical models: one-parameter form, two-parameter form, and three-parameter form. The one-parameter and one of the two-parameter models are familiar to urban scientists. However, the three-parameter model and another type of two-parameter model have not attracted attention. This paper is devoted to exploring the conditions and scopes of application of these Zipf models. By mathematical reasoning and empirical analysis, new discoveries are made as follows. First, if the size distribution of cities in a geographical region cannot be described with the one- or two-parameter model, maybe it can be characterized by the three-parameter model with a scaling factor and a scale-translational factor. Second, all these Zipf models can be unified by hierarchical scaling laws based on cascade structure. Third, the patterns of city-size distributions seem to evolve from three-parameter mode to two-parameter mode, and then to one-parameter mode. Four-year census data of Chinese cities are employed to verify the three-parameter Zipf's law and the corresponding hierarchical structure of rank-size distributions. This study is revealing for people to understand the scientific laws of social systems and the property of urban development.

  10. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    NASA Astrophysics Data System (ADS)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of <10 km apart were highly differentiated demonstrates considerable potential for genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  11. The roles of calving migration and climate change in the formation of the weak genetic structure in the Tibetan antelope (Pantholops hodgsonii).

    PubMed

    Chen, Jiarui; Lin, Gonghua; Qin, Wen; Yan, Jingyan; Zhang, Tongzuo; Su, Jianping

    2018-05-31

    Geographical barriers and distance can reduce gene exchange among animals, resulting in genetic divergence of geographically isolated populations. The habitats of Tibetan antelope (Pantholops hodgsonii) has a geographical range of approximately 1,600 km across the Qinghai-Tibet Plateau (QTP) with a series tall mountains and big rivers. However, previously studies indicated that there was little genetic differentiation among their geographically delineated populations. To better understand the genetic structure of P. hodgsonii populations, we collected 145 samples from the three major calving regions considering their various calving grounds and migration routes. We used a combination of mitochondrial sequences (Cyt b, ATPase, D-loop and COX I) to investigate the genetic structure and the evolutionary divergence of the populations. Significant, albeit weak, genetic differentiation was detected among the three geographical populations. Analysis of the genetic divergence process revealed that the animals gradually entered into a period of rapid genetic differentiation since approximately 60,000 years ago. The calving migration of P. hodgsonii cannot be the main cause of their weak genetic structure since such cannot fully homogenize the genetic pool. Instead, the geological and climatic events as well as the coupling vegetation succession process during this period have been suggested to greatly contribute to the genetic structure and the expansion of genetic diversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Thermal mapping, geothermal source location, natural effluents and plant stress in the Mediterranean coast of Spain

    NASA Technical Reports Server (NTRS)

    Delascuevas, R. N. (Principal Investigator); Dearagon, A. M.

    1981-01-01

    Data obtained by HCMM satellite over a complex area in eastern Spain were evaluated and found to be most useful in studying macrostructures in geology and in analyzing marine currents, layers, and areas (although other satellites provide more data). The upper scale to work with HCMM data appears to be 1:2.000.000. Techniques used in preprocessing, processing, and analyzing imagery are discussed as well as methods for pattern recognition. Surface temperatures obtained for soils, farmlands, forests, geological structures, and coastal waters are discussed. Suggestions are included for improvements needed to achieve better results in geographic areas similar to the study area.

  13. Probing Mantle Heterogeneity Across Spatial Scales

    NASA Astrophysics Data System (ADS)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.

  14. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    PubMed

    Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines, with some individuals having more associates than observed from group sizes alone.

  15. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    PubMed

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. © 2017 John Wiley & Sons Ltd.

  16. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    USGS Publications Warehouse

    Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-01-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.

  17. Source identification of western Oregon Douglas-fir wood cores using mass spectrometry and random forest classification.

    PubMed

    Finch, Kristen; Espinoza, Edgard; Jones, F Andrew; Cronn, Richard

    2017-05-01

    We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA. Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic origin. Specific wood molecules that contributed to geographic discrimination were identified. Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identified as key for classifying western Oregon Douglas-fir wood cores to geographic origin. DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moderate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identifying the geographic origin of illegally harvested wood.

  18. Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations

    PubMed Central

    Gu, Yunfu; D. Van Nostrand, Joy; Wu, Liyou; He, Zhili; Qin, Yujia; Zhao, Fang-Jie; Zhou, Jizhong

    2017-01-01

    To understand how soil microbial communities and arsenic (As) functional genes respond to soil arsenic (As) contamination, five soils contaminated with As at different levels were collected from diverse geographic locations, incubated for 54 days under flooded conditions, and examined by both MiSeq sequencing of 16S rRNA gene amplicons and functional gene microarray (GeoChip 4.0). The results showed that both bacterial community structure and As functional gene structure differed among geographical locations. The diversity of As functional genes correlated positively with the diversity of 16S rRNA genes (P< 0.05). Higher diversities of As functional genes and 16S rRNA genes were observed in the soils with higher available As. Soil pH, phosphate-extractable As, and amorphous Fe content were the most important factors in shaping the bacterial community structure and As transformation functional genes. Geographic location was also important in controlling both the bacterial community and As transformation functional potential. These findings provide insights into the variation of As transformation functional genes in soils contaminated with different levels of As at different geographic locations, and the impact of environmental As contamination on the soil bacterial community. PMID:28475654

  19. Opportunities Seized and Squandered: An Analysis of Joint Union and Confederate Operations at New Madrid and Island Number Ten

    DTIC Science & Technology

    2016-06-10

    install a command structure , and identify strategies for their geographic commanders. In the Western Theater of the war, both Northern and Southern...Federal and Confederate militaries had to mobilize forces, install a command structure , and identify strategies for their geographic commanders. In...Navy officers avoided these operations with their intermittent periods of importance. The lack of an enduring force structure and a consistent

  20. There is no silver bullet: the value of diversification in planning invasive species surveillance

    Treesearch

    Denys Yemshanov; Frank H. Koch; Bo Lu; D. Barry Lyons; Jeffrey P. Prestemon; Taylor Scarr; Klaus Koehler

    2014-01-01

    In this study we demonstrate how the notion of diversification can be used in broad-scale resource allocation for surveillance of invasive species. We consider the problem of short-term surveillance for an invasive species in a geographical environment.Wefind the optimal allocation of surveillance resourcesamongmultiple geographical subdivisions via application of a...

  1. Where heart and home reside: changing constructions of place and identity

    Treesearch

    Daniel R. Williams; Norman McIntyre

    2001-01-01

    Globalization has expanded the scope and geographic scale of leisure and tourism practices and their consequent impacts on society. Yet studies of such topics as community, home, migration, and tourism remain infused with outdated assumptions of a geographically rooted subject. In the future, the changing nature of employment, retirement, and lifestyles are likely to...

  2. Spatial Dimensions of Christianity and Education in Western European History, with Legacies for the Present

    ERIC Educational Resources Information Center

    Brock, Colin

    2010-01-01

    This article attempts to illustrate the significance of the geographical dimension of certain connections between Christianity and education in Europe. It does so by initially introducing the nature of the three components of the triangle with special reference to theory. Taking the fundamental geographical issue of scale, the discussion proceeds…

  3. Income Inequality across Micro and Meso Geographic Scales in the Midwestern United States, 1979-2009

    ERIC Educational Resources Information Center

    Peters, David J.

    2012-01-01

    This article examines the spatial distribution of income inequality and the socioeconomic factors affecting it using spatial analysis techniques across 16,285 block groups, 5,050 tracts, and 618 counties in the western part of the North Central Region of the United States. Different geographic aggregations result in different inequality outcomes,…

  4. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.

  5. General practitioner (family physician) workforce in Australia: comparing geographic data from surveys, a mailing list and medicare

    PubMed Central

    2013-01-01

    Background Good quality spatial data on Family Physicians or General Practitioners (GPs) are key to accurately measuring geographic access to primary health care. The validity of computed associations between health outcomes and measures of GP access such as GP density is contingent on geographical data quality. This is especially true in rural and remote areas, where GPs are often small in number and geographically dispersed. However, there has been limited effort in assessing the quality of nationally comprehensive, geographically explicit, GP datasets in Australia or elsewhere. Our objective is to assess the extent of association or agreement between different spatially explicit nationwide GP workforce datasets in Australia. This is important since disagreement would imply differential relationships with primary healthcare relevant outcomes with different datasets. We also seek to enumerate these associations across categories of rurality or remoteness. Method We compute correlations of GP headcounts and workload contributions between four different datasets at two different geographical scales, across varying levels of rurality and remoteness. Results The datasets are in general agreement with each other at two different scales. Small numbers of absolute headcounts, with relatively larger fractions of locum GPs in rural areas cause unstable statistical estimates and divergences between datasets. Conclusion In the Australian context, many of the available geographic GP workforce datasets may be used for evaluating valid associations with health outcomes. However, caution must be exercised in interpreting associations between GP headcounts or workloads and outcomes in rural and remote areas. The methods used in these analyses may be replicated in other locales with multiple GP or physician datasets. PMID:24005003

  6. Regional Similarities and Consistent Patterns of Local Variation in Beach Sand Bacterial Communities throughout the Northern Hemisphere

    PubMed Central

    Staley, Christopher

    2016-01-01

    ABSTRACT Recent characterization of the bacterial community structure in beach sands has revealed patterns of biogeography similar to those observed in aquatic environments. Studies to date, however, have mainly focused on subtidal sediments from marine beaches. Here, we investigate the bacterial diversity, using Illumina-based sequencing of the V5-V6 region of the 16S rRNA gene, at 11 beaches representing those next to the Great Lakes, Florida, and the Pacific Ocean. The alpha diversity differed significantly among regions (P < 0.0001), while the within-region diversity was more similar. The beta diversity also differed by region (P < 0.001), where freshwater sands had significantly higher abundances of taxa within the Actinobacteria, Betaproteobacteria, and Verrucomicrobia than marine environments. In contrast, marine sands harbored greater abundances of Gammaproteobacteria and Planctomycetes, and those from Florida had more Deltaproteobacteria and Firmicutes. Marine beaches had significantly different phylogenetic community structures (P ≤ 0.018), but freshwater and Florida beaches showed fewer within-region phylogenetic differences. Furthermore, regionally distinct patterns in taxonomic variation were observed in backshore sands, which had communities distinct from those in nearshore sands (P < 0.001). Sample depth minimally influenced the community composition. The results of this study reveal distinct bacterial community structures in sand on a broad geographic scale but moderate regional similarity and suggest that local variation is primarily related to the distance from the shoreline. This study offers a novel comparison of the bacterial communities in freshwater and marine beach sands and provides an important basis for future comparisons and analyses to elucidate factors affecting microbial ecology in this underexplored environment. IMPORTANCE This study presents a large-scale geographic characterization of the bacterial communities present in beach sands. While previous studies have evaluated how environmental factors influence bacterial community composition, few have evaluated bacterial communities in freshwater sands. Furthermore, the use of a consistent methodology to characterize bacterial communities here allowed a novel comparison of communities across geographic regions. We reveal that while the community composition in sands at individual beaches is distinct, beach sands within the same region harbor similar assemblages of bacteria and these assemblages differ greatly between regions. In addition, moisture, associated with distance from the shoreline, strongly influences the bacteria present in sands and more strongly influences the bacteria present than sample depth does. Thus, the data presented here offer an important basis for a broader characterization of the ecology of bacteria in sands, which may also be relevant to public health and resource management initiatives. PMID:26921429

  7. Evaluating Progression in Students' Relational Thinking While Working on Tasks with Geospatial Technologies

    ERIC Educational Resources Information Center

    Favier, Tim; Van Der Schee, Joop

    2014-01-01

    One of the facets of geographic literacy is the ability to think in a structured way about geographic relationships. Geospatial technologies offer many opportunities to stimulate students' geographic relational thinking. The question is: How can these opportunities be effectuated? This paper discusses the results of a process-oriented experiment…

  8. Mating system and gene flow in the red seaweed Gracilaria gracilis: effect of haploid-diploid life history and intertidal rocky shore landscape on fine-scale genetic structure.

    PubMed

    Engel, C R; Destombe, C; Valero, M

    2004-04-01

    The impact of haploid-diploidy and the intertidal landscape on a fine-scale genetic structure was explored in a red seaweed Gracilaria gracilis. The pattern of genetic structure was compared in haploid and diploid stages at a microgeographic scale (< 5 km): a total of 280 haploid and 296 diploid individuals located in six discrete, scattered rock pools were genotyped using seven microsatellite loci. Contrary to the theoretical expectation of predominantly endogamous mating systems in haploid-diploid organisms, G. gracilis showed a clearly allogamous mating system. Although within-population allele frequencies were similar between haploids and diploids, genetic differentiation among haploids was more than twice that of diploids, suggesting that there may be a lag between migration and (local) breeding due to the long generation times in G. gracilis. Weak, but significant, population differentiation was detected in both haploids and diploids and varied with landscape features, and not with geographic distance. Using an assignment test, we establish that effective migration rates varied according to height on the shore. In this intertidal species, biased spore dispersal may occur during the transport of spores and gametes at low tide when small streams flow from high- to lower-shore pools. The longevity of both haploid and diploid free-living stages and the long generation times typical of G. gracilis populations may promote the observed pattern of high genetic diversity within populations relative to that among populations.

  9. Paths to Change: Bio-Economic Factors, Geographical Gradients and the Land-Use Structure of Italy.

    PubMed

    Masini, Emanuela; Barbati, Anna; Bencardino, Massimiliano; Carlucci, Margherita; Corona, Piermaria; Salvati, Luca

    2018-01-01

    This study introduces a bio-economic approach to evaluate the influence of local socioeconomic contexts on complex processes of landscape transformation (urbanization, withdrawal of farming with woodland creation and loss in crop mosaics) in a sustainable development perspective. Land-use and socioeconomic indicators (including shares of agriculture, industry and services in total product, per-worker value added, productivity by economic sector, distance from central cities, latitude and elevation) at the local district scale in Italy have been considered together in an exploratory approach based on multivariate statistics. The combined use of land-use and socioeconomic indicators was preferred to more traditional approaches based on single-variable analysis and allows identifying latent factors of landscape transformation at the local scale. Our approach sheds light in the intimate relationship between regional economic structures and land-use change in districts with varying socio-environmental attributes across Italy. Urban-rural divides, coastal-inland dichotomy and the elevation gradient were relevant factors shaping urbanization-driven landscape transformations at the country scale. Indicators of economic structure (and especially industrial production and per-worker productivity of industry and services) were also documented to influence greatly entity and direction of change in the use of land. Discontinuous and dispersed urbanization has been demonstrated to be spatially-decoupled from consolidated (continuous and compact) urbanization, expanding into undeveloped rural areas progressively far away from central cities and being spatially associated with forest land.

  10. Paths to Change: Bio-Economic Factors, Geographical Gradients and the Land-Use Structure of Italy

    NASA Astrophysics Data System (ADS)

    Masini, Emanuela; Barbati, Anna; Bencardino, Massimiliano; Carlucci, Margherita; Corona, Piermaria; Salvati, Luca

    2018-01-01

    This study introduces a bio-economic approach to evaluate the influence of local socioeconomic contexts on complex processes of landscape transformation (urbanization, withdrawal of farming with woodland creation and loss in crop mosaics) in a sustainable development perspective. Land-use and socioeconomic indicators (including shares of agriculture, industry and services in total product, per-worker value added, productivity by economic sector, distance from central cities, latitude and elevation) at the local district scale in Italy have been considered together in an exploratory approach based on multivariate statistics. The combined use of land-use and socioeconomic indicators was preferred to more traditional approaches based on single-variable analysis and allows identifying latent factors of landscape transformation at the local scale. Our approach sheds light in the intimate relationship between regional economic structures and land-use change in districts with varying socio-environmental attributes across Italy. Urban-rural divides, coastal-inland dichotomy and the elevation gradient were relevant factors shaping urbanization-driven landscape transformations at the country scale. Indicators of economic structure (and especially industrial production and per-worker productivity of industry and services) were also documented to influence greatly entity and direction of change in the use of land. Discontinuous and dispersed urbanization has been demonstrated to be spatially-decoupled from consolidated (continuous and compact) urbanization, expanding into undeveloped rural areas progressively far away from central cities and being spatially associated with forest land.

  11. Genetic Population Structure in the Antarctic Benthos: Insights from the Widespread Amphipod, Orchomenella franklini

    PubMed Central

    Baird, Helena Phoenix; Miller, Karen Joy; Stark, Jonathan Sean

    2012-01-01

    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F ST = 0.086, R ST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos. PMID:22479613

  12. Exploratory analysis of rainfall events in Coimbra, Portugal: variability of raindrop characteristics

    NASA Astrophysics Data System (ADS)

    Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.

    2012-04-01

    Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.

  13. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  14. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Treesearch

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2012-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...

  15. Anthropogenic landscapes and pesticides distribution in waters of the river Júcar, Spain

    NASA Astrophysics Data System (ADS)

    Pascual-Aguilar, Juan Antonio; Andreu, Vicente; Masià, Ana; Picó, Yolanda

    2014-05-01

    The quality of river flows may be affected by farming activities whenever dissolve substances persist as nonpoint source pollutants. Among contaminants, the group of pesticides is associated to farming activities. Their extended use depends on the dominant farming practice and the type of crop that, in turn, will be reflected on the specific pollutants and concentrations found. Their identifation in surface waters may also depend on the size and structure (to landscape scale) of the agriculture land. Thus, to understand surface waters transport and hydrological connectivity of contaminants in river flows research to large basin scale is needed. In this work it is assumed that at large geographical scale pesticides and herbicides are related to major landscape land use-cover types. The methodological framework developed consisted on the application of environmental forensic criteria combining laboratory analytical water samples and cartographic analysis using Geographical Information Systems (GIS). To the detection and quantification of pesticides, the sampling strategy consisted in the collection of 15 water samples distributed alongside the River Júcar and its two main tributaries (River Cabriel and Magro), located in the River Júcar drainage Basin, Spain. 50 pesticides were identified and quantified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Geographical analysis were performed after geo-location of sampling points analytical results and integration in the GIS environment using land use-cover digital layers, togeheter with soil, lithology and topography layers. Out of 50 pesticides 20 were identified and 18 presented concentrations higher than the Limits of Quantification. Values ranged from 0.04 ng/L (Terbuthylazine-2 Hydroxy) to 79.39 ng/L (Carbendazim), 150.75 ng/L (Thiabenzadole) and 222.45 ng/L (Imazalil). Contaminants identified more frequently were Chlorpyriphos, Ethion, Chlorfenvinphos and Imazalil, found in 15, 13, 12 and 10 sites respectively. There is a clear geographical trend in the number of pesticides found and their concentrations. Three main land use-cover areas where stablished, according to the dominant vegetation cover: natural surfaces, rainfed agriculture and intensive irrigation farming. The number of pesticides incrise from natural areas (28 incidencies in 6 sites) to rainfed (37 detections in 5 sites) and irrigation agriculture (50 incidencies in 4 sampling points). Higher concentrations area also found in the sector with intensive irrigation agriculture. Acknowledgements This work was supported by the Spanish Ministry of Science and Innovation through the project CONSOLIDER-INGENIO 2010 (CSD2009) and by the Ministry and the European Regional Development Fund (ERDF) (projects CGL2011-29703-C02-00, CGL2011-29703-C02-01, CGL2011-29703-C02-02).

  16. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.

    2010-01-01

    Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.

  17. Mapping the determinants of health inequalities in social space: can Bourdieu help us?

    PubMed

    Gatrell, Anthony C; Popay, Jennie; Thomas, Carol

    2004-09-01

    Considerable research effort has been devoted to describing and explaining, at a variety of spatial scales, geographical inequalities in health outcomes within the developed world. Following Bourdieu, we argue that structures of the social world may be revealed in different kinds of 'social' space. We outline the relational thinking that underlies these ideas. We then 'map', using correspondence analysis (on which Bourdieu himself drew), the structure of social space according to the differential availability of some forms of capital, across four study areas in north-west England. We use logistic regression analysis to explain variation in psychological morbidity (GHQ-score) and then portray the significant predictors of morbidity using multiple correspondence analysis. The area of residence of the survey respondents is used to associate them with particular locations in these social spaces.

  18. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).

  19. Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba

    PubMed Central

    Sacristan-Soriano, Oriol; Banaigs, Bernard; Becerro, Mikel A.

    2011-01-01

    Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs) that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km), with two zones within each region (less than 50 km), two locations within each zone (less than 5 km), and two sites within each location (less than 500 m). We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a). Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites. PMID:22363236

  20. PREDICTIONS IN AN INVADED WORLD - PART I: USING NICHE MODELS TO PREDICT DISTRIBUTIONS OF MARINE/ESTUARINE SPECIES AT THE HABITAT SCALE

    EPA Science Inventory

    Niche models can be used to predict the distributions of marine/estuarine nonindigenous species (NIS) over three spatial scales. The goal at the biogeographic scale is to predict whether a species is likely to invade a geographic region. At the regional scale, the goal is to pr...

  1. Genetic structure in the Sherpa and neighboring Nepalese populations.

    PubMed

    Cole, Amy M; Cox, Sean; Jeong, Choongwon; Petousi, Nayia; Aryal, Dhana R; Droma, Yunden; Hanaoka, Masayuki; Ota, Masao; Kobayashi, Nobumitsu; Gasparini, Paolo; Montgomery, Hugh; Robbins, Peter; Di Rienzo, Anna; Cavalleri, Gianpiero L

    2017-01-19

    We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations.

  2. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    PubMed

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees.

    PubMed

    Fukami, Tadashi; Nakajima, Mifuyu; Fortunel, Claire; Fine, Paul V A; Baraloto, Christopher; Russo, Sabrina E; Peay, Kabir G

    2017-08-01

    Convergence occurs in both species traits and community structure, but how convergence at the two scales influences each other remains unclear. To address this question, we focus on tropical forest monodominance, in which a single, often ectomycorrhizal (EM) tree species occasionally dominates forest stands within a landscape otherwise characterized by diverse communities of arbuscular mycorrhizal (AM) trees. Such monodominance is a striking potential example of community divergence resulting in alternative stable states. However, it is observed only in some tropical regions. A diverse suite of AM and EM trees locally codominate forest stands elsewhere. We develop a hypothesis to explain this geographical difference using a simulation model of plant community assembly. Simulation results suggest that in a region with a few EM species (e.g., South America), EM trees experience strong selection for convergent traits that match the abiotic conditions of the environment. Consequently, EM species successfully compete against other species to form monodominant stands via positive plant-soil feedbacks. By contrast, in a region with many EM species (e.g., Southeast Asia), species maintain divergent traits because of complex plant-soil feedbacks, with no species having traits that enable monodominance. An analysis of plant trait data from Borneo and Peruvian Amazon was inconclusive. Overall, this work highlights the utility of geographical comparison in understanding the relationship between trait convergence and community convergence.

  4. Technologies and standards in the information systems of the soil-geographic database of Russia

    NASA Astrophysics Data System (ADS)

    Golozubov, O. M.; Rozhkov, V. A.; Alyabina, I. O.; Ivanov, A. V.; Kolesnikova, V. M.; Shoba, S. A.

    2015-01-01

    The achievements, problems, and challenges of the modern stage of the development of the Soil-Geographic Database of Russia (SGDBR) and the history of this project are outlined. The structure of the information system of the SGDBR as an internet-based resource to collect data on soil profiles and to integrate the geographic and attribute databases on the same platform is described. The pilot project in Rostov oblast illustrates the inclusion of regional information in the SGDBR and its application for solving practical problems. For the first time in Russia, the GeoRSS standard based on the structured hypertext representation of the geographic and attribute information has been applied in the state system for the agromonitoring of agricultural lands in Rostov oblast and information exchange through the internet.

  5. Research Synthesis Methods in an Age of Globalized Risks: Lessons from the Global Burden of Foodborne Disease Expert Elicitation.

    PubMed

    2016-02-01

    We live in an age that increasingly calls for national or regional management of global risks. This article discusses the contributions that expert elicitation can bring to efforts to manage global risks and identifies challenges faced in conducting expert elicitation at this scale. In doing so it draws on lessons learned from conducting an expert elicitation as part of the World Health Organizations (WHO) initiative to estimate the global burden of foodborne disease; a study commissioned by the Foodborne Disease Epidemiology Reference Group (FERG). Expert elicitation is designed to fill gaps in data and research using structured, transparent methods. Such gaps are a significant challenge for global risk modeling. Experience with the WHO FERG expert elicitation shows that it is feasible to conduct an expert elicitation at a global scale, but that challenges do arise, including: defining an informative, yet feasible geographical structure for the elicitation; defining what constitutes expertise in a global setting; structuring international, multidisciplinary expert panels; and managing demands on experts' time in the elicitation. This article was written as part of a workshop, "Methods for Research Synthesis: A Cross-Disciplinary Approach" held at the Harvard Center for Risk Analysis on October 13, 2013. © 2016 Society for Risk Analysis.

  6. Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure.

    PubMed

    Bohmann, Kristine; Gopalakrishnan, Shyam; Nielsen, Martin; Nielsen, Luisa Dos Santos Bay; Jones, Gareth; Streicker, Daniel G; Gilbert, M Thomas P

    2018-04-19

    Metabarcoding diet analysis has become a valuable tool in animal ecology; however, co-amplified predator sequences are not generally used for anything other than to validate predator identity. Exemplified by the common vampire bat, we demonstrate the use of metabarcoding to infer predator population structure alongside diet assessments. Growing populations of common vampire bats impact human, livestock and wildlife health in Latin America through transmission of pathogens, such as lethal rabies viruses. Techniques to determine large-scale variation in vampire bat diet and bat population structure would empower locality- and species-specific projections of disease transmission risks. However, previously used methods are not cost-effective and efficient for large-scale applications. Using bloodmeal and faecal samples from common vampire bats from coastal, Andean and Amazonian regions of Peru, we showcase metabarcoding as a scalable tool to assess vampire bat population structure and feeding preferences. Dietary metabarcoding was highly effective, detecting vertebrate prey in 93.2% of the samples. Bats predominantly preyed on domestic animals, but fed on tapirs at one Amazonian site. In addition, we identified arthropods in 9.3% of samples, likely reflecting consumption of ectoparasites. Using the same data, we document mitochondrial geographic population structure in the common vampire bat in Peru. Such simultaneous inference of vampire bat diet and population structure can enable new insights into the interplay between vampire bat ecology and disease transmission risks. Importantly, the methodology can be incorporated into metabarcoding diet studies of other animals to couple information on diet and population structure. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  7. Three-dimensional visualization of cultural clusters in the 1878 yellow fever epidemic of New Orleans

    PubMed Central

    Curtis, Andrew J

    2008-01-01

    Background An epidemic may exhibit different spatial patterns with a change in geographic scale, with each scale having different conduits and impediments to disease spread. Mapping disease at each of these scales often reveals different cluster patterns. This paper will consider this change of geographic scale in an analysis of yellow fever deaths for New Orleans in 1878. Global clustering for the whole city, will be followed by a focus on the French Quarter, then clusters of that area, and finally street-level patterns of a single cluster. The three-dimensional visualization capabilities of a GIS will be used as part of a cluster creation process that incorporates physical buildings in calculating mortality-to-mortality distance. Including nativity of the deceased will also capture cultural connection. Results Twenty-two yellow fever clusters were identified for the French Quarter. These generally mirror the results of other global cluster and density surfaces created for the entire epidemic in New Orleans. However, the addition of building-distance, and disease specific time frame between deaths reveal that disease spread contains a cultural component. Same nativity mortality clusters emerge in a similar time frame irrespective of proximity. Italian nativity mortalities were far more densely grouped than any of the other cohorts. A final examination of mortalities for one of the nativity clusters reveals that further sub-division is present, and that this pattern would only be revealed at this scale (street level) of investigation. Conclusion Disease spread in an epidemic is complex resulting from a combination of geographic distance, geographic distance with specific connection to the built environment, disease-specific time frame between deaths, impediments such as herd immunity, and social or cultural connection. This research has shown that the importance of cultural connection may be more important than simple proximity, which in turn might mean traditional quarantine measures should be re-evaluated. PMID:18721469

  8. Three-dimensional visualization of cultural clusters in the 1878 yellow fever epidemic of New Orleans.

    PubMed

    Curtis, Andrew J

    2008-08-22

    An epidemic may exhibit different spatial patterns with a change in geographic scale, with each scale having different conduits and impediments to disease spread. Mapping disease at each of these scales often reveals different cluster patterns. This paper will consider this change of geographic scale in an analysis of yellow fever deaths for New Orleans in 1878. Global clustering for the whole city, will be followed by a focus on the French Quarter, then clusters of that area, and finally street-level patterns of a single cluster. The three-dimensional visualization capabilities of a GIS will be used as part of a cluster creation process that incorporates physical buildings in calculating mortality-to-mortality distance. Including nativity of the deceased will also capture cultural connection. Twenty-two yellow fever clusters were identified for the French Quarter. These generally mirror the results of other global cluster and density surfaces created for the entire epidemic in New Orleans. However, the addition of building-distance, and disease specific time frame between deaths reveal that disease spread contains a cultural component. Same nativity mortality clusters emerge in a similar time frame irrespective of proximity. Italian nativity mortalities were far more densely grouped than any of the other cohorts. A final examination of mortalities for one of the nativity clusters reveals that further sub-division is present, and that this pattern would only be revealed at this scale (street level) of investigation. Disease spread in an epidemic is complex resulting from a combination of geographic distance, geographic distance with specific connection to the built environment, disease-specific time frame between deaths, impediments such as herd immunity, and social or cultural connection. This research has shown that the importance of cultural connection may be more important than simple proximity, which in turn might mean traditional quarantine measures should be re-evaluated.

  9. Population genetics at three spatial scales of a rare sponge living in fragmented habitats

    PubMed Central

    2010-01-01

    Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt), using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA) and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the population makeup was minor (only ca. 4%). Conclusions The structure of the S. lophyropoda populations at all spatial scales examined confirms the philopatric larval dispersal that has been reported. Asexual reproduction does not seem to play a relevant role in the populations. The heterozygote excess and the lack of inbreeding could be interpreted as a hitherto unknown outcrossing strategy of the species. The envisaged causes for this strategy are sperm dispersal, a strong selection against the mating of genetically related individuals to avoid inbreeding depression or high longevity of genets combined with stochastic recruitment events by larvae from other populations. It should be investigated whether this strategy could also explain the genetic diversity of many other patchy marine invertebrates whose populations remain healthy over time, despite their apparent rarity. PMID:20074333

  10. The New Ecological Paradigm Revisited: Anchoring the NEP Scale in Environmental Ethics

    ERIC Educational Resources Information Center

    Lundmark, Carina

    2007-01-01

    The New Environmental or Ecological Paradigm (NEP) is widely acknowledged as a reliable multiple-item scale to capture environmental attitudes or beliefs. It has been used in statistical analyses for almost 30 years, primarily by psychologists, but also by political scientists, sociologists and geographers. The scale's theoretical foundation is,…

  11. Patterns of disturbance at multiple scales in real and simulated landscapes

    Treesearch

    Giovanni Zurlini; Kurt H. Riitters; Nicola Zaccarelli; Irene Petrosoillo

    2007-01-01

    We describe a framework to characterize and interpret the spatial patterns of disturbances at multiple scales in socio-ecological systems. Domains of scale are defined in pattern metric space and mapped in geographic space, which can help to understand how anthropogenic disturbances might impact biodiversity through habitat modification. The approach identifies typical...

  12. Interpreting multiscale domains of tree cover disturbance patterns in North America

    Treesearch

    Kurt Riitters; Jennifer K. Costanza; Brian Buma

    2017-01-01

    Spatial patterns at multiple observation scales provide a framework to improve understanding of pattern-related phenomena. However, the metrics that are most sensitive to local patterns are least likely to exhibit consistent scaling relations with increasing extent (observation scale). A conceptual framework based on multiscale domains (i.e., geographic locations...

  13. Forest Ecosystem Analysis Using a GIS

    Treesearch

    S.G. McNulty; W.T. Swank

    1996-01-01

    Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...

  14. Assessing wildfire risks at multiple spatial scales

    Treesearch

    Justin Fitch

    2008-01-01

    In continuation of the efforts to advance wildfire science and develop tools for wildland fire managers, a spatial wildfire risk assessment was carried out using Classification and Regression Tree analysis (CART) and Geographic Information Systems (GIS). The analysis was performed at two scales. The small-scale assessment covered the entire state of New Mexico, while...

  15. Environmental versus geographical determinants of genetic structure in two subalpine conifers.

    PubMed

    Mosca, Elena; González-Martínez, Santiago C; Neale, David B

    2014-01-01

    Alpine ecosystems are facing rapid human-induced environmental changes, and so more knowledge about tree adaptive potential is needed. This study investigated the relative role of isolation by distance (IBD) versus isolation by adaptation (IBA) in explaining population genetic structure in Abies alba and Larix decidua, based on 231 and 233 single nucleotide polymorphisms (SNPs) sampled across 36 and 22 natural populations, respectively, in the Alps and Apennines. Genetic structure was investigated for both geographical and environmental groups, using analysis of molecular variance (AMOVA). For each species, nine environmental groups were defined using climate variables selected from a multiple factor analysis. Complementary methods were applied to identify outliers based on these groups, and to test for IBD versus IBA. AMOVA showed weak but significant genetic structure for both species, with higher values in L. decidua. Among the potential outliers detected, up to two loci were found for geographical groups and up to seven for environmental groups. A stronger effect of IBD than IBA was found in both species; nevertheless, once spatial effects had been removed, temperature and soil in A. alba, and precipitation in both species, were relevant factors explaining genetic structure. Based on our findings, in the Alpine region, genetic structure seems to be affected by both geographical isolation and environmental gradients, creating opportunities for local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Coastal Geographic Structures in Coastal-Marine Environmental Management

    NASA Astrophysics Data System (ADS)

    Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.

    2018-01-01

    It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.

  17. Geocoded data structures and their applications to Earth science investigations

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1984-01-01

    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.

  18. An assessment of tropical cyclone representation in a regional reanalysis and a shape metric methodology for studying the evolving precipitation structure prior to and during landfall

    NASA Astrophysics Data System (ADS)

    Zick, Stephanie E.

    Tropical cyclone (TC) precipitation is intricately organized with multiple scales of phenomena collaborating to harness the massive energy required to support these storms. During landfall, a TC leaves the tropical oceanic environment and encounters a wide range of continental air mass regimes. Although evolving precipitation patterns are qualitatively observed in these storms during landfall, the timing and spatial variability of these structural changes have yet to be quantified or documented. This dissertation integrates meteorological and geographic concepts to explore the representation and evolution of TC rainfall at the crucial time of landfall when coastal and inland communities and environments are most vulnerable to TC-associated flooding. This research begins with a two-part assessment of TC representation in the North American Regional Reanalysis (NARR), which is selected for its documented skill in characterizing North American precipitation patterns. Due to the sparsely available data over the tropical oceans, spatial biases exist in both global and regional reanalysis datasets. However, within the NARR the introduction of over-ocean precipitation assimilation in 2004 leads to an improved analysis of TC warm core structure, which results in an improved precipitation forecast. Collectively, these studies highlight the need for sophisticated observational and data assimilation systems. Specifically, the development of new, novel precipitation assimilation techniques will be valuable to the construction of better-quality forecasting tools with more authentic TC representation. In the third study, the fundamental geographic concept of compactness is utilized to construct a shape metric methodology for investigating (a) the overall evolution of and (b) the spatiotemporal positions of significant changes to synoptic-scale precipitation structure. These metrics encompass the characteristic geometries of TCs moving into the mid-latitudes: asymmetry, fragmentation, and dispersiveness. In 2004-2012 TCs, increasing (decreasing) compactness is observed in the eastern and central (western) Gulf of Mexico. Dispersiveness increases prior to landfall in most cases; however, asymmetry and fragmentation increase more commonly in western (versus eastern) Gulf landfalls. These results indicate that structural changes occur in advance of landfall, while the TC inner core is positioned over warm Gulf of Mexico waters, particularly in storms that make landfall in the northern and western Gulf States.

  19. In the shadows: Phylogenomics and coalescent species delimitation unveil cryptic diversity in a Cerrado endemic lizard (Squamata: Tropidurus).

    PubMed

    Domingos, Fabricius M C B; Colli, Guarino R; Lemmon, Alan; Lemmon, Emily Moriarty; Beheregaray, Luciano B

    2017-02-01

    The recognition of cryptic diversity within geographically widespread species is gradually becoming a trend in the highly speciose Neotropical biomes. The statistical methods to recognise such cryptic lineages are rapidly advancing, but have rarely been applied to genomic-scale datasets. Herein, we used phylogenomic data to investigate phylogenetic history and cryptic diversity within Tropidurus itambere, a lizard endemic to the Cerrado biodiversity hotspot. We applied a series of phylogenetic methods to reconstruct evolutionary relationships and a coalescent Bayesian species delimitation approach (BPP) to clarify species limits. The BPP results suggest that the widespread nominal taxon comprises a complex of 5 highly supported and geographically structured cryptic species. We highlight and discuss the different topological patterns recovered by concatenated and coalescent species tree methods for these closely related lineages. Finally, we suggest that the existence of cryptic lineages in the Cerrado is much more common than traditionally thought, highlighting the value of using NGS data and coalescent techniques to investigate patterns of species diversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Geographic Clustering of Cardiometabolic Risk Factors in Metropolitan Centres in France and Australia

    PubMed Central

    Paquet, Catherine; Chaix, Basile; Howard, Natasha J.; Coffee, Neil T.; Adams, Robert J.; Taylor, Anne W.; Thomas, Frédérique; Daniel, Mark

    2016-01-01

    Understanding how health outcomes are spatially distributed represents a first step in investigating the scale and nature of environmental influences on health and has important implications for statistical power and analytic efficiency. Using Australian and French cohort data, this study aimed to describe and compare the extent of geographic variation, and the implications for analytic efficiency, across geographic units, countries and a range of cardiometabolic parameters (Body Mass Index (BMI) waist circumference, blood pressure, resting heart rate, triglycerides, cholesterol, glucose, HbA1c). Geographic clustering was assessed using Intra-Class Correlation (ICC) coefficients in biomedical cohorts from Adelaide (Australia, n = 3893) and Paris (France, n = 6430) for eight geographic administrative units. The median ICC was 0.01 suggesting 1% of risk factor variance attributable to variation between geographic units. Clustering differed by cardiometabolic parameters, administrative units and countries and was greatest for BMI and resting heart rate in the French sample, HbA1c in the Australian sample, and for smaller geographic units. Analytic inefficiency due to clustering was greatest for geographic units in which participants were nested in fewer, larger geographic units. Differences observed in geographic clustering across risk factors have implications for choice of geographic unit in sampling and analysis, and highlight potential cross-country differences in the distribution, or role, of environmental features related to cardiometabolic health. PMID:27213423

  1. Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann

    2018-07-01

    Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.

  2. Distance, dams and drift: What structures populations of an endangered, benthic stream fish?

    USGS Publications Warehouse

    Roberts, James H.; Angermeier, Paul; Hallerman, Eric M.

    2013-01-01

    Spatial population structure plays an important role in species persistence, evolution and conservation. Benthic stream fishes are diverse and frequently imperilled, yet the determinants and spatial scaling of their population structure are understudied. We investigated the range-wide population genetic structure of Roanoke logperch (Percina rex), an endangered, benthic stream fish of the eastern United States. Fish were sampled from 35 sites and analysed at 11 microsatellite DNA loci. Clustering models were used to sort individuals into genetically cohesive groups and thereby estimate the spatial scaling of population structure. We then used Bayesian generalized linear mixed models (BGLMMs) to test alternative hypotheses about the environmental factors most responsible for generating structure, as measured by the differentiation statistic FST. Clustering models delineated seven discrete populations, whose boundaries coincided with agents of fragmentation, including hydroelectric dams and tailwaters. In the absence of hydrological barriers, gene flow was extensive throughout catchments, whereas there was no evidence for contemporary dispersal between catchments across barriers. In the best-supported BGLMM, FST was positively related to the spatial distance and degree of hydrological alteration between sites and negatively related to genetic diversity within sites. Whereas the effect of tailwaters was equivocal, dams strongly influenced differentiation: the effect of a dam on FST was comparable to that of a between-site distance of over 1200 km of unimpounded river. Overall, the effect of distance-mediated dispersal was negligible compared to the combined effects of fragmentation and genetic drift. The contemporary population structure of P. rex comprises a few geographically extensive ‘islands’ that are fragmented by hydroelectric projects. This information clarifies the importance of a catchment-scale perspective on conserving the species and suggests that its recovery may require genetic and/or demographic reconnection of presently isolated populations.

  3. Contrasting effects of geographical separation on the genetic population structure of sympatric species of mites in avocado orchards.

    PubMed

    Guzman-Valencia, S; Santillán-Galicia, M T; Guzmán-Franco, A W; González-Hernández, H; Carrillo-Benítez, M G; Suárez-Espinoza, J

    2014-10-01

    Oligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.

  4. Gene genealogies in geographically structured populations

    Treesearch

    Bryan K. Epperson

    1999-01-01

    Population genetics theory has dealt only with the spatial or geographic pattern of degrees of relatedness or genetic similarity separately for each point in time. However, a frequent goal of experimental studies is to infer migration patterns that occurred in the past or over extended periods of time. To fully understand how a present geographic pattern of genetic...

  5. Earthquake impact on settlements: the role of urban and structural morphology

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.; Armas, I.

    2015-10-01

    This study is aimed to create an alternative to the classical GIS representation of the impact of earthquake hazards on urban areas. To accomplish this, the traditional map was revised, so that it can cope with contemporary innovative ways of planning, namely strategic planning. As in the theory of fractals, the building dimension and the urban neighbourhood dimension are addressed as different geographic scales between which lessons for decisions can be learned through regression. The interaction between the two scales is useful when looking for alternatives, for the completion of a GIS analysis, and in choosing the landmarks, which, in the case of hazards, become strategic elements in strategic planning. A methodology to innovate mapping as a digital means for analysing and visualising the impact of hazards is proposed. This method relies on concepts from various geography, urban planning, structural engineering and architecture approaches related to disaster management. The method has been tested at the building scale for the N-S Boulevard in Bucharest, Romania, called Magheru. At the urban scale, an incident database has been created, in which the case study for the building level can be mapped. The paper presented is part of a larger research work, which addresses decision making using the framework shown here. The main value of the paper is in proposing a conceptual framework to deconstruct the map for digital earthquake disaster impact analysis and representation. The originality of the concept consists in the representation of elements at different scales considered to be of different levels of importance in the urban tissue, according to the analysis to be performed on them.

  6. Identification of racial disparities in breast cancer mortality: does scale matter?

    PubMed

    Tian, Nancy; Goovaerts, Pierre; Zhan, F Benjamin; Wilson, Jeff G

    2010-07-05

    This paper investigates the impact of geographic scale (census tract, zip code, and county) on the detection of disparities in breast cancer mortality among three ethnic groups in Texas (period 1995-2005). Racial disparities were quantified using both relative (RR) and absolute (RD) statistics that account for the population size and correct for unreliable rates typically observed for minority groups and smaller geographic units. Results were then correlated with socio-economic status measured by the percentage of habitants living below the poverty level. African-American and Hispanic women generally experience higher mortality than White non-Hispanics, and these differences are especially significant in the southeast metropolitan areas and southwest border of Texas. The proportion and location of significant racial disparities however changed depending on the type of statistic (RR versus RD) and the geographic level. The largest proportion of significant results was observed for the RD statistic and census tract data. Geographic regions with significant racial disparities for African-Americans and Hispanics frequently had a poverty rate above 10.00%. This study investigates both relative and absolute racial disparities in breast cancer mortality between White non-Hispanic and African-American/Hispanic women at the census tract, zip code and county levels. Analysis at the census tract level generally led to a larger proportion of geographical units experiencing significantly higher mortality rates for minority groups, although results varied depending on the use of the relative versus absolute statistics. Additional research is needed before general conclusions can be formulated regarding the choice of optimal geographic regions for the detection of racial disparities.

  7. Identification of racial disparities in breast cancer mortality: does scale matter?

    PubMed Central

    2010-01-01

    Background This paper investigates the impact of geographic scale (census tract, zip code, and county) on the detection of disparities in breast cancer mortality among three ethnic groups in Texas (period 1995-2005). Racial disparities were quantified using both relative (RR) and absolute (RD) statistics that account for the population size and correct for unreliable rates typically observed for minority groups and smaller geographic units. Results were then correlated with socio-economic status measured by the percentage of habitants living below the poverty level. Results African-American and Hispanic women generally experience higher mortality than White non-Hispanics, and these differences are especially significant in the southeast metropolitan areas and southwest border of Texas. The proportion and location of significant racial disparities however changed depending on the type of statistic (RR versus RD) and the geographic level. The largest proportion of significant results was observed for the RD statistic and census tract data. Geographic regions with significant racial disparities for African-Americans and Hispanics frequently had a poverty rate above 10.00%. Conclusions This study investigates both relative and absolute racial disparities in breast cancer mortality between White non-Hispanic and African-American/Hispanic women at the census tract, zip code and county levels. Analysis at the census tract level generally led to a larger proportion of geographical units experiencing significantly higher mortality rates for minority groups, although results varied depending on the use of the relative versus absolute statistics. Additional research is needed before general conclusions can be formulated regarding the choice of optimal geographic regions for the detection of racial disparities. PMID:20602784

  8. Scaling Up: Faculty Workload, Class Size, and Student Satisfaction in a Distance Learning Course on Geographic Information Science.

    ERIC Educational Resources Information Center

    Dibiase, David; Rademacher, Henry J.

    2005-01-01

    This article explores issues of scalability and sustainability in distance learning. The authors kept detailed records of time they spent teaching a course in geographic information science via the World Wide Web over a six-month period, during which class sizes averaged 49 students. The authors also surveyed students' satisfaction with the…

  9. Changes in Diversification Patterns and Signatures of Selection during the Evolution of Murinae-Associated Hantaviruses

    PubMed Central

    Castel, Guillaume; Razzauti, Maria; Jousselin, Emmanuelle; Kergoat, Gael J.; Cosson, Jean-François

    2014-01-01

    In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space. PMID:24618811

  10. Assessing organizational implementation context in the education sector: confirmatory factor analysis of measures of implementation leadership, climate, and citizenship.

    PubMed

    Lyon, Aaron R; Cook, Clayton R; Brown, Eric C; Locke, Jill; Davis, Chayna; Ehrhart, Mark; Aarons, Gregory A

    2018-01-08

    A substantial literature has established the role of the inner organizational setting on the implementation of evidence-based practices in community contexts, but very little of this research has been extended to the education sector, one of the most common settings for the delivery of mental and behavioral health services to children and adolescents. The current study examined the factor structure, psychometric properties, and interrelations of an adapted set of pragmatic organizational instruments measuring key aspects of the organizational implementation context in schools: (1) strategic implementation leadership, (2) strategic implementation climate, and (3) implementation citizenship behavior. The Implementation Leadership Scale (ILS), Implementation Climate Scale (ICS), and Implementation Citizenship Behavior Scale (ICBS) were adapted by a research team that included the original scale authors and experts in the implementation of evidence-based practices in schools. These instruments were then administered to a geographically representative sample (n = 196) of school-based mental/behavioral health consultants to assess the reliability and structural validity via a series of confirmatory factor analyses. Overall, the original factor structures for the ILS, ICS, and ICBS were confirmed in the current sample. The one exception was poor functioning of the Rewards subscale of the ICS, which was removed in the final ICS model. Correlations among the revised measures, evaluated as part of an overarching model of the organizational implementation context, indicated both unique and shared variance. The current analyses suggest strong applicability of the revised instruments to implementation of evidence-based mental and behavioral practices in the education sector. The one poorly functioning subscale (Rewards on the ICS) was attributed to typical educational policies that do not allow for individual financial incentives to personnel. Potential directions for future expansion, revision, and application of the instruments in schools are discussed.

  11. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe

    PubMed Central

    2011-01-01

    Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run. PMID:21859457

  12. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe.

    PubMed

    Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris

    2011-08-22

    Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.

  13. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  14. Back to the basics: Birmingham, Alabama, measurement and scale

    USGS Publications Warehouse

    Handley, L.R.; Lockwood, C.M.; Handley, N.

    2005-01-01

    Back to the Basics: Birmingham, Alabama is the fourth in a series of workshops that focus on teaching foundational map reading and spatial differentiation skills. It is the second published exercise from the Back to the Basics series developed by the Wetland Education through Maps and Aerial Photography (WETMAAP) Program (see Journal of Geography 103, 5: 226-230). Like its predecessor, the current exercise is modified from the Birmingham Back to the Basics workshop offered during the annual National Council for Geographic Education meeting. The focus of this exercise is on scale and measurement, foundational skills for spatial thinking and analysis. ?? 2005 National Council for Geographic Education.

  15. Offline constraints in online drug marketplaces: An exploratory analysis of a cryptomarket trade network.

    PubMed

    Norbutas, Lukas

    2018-06-01

    Cryptomarkets, or illegal anonymizing online platforms that facilitate drug trade, have been analyzed in a rapidly growing body of research. Previous research has found that, despite increased risks, cryptomarket sellers are often willing to ship illegal drugs internationally. There is little to no information, however, about the extent to which uncertainty and risk related to geographic constraints shapes buyers' behavior and, in turn, the structure of the global online drug trade network. In this paper, we analyze the structure of a complete cryptomarket trade network with a focus on the role of geographic clustering of buyers and sellers. We use publicly available crawls of the cryptomarket Abraxas, encompassing market transactions between 463 sellers and 3542 buyers of drugs in 2015. We use descriptive social network analysis and Exponential Random Graph Models (ERGM) to analyze the structure of the trade network. The structure of the online drug trade network is primarily shaped by geographical boundaries. Buyers are more likely to buy from multiple sellers within a single country, and avoid buying from sellers in different countries, which leads to strong geographic clustering. The effect is especially strong between continents and weaker for countries within Europe. A small fraction of buyers (10%) account for more than a half of all drug purchases, while most buyers only buy once. Online drug trade networks might still be heavily shaped by offline (geographic) constraints, despite their ability to provide access for end-users to large international supply. Cryptomarkets might be more "localized" and less international than thought before. We discuss potential explanations for such geographical clustering and implications of the findings. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. USGS compilation of geographic information system (GIS) data representing coal mines and coal-bearing areas in China

    USGS Publications Warehouse

    Trippi, Michael H.; Belkin, Harvey E.; Dai, Shifeng; Tewalt, Susan J.; Chou, Chiu-Jung; Trippi, Michael H.; Belkin, Harvey E.; Dai, Shifeng; Tewalt, Susan J.; Chou, Chiu-Jung

    2015-01-01

    Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled geographic information system (GIS) data representing the known coal mine locations and coal-mining areas of China as of 2001. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of China. Province-scale maps were also created to display the point locations of coal mines and the coal-mining areas. In addition, coal-field outlines from a previously published map by Dai and others (2012) were also digitized and are available for download as a separate GIS data file, and shown in a nation-scale map of China. Chemical data for 332 coal samples from a previous USGS study of China and Taiwan (Tewalt and others, 2010) are included in a downloadable GIS point shapefile, and shown on a nation-scale map of China. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.

  17. Ethnicity and Population Structure in Personal Naming Networks

    PubMed Central

    Mateos, Pablo; Longley, Paul A.; O'Sullivan, David

    2011-01-01

    Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how ‘naming networks’, constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply ‘emerge’ from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new understandings of migration, identity, integration and social interaction across the world. PMID:21909399

  18. Mapping and modeling the urban landscape in Bangkok, Thailand: Physical-spectral-spatial relations of population-environmental interactions

    NASA Astrophysics Data System (ADS)

    Shao, Yang

    This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.

  19. Spatial Genetic Structure and Mitochondrial DNA Phylogeography of Argentinean Populations of the Grasshopper Dichroplus elongatus

    PubMed Central

    Rosetti, Natalia; Remis, Maria Isabel

    2012-01-01

    Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss associated with recent anthropogenic fragmentation of the D. elongatus studied range. PMID:22859953

  20. Contingency planning for a deliberate release of smallpox in Great Britain--the role of geographical scale and contact structure.

    PubMed

    House, Thomas; Hall, Ian; Danon, Leon; Keeling, Matt J

    2010-02-14

    In the event of a release of a pathogen such as smallpox, which is human-to-human transmissible and has high associated mortality, a key question is how best to deploy containment and control strategies. Given the general uncertainty surrounding this issue, mathematical modelling has played an important role in informing the likely optimal response, in particular defining the conditions under which mass-vaccination would be appropriate. In this paper, we consider two key questions currently unanswered in the literature: firstly, what is the optimal spatial scale for intervention; and secondly, how sensitive are results to the modelling assumptions made about the pattern of human contacts? Here we develop a novel mathematical model for smallpox that incorporates both information on individual contact structure (which is important if the effects of contact tracing are to be captured accurately) and large-scale patterns of movement across a range of spatial scales in Great Britain. Analysis of this model confirms previous work suggesting that a locally targeted 'ring' vaccination strategy is optimal, and that this conclusion is actually quite robust for different socio-demographic and epidemiological assumptions. Our method allows for intuitive understanding of the reasons why national mass vaccination is typically predicted to be suboptimal. As such, we present a general framework for fast calculation of expected outcomes during the attempted control of diverse emerging infections; this is particularly important given that parameters would need to be interactively estimated and modelled in any release scenario.

  1. Natural resource inventory and monitoring for Ulaan Taiga Specially Protected Areas—An assessment of needs and opportunities in northern Mongolia

    USGS Publications Warehouse

    Moore, Peggy E.; Meyer, Joseph B.; Chow, Leslie S.

    2017-03-10

    Between 1997 and 2011, Mongolia established three specially protected areas in the north-central part of the country to protect various high-value resources. These areas are jointly referred to as the Ulaan Taiga Specially Protected Areas. In accordance with the goals of the draft general management plan, this report identifies options for initiating an inventory and monitoring program for the three protected areas. Together, the three areas comprise over 1.5 million hectares of mountainous terrain west of Lake Hovsgol and bordering the Darkhad Valley. The area supports numerous rare ungulates, endangered fish, and over 40 species of threatened plants. Illegal mining, illegal logging, and poaching pose the most immediate threats to resources. As a first step, a review of published literature would inform natural resource management at the Ulaan Taiga Specially Protected Areas because it would inform other inventories.Vegetation classification and mapping also would inform other inventory efforts because the process incorporates geographic analysis to identify environmental gradients, fine-scale sampling that captures species composition and structure, and landscape-scale results that represent the variety and extent of habitats for various organisms. Mapping using satellite imagery reduces the cost per hectare.Following a determination of existing knowledge, field surveys of vertebrates and vascular plants would serve to build species lists and fill in gaps in existing knowledge. For abiotic resources, a focus on monitoring air quality, evaluating and monitoring water quality, and assembling and storing weather data would provide information for correlating resource response status with changing environmental conditions.Finally, we identify datasets that, if incorporated into a geographic information system, would inform resource management. They include political boundaries, infrastructure, topography, surficial geology, hydrology, fire history, and soils.In terms of tracking high-value resources, vegetation monitoring at the plot scale would provide a basis for detecting change in such characteristics as plant species composition, vegetation structure, and productivity that are associated with landscape-scale factors such as climate change or biotic interactions. Continued population monitoring of rare ungulates, particularly argali or wild sheep (Ovis ammon), would provide information on how populations are responding to natural and anthropogenic stressors. Siberian taimen (Hucho taimen) also is an important monitoring target given ongoing threats of poaching and climate change.

  2. Deconstructing mammal dispersals and faunal dynamics in SW Europe during the Quaternary

    NASA Astrophysics Data System (ADS)

    Palombo, Maria Rita

    2014-07-01

    This research aims to investigate the relationships between climate change and faunal dynamics in south-west Europe, disentangling the asynchronous and diachronous dispersal bioevents of large mammals across geographical and ecological boundaries, analysing biodiversity and its changes through time. The analysis of local versus regional biological dynamics may shed new light on whether turnovers and ecological and evolutionary changes developed because of global climate changes and related phenomena, or because of intrinsic biological factors. The SW European Quaternary fossil record is particularly suitable for studying the role of climate change at local and regional levels because of the complex physiographic and climatic heterogeneity of the study area, the presence of important geographical/ecological barriers and the complex history of invasions of species of varying geographical origin and provenance. The data base consists of taxonomically revised lists of large mammal species from selected SW European local faunal assemblages ranging in age from the Early to the late Middle Pleistocene (middle Villafranchian to early Aurelian European Land Mammal Ages). The new biochronological scheme proposed here allows for the comparison of local turnovers and biodiversity trends, yielding a better understanding of the action of geographical/ecological barriers that either prevented the range of some taxa from reaching some regions or caused delays in the dispersal of a taxon in some territories. The results obtained provide evidence that major environmental perturbations, triggering dispersal events and removing keystone species, modified the structure of the pre-existing mammalian faunas, merging previously independently-evolved taxa into new palaeo-communities. The coupled action of climatic changes and internal biotic dynamics thus caused the Quaternary SW European faunal complexes to significantly restructure. Diachroneity in local turnover across the study area probably relates to differences in local dynamic patterns of competition/coevolution, although different manifestations of global climate changes in different geographic settings would have contributed to the scale of local bioevents.

  3. Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors

    NASA Astrophysics Data System (ADS)

    Piñeros, Victor Julio; Gutiérrez-Rodríguez, Carla

    2017-09-01

    We assessed geographic patterns of genetic variation and connectivity in the widely distributed coral-reef fish Abudefduf saxatilis at different temporal scales. We sequenced two mitochondrial regions (cytochrome b and control region) and genotyped 12 microsatellite loci in a total of 296 individuals collected from 14 reefs in two biogeographic provinces in the tropical western Atlantic Ocean and from three provinces within the Caribbean Sea. We used phylogeography, population genetics and coalescent methods to assess the potential effects of climatic oscillations in the Pleistocene and contemporary oceanographic barriers on the population genetic structure and connectivity of the species. Sequence analyses indicated high genetic diversity and a lack of genetic differentiation throughout the Caribbean and between the two biogeographic provinces. Different lines of evidence depicted demographic expansions of A. saxatilis populations dated to the Pleistocene. The microsatellites exhibited high genetic diversity, and no genetic differentiation was detected within the Caribbean; however, these markers identified a genetic discontinuity between the two western Atlantic biogeographic provinces. Migration estimates revealed gene flow across the Amazon-Orinoco Plume, suggesting that genetic divergence may be promoted by differential environmental conditions on either side of the barrier. The climatic oscillations of the Pleistocene, together with oceanographic barriers and the dispersal potential of the species, constitute important factors determining the geographic patterns of genetic variation in A. saxatilis.

  4. Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments

    PubMed Central

    Graham, Catherine H.; Brooks, Thomas M.; Rondinini, Carlo; Hedges, S. Blair; Davidson, Ana D.; Costa, Gabriel C.

    2016-01-01

    The taxonomic, phylogenetic and trait dimensions of beta diversity each provide us unique insights into the importance of historical isolation and environmental conditions in shaping global diversity. These three dimensions should, in general, be positively correlated. However, if similar environmental conditions filter species with similar trait values, then assemblages located in similar environmental conditions, but separated by large dispersal barriers, may show high taxonomic, high phylogenetic, but low trait beta diversity. Conversely, we expect lower phylogenetic diversity, but higher trait biodiversity among assemblages that are connected but are in differing environmental conditions. We calculated all pairwise comparisons of approximately 110 × 110 km grid cells across the globe for more than 5000 mammal species (approx. 70 million comparisons). We considered realms as units representing geographical distance and historical isolation and biomes as units with similar environmental conditions. While beta diversity dimensions were generally correlated, we highlight geographical regions of decoupling among beta diversity dimensions. Our analysis shows that assemblages from tropical forests in different realms had low trait dissimilarity while phylogenetic beta diversity was significantly higher than expected, suggesting potential convergent evolution. Low trait beta diversity was surprisingly not found between isolated deserts, despite harsh environmental conditions. Overall, our results provide evidence for parallel assemblage structure of mammal assemblages driven by environmental conditions at a global scale. PMID:27559061

  5. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  6. Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds.

    PubMed

    Amos, Nevil; Harrisson, Katherine A; Radford, James Q; White, Matt; Newell, Graeme; Mac Nally, Ralph; Sunnucks, Paul; Pavlova, Alexandra

    2014-06-01

    Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region. We tested these predictions by evaluating spatially explicit isolation-by-landscape-resistance models of gene flow in fragmented landscapes across a 50 x 170 km study area in central Victoria, Australia, using individual and population genetic distances. To account for sex-biased dispersal and potential scale- and configuration-specific effects, we fitted models specific to sex and geographic zones. As predicted, four of the least mobile decliners showed evidence of reduced genetic connectivity. The responses were strongly sex specific, but in opposite directions in the two most sedentary species. Both tolerant species and (unexpectedly) four of the more mobile decliners showed no reduction in gene flow. This is unlikely to be due to time lags because more mobile species develop genetic signatures of fragmentation faster than do less mobile ones. Weaker genetic effects were observed in the geographic zone with more aggregated vegetation, consistent with gene flow being unimpeded by landscape structure. Our results indicate that for all but the most sedentary species in our system, the movement of the more dispersive sex (females in most cases) maintains overall genetic connectivity across fragmented landscapes in the study area, despite some small-scale effects on the more philopatric sex for some species. Nevertheless, to improve population viability for the less mobile bird species, structural landscape connectivity must be increased.

  7. Multilocus phylogeography of the common lizard Zootoca vivipara at the Ibero-Pyrenean suture zone reveals lowland barriers and high-elevation introgression

    PubMed Central

    2013-01-01

    Background The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure. Results The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. Conclusions The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa. PMID:24021154

  8. Source identification of western Oregon Douglas-fir wood cores using mass spectrometry and random forest classification1

    PubMed Central

    Finch, Kristen; Espinoza, Edgard; Jones, F. Andrew; Cronn, Richard

    2017-01-01

    Premise of the study: We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA. Methods: Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic origin. Specific wood molecules that contributed to geographic discrimination were identified. Results: Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identified as key for classifying western Oregon Douglas-fir wood cores to geographic origin. Discussion: DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moderate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identifying the geographic origin of illegally harvested wood. PMID:28529831

  9. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures.

    PubMed

    Seth-Smith, H M B; Busó, Leonor Sánchez; Livingstone, M; Sait, M; Harris, S R; Aitchison, K D; Vretou, Evangelia; Siarkou, V I; Laroucau, K; Sachse, K; Longbottom, D; Thomson, N R

    2017-05-04

    Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable.

  10. Explaining geographic gradients in winter selection of landscapes by boreal caribou with implications under global changes in Eastern Canada.

    PubMed

    Beguin, Julien; McIntire, Eliot J B; Fortin, Daniel; Cumming, Steven G; Raulier, Frédéric; Racine, Pierre; Dussault, Claude

    2013-01-01

    Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.

  11. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum

    PubMed Central

    Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1–3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry. PMID:28056060

  12. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum.

    PubMed

    Zhang, Xiuqing; Xu, Zhangyang; Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1-3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry.

  13. Large-scale gene flow in the barnacle Jehlius cirratus and contrasts with other broadly-distributed taxa along the Chilean coast

    PubMed Central

    Guo, Baoying

    2017-01-01

    We evaluate the population genetic structure of the intertidal barnacle Jehlius cirratus across a broad portion of its geographic distribution using data from the mitochondrial cytochrome oxidase I (COI) gene region. Despite sampling diversity from over 3,000 km of the linear range of this species, there is only slight regional structure indicated, with overall Φ CT of 0.036 (p < 0.001) yet no support for isolation by distance. While these results suggest greater structure than previous studies of J. cirratus had indicated, the pattern of diversity is still far more subtle than in other similarly-distributed species with similar larval and life history traits. We compare these data and results with recent findings in four other intertidal species that have planktotrophic larvae. There are no clear patterns among these taxa that can be associated with intertidal depth or other known life history traits. PMID:28194316

  14. GIS applications for military operations in coastal zones

    USGS Publications Warehouse

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E.L.; Welch, R.

    2009-01-01

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations. ?? 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  15. GIS applications for military operations in coastal zones

    NASA Astrophysics Data System (ADS)

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E. L.; Welch, R.

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations.

  16. A leap forward in geographic scale for forest ectomycorrhizal fungi

    Treesearch

    Filipa Cox; Nadia Barsoum; Martin I. Bidartondo; Isabella Børja; Erik Lilleskov; Lars O. Nilsson; Pasi Rautio; Kath Tubby; Lars Vesterdal

    2010-01-01

    In this letter we propose a first large-scale assessment of mycorrhizas with a European-wide network of intensively monitored forest plots as a research platform. This effort would create a qualitative and quantitative shift in mycorrhizal research by delivering the first continental-scale map of mycorrhizal fungi. Readersmay note that several excellent detailed...

  17. Geographic variations of the bird-borne structural risk of West Nile virus circulation in Europe

    PubMed Central

    Durand, Benoit; Tran, Annelise; Balança, Gilles

    2017-01-01

    The structural risk of West Nile Disease results from the usual functioning of the socio-ecological system, which may favour the introduction of the pathogen, its circulation and the occurrence of disease cases. Its geographic variations result from the local interactions between three components: (i) reservoir hosts, (ii) vectors, both characterized by their diversity, abundance and competence, (iii) and the socio-economic context that impacts the exposure of human to infectious bites. We developed a model of bird-borne structural risk of West Nile Virus (WNV) circulation in Europe, and analysed the association between the geographic variations of this risk and the occurrence of WND human cases between 2002 and 2014. A meta-analysis of WNV serosurveys conducted in wild bird populations was performed to elaborate a model of WNV seropositivity in European bird species, considered a proxy for bird exposure to WNV. Several eco-ethological traits of bird species were linked to seropositivity and the statistical model adequately fitted species-specific seropositivity data (area under the ROC curve: 0.85). Combined with species distribution maps, this model allowed deriving geographic variations of the bird-borne structural risk of WNV circulation. The association between this risk, and the occurrence of WND human cases across the European Union was assessed. Geographic risk variations of bird-borne structural risk allowed predicting WND case occurrence in administrative districts of the EU with a sensitivity of 86% (95% CI: 0.79–0.92), and a specificity of 68% (95% CI: 0.66–0.71). Disentangling structural and conjectural health risks is important for public health managers as risk mitigation procedures differ according to risk type. The results obtained show promise for the prevention of WND in Europe. Combined with analyses of vector-borne structural risk, they should allow designing efficient and targeted prevention measures. PMID:29023472

  18. A database paradigm for the management of DICOM-RT structure sets using a geographic information system

    NASA Astrophysics Data System (ADS)

    Shao, Weber; Kupelian, Patrick A.; Wang, Jason; Low, Daniel A.; Ruan, Dan

    2014-03-01

    We devise a paradigm for representing the DICOM-RT structure sets in a database management system, in such way that secondary calculations of geometric information can be performed quickly from the existing contour definitions. The implementation of this paradigm is achieved using the PostgreSQL database system and the PostGIS extension, a geographic information system commonly used for encoding geographical map data. The proposed paradigm eliminates the overhead of retrieving large data records from the database, as well as the need to implement various numerical and data parsing routines, when additional information related to the geometry of the anatomy is desired.

  19. CHARACTERIZATION OF SMALL ESTUARIES AS A COMPONENT OF A REGIONAL-SCALE MONITORING PROGRAM

    EPA Science Inventory

    Large-scale environmental monitoring programs, such as EPA's Environmental Monitoring and Assessment Program (EMAP), by nature focus on estimating the ecological condition of large geographic areas. Generally missing is the ability to provide estimates of condition of individual ...

  20. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    PubMed

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.

Top