Sample records for scale heater test

  1. The effect of hard water scale buildup and water treatment on residential water heater performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbert, S.G.; Stickford, G.H.; Newman, D.C.

    Conventional gas and electric storage-type residential water heaters were operated at four different U.S. cities under accelerated test conditions to measure the effect of scale buildup on efficiency and to assess the benefits and limitations of common water treatment methods. The four selected test sites had hard water supplied with expected scale-forming tendencies and were located in Columbus, OH; Lisle, IL; Roswell, NM; and Marshall, MN. The main conclusions are as follows. After 60 lbs (27 kg) of scale buildup at two of the test sites (representing an estimated 20 years of equivalent scale buildup), the efficiency of the gasmore » water heaters gradually declined about 5%, while that of the electric water heaters remained constant. However, the buildup of scale in the electric heaters caused the electric heating element to fail periodically, and in the gas-fired heaters, it caused the tank metal temperatures near the burner to operate hotter. Treated water (either softened, softened plus polyphosphate, or hard plus polyphosphate) effectively reduced scale buildup and tended to reduce the corrosion rates of the metal test coupons in hot water.« less

  2. Effect of water quality on residential water heater life-cycle efficiency. Annual report, September 1983-August 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stickford, G.H.; Talbert, S.G.; Newman, D.C.

    A 3-year field test program is under way for the Gas Research Institute to quantify the effect of scale buildup on the performance of residential water heaters, and to determine the benefits and limitations of common water-treatment methods. In this program, the performance of gas and electric heaters is being monitored in test laboratories set up in selected U.S. cities. The efficiency of heaters operating on hard water is measured and compared with the performance of heaters operating on treated water. Corrosion tests are also being conducted on each type of water tested to determine the effect of water treatmentmore » on the corrosion of the water heating system. During this reporting period Battelle has established operating hard water test facilities at four test sites: (1) Battelle, (2) the Roswell Test Facility in Roswell, New Mexico, (3) the Water Quality Association in Lisle, Illinois, and (4) the Marshall Municipal Utilities in Marshall, Minnesota. At each of these sites 12 water heaters have been installed and are operating on accelerated draw cycles. The recovery efficiency of each heater has been carefully measured, and the heaters have been operating from 4 months at one site to 7 months at another. At two of the test sites, the recovery efficiency of each heater has been remeasured after 6 months of operation. No significant degradation in heater performance due to scale buildup was observed in these heaters for the equivalent of 2 to 3 years of typical residential use.« less

  3. Probe tip heating assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Roger William; Oh, Yunje

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably receivedmore » and clamped within the socket.« less

  4. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  5. Effect of water quality on residential water heater life-cycle efficiency. Annual report, 3 September 1984-August 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbert, S.G.; Newman, D.C.; Stickford, G.H.

    During this long-term field test program, conventional gas and electric water heaters were operated at four different U.S. cities under accelerated test conditions to quantify the effect of scale buildup on performance, and to assess the benefits and limitations of common water-treatment methods. The four test sites were located in Columbus, Ohio; Lisle, Illinois; Roswell, New Mexico, and Marshall, Minnesota. The heaters recovery efficiencies were remeasured at approximately 6-month intervals to determine any changes in recovery efficiency. In addition, corrosion coupons made of steel, galvanized steel, copper, and brass were exposed to the four types of water at each sitemore » for periods of up to 9 months. Four gas water heaters will remain on test in Columbus, Ohio for another year.« less

  6. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  7. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumentedmore » and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.« less

  8. Rock Melt Borehole Sealing System, Final Technical Report for SBIR Phase I Grant No. DE-SC0011888

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osnes, John D.; Vining, Cody A.; Nopola, Jay R.

    Purpose of Research Deep borehole disposal is one option that has received attention in recent years as a possible strategy for long-term disposal of the tens of thousands of tons of spent nuclear fuel. The feasibility of the deep borehole option relies upon designing and constructing an effective seal within the borehole to ensure that the waste package does not communicate with the shallow subsurface biosphere through the borehole itself. Some of the uncertainty associated with the long-term suitability of the deep borehole option is related to (1) the degradation of traditional sealing materials over time and (2) the inabilitymore » of traditional sealing methods to adequately seal a Disturbed Rock Zone surrounding the borehole. One possible system to address these concerns consists of encapsulating the waste in a melt generated from either the waste itself or a plug above the waste. This current project expanded on previous work to further advance the deep borehole disposal concept. Research Objectives & Findings The overarching objective of the study was to evaluate the feasibility of constructing a downhole heater that is capable of meeting the technical and logistical requirements to melt rock. This ultimate objective was accomplished by two primary approaches. The first approach was to define the heater requirements and conceptually design a system that is capable of melting rock. The second approach was to determine the feasibility of conducting an in situ, field-scale melting experiment to validate the suitability of the rock melt seal concept. The evaluation and conceptual design of the heater system resulted in the following primary findings: • Borehole wall temperatures capable of producing a partial melt are achievable under most expected thermal conductivities with a 12-kilowatt heater. • Commercially available components have been identified that meet the requirements of the heater system, including resistive elements that are capable of providing the required heat generation, container materials that can withstand the anticipated temperatures, and a system capable of providing power to the heater. Evaluating the feasibility of performing field-scale experiments resulted in the following major findings: • The Sanford Underground Research Facility (SURF) has been identified as a host site for field testing of prototype heaters. The technical and logistical requirements for performing the rock melt tests can be met by using or expanding the existing infrastructure at SURF with on-site personnel and contractors. • In situ hydraulic conductivity test using packers can test the effectiveness of the rock melt seal, while a mine back performed from a lower level can further evaluate the recrystallized melt. • Preliminary costing indicates that a field-scale melting experiment at SURF is feasible within a Phase II Small Business Innovation Research budget while allowing sufficient budget for refining the heater design, coordinating the test program, and interpreting the results. Application of Research The rock melt sealing concept has the potential to reduce uncertainty associated with the long-term storage of nuclear waste. Preliminary efforts of this study defined the requirements of a downhole heater system capable of melting rock and indicated that developing such a system is feasible using available technology. The next logical step is designing and manufacturing prototype heaters. Concurrent with prototype development is coordinating robust field-scale experiments that are capable of validating the design for marketing to potential users.« less

  9. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  10. Evaluation of Heating Methods for Thermal Structural Testing of Large Structures

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.

    1998-01-01

    An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.

  11. SINGLE HEATER TEST FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.B. Cho

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Planmore » by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between multiple organizations performing their part in the test.« less

  12. Scale Model Test and Transient Analysis of Steam Injector Driven Passive Core Injection System for Innovative-Simplified Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).

  13. Thermocouple psychrometer measurements of in situ water potential changes in heated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Nai-hsien; Wang, H.F.

    1991-05-01

    Ten thermocouple psychrometers (TCPs) to measure water potential (WP) were installed in three holes in G-Tunnel at the Nevada Test Site as part of the Prototype Engineered Barrier System Field Tests. These integrated tests measured several parameters as a function of location and time within a few meters of a heater emplaced in welded tuff. The primary goal of the TCP experiment was to find out whether the combination of laboratory calibration and field use of the TCP can provide useful data for determining the change of moisture condition in the field. We calibrated the TCPs in NaCl solutions upmore » to 80{degree}C(176{degree}F) in the laboratory. In two holes, we used rubber sleeves and packers to house TCPs, and in the third hole, we used foam. All three holes were grouted behind the TCP assemblages. Field results of the heater test showed that small temperature gradients were present for all measurements. Nevertheless, the WP calibration made the necessary correction for the nonisothermal condition. A drying and re-wetting cycle peaked at about day 140 with a WP of -65 bar in borehole P3, located below the heater. A similar cycle but reduced in scale was found at about day 175 with a WP of -45 bar in borehole P2, above the heater. This difference in drying behavior above and below the heater was also observed from neutron data and was explained as a gravity effect. As temperatures increased, the evaporation rate of pore water increased, In unfractured rock, the gas-phase flow was primarily outward. Water condensed above the heater would drain back to keep the boiling region wet, but water condensed below the heater would drain away from the boiling region. This conceptual model explained both the time and magnitude differences for data from holes above and below the heater. 7 refs., 14 figs., 2 tabs.« less

  14. Quench protection challenges in long nb3sn accelerator magnets

    NASA Astrophysics Data System (ADS)

    Salmi, Tiina-Mari; Ambrosio, G.; Caspi, S.; Chlachidze, Guram; Dhallé, Marc; Felice, Helene; Ferracin, Paolo; Marchevsky, M.; Sabbi, G. L.; ten Kate, H. H. J.

    2012-06-01

    The quench protection of the several meter long, large aperture high-field Nb3Sn quadrupoles that the LARP collaboration is developing for the LHC interaction region upgrade, requires efficient protection heaters to quickly generate large resistive segments across the windings. To support the protection design, experiments in the recently tested LARP R&D magnets are aimed to characterize the coil response to different protection schemes. In particular, the delay to quench and the final hotspot temperatures are evaluated after firing the heaters at different powering regimes and coverage. Also, the contribution of external energy extraction is investigated. Based on the performed studies and computer simulations, it seems that if the same protection efficiency per unit length that is measured in a 1 m long model magnet can be scaled to a 3.6 m long magnet, and the heater coverage can be improved, about 1 MJ/m of stored energy can be absorbed in the magnet after a quench. However, significant technology developments are needed to scale the protection heater efficiency to longer magnets and to increase the coverage.

  15. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  16. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  17. The Physics of Boiling at Burnout

    NASA Technical Reports Server (NTRS)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  18. Effect of boundary conditions on thermal plume growth

    NASA Astrophysics Data System (ADS)

    Kondrashov, A.; Sboev, I.; Rybkin, K.

    2016-07-01

    We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.

  19. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  20. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  1. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    NASA Technical Reports Server (NTRS)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  2. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Murphy, Richard W.; Rice, C. Keith

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service aftermore » the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).« less

  3. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Preparation of thermal fluid heater for inspection and test. 61.30-5 Section 61.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for...

  4. Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael

    2000-01-01

    This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.

  5. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  6. Oxidation and corrosion resistance of candidate Stirling engine heater-head-tube alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1984-01-01

    Sixteen candidate iron base Stirling engine heater head tube alloys are evaluated in a diesel fuel fired simulator materials test rig to determine their oxidation and corrosion resistance. Sheet specimens are tested at 820 C for 3500 hr in 5 hr heating cycles. Specific weight change data and an attack parameter are used to categorize the alloys into four groups; 10 alloys show excellent for good oxidation and corrosion resistance and six alloys exhibit poor or catastrophic resistance. Metallographic, X-ray, and electron microprobe analyses aid in further characterizing the oxidation and corrosion behavior of the alloys. Alloy compositions, expecially the reactive elements aluminum, titanium, and chromium, play a major role in the excellent oxidation and corrosion behavior of the alloys. The best oxidation resistance is associated with the formation of an iron nickel aluminum outer oxide scale, an intermediate oxide scale rich in chromium and titanium, and an aluminum outer oxide scale adjacent to the metallic substrate, which exhibits a zone of internal oxidation of aluminum and to some extent titanium.

  7. Thermal–hydraulic–mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste

    DOE PAGES

    Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny; ...

    2016-04-28

    The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.

  8. Thermal–hydraulic–mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny

    The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.

  9. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test-object surface that includes multiple areas with differing optical properties.

  10. Packaged die heater

    DOEpatents

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  11. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high-permeability wing heater boreholes and escapes the test block through an open bulkhead that connects the HD to the outside world. We show that this vapor transport makes a significant difference in the validation of numerical models against TH processes in the DST. A huge volume of data, including changes in temperature and saturation of the rock, has been collected from the DST. Sophisticated conceptual and numerical models, based on the TOUGH2 simulator, have been developed to analyze these data and to help develop a better understanding of various aspects of coupled TH processes in unsaturated fractured tuff. In general, these models have predicted a close match between measured and simulated results, indicating a good representation of the underlying physical processes. However, there are subtle differences in the predictions from these models. Of particular interest here are two models: One in which vapor transport was considered through the natural fractures only, and the other in which vapor transport through the boreholes housing the wing heaters was included in addition to that through natural fractures. Direct statistical comparison of simulated and measured temperatures from more than 1,700 sensors yielded a mean error of 3-4oC for the first model, indicating that less heat was retained in the test block than that predicted by the model. On the other hand, a similar statistical comparison yielded a mean error of 1-2oC for the second model, suggesting that inclusion of vapor loss through the boreholes produces results closer to the measured data.

  12. Department of Energy Semiannual Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ...: Energy Efficiency Standards for Pool Heaters and Direct Heating Equipment and Water Heaters, and Test... EFFICIENCY STANDARDS FOR POOL HEATERS AND DIRECT HEATING EQUIPMENT AND WATER HEATERS Legal Authority: 42 USC... and direct heating equipment. This is the second review for water heaters. Timetable: Action Date FR...

  13. NEXT Thruster Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Sovey, James S.

    2007-01-01

    Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.

  14. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    NASA Astrophysics Data System (ADS)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  15. A Coupled THMC model of FEBEX mock-up test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Samper, Javier

    2008-09-15

    FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model ofmore » the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.« less

  16. Novel MEMS Apparatus for In Situ Thermo-Mechanical Tensile Testing of Materials at the Micro- and Nano-Scale (Preprint)

    DTIC Science & Technology

    2009-04-01

    outer ends of the MEMS-stage connect the stage to a macroscopic piezo -electric actuated test frame using rigid pins. In order to apply uniaxial...carbide also served as the resistor for Joule heating. This heater was used to melt glass (Soda lime glass, softening temperature: 720C, Gold Seal

  17. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Brewer, Ethan J.; Pawlik, Ralph

    2013-01-01

    This report provides test methodology details and qualitative results for the first structural benchmark creep test of an Advanced Stirling Convertor (ASC) heater head of ASC-E2 design heritage. The test article was recovered from a flight-like Microcast MarM-247 heater head specimen previously used in helium permeability testing. The test article was utilized for benchmark creep test rig preparation, wall thickness and diametral laser scan hardware metrological developments, and induction heater custom coil experiments. In addition, a benchmark creep test was performed, terminated after one week when through-thickness cracks propagated at thermocouple weld locations. Following this, it was used to develop a unique temperature measurement methodology using contact thermocouples, thereby enabling future benchmark testing to be performed without the use of conventional welded thermocouples, proven problematic for the alloy. This report includes an overview of heater head structural benchmark creep testing, the origin of this particular test article, test configuration developments accomplished using the test article, creep predictions for its benchmark creep test, qualitative structural benchmark creep test results, and a short summary.

  18. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    .... Treatment of Fossil-Fuel Consumption in Existing Test Procedures for Fossil-Fuel Vented Heaters 2. Specific.... Proposed Test Procedure Amendments for Pool Heaters 1. Treatment of Fossil-Fuel Consumption in Existing.... Fossil-fuel standby mode and off mode energy use is already integrated into the vented [[Page 52895...

  19. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  20. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  1. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Zyvoloski, George Anthony; Weaver, Douglas James

    The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test thatmore » is likely to span several years.« less

  3. 75 FR 21777 - Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... flexibility analyses: Energy Efficiency Standards for Pool Heaters and Direct Heating Equipment and Water... Heaters and Direct Heating Equipment and Water 1904-AA90 Heaters 119 Test Procedures for Walk-In Coolers... Renewable Energy (EE) 118. ENERGY EFFICIENCY STANDARDS FOR POOL HEATERS AND DIRECT HEATING EQUIPMENT AND...

  4. Flight set 360T004 (STS-30) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    The Redesigned Solid Rocket Motors (RSRM) of the Space Transportation System have three field joints that are protected by the Joint Protection Systems (JPS). The igniter heater was mounted on the igniter flange. This report documents the performance of the JPS and igniter heaters on the pad and the post-flight condition of the JPS components. All observations that were written up as Squawks and/or Problem Reports are also discussed. The primary heaters performed satisfactorily and maintained the field joint temperatures within the required temperature range. A secondary heater failed Dielectric Withstanding Voltage (DWV) test during the joint closeout prior to launch. This heater was not used, however, since the primary heater functioned properly. Post-test inspection revealed that pin A of the heater power cable was shorted to the connector shell. Design changes have been implemented to resolve the heater power cable problem. All field joint assemblies met all of the performance requirements.

  5. TOTAL PARTICLE, SULFATE, AND ACIDIC AEROSOL EMISSIONS FROM KEROSENE SPACE HEATERS

    EPA Science Inventory

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine part...

  6. Low cost solar array project silicon materials task. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Fey, M. G.

    1981-01-01

    The experimental verification system for the production of silicon via the arc heater-sodium reduction of SiCl4 was designed, fabricated, installed, and operated. Each of the attendant subsystems was checked out and operated to insure performance requirements. These subsystems included: the arc heaters/reactor, cooling water system, gas system, power system, Control & Instrumentation system, Na injection system, SiCl4 injection system, effluent disposal system and gas burnoff system. Prior to introducing the reactants (Na and SiCl4) to the arc heater/reactor, a series of gas only-power tests was conducted to establish the operating parameters of the three arc heaters of the system. Following the successful completion of the gas only-power tests and the readiness tests of the sodium and SiCl4 injection systems, a shakedown test of the complete experimental verification system was conducted.

  7. Forced convection in vertical Bridgman configuration with the submerged heater

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Ostrogorsky, A. G.

    1997-02-01

    Ga-doped Ge single crystals were grown in vertical Bridgman configuration, using the submerged heater method (SHM). When used without rotation, the submerged heater drastically reduces convection at the solid-liquid interface. When the submerged heater is set in to rotation or oscillatory rotation, it acts as a centrifugal viscous pump, inducing forced convection (radial-inward flow) along the interface. The flow produced by a rotation and oscillatory rotation of the submerged heater was visualized using a 1 : 1 scale model. The vigorous mixing produced by the oscillatory rotation creates a nearly perfectly stirred melt, and yields a uniform lateral distribution of the dopant. The crystals were free of unintentionally produced striae.

  8. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... fossil fuel as applicable to a given water heater. Specifically, the standby loss testing in the existing... important to note that fossil-fueled direct heating equipment and pool heaters typically consume both fossil... procedures for direct heating equipment, fossil-fuel energy consumption is accounted for comprehensively over...

  9. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water heaters...

  10. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water heaters...

  11. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  12. Radioelements and their occurrence with secondary minerals in heated and unheated tuff at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flexser, S.; Wollenberg, H.A.

    1992-06-01

    Samples of devitrified welded tuff near and away from the site of a heater test in Rainier Mesa were examined with regard to whole-rock radioelement abundances, microscopic distribution of U, and oxygen isotope ratios. Wholerock U averages between 4 and 5 ppM, and U is concentrated at higher levels secondary opaque minerals as well as in accessory grains. U in primary and secondary sites is most commonly associated with Mn phases, which average {approximately}30 ppM U in more uraniferous occurrences. This average is consistent and apparently unaffected by proximity to the heater. The Mn phases differ compositionally from Mn mineralsmore » in other NTS tuffs, usually containing abundant Fe, Ti, and sometimes Ce, and are often poorly crystalline. Oxygen isotope ratios show some depletion in {delta}{sup 18}O in tuff samples very close to the heater; this depletion is consistent with isotopic exchange between the tuff and interstitial water, but it may also reflect original heterogeneity in isotopic ratios of the tuff unrelated to the heater test. Seismic properties of several tuff samples were measured. Significant differences correlating with distance from the heater occur in P- and S-wave amplitudes; these may be due to loss of bound water. Seismic velocities are nearly constant and indicate a lack of significant microcracking. The absence of clearer signs of heater-induced U mobilization or isotopic variations may be due to the short duration of the heater test, and to insufficient definition of pre-heater-test heterogeneities in the tuff.« less

  13. Structural Benchmark Testing for Stirling Convertor Heater Heads

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  14. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  15. Process for Testing Compaction of a Swaged Heater for an Anode Sub-Assembly of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2003-01-01

    A process for testing compaction of a swaged heater for an anode sub-assembly of a Hollow Cathode Assembly (HCA), in which a test sample is cleaned, its mass measured before and after immersion in kerosene for 24 hours, and a compaction percentage calculated. A swaged heater is rejected if the compaction percentage exceeds 84%, plus or minus 4%.

  16. Rocket nozzle thermal shock tests in an arc heater facility

    NASA Technical Reports Server (NTRS)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  17. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  18. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  19. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  20. Infrared Heater Used in Qualification Testing of International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    2004-01-01

    Two heat rejection radiator systems for the International Space Station (ISS) have undergone thermal vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the Space Power Facility (SPF), the largest thermal vacuum chamber in the world. The heat rejection system radiator was tested first; it removes heat from the ISS crew living quarters. The second system tested was the photovoltaic radiator (PVR), which rejects heat from the ISS photovoltaic arrays and the electrical power-conditioning equipment. The testing included thermal cycling, hot- and cold-soaked deployments, thermal gradient deployments, verification of the onboard heater controls, and for the PVR, thermal performance tests with ammonia flow. Both radiator systems are orbital replacement units for ease of replacement on the ISS. One key to the success of these tests was the performance of the infrared heater system. It was used in conjunction with a gaseous-nitrogen-cooled cryoshroud in the SPF vacuum chamber to achieve the required thermal vacuum conditions for the qualification tests. The heater, which was designed specifically for these tests, was highly successful and easily met the test requirements. This report discusses the heating requirements, the heater design features, the design approach, and the mathematical basis of the design.

  1. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...

  2. Thermal cycling properties of a lead-free positive temperature coefficient thermistor in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun

    2016-01-01

    A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.

  3. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  4. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency watermore » heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  5. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  6. Design and fabrication of a high temperature leading edge heating array, phase 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.

  7. Diode Laser Sensors for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.

    2005-01-01

    The development and application of tunable diode laser (TDL) absorption sensors to monitor the health and operating conditions in the large-scale 60 MW arc-heated- plasma wind-tunnel at NASA Ames Research Center is reported. The interactive heating facility (THF) produces re-entry flow conditions by expanding the gas heated in a constricted plasma arc-heater to flow at high velocity over a model located in a test cabin. This facility provides the conditions needed to test thermal protective systems for spacecraft re-entering the earth s atmosphere. TDL sensors are developed to monitor gas flows in both the high-temperature constricted flow and the supersonic expansion flow into test cabin. These sensors utilize wavelength-tuned diode lasers to measure absorption transitions of atomic oxygen near 777.2 nm, atomic nitrogen near 856.8 nm, and atomic copper near 793.3 nm. The oxygen and nitrogen sensors measure the population density in exited electronic states of these atoms. The measurements combined with the assumption of local thermal and chemical equilibrium yield gas temperature (typically near 7,000K). The nitrogen and oxygen population temperatures are redundant, and their close agreement provides an important test of the local thermal equilibrium assumption. These temperature sensors provide time-resolved monitors of the operating conditions of the arc-heater and can be used to verify and control the test conditions. An additional TDL sensor was developed to monitor the copper concentration in the arc-heater flow yielding values as high as 13 ppm. Measurements of copper in the flow can identify flow conditions with unacceptably rapid electrode erosion, and hence this sensor provides valuable information needed to schedule maintenance to avoid costly arc-heater failure. TDL sensors were also developed for measurements in the test cabin, where absorption measurements of the populations of argon and molecular nitrogen in excited metastable electronic states established that the number density of these excited species is much lower than estimated using frozen-chemistry approximations. This key finding suggests that in the post-expansion region there is not a significant energy sequestration in electronically excited species. Finally, TDL measurements of atomic potassium seeded into the test cabin flow were used to directly measure the static temperature of the test gas. The results of this study illustrate the high potential of time-resolved TDL measurements for routine and economical sensing of arc-heater health (gas temperature and electrode erosion) as well as the time-resolved test-cabin-flow conditions in front of the model.

  8. Toxic organic pollutants from kerosene space heaters in Iran.

    PubMed

    Keyanpour-Rad, Mansoor

    2004-03-01

    The aim of this study was to investigate qualitatively the emission of toxic organic pollutants from an unventilated conventional kerosene space heater commonly used in Iran. A brand new common convective kerosene space heater, the "Aladdin," was used for this study. The well-tuned convective heater was operated in a 2.6-m(3) test chamber and then the emission was tested for organic pollutants. The emission was collected on Teflon-impregnated glass-fiber filters and XAD-2 resin and then analyzed by gas chromatography-mass spectroscopy. It was found that in addition to the ordinary pollutant gases, the heater emits aliphatic hydrocarbons, alcohols, polyaromatic hydrocarbons and the related nitrated compounds, phthalates, naphthalenes, and some other toxic organic compounds. However, it was found that the heater did not emit fluoranthene, cyclohexane, benzoic acid, and higher-molecular-weight alkylbenzenes, which could have resulted from the combustion of some other types of kerosene.

  9. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  10. Stirling Space Engine Program. Volume 1; Final Report

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  11. A Technique for Transient Thermal Testing of Thick Structures

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.; Richards, W. Lance; Gong, Leslie

    1997-01-01

    A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.

  12. A preliminary test method for masonry heater particulate matter and carbon monoxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, C.H.; Jaasma, D.R.; Shelton, J.W.

    1991-08-01

    A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less

  13. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  14. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  15. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  16. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  17. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  18. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a highly controlled laboratory environment. This paper focuses on the last element and presents a preliminary methodology for creep rate prediction, the experimental methods, test challenges, and results from benchmark testing of a trial MarM-247 heater head test article. The results compare favorably with the analytical strain predictions. A description of other test findings is provided, and recommendations for future test procedures are suggested. The manuscript concludes with describing the potential impact of the heater head creep life assessment and benchmark testing effort on the ASC program.

  19. Thermocouple psychrometer measurements of in situ water potential changes in heated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Nai-hsien; Wang, H.F.

    1991-10-01

    Ten thermocouple psychrometers (TCPs) to measure water potential (WP) were installed in three holes in G-Tunnel at the Nevada Test Site as part of the Prototype Engineered Barrier System Field Tests. We calibrated the TCPs in NaCl solutions up to 80{degrees}C (176{degrees}F) in the laboratory. In two holes, we used rubber sleeves and packers to house TCPs, and in the third hole, we used foam. All three holes were grouted behind the TCP assemblages. The initial moisture condition indicated by TCP data was about 99.5% relative humidity or a WP of about {minus}5 bar. This corresponded to 15.4 g/m{sup 3}more » of water in the air near the borehole wall, which was much wetter than we expected. A drying and re-wetting cycle peaked at about day 140 with a WP of {minus}65 bar in borehole P3, located below the heater. A similar cycle but reduced in scale was found at about day 175 with a WP of {minus}45 bar in borehole P2, above the heater. This difference is drying behavior above and below the heater was also observed from neutron data and was explained as a gravity effect.« less

  20. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... condenser or the sump heater? A. Primary condenser B. Sump heater C. Turn both on at same time D. Either A or B is correct ___ 8. During shutdown, what must be turned off first, the primary condenser or the sump heater? A. Primary condenser B. Sump heater C. Turn both off at same time D. Either A or B is...

  1. A design study of hydrazine and biowaste resistojets

    NASA Technical Reports Server (NTRS)

    Page, R. J.; Stoner, W. A.; Barker, L.

    1986-01-01

    A generalized modeling program was adapted in BASIC on a personal computer to compare the performance of four types of biowaste resistojets and two types of hydrazine augmenters. Analyzed biowaste design types were: (1) an electrically conductive ceramic heater-exchanger of zirconia; (2) a truss heater of platinum in cross flow; (3) an immersed bicoiled tubular heater-exchanger; and (4) a nonexposed, refractory metal, radiant heater in a central cavity within a heat exchanger case. Concepts 2 and 3 are designed to have an efficient, stainless steel outer pressure case. The hydrazine design types are: (5) an immersed bicoil heater exchanger and (6) a nonexposed radiant heater now with a refractory metal case. The ceramic biowaste resistojet has the highest specific impulse growth potential at 2000 K of 192.5 (CO2) and 269 s (H2O). The bicoil produces the highest augmenter temperature of 1994 K for a 2073 K heater giving 317 s at .73 overall efficiency. Detailed temperature profiles of each of the designs are shown. The scaled layout drawings of each are presented with recommended materials and fabrication methods.

  2. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  3. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2011-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  4. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  5. Experiment on large scale plume interaction with a stratified gas environment resembling the thermal activity of a autocatalytic recombiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignot, G.; Kapulla, R.; Paladino, D.

    Computational Fluid Dynamics codes (CFD) are increasingly being used to simulate containment conditions after various transient accident scenarios. Consequently, the reliability of such codes must be tested against experimental data. Such validation experiments related to gas mixing and hydrogen transport within containment compartments addressing the effect of heat source are presented in this paper. The experiments were conducted in the large-scale thermal-hydraulics PANDA facility located at the Paul-Scherrer-Inst. (PSI) in Switzerland, in the frame of the OECD/SETH-2 project. A 10 kW electric heater simulating the thermal activity of the autocatalytic recombiner was activated at full power in a containment vesselmore » at the top of which a thick helium layer is initially present. The hot plume interacts with the bottom of the helium layer which is slowly eroded until complete break up at 1350 s. After final erosion of the layer a strong temperature and concentration gradient is maintained in the vessel below the heater inlet as well as in the adjacent vessel below the interconnecting pipe. A detailed characterization of the operating heater suggests the presence of cold gas ingress at the outlet that affects the flow in the chimney. This can be of concern if present in a real PAR unit. (authors)« less

  6. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-07-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature,more » pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)« less

  7. Development of thermal stratification and destratification scaling concepts. Volume 1: Definition of thermal stratification scaling parameters and experimental investigations

    NASA Technical Reports Server (NTRS)

    Lovrich, T. N.; Schwartz, S. H.

    1975-01-01

    The dimensionless parameters associated with the thermal stratification and pressure history of a heated container of liquid and its vapor were examined. The Modified Grashof number, the Fourier number, and an Interface number were parameterized using a single test liquid, Freon 113. Cylindrical test tanks with spherical dome end caps were built. Blanket heaters covered the tanks and thermocouples monitored the temperatures of the liquid, the ullage, the tank walls, and the foam insulation encapsulating the tank. A centrifuge was used for the 6 inch tank to preserve the same scaling parameter values between it and the larger tanks. Tests were conducted over a range of Gr* values and the degree of scaling was checked by comparing the dimensionless pressures and temperatures for each scaled pair of tests. Results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters. Some deviation was, however, found in the detailed temperature profiles between the scaled pairs of tests.

  8. Gestion de stockage d'energie thermique d'un parc de chauffe-eaux par une commande a champ moyen

    NASA Astrophysics Data System (ADS)

    Bourdel, Benoit

    In today's energy transition, smart grids and electrical load control are very active research fields. This master's thesis is an offshoot of the SmartDesc project which aims at using energy storage capability of electric household appliances, such as water heaters and electric heaters to mitigate the fluctuations of system loads and renewable generation. The smartDESC project aims at demonstrating that the mean field game theory (MFG), as new mathematical theory, can be used to convert and control water heaters (and possibly space heater) into smart thermal capacities. Thus, a set of "modules" has been developed. These modules are used to generate the optimal control and locally interpret it, to simulate the water-heater thermophysics or water draw event, or to virtualize a telecommunication mesh network. The different aspects of the project have been first studied and developed separately. During the course of this master's research, the modules have been integrated, tested, interfaced and tuned in a common simulator. This simulator is designed to make complete electrical network simulations with a multi-scale approach (from individual water heater to global electric load and production). Firstly, the modules are precisely described theoretically and practically. Then, different types of control are applied to an uniform population of houses fitted with water heaters and controllers. The results of these controls are analysed and compared in order to understand their strengths and weaknesses. Finally, a study was conducted to analyse the resilience of a mean field control. This report demonstrates that mean field game theory in coordination with a system level aggregate model based optimization program, is able to effectively control a large population of water heaters to smooth the overall electrical load. This control offers good resilience to unforeseen circumstances that can disrupt the network. It is also demonstrated that a mean field control is able to absorb fluctuations due to wind power production. Thus, by reducing the variability of the residential sector's electrical charge, the mean field control plays a role in increasing power system stability in the face of high levels of renewable energy penetration. The next stage of smartDESC project is now to set up an intelligent electric water heater prototype. This prototype, in progress since January 2016 at Ecole Polytechnique in Montreal, is aimed at proving concretely the theories developed in the project.

  9. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schirber, B. Schoenbauer

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high-performance water heaters difficult to justify economically. However, recent advancements in high-performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high-efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands.

  10. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2 of...

  11. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  12. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-06-01

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less

  13. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-01-01

    The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less

  14. Testing the Shuttle heat-protection armor

    NASA Technical Reports Server (NTRS)

    Strouhal, G.; Tillian, D. J.

    1976-01-01

    The article deals with the thermal protection system (TPS) designed to keep Space Shuttle structures at 350 F ratings over a wide range of temperatures encountered in orbit, but also during prelaunch, launch, deorbit and re-entry, landing and turnaround. The structure, function, fabrication, and bonding of various types of reusable surface insulation and composite materials are described. Test programs are developed for insulation, seals, and adhesion bonds; leak tests and acoustic fatigue tests are mentioned. Test facilities include arc jets, radiant heaters, furnaces, and heated tunnels. The certification tests to demonstrate TPS reusability, structural integrity, thermal performance, and endurance will include full-scale assembly tests and initial orbital flight tests.

  15. 40 CFR 60.537 - Reporting and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wood Heaters § 60.537 Reporting and recordkeeping. (a)(1) Each manufacturer who holds a certificate of... representative unit of that model line for certification testing. (c) Any wood heater upon which certification... manufactured. Any such wood heater shall be made available upon request to the Administrator for inspection and...

  16. 40 CFR 60.537 - Reporting and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wood Heaters § 60.537 Reporting and recordkeeping. (a)(1) Each manufacturer who holds a certificate of... representative unit of that model line for certification testing. (c) Any wood heater upon which certification... manufactured. Any such wood heater shall be made available upon request to the Administrator for inspection and...

  17. 40 CFR 60.537 - Reporting and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wood Heaters § 60.537 Reporting and recordkeeping. (a)(1) Each manufacturer who holds a certificate of... representative unit of that model line for certification testing. (c) Any wood heater upon which certification... manufactured. Any such wood heater shall be made available upon request to the Administrator for inspection and...

  18. 40 CFR 60.537 - Reporting and recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Wood Heaters § 60.537 Reporting and recordkeeping. (a)(1) Each manufacturer who holds a certificate of... representative unit of that model line for certification testing. (c) Any wood heater upon which certification... manufactured. Any such wood heater shall be made available upon request to the Administrator for inspection and...

  19. 40 CFR 60.537 - Reporting and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Wood Heaters § 60.537 Reporting and recordkeeping. (a)(1) Each manufacturer who holds a certificate of... representative unit of that model line for certification testing. (c) Any wood heater upon which certification... manufactured. Any such wood heater shall be made available upon request to the Administrator for inspection and...

  20. Infrared heater arrays for warming field plots scaled up to 5-m diameter

    USDA-ARS?s Scientific Manuscript database

    As Earth continues to warm globally, there is a need to conduct ecosystem plot warming experiments under conditions as representative of open fields in the future as possible. One promising approach is to use hexagonal arrays of infrared heaters such as described by Kimball et al. (2008). However, t...

  1. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chordia, Lalit; Portnoff, Marc A.; Green, Ed

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO 2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO 2. Additional project tasks included building a hot air-to-sCO 2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated amore » number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO 2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.« less

  2. Selected organic pollutant emissions from unvented kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, G.W.; Apte, M.G.; Sokol, H.A.

    1990-08-01

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emissions rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emissions. Each heater was operated in a 27-m{sup 3} chamber with a prescribed on/off pattern. Organic compounds were collected on Teflon-impregnated glass filters backed by XAD-2 resin and analyzed by gas chromatography/mass spectrometry. Pollutant source strengths were calculated by use of a mass balance equation. The results show that kerosene heaters can emit polycyclic aromatic hydrocarbons (PAHs); nitrated PAHs; alkylbenzenes, phthalates; hydronaphthalenes; aliphatic hydrocarbons,more » alcohols, and ketones; and other organic compounds, some of which are known mutagens.« less

  3. Microhotplate Temperature Sensor Calibration and BIST.

    PubMed

    Afridi, M; Montgomery, C; Cooper-Balis, E; Semancik, S; Kreider, K G; Geist, J

    2011-01-01

    In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the silicon substrate temperature if never exposed to temperatures above about 220 °C.

  4. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  5. LOW EMISSION AND HIGH EFFICIENCY RESIDENTIAL PELLET-FIRED HEATERS

    EPA Science Inventory

    The paper gives results of air emissions testing and efficiency testing on new commercially available under-feed and top-feed residential heaters burning hardwood- and softwood-based pellets. The results were compared with data from earlier models. Reductions in air emissions w...

  6. Military Potential Test of the Model PA23-250B Fixed-Wing Instrument Trainer

    DTIC Science & Technology

    1964-11-30

    cabin heater was installed in the test airplane. Existing climatic conditions precluded actual tests to determine the capability of the heater to...housed within the engine contol pedestal under the engine conr- trol levers. r , aulic pressure is supplied to the control unit by an engine-driven

  7. Impact of kerosene space heaters on indoor air quality.

    PubMed

    Hanoune, B; Carteret, M

    2015-09-01

    In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. International Collaboration Activities on Engineered Barrier Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.

    The Used Fuel Disposition Campaign (UFDC) within the DOE Fuel Cycle Technologies (FCT) program has been engaging in international collaborations between repository R&D programs for high-level waste (HLW) disposal to leverage on gathered knowledge and laboratory/field data of near- and far-field processes from experiments at underground research laboratories (URL). Heater test experiments at URLs provide a unique opportunity to mimetically study the thermal effects of heat-generating nuclear waste in subsurface repository environments. Various configurations of these experiments have been carried out at various URLs according to the disposal design concepts of the hosting country repository program. The FEBEX (Full-scale Engineeredmore » Barrier Experiment in Crystalline Host Rock) project is a large-scale heater test experiment originated by the Spanish radioactive waste management agency (Empresa Nacional de Residuos Radiactivos S.A. – ENRESA) at the Grimsel Test Site (GTS) URL in Switzerland. The project was subsequently managed by CIEMAT. FEBEX-DP is a concerted effort of various international partners working on the evaluation of sensor data and characterization of samples obtained during the course of this field test and subsequent dismantling. The main purpose of these field-scale experiments is to evaluate feasibility for creation of an engineered barrier system (EBS) with a horizontal configuration according to the Spanish concept of deep geological disposal of high-level radioactive waste in crystalline rock. Another key aspect of this project is to improve the knowledge of coupled processes such as thermal-hydro-mechanical (THM) and thermal-hydro-chemical (THC) operating in the near-field environment. The focus of these is on model development and validation of predictions through model implementation in computational tools to simulate coupled THM and THC processes.« less

  9. Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2005-01-01

    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.

  10. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  11. New Design Heaters Using Tubes Finned by Deforming Cutting Method

    NASA Astrophysics Data System (ADS)

    Zubkov, N. N.; Nikitenko, S. M.; Nikitenko, M. S.

    2017-10-01

    The article describes the results of research aimed at selecting and assigning technological processing parameters for obtaining outer fins of heat-exchange tubes by the deformational cutting method, for use in a new design of industrial water-air heaters. The thermohydraulic results of comparative engineering tests of new and standard design air-heaters are presented.

  12. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  13. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2017-09-12

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  14. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also includes direct benchmark experimental creep assessment. This element provides high-fidelity creep testing of prototypical heater head test articles to investigate the relevant material issues and multiaxial stress state. Benchmark testing provides required data to evaluate the complex life assessment methodology and to validate that analysis. Results from current benchmark heater head tests and newly developed experimental methods are presented. In the concluding remarks, the test results are shown to compare favorably with the creep strain predictions and are the first experimental evidence for a robust ASC heater head creep life.

  15. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradin, Michael; Anderson, M.; Muci, M.

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintainmore » similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.« less

  16. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  17. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  18. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...

  19. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...

  20. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...

  1. Thermally driven self-healing using copper nanofiber heater

    NASA Astrophysics Data System (ADS)

    Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.

    2017-07-01

    Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.

  2. The impact of add-on catalytic devices on pollutant emissions from unvented kerosene heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, M.G.; Traynor, G.W.; Froehlich, D.A.

    1989-09-01

    Many studies have documented pollutant emission rates from kerosene heaters. Carbon monoxide (CO), carbon dioxide (CO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), formaldehyde (HCHO), suspended particles, and semivolatile and nonvolatile organic compounds, including some nitrated and non-nitrated polycyclic aromatic hydrocarbons, can be emitted by kerosene heaters. Recently, several add-on catalytic devices designed to reduce some pollutant emissions have become commercially available. The tests described here were designed to measure the impact of these devices on pollutant emissions from unvented kerosene heaters. Emissions of CO, NO, NO{sub 2}, HCHO, and total suspended particles were investigated in this study. Inmore » addition, analyses of particulate sulfur and chromium were conducted for some tests.« less

  3. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  4. Method and Apparatus for the Portable Identification Of Material Thickness And Defects Along Uneven Surfaces Using Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)

    2006-01-01

    A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.

  5. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Cheng, Robert K.; Therkelsen, Peter L.

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements,more » researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state-of-the art water heaters. Overall, the results from this research show that the LSB could provide a simple, low cost burner solution for significantly extending operating range of on-demand water heaters while providing low NOX and CO emissions.« less

  6. Consensus on Intermediate Scale Salt Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Mills, Melissa Marie; Matteo, Edward N.

    This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.

  7. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  8. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  9. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report,more » we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.« less

  11. Microhotplate Temperature Sensor Calibration and BIST

    PubMed Central

    Afridi, M.; Montgomery, C.; Cooper-Balis, E.; Semancik, S.; Kreider, K. G.; Geist, J.

    2011-01-01

    In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the silicon substrate temperature if never exposed to temperatures above about 220 °C. PMID:26989603

  12. Electricity-free amplification and detection for molecular point-of-care diagnosis of HIV-1.

    PubMed

    Singleton, Jered; Osborn, Jennifer L; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens.

  13. Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1

    PubMed Central

    Singleton, Jered; Osborn, Jennifer L.; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens. PMID:25426953

  14. The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Willis, Brian P.

    2001-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.

  15. Micro-Thermoelectric Generation Modules Fabricated with Low-Cost Mechanical Machining Processes

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Jin, A. J.; Peng, Wenbo; Li, Qiming; Gao, Hu; Zhu, Lianjun; Li, Fu; Zhu, Zhixiang

    2017-05-01

    Micro/small-scale thermoelectric generation modules are able to produce continuous, noise-free and reliable electricity power using low temperature differences that widely exist in nature or industry. These advantages bring them great application prospects in the fields of remote monitoring, microelectronics/micro-electromechanical systems (MEMS), medical apparatus and smart management system, which often require a power source free of maintenance and vibration. In this work, a prototypical thermoelectric module (12 mm × 12 mm × 0.8 mm) with 15 pairs of micro-scale thermoelectric legs (0.2 mm in width and 0.6 mm in height for each leg) is fabricated using a low-cost mechanical machining process. In this process, cutting and polishing are the main methods for the preparation of thermoelectric pairs from commercial polycrystalline materials and for the fabrication of electrode patterns. The as-fabricated module is tested for its power generation properties with the hot side heated by an electrical heater and the cold side by cold air. With the heater temperature of 375 K, the thermoelectric potential is about 9.1 mV, the short circuit current is about 14.5 mA, and the maximum output power is about 32.8 μW. The finite element method is applied to analyze the heat transfer of the module during our test. The temperature difference and heat flux are simulated, according to which the output powers at different temperatures are calculated, and the result is relatively consistent compared to the test results.

  16. Quench Protection of SC Quadrupole Magnets

    NASA Astrophysics Data System (ADS)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  17. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, Carlos

    2017-07-01

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less

  18. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, Carlos

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less

  19. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Pool Heaters P Appendix P to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. P Appendix P to...

  20. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Pool Heaters P Appendix P to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. P Appendix P to...

  1. 10 CFR Appendix G to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Unvented Home Heating Equipment

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption..., App. G Appendix G to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of... energy consumption for primary electric heaters. For primary electric heaters, calculate the annual...

  2. Cryogenic Autogenous Pressurization Testing for Robotic Refueling Mission 3

    NASA Technical Reports Server (NTRS)

    Boyle, R.; DiPirro, M.; Tuttle, J.; Francis, J.; Mustafi, S.; Li, X.; Barfknecht, P.; DeLee, C. H.; McGuire, J.

    2015-01-01

    A wick-heater system has been selected for use to pressurize the Source Dewar of the Robotic Refueling Mission Phase 3 on-orbit cryogen transfer experiment payload for the International Space Station. Experimental results of autogenous pressurization of liquid argon and liquid nitrogen using a prototype wick-heater system are presented. The wick-heater generates gas to increase the pressure in the tank while maintaining a low bulk fluid temperature. Pressurization experiments were performed in 2013 to characterize the performance of the wick heater. This paper describes the experimental setup, pressurization results, and analytical model correlations.

  3. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. E Appendix E to Subpart B of Part 430—Uniform Test Method...

  4. In situ baking method for degassing of a kicker magnet in accelerator beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less

  5. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions. Published by Elsevier B.V.

  6. Operating capability and current status of the reactivated NASA Lewis Research Center Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Trefny, Charles J.; Pack, William D.

    1995-01-01

    The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.

  7. The Yucca Mountain Project drift scale test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, R.E.; Blair, S.C.; Boyle, W.J.

    The Yucca Mountain Project is currently evaluating the coupled thermal-mechanical-hydrological-chemical (TMHC) response of the potential repository host rock through an in situ thermal testing program. A drift scale test (DST) was constructed during 1997 and heaters were turned on in December 1997. The DST includes nine canister-sized containers with thirty operating heaters each located within the heated drift (HD) and fifty wing heaters located in boreholes in both ribs with a total power output of nominally 210kW. A total of 147 boreholes (combined length of 3.3 km) houses most of the over 3700 TMHC sensors connected with 201 km ofmore » cabling to a central data acquisition system. The DST is located in the Exploratory Studies Facility in a 5-m diameter drift approximately 50 m in length. Heating will last up to four years and cooling will last another four years. The rock mass surrounding the DST will experience a harsh thermal environment with rock surface temperatures expected to reach a maximum of about 200 C. This paper describes the process of designing the DST. The first 38 m of the 50-m long Heated Drift (HD) is dedicated to collection of data that will lead to a better understanding of the complex coupled TMHC processes in the host rock of the proposed repository. The final 12 m is dedicated to evaluating the interactions between the heated rock mass and cast-in-place (CIP) concrete ground support systems at elevated temperatures. In addition to a description of the DST design, data from site characterization, and a general description of the analyses and analysis approach used to design the test and make pretest predictions are presented. Test-scoping and pretest numerical predictions of one way thermal-hydrologic, thermal-mechanical, and thermal-chemical behaviors have been completed (TRW, 1997a). These analyses suggest that a dry-out zone will be created around the DST and a 10,000 m{sup 3} volume of rock will experience temperatures above 100 C. The HD will experience large stress increases, particularly in the crown of the drift. Thermoelastic displacements of up to about 16 mm are predicted for some thermomechanical gages. Additional analyses using more complex models will be performed during the conduct of the DST and the results compared with measured data.« less

  8. Space shuttle development Motor No. 9 (DM-9), volume 1

    NASA Technical Reports Server (NTRS)

    Garecht, Diane M.

    1990-01-01

    The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.

  9. Protection heater design validation for the LARP magnets using thermal imaging

    DOE PAGES

    Marchevsky, M.; Turqueti, M.; Cheng, D. W.; ...

    2016-03-16

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of themore » underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visualized thermal effects of various interlayer structural defects. Furthermore, thermal imaging can become a future quality control tool for the MQXF coil heaters.« less

  10. Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.

    1972-01-01

    An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.

  11. Dampers for Natural Draft Heaters: Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline watermore » heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.« less

  12. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  13. Solar Air Collectors: How Much Can You Save?

    DOE R&D Accomplishments Database

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  14. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  15. Environmental assessment of a crude-oil heater using staged air lances for NOx reduction. Volume 1. Technical results. Final report June 1981-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.

    1984-07-01

    This volume of the report gives emission results from field tests of a crude-oil process heater burning a combination of oil and refinery gas. The heater had been modified by adding a system for injecting secondary air to reduce NOx emissions. One test was conducted with the staged air system (low NOx), and the other, without (baseline). Tests included continuous monitoring of flue gas emissions and source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples utilizing gas chromatography (GC), infrared spectrometry (IR), gas chromatography/mass spectroscopy (GC/MS), and low resolution mass spectrometry (SSMS)more » for trace metals. LRMS analysis suggested the presence of eight compound categories in the organic emissions during the baseline test and four in the low-NOx test.« less

  16. A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability.

    PubMed

    Xie, Shuyao; Li, Teng; Xu, Zijie; Wang, Yanan; Liu, Xiangyang; Guo, Wenxi

    2018-04-05

    Transparent heaters are widely used in technologies such as window defrosting/defogging, displays, gas sensing, and medical equipment. Apart from mechanical robustness and electrical and optical reliabilities, outstanding chemical stability is also critical to the application of transparent heaters. In this regard, we first present a highly flexible and large-area CuS transparent heater fabricated by a colloidal crackle pattern method with an optimized sheet resistance (Rs) as low as 21.5 Ω sq-1 at a ∼80% transmittance. The CuS transparent heater exhibits remarkable mechanical robustness during bending tests as well as high chemical stability against acid and alkali environments. In the application as a transparent heater, the CuS heater demonstrates a high thermal resistance of 197 °C W-1 cm2 with a fast switching time (<30 s), requiring low input voltages (<4.5 V) to achieve uniform temperatures of ∼110 °C across large areas. The temperature of the wearable CuS heater, which is stuck on the skin, can be real-time controlled through a Bluetooth device in a cell phone wirelessly. Based on the wireless control system, we demonstrated an application of the CuS heater in snow removal for solar panels. These CuS network TCEs with high flexibility, transparency, conductivity, and chemical stability could be widely used in wearable electronic products.

  17. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  18. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  19. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers...

  20. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers...

  1. 10 CFR Appendix C1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dishwashers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...), disregarding the provisions regarding batteries and the determination, classification, and testing of relevant... per degree Fahrenheit = 8.2, and e = nominal gas or oil water heater recovery efficiency = 0.75, 5.6.1... heater recovery efficiency = 0.75. 5.6.2 Dishwashers that operate with a nominal 120 °F inlet water...

  2. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ..., sections 1.7 and 1.12. The definition for ``Storage-type Water Heater of More than 2 Gallons (7.6 Liters) and Less than 20 Gallons (76 Liters)'' is currently reserved. Id. at section 1.12.5. DOE is... another. In addition, these studies suggest that the existing draw pattern in the simulated use test may...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronicmore » air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.« less

  4. Emission factors of gaseous pollutants from recent kerosene space heaters and fuels available in France in 2010.

    PubMed

    Carteret, M; Pauwels, J-F; Hanoune, B

    2012-08-01

    Laboratory measurements of the gaseous emission factors (EF) from two recent kerosene space heaters (wick and injector) with five different fuels have been conducted in an 8-m(3) environmental chamber. The two heaters tested were found to emit mainly CO(2), CO, NO, NO(2), and some volatile organic compounds (VOCs). NO(2) is continuously emitted during use, with an EF of 100-450 μg per g of consumed fuel. CO is normally emitted mainly during the first minutes of use (up to 3 mg/g). Formaldehyde and benzene EFs were quantified at 15 and 16 μg/g, respectively, for the wick heater. Some other VOCs, such as 1,3-butadiene, were detected with lower EFs. We demonstrated the unsuitability of a 'biofuel' containing fatty acid methyl esters for use with the wick heater, and that the accumulation of soot on the same heater, whatever the fuel, leads to a dramatic increase in the CO EF, up to 16 mg/g, which could be responsible for chronic and acute CO intoxications. Our results show that in spite of new technologies and emission standards for unvented kerosene space heaters, as well as for the fuels, the use of these heaters in indoor environments still leads to NO(x) levels in excess of current health recommendations. Whereas injection heaters generate more nitrogen oxides than wick heaters, prolonged use of the latter leads to a soot buildup, concomitant with high CO emissions, which could be responsible for acute and chronic intoxications. The use of a biofuel in a wick heater is also of concern. Maintenance of the heaters and adequate ventilation of the room during use of kerosene space heaters are therefore of prime importance to reduce personal exposure. © 2011 John Wiley & Sons A/S.

  5. An oxidation and erosion test facility for cooled panels

    NASA Technical Reports Server (NTRS)

    Swartwout, W. H.; Erdos, J. I.; Engers, R. J.; Prescott, C.

    1992-01-01

    The Panel Oxidation and Erosion Testbed (POET) facility under construction at GASL to provide the required test environment is described. The POET facility comprises three major element including a vitiated air heater, a supersonic nozzle, and a test section. A hydrogen-fueld vitiated air heater will provide the oxidizing and erosive environment. The flow through the test section characterized by low supersonic speed and Mach number of 1.4 will maximize the local heat transfer rate and the local surface shear stress.

  6. Thin, Light, Flexible Heaters Save Time and Energy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Icing Branch at NASA's Glenn Research Center uses the Center's Icing Research Tunnel (IRT) and Icing Research Aircraft to research methods for evaluating and simulating the growth of ice on aircraft, the effects that ice may have on aircraft in flight, and the development and effectiveness of various ice protection and detection systems. EGC Enterprises Inc. (EGC), of Chardon, Ohio, used the IRT to develop thermoelectric thin-film heater technology to address in-flight icing on aircraft wings. Working with researchers at Glenn and the original equipment manufacturers of aircraft parts, the company tested various thin, flexible, durable, lightweight, and efficient heaters. Development yielded a thin-film heater technology that can be used in many applications in addition to being an effective deicer for aircraft. This new thermoelectric heater was dubbed the QoFoil Rapid Response Thin-Film Heater, or QoFoil, for short. The product meets all criteria for in-flight use and promises great advances in thin-film, rapid response heater technology for a broad range of industrial applications. Primary advantages include time savings, increased efficiency, and improved temperature uniformity. In addition to wing deicing, EGC has begun looking at the material's usefulness for applications including cooking griddles, small cabinet heaters, and several laboratory uses.

  7. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  8. H2 fueled flightweight ramjet construction and test

    NASA Technical Reports Server (NTRS)

    Malek, Albert

    1992-01-01

    The ACES Program began the investigation of regeneratively cooled ramjet engines for propelling aircraft at Mach 6 to 8 flight regimes while collecting and processing air for later use as oxidizer in rocket propulsion into an orbit flight mode. The Marquardt Company had as its prime task the design and demonstration of a ramjet capable of steady state operating using hydrogen as the regenerative coolant and with fuel flow limited to a theta = 1. Marquardt progressed from shell type combustors to advanced tubular combustion chambers in direct connect test rigs. The first tests were made with water cooled center bodies and plug nozzles using a pebble bed air heater to simulate flight air temperature. Later tests were made on completely H2 cooled flight weight V/G assemblies direct connected to a SUE burner heater. Design studies were also conducted on integrated systems for take-off capability using offset turbojets connected to 2-D or axisymmetric inlets. An 18 inch hypersonic ramjet evaluation scale model was designed based on the hot test results using a fully V/G inlet and exit nozzle. This thruster would provide 25000 lbs. of thrust with an estimated weight of 250 lbs. A V/G inlet would also incorporate an inlet seal for possible take-off thrust by rocket operation. Hypersonic ramjet construction features and chamber thrust development are discussed.

  9. 76 FR 16760 - Energy Conservation Program for Consumer Products: Publication of the Petition for Waiver and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... anti-sweat heaters. Therefore, it is ordered that: The application for interim waiver filed by Samsung... control anti-sweat heaters according to the alternate test procedure as set forth in section IV...

  10. Novel development of the micro-tensile test at elevated temperature using a test structure with integrated micro-heater

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.

    2012-08-01

    This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.

  11. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock: FY17 Progress. Predecisional Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Rutqvist, Jonny; Xu, Hao

    The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat.more » This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full-Scale Engineered Barrier Experiment Dismantling Project (FEBEX-DP). The data collected in the test after almost two decades of heating and two dismantling events provide a unique opportunity of validating coupled THMC models and enhancing our understanding of coupled THMC process in EBS bentonite. Section 5 presents a planned large in-situ test, “HotBENT,” at Grimsel Test Site, Switzerland. In this test, bentonite backfilled EBS in granite will be heated up to 200 °C, where the most relevant features of future emplacement conditions can be adequately reproduced. Lawrence Berkeley National Laboratory (LBNL) has very actively participated in the project since the very beginning and have conducted scoping calculations in FY17 to facilitate the final design of the experiment. Section 6 presents present LBNL’s activities for modeling gas migration in clay related to Task A of the international DECOVALEX-2019 project. This is an international collaborative activity in which DOE and LBNL gain access to unique laboratory and field data of gas migration that are studied with numerical modeling to better understand the processes, to improve numerical models that could eventually be applied in the performance assessment for nuclear waste disposal in clay host rocks and bentonite backfill. Section 7 summarizes the main research accomplishments for FY17 and proposes future work activities.« less

  12. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  13. 76 FR 54456 - Petition for Waiver and Notice of Granting the Application for Interim Waiver of Samsung from the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... anti-sweat heaters. Therefore, it is ordered that: The application for interim waiver filed by Samsung... control anti-sweat heaters according to the alternate test procedure as set forth in section IV...

  14. Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Godfroy, Thomas J. (Inventor); Bitteker, Leo (Inventor)

    2006-01-01

    Apparatus and methods are provided through which a radiofrequency dielectric heater has a cylindrical form factor, a variable thermal energy deposition through variations in geometry and composition of a dielectric, and/or has a thermally isolated power input.

  15. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  16. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  17. LTCS (Laser Thermal Control System) Test Supporting the Improvement of DeCoM (Deepak Condenser Model)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2014-01-01

    Thermal and Fluids Analysis Workshop, Cleveland OH. NCTS 19701-14. On Dec 2013 a Loop Heat Pipe (LHP) test was performed as part of the integral Laser Thermal Control System (LTCS). During the balance portion of this testing it was noticed that the LHP was not going to be able to maintain temperature on the operational thermal mass. The test was stopped. After multiple meetings with the LTCS designers, LHP experts (in house and external) it was concluded that gravity was preventing the control heaters to maintain control on the reservoir. A heater was installed onto the liquid return line as part of the fix. After implementing the fix on the liquid return line, the test on May 2014 proved that the system works in vertical orientation using the liquid line heater. Through this testing, the correlation of the Deepak Condenser Model (DeCoM) was possible. This paper describes how well DeCoM predicts the condenser behavior in comparison to the test results of LTCS test.

  18. Multiple frequency backscatter observations of heater-induced field-aligned striations in the auroral E region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, S.T.

    1985-01-01

    In September 1983 a series of HF ionospheric modification experiments were conducted in Scandinavia using the heat facility near Tromosoe Norway. The purpose of these experiments was to examine the mechanisms by which high-power HF radio waves produce geomagnetic field-aligned striations (FAS) in the auroral E region. The vast majority of the backscatter observations were made with radars operating at 47 and 144 MHz (STARE Finland). Additionally, limited observations were conducted at 140 (STARE Norway) and 21 MHz (SAFARI). These radars are sensitive to irregularities having scale lengths between 1 and 7 m across the geomagnetic field lines. During periodsmore » of full power O-mode heating, striations having peak cross sections of 40 to 50 dBsm are observed. Striations are not detected during times of X-mode heating. When the heater output is varied, a corresponding change in the cross section is measured. The magnitude of the change is most pronounced for heater level changes in the range 12.5 to 50% of full power. These cross sections are significantly larger than those measured at midlatitudes using the Arecibo heater (approx.10/sup 1/ m/sup 2/). This is consistent with theoretical studies which indicate that it is easier to excite short-scale FAS at places where the geomagnetic dip angle is large. The growth and decay times of the striations are frequency dependent.« less

  19. Herbert Easterly auxiliary truck heater. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less

  20. Herbert Easterly auxiliary truck heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less

  1. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronicmore » air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.« less

  2. Environmental Loss Characterization of an Advanced Stirling Convertor (ASC-E2) Insulation Package Using a Mock Heater Head

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.

  3. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  4. AgNW/Chinese Xuan paper film heaters for electro-thermochromic paper display

    NASA Astrophysics Data System (ADS)

    Wang, Guoliang; Xu, Wei; Xu, Feng; Shen, Wenfeng; Song, Weijie

    2017-11-01

    Electro-thermochromic paper display is the convenient and low-cost device for information presentation. As an integral part of this device, film heaters (FHs) with conductive layer have attracted much attention. In this paper, the AgNW based film heaters on Chinese Xuan paper (CXP) substrates were fabricated by a drop-coating method. The fabricated AgNW/CXP film heaters exhibited high heating temperature (78.1 °C) at low input voltage (3 V) and short response time less than 15 s. We theoretically analyzed the principles of heating and put forward the non-linear relationship between the input power and steady-state temperature, which is agreeing with our experimental data. The film heaters showed excellent mechanical properties with the change of the resistance as low as 2.7% after 2000 times outer bending tests. Finally, the electro-thermochromic paper display was fabricated using the AgNW/CXP film heaters, with the thermochromic inks on the other side of the paper substrate. Such results showed a useful approach for manufacturing of colorful display and color-changing painting.

  5. Transparent heaters made by ultrasonic spray pyrolysis of SnO2 on soda-lime glass substrates

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad; Akbari-Saatloo, Mehdi; Gharesi, Mohsen

    2017-12-01

    Transparent heaters have become important owing to the increasing demand in automotive and display device manufacturing industries. Indium tin oxide (ITO) is the most commonly used material for production of transparent heaters, but the fabrication cost is high as the indium resources are diminishing fast. This has been the driving force behind the intense research for discovering more durable and cost-effective alternatives. Tin oxide, with its high temperature stability and coexisting high levels of conductivity and transparency, can replace expensive ITO in the fabrication of transparent heaters. Here, we propose tin oxide films deposited using ultrasonic spray pyrolysis as the raw material for the fabrication of transparent heaters. Silver contacts are paste printed on the deposited SnO2 layers, which provide the necessary connections to the external circuitry. Deposition of films having sheet resistance in the 150 Ω/□ range takes only ∼5 minutes and the utilized methods are fully scalable to mass production level. Durability tests, carried out for weeks of continuous operation at different elevated temperatures, demonstrated the long load life of the produced heaters.

  6. Development of a self-packaged 2D MEMS thermal wind sensor for low power applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-qing; Chen, Bei; Qin, Ming; Huang, Jian-qiu; Huang, Qing-an

    2015-08-01

    This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s-1, with an accuracy of 0.1 m s-1 at low speeds and 0.5 m s-1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.

  7. Experimental Studies of Carbon Nanotube Materials for Space Radiators

    NASA Technical Reports Server (NTRS)

    SanSoucie, MIchael P.; Rogers, Jan R.; Craven, Paul D.; Hyers, Robert W.

    2012-01-01

    Game ]changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric propulsion (NEP) systems. Carbon nanotubes (CNT) and carbon fiber materials have the potential to offer significant improvements in thermal conductivity and mass properties. A test apparatus was developed to test advanced radiator designs. This test apparatus uses a resistance heater inside a graphite tube. Metallic tubes can be slipped over the graphite tube to simulate a heat pipe. Several sub ]scale test articles were fabricated using CNT cloth and pitch ]based carbon fibers, which were bonded to a metallic tube using an active braze material. The test articles were heated up to 600 C and an infrared (IR) camera captured the results. The test apparatus and experimental results are presented here.

  8. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Samper, J.; Montenegro, L.

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collectedmore » after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.« less

  9. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... least three significant figures shall be reported. 4.3Off mode. 4.3.1Pool heaters with a seasonal off... significant figures shall be reported. 5.Calculations. 5.1Thermal efficiency. Calculate the thermal efficiency...

  10. Development and Application of Novel Diagnostics for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    2002-01-01

    This NASA-Ames University Consortium Project has focused on the design and demonstration of optical absorption sensors using tunable diode laser to target atomic copper impurities from electrode erosion in thc arc-heater metastable electronic excited states of molecular nitrogen, atomic argon, aid atomic oxygen in the arcjet plume. Accomplishments during this project include: 1. Design, construction, and assembly of optical access to the arc-heater gas flow. 2. Design of diode laser sensor for copper impurities in the arc-heater flow. 3 . Diode laser sensor design and test in laboratory plasmas for metastable Ar(3P), O(5S), N(4P), and N2(A). 4. Diode laser sensor demonstration measurements in the test cell to monitor species in the arc-jet plume.

  11. Project Plan: Salt in Situ Heater Test.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Mills, Melissa Marie; Herrick, Courtney G.

    This project plan gives a high-level description of the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Disposition (SFWD) campaign in situ borehole heater test project being planned for the Waste Isolation Pilot Plant (WIPP) site This plan provides an overview of the schedule and responsibilities of the parties involved. This project is a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to execute a series of small-diameter borehole heater tests in salt for the DOE-NE SFWD campaign. Design of a heater test in salt at WIPP has evolved over several years.more » The current design was completed in fiscal year 2017 (FY17), an equipment shakedown experiment is underway in April FY18, and the test implementation will begin in summer of FY18. The project comprises a suite of modular tests, which consist of a group of nearby boreholes in the wall of drifts at WIPP. Each test is centered around a packer-isolated heated borehole (5" diameter) containing equipment for water-vapor collection and brine sampling, surrounded by smaller-diameter (2" diameter) satellite observation boreholes. Observation boreholes will contain temperature sensors, tracer release points, electrical resistivity tomography (ERT) sensors, fiber optic sensing, and acoustic emission (AE) measurements, and sonic velocity sources and sensors. These satellite boreholes will also be used for plugging/sealing tests. The first two tests to be implemented will have the packer-isolated borehole heated to 120°C, with one observation borehole used to monitor changes. Follow-on tests will be designed using information gathered from the first two tests, will be conducted at other temperatures, will use multiple observation boreholes, and may include other measurement types and test designs.« less

  12. An Experimental and Analytical Investigation of Stirling Space Power Converter Heater Head

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bartolotta, Paul; Tong, Mike; Allen, Gorden

    1995-01-01

    NASA has identified the Stirling power converter as a prime candidate for the next generation power system for space applications requiring 60000 hr of operation. To meet this long-term goal, several critical components of the power converter have been analyzed using advanced structural assessment methods. Perhaps the most critical component, because of its geometric complexity and operating environment, is the power converter's heater head. This report describes the life assessment of the heater head which includes the characterization of a viscoplastic material model, the thermal and structural analyses of the heater head, and the interpolation of fatigue and creep test results of a nickel-base superalloy, Udimet 720 LI (Low Inclusions), at several elevated temperatures for life prediction purposes.

  13. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  14. Electric cartridge-type heater for producing a given non-uniform axial power distribution

    DOEpatents

    Clark, D.L.; Kress, T.S.

    1975-10-14

    An electric cartridge heater is provided to simulate a reactor fuel element for use in safety and thermal-hydraulic tests of model nuclear reactor systems. The electric heat-generating element of the cartridge heater consists of a specifically shaped strip of metal cut with variable width from a flat sheet of the element material. When spirally wrapped around a mandrel, the strip produces a coiled element of the desired length and diameter. The coiled element is particularly characterized by an electrical resistance that varies along its length due to variations in strip width. Thus, the cartridge heater is constructed such that it will produce a more realistic simulation of the actual nonuniform (approximately ''chopped'' cosine) power distribution of a reactor fuel element.

  15. Experimental Study of Isothermal Plate Uniformity for Blood Warmer Development using Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Hendrarsakti, J.; Ichsan, Y.

    2016-09-01

    This research was conducted to assess the direct use of geothermal energy for blood warmer. The heating plate was made form aluminium plates with dimensions of 100 x 200 mm and then fed from the hot water heater. Tests were conducted in the laboratory where geothermal source water is replaced with the heat generated from the heater. The hot water from the heater in the temperature range 55°C - 60°C flowed into vertical chamber. Setting the temperature of the hot water heater is done by changing the flow of hot water coming out of the heater. Results showed that the value of a standard deviation of plate temperature was about 0.42 °C, so it can be said isothermal accordance with design requirement and objective. The test data used for the analysis of the manufacture of the heating plate in the blood warmer to regulate the discharge of hot water at intervals of 21.47 mL/s to 24.8 mL/s to obtain a temperature of 37.20 °C - 40.15 °C. Geothermal energy has the potential for blood warmer because blood warmer is part of the energy cascade in a temperature range of 40°C to 60°C

  16. Effect of radiant heat on head temperature gradient in term infants.

    PubMed Central

    Gunn, A. J.; Gunn, T. R.

    1996-01-01

    AIMS: To test the hypothesis that external radiant heating might lead to significant fluctuations in superficial and core head temperatures in newborn infants. METHODS: In an observation group of 14 term infants nursed under a radiant heater, servo-controlled to the abdominal skin, changes in rectal, core head, and scalp temperatures with heater activation were examined. In a further intervention group of six infants the effect of a reflective head shield on the fluctuations of scalp temperature was also tested. RESULTS: In the observation group, when the heater had been off for 30 minutes, the rectal and scalp temperatures were 36.7 (SD 0.6) and 35.6 (0.6) degrees C, respectively, a difference of 1.2 (0.2) degrees C. After 30 minutes with the radiant heater on this fell to 0.2 (0.5) degrees C. The core head temperature, however, remained similar to the rectal temperature throughout. In the intervention group a reflective shield prevented the loss of the rectal-scalp gradient. CONCLUSION: Overhead heater activation is associated with loss of the core to scalp temperature gradient, but no change in core head temperature in term infants. The clinical relevance of this superficial heating in vulnerable infants warrants further study. PMID:8777685

  17. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  18. 14 CFR 61.115 - Balloon rating: Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... takes a practical test in a balloon with an airborne heater: (1) The pilot certificate will contain a limitation restricting the exercise of the privileges of that certificate to a balloon with an airborne... removed when the person obtains the required aeronautical experience in a balloon with an airborne heater...

  19. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  20. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  1. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  2. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  3. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  4. 10 CFR Appendix A1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... freezer compartment volume as defined in HRF-1-1979, in cubic feet. 1.3“Anti-sweat heater” means a device... operating characteristics. 1.7“Standard cycle” means the cycle type in which the anti-sweat heater control... unit under test. Defrost controls are to be operative and the anti-sweat heater switch is to be “on...

  5. 10 CFR Appendix B1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Freezers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standard as a revision of ANSI B38.1-1970. 1.2“Anti-sweat heater” means a device incorporated into the... characteristics. 1.5“Standard cycle” means the cycle type in which the anti-sweat heater switch, when provided, is... controls are to be operative and the anti-sweat heater switch is to be “on” during one test and “off...

  6. Inverse problem of flame surface properties of wood using a repulsive particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung-Beom; Park, Won-Hee

    2015-04-01

    The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algorithm and cone heater test results. The cone heater specified in the ISO 5660 standards was used, and six cone heater heat fluxes were tested. Preservative-treated Douglas fir 21 mm in thickness was used as the wood specimen in the tests. This study confirmed that the surface temperature of the specimen, which was calculated using the convective heat transfer coefficient, surface emissivity and flame heat flux on the wood specimen by a repulsive particle swarm optimization algorithm, was consistent with the measured temperature. Considering the measurement errors in the surface temperature of the specimen, the applicability of the optimization method considered in this study was evaluated.

  7. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to design custom-made TDR sensors. The focus of this study is mainly on dielectric-based commercial water content sensors. Unlike soils for which the sensors were originally designed, it requires significantly more attention to properly install it onto rock (i.e., a good contact with the sensor and rock). The results will be used to select and design the instrumentation set-up for monitoring water content during the heating phase where sensors have to withstand harsh conditions (high salinity, high temperature, high pressures, high clay content and long term monitoring up to 10 years). The sensor tests are beneficial also in the sense that the water content data generated during these tests provide insights into drainage processes after tunnel construction and seasonal water content variations in the near field rock around the test gallery. We will present results from the tests and measurements performed during the first year.

  8. Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.S. Brodsky

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transportmore » properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.« less

  9. High efficient photothermal energy conversion of topologic insulator Bi2Se3 nanosheets thin film

    NASA Astrophysics Data System (ADS)

    Liu, Yanling; Zhang, Yanbang; Zhao, Zejia; Jia, Guozhi

    2018-05-01

    The photothermal conversion has become rather attractive to realize the heat energy application. A simple, rapid and scalable optical-controlling Bi2Se3 nanosheets film heater is prepared by softly nondestructive rubbing technology and then transferring to PET substrate under the assistance of PVA. The optical-controlling film heater exhibits the excellent adjustability, accuracy and stability of temperature. The film heater is first tested by using laser irradiation at 410 mW and the corresponding temperature rapidly increased to the 53.2 °C for SThin film and 73.2 °C for SThick film during 50 seconds. The SThin and SThick film display a transmittance of 40% to 60% from the visible to near-IR region, respectively. As-prepared optical-controlling Bi2Se3 film heater can be easily integrated to optical or photo-electric device without preparation of electrode. These exotic properties of Bi2Se3 nanosheets optical-controlling heater suggest exciting prospects for the temperature-dependent flexible optoelectronics and electronic device.

  10. 14 CFR 61.133 - Commercial pilot privileges and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rating takes a practical test in a balloon with an airborne heater— (i) The pilot certificate will... airborne heater. (ii) The limitation specified in paragraph (b)(2)(i) of this section may be removed when... person obtains the required aeronautical experience in a balloon with an airborne heater and receives a...

  11. Potential Application of Magnetohydrodynamic Acceleration to Hypersonic Environmental Testing

    DTIC Science & Technology

    1990-08-01

    homopolar generators, and compulsators should be evaluated along with solid-state converters. 86 AEDC-TR-90-6 B.4.2 Design Study of Control and...heater as a source of hot air for accelerator research. One could consider using motor generator power supplies for the arc heater as d3ne tor the

  12. Geoscience Laser Altimetry System (GLAS) On-Orbit Flight Report on the Propylene Loop Heat Pipes (LHPs)

    NASA Technical Reports Server (NTRS)

    Baker, Charles L.; Grob, Eric W.; McCarthy, Thomas V.; Nikitkin, Michael N.; Ancarrow, Walter C.

    2003-01-01

    The Geoscience Laser Altimetry System (GLAS) instrument which is the sole instrument on ICESat was launched on January 12, 2003. GLAS utilizes two actively controlled propylene Loop Heat Pipes (LHPs) as the core of its thermal system. The LHPs started quickly when the Dale Ohm starter heaters were powered and have as designed. The low control heater power and on-orbit tight temperature control appear independent of gravity effects when comparing ground testing to flight data. The use of coupling blocks was also unique to these LHPs. Their application reduced control heater power by reducing the subcooling from the radiator. The effectiveness in reducing subcooling of the coupler blocks decreased during flight from ground testing, but internal thermal isolation in the compensation chamber between the subcooled returning liquid increased in flight resulting in no net increase in control heater power versus ground measurements. Overall the application of LHPs in the thermal system for GLAS met instrument requirements and provided flexibility for the overall system as last minute requirements became known.

  13. Electric Water Heater Modeling and Control Strategies for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency supportmore » following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid« less

  14. 1991 LLWAS Anemometer Test Program.

    DTIC Science & Technology

    1992-09-01

    the enhanced LLWAS system installed there detected a violent microburst and prevented the loss of a Continental flight on final approach . Because of... balance of the heat provided by eight radiant heaters located on a one-foot diameter around the metal cup and vane assembly. HYDRO-TECH MODEL WS-3, WD...first chamber test, the Qualimetrics sensor had been modified with the addition of a 40- or 50-watt heater to the rain hood of the sensor. This heat

  15. ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTH. AIR HEATERS LINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTH. AIR HEATERS LINE UP AGAINST WALL, TO BE USED IN CONNECTION WITH ETR EXPERIMENTS. EACH HAD A HEAT OUTPUT OF 8 MILLION BTU PER HOUR, OPERATED AT 1260 DEGREES F. AND A PRESSURE OF 320 PSI. NOTE METAL WALLS AND ROOF. INL NEGATIVE NO. 56-3709. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  17. Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.

  18. Quality-assurance procedures: Method 5G determination of particulate emissions from wood heaters from a dilution tunnel sampling location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Hartman, M.W.; Olin, R.C.

    1989-06-01

    Quality-assurance procedures are contained in this comprehensive document intended to be used as an aid for wood-heater manufacturers and testing laboratories in performing particulate matter sampling of wood heaters according to EPA protocol, Method 5G. These procedures may be used in research and development, and as an aid in auditing and certification testing. A detailed, step-by-step quality assurance guide is provided to aid in the procurement and assembly of testing apparatus, to clearly describe the procedures, and to facilitate data collection and reporting. Suggested data sheets are supplied that can be used as an aid for both recordkeeping and certificationmore » applications. Throughout the document, activity matrices are provided to serve as a summary reference. Checklists are also supplied that can be used by testing personnel. Finally, for the purposes of ensuring data quality, procedures are outlined for apparatus operation, maintenance, and traceability. These procedures combined with the detailed description of the sampling and analysis protocol will help ensure the accuracy and reliability of Method 5G emission-testing results.« less

  19. Film evaporation MEMS thruster array for micropropulsion

    NASA Astrophysics Data System (ADS)

    Cofer, Anthony G.

    Current small sat propulsion systems require a substantial mass fraction of the vehicle involving tradeoffs between useful payload mass and maneuverability. This is also an issue with available attitude control systems which are either quickly saturated reaction wheels or movable high drag surfaces with long response times. What is needed is a low mass low power self-contained propulsion unit that can be easily installed and modeled. The proposed Film-Evaporation MEMS Tunable Array (FEMTA), exploits the small scale surface tension effect in conjunction with temperature dependent vapor pressure to realize a thermal valving system. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in the nozzle inducing vacuum boiling which provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. The heat of vaporization is drawn from the bulk fluid and is replaced by either an integrated heater or waste heat from the vehicle. Proof of concept was initially achieved with a macroscale device made possible by using ethylene glycol, which has a low vapor pressure and high surface tension, as the working fluid. Both the thermal valving effect and cooling feature were demonstrated though at reduced performance than would be expected for water. Three generations of prototype FEMTA devices have been fabricated at Birck Nanotechnology Center on 200 and 500 micrometer thick silicon wafers. Preliminary testing on first generation models had tenuously demonstrated behavior consistent with the macroscale tests but there was not enough data for solid confirmation. Some reliability issues had arisen with the integrated heaters which were only partially alleviated in the second generation of FEMTAs. This led to a third generation and two changes in heater material until a chemically resilient material was found. The third generation of microthrusters were tested on the microNewton thrust stand at Purdue's High Vacuum Lab and confirmed the thermal valving concept. The microthrusters will also undergo thermal testing at the Goddard Space Flight Centers' ThermalVac environmental testing facility whenever device lifetime can be extended to the several week time frame needed to provide reliable data.

  20. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  1. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  2. Performance Analysis and Parametric Study of a Natural Convection Solar Air Heater With In-built Oil Storage

    NASA Astrophysics Data System (ADS)

    Dhote, Yogesh; Thombre, Shashikant

    2016-10-01

    This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.

  3. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  4. Genetic Algorithm Optimization of a Film Cooling Array on a Modern Turbine Inlet Vane

    DTIC Science & Technology

    2012-09-01

    heater is typically higher than the test section temperature since there is a lag due to heat transfer to the piping between the heater and test... flexible substrate 301 used 50 microns thick and the gauges themselves are a platinum metal layer 500-Å thick. When subjected to a change in heat ...more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the

  5. 76 FR 68180 - Publication of the Petition for Waiver From Empire Comfort Systems From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... condensing type direct heaters. In its petition, Empire provides an alternate test procedure, ANSI/ASHRAE... alternate procedure omits those sections of ANSI/ASHRAE 103-1993 that do not apply to condensing type direct heaters. DOE solicits comments, data, and information concerning Empire's petition and the suggested...

  6. M60 Tank Personnel Heater Comparison Test, Fort Carson, Colorado

    DTIC Science & Technology

    1983-05-01

    A study should be made considering the logisites and cost implications of developing a kit to upgrade the Model "C" heater to include self ...l f L Summary of Questionnaire Respose -for BLU (Model "A" with Engine Filter/Heat Tape) System Driver Loader Gunner TC’* " # % # % * % # 9 12. Heat

  7. 40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitored for each averaging group; (iii) The specific control technology or pollution prevention measure to... section. You may not include new boilers or process heaters in an emissions average. (b) For a group of... heater in the averaging group, the emission rate achieved during the initial compliance test for the HAP...

  8. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE.... Measure the time it takes the parts to travel a measured distance. ___ 3. Identify the sources of air... condenser or the sump heater? A. Primary condenser B. Sump heater C. Turn both on at same time D. Either A...

  9. 40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitored for each averaging group; (iii) The specific control technology or pollution prevention measure to... section. You may not include new boilers or process heaters in an emissions average. (b) For a group of... heater in the averaging group, the emission rate achieved during the initial compliance test for the HAP...

  10. Expanded operational capabilities of the Langley Mach 7 Scramjet test facility

    NASA Technical Reports Server (NTRS)

    Thomas, S. R.; Guy, R. W.

    1983-01-01

    An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.

  11. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2011-11-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  12. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2012-04-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  13. Momentum effects in steady nucleate pool boiling during microgravity.

    PubMed

    Merte, Herman

    2004-11-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.

  14. Liquid hydrogen and liquid oxygen feedline passive recirculation analysis

    NASA Astrophysics Data System (ADS)

    Holt, Kimberly Ann; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.

    The primary goal of the National Launch System (NLS) program was to design an operationally efficient, highly reliable vehicle with minimal recurring launch costs. To achieve this goal, trade studies of key main propulsion subsystems were performed to specify vehicle design requirements. These requirements include the use of passive recirculation to thermally condition the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant feed systems and Space Transportation Main Engine (STME) fuel pumps. Rockwell International (RI) proposed a joint independent research and development (JIRAD) program with Marshall Space Flight Center (MSFC) to study the LH2 feed system passive recirculation concept. The testing was started in July 1992 and completed in November 1992. Vertical and sloped feedline designs were used. An engine simulator was attached at the bottom of the feedline. This simulator had strip heaters that were set to equal the corresponding heat input from different engines. A computer program is currently being used to analyze the passive recirculation concept in the LH2 vertical feedline tests. Four tests, where the heater setting is the independent variable, were chosen. While the JIRAD with RI was underway, General Dynamics Space Systems (GDSS) proposed a JIRAD with MSFC to explore passive recirculation in the LO2 feed system. Liquid nitrogen (LN2) is being used instead of LO2 for safety and economic concerns. To date, three sets of calibration tests have been completed on the sloped LN2 test article. The environmental heat was calculated from the calibration tests in which the strip heaters were turned off. During the LH2 testing, the environmental heat was assumed to be constant. Therefore, the total heat was equal to the environmental heat flux plus the heater input. However, the first two sets of LN2 calibration tests have shown that the environmental heat flux varies with heater input. A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) model is currently being built to determine if this variation in environmental heat is due to a change in the wall temperature.

  15. A silicon nanowire heater and thermometer

    NASA Astrophysics Data System (ADS)

    Zhao, Xingyan; Dan, Yaping

    2017-07-01

    In the thermal conductivity measurements of thermoelectric materials, heaters and thermometers made of the same semiconducting materials under test, forming a homogeneous system, will significantly simplify fabrication and integration. In this work, we demonstrate a high-performance heater and thermometer made of single silicon nanowires (SiNWs). The SiNWs are patterned out of a silicon-on-insulator wafer by CMOS-compatible fabrication processes. The electronic properties of the nanowires are characterized by four-probe and low temperature Hall effect measurements. The I-V curves of the nanowires are linear at small voltage bias. The temperature dependence of the nanowire resistance allows the nanowire to be used as a highly sensitive thermometer. At high voltage bias, the I-V curves of the nanowire become nonlinear due to the effect of Joule heating. The temperature of the nanowire heater can be accurately monitored by the nanowire itself as a thermometer.

  16. Material Ignition and Suppression Test (MIST) in Space Exploration Atmospheres, Summary of Research

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, Carlos

    2013-01-01

    The Material Ignition and Suppression Test (MIST) project has had the objective of evaluating the ease of ignition and the fire suppression of materials used in spacecraft under environmental condition expected in a spacecraft. For this purpose, an experimental and theoretical research program is being conducted on the effect of space exploration atmospheres (SEA) on the piloted ignition of representative combustible materials, and on their fire suppression characteristics. The experimental apparatus and test methodology is derived from the Forced Ignition and Flame Spread Test (FIST), a well-developed bench scale test designed to extract material properties relevant to prediction of material flammability. In the FIST test, materials are exposed to an external radiant flux and the ignition delay and critical mass flux at ignition are determined as a function of the type of material and environmental conditions. In the original MIST design, a small-scale cylindrical flow duct with fuel samples attached to its inside wall was heated by a cylindrical heater located at the central axis of the cylinder. However, as the project evolved it was decided by NASA that it would be better to produce an experimental design that could accommodate other experiments with different experimental concepts. Based on those instructions and input from the requirements of other researchers that may share the hardware in an ISS/CIR experiment, a cylindrical design based on placing the sample at the center of an optically transparent tube with heaters equally spaced along the exterior of the cylinder was developed. Piloted ignition is attained by a hot wire igniter downstream of the fuel sample. Environment variables that can be studied via this experimental apparatus include: external radiant flux, oxidizer oxygen concentration, flow velocity, ambient pressure, and gravity level (if flown in the ISS/CIR). This constitutes the current experimental design, which maintains fairly good consistency with Dr Tien's and Dr Olson's project approaches. A further goal of the project has been to develop a combined solid/gas phase numerical model based on the MIST test methodology to predict the flammability behavior of practical materials in spacecraft.

  17. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  18. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  19. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  20. Assessment of the US Department of Energy's Sustainable Energy Resources for Consumers Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenahan, Tim; Bausch, Daniel; Carroll, David

    This report presents the results of an assessment of the Sustainable Energy Resources for Consumers (SERC) grant program that was administered by the US Department of Energy Weatherization and Intergovernmental Program Office. Grants totaling $90 million were awarded to 101 local weatherization agencies located in 27 states. More than 15,000 housing units were touched by the SERC program. Close to 29,000 SERC technologies were installed and/or services delivered. The report summarizes the results of site visits to 27 agencies in which the following 14 technologies were observed: solar photovoltaic panels, solar hot water heaters, solar thermal air panels for spacemore » heating, tankless water heaters, heat pump water heaters, geothermal heat pumps, super-evaporative cooling systems, combination boilers and indirect water heaters, small-scale residential wind systems, cool roofs, masonry spray foam insulation, attic radiant barriers, mini-split heat pumps, and in-home energy monitors. The evaluation found that the national weatherization network is capable of installing and delivering a wide range of new and innovative technologies, but the usability and adoptability of some technologies may prove impractical for the weatherization network and the demographic for which it serves.« less

  1. Development of a Process for a High Capacity Arc Heater Production of Silicon for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Reed, W. H.

    1979-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant (sodium) are injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection were developed. Included in this report are: test system preparation; testing; injection techniques; kinetics; reaction demonstration; conclusions; and the project status.

  2. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  3. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... heater shall comply with the following requirements: (a) Prohibited types of heaters. The installation or use of the following types of heaters is prohibited: (1) Exhaust heaters. Any type of exhaust heater... heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type...

  4. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... heater shall comply with the following requirements: (a) Prohibited types of heaters. The installation or use of the following types of heaters is prohibited: (1) Exhaust heaters. Any type of exhaust heater... heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type...

  5. Flat plate solar air heater with latent heat storage

    NASA Astrophysics Data System (ADS)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  6. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOEpatents

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  7. Once-through integral system (OTIS): Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloudemans, J R

    1986-09-01

    A scaled experimental facility, designated the once-through integral system (OTIS), was used to acquire post-small break loss-of-coolant accident (SBLOCA) data for benchmarking system codes. OTIS was also used to investigate the application of the Abnormal Transient Operating Guidelines (ATOG) used in the Babcock and Wilcox (B and W) designed nuclear steam supply system (NSSS) during the course of an SBLOCA. OTIS was a single-loop facility with a plant to model power scale factor of 1686. OTIS maintained the key elevations, approximate component volumes, and loop flow resistances, and simulated the major component phenomena of a B and W raised-loop nuclearmore » plant. A test matrix consisting of 15 tests divided into four categories was performed. The largest group contained 10 tests and was defined to parametrically obtain an extensive set of plant-typical experimental data for code benchmarking. Parameters such as leak size, leak location, and high-pressure injection (HPI) shut-off head were individually varied. The remaining categories were specified to study the impact of the ATOGs (2 tests), to note the effect of guard heater operation on observed phenomena (2 tests), and to provide a data set for comparison with previous test experience (1 test). A summary of the test results and a detailed discussion of Test 220100 is presented. Test 220100 was the nominal or reference test for the parametric studies. This test was performed with a scaled 10-cm/sup 2/ leak located in the cold leg suction piping.« less

  8. Flight Set 360L006 STS-34 field joint protection system, thermal protection system, and systems tunnel components, volume 4

    NASA Technical Reports Server (NTRS)

    Wilkinson, J. P.

    1990-01-01

    The performance of the thermal protection system, field joint protection system, and systems tunnel components of Flight Set 360L006, are documented, as evaluated by postflight hardware inspection. The condition of both motors was similar to previous flights. Sixteen aft edge hits were noted on the ground environment instrumentation thermal protection system. Each hit left a clean substrate, indicating that the damage was caused by nozzle severance debris and/or water impact. No National Space and Transporation System debris criteria for missing thermal protection system were violated. One 5.0 by 1.0 in. unbond was observed on the left hand center field joint K5NA closeout and was elevated to an in-flight anomaly (STS-34-M-4) by the NASA Ice/Debris team. Aft edge damage to the K5NA and an associated black streak indicate that burning debris from the nozzle severance system was the likely cause of the damage. Minor divots caused by debris were seen on previous flights, but this is the first occurrence of a K5NA unbond. Since the unbond occurred after booster separation there is no impact on flight safety and no corrective actions was taken. The right hand center field joint primary heater failed the dielectric withstanding voltage test after joint closeout. The heater was then disabled by opening the circuit breaker, and the redundant heater was used. The redundant heater performed nominally during the launch countdown. A similar condition occurred on Flight 4 when a secondary joint heater failed the dielectric withstanding voltage test.

  9. QM-8 field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    The pre-launch functioning data of the Field Joint Protection System (JPS) used on QM-8 are presented. Also included is the post fire condition of the JPS components following the test firing of the motor. The JPS components are: field joint heaters; field joint sensors; field joint moisture seal; moisture seal kevlar retaining straps; field joint external extruded cork insulation; vent valve; power cables; and igniter heater.

  10. 10 CFR Appendix A1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... less for the freezing and storage of ice. 1.3“Anti-sweat heater” means a device incorporated into the... interior surfaces of the cabinet. 1.4“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5“Automatic defrost” means a...

  11. 10 CFR Appendix A to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... capacity (14.2 liters) or less for the freezing and storage of ice. 1.3“Anti-sweat heater” means a device... on the exterior or interior surfaces of the cabinet. 1.4“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5...

  12. 10 CFR Appendix B1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Freezers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... defined in HRF-1-1979 in cubic feet, times (2) an adjustment factor. 1.2 “Anti-sweat heater” means a... interior surfaces of the cabinet. 1.3 “Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.4 “Automatic Defrost” means a...

  13. 10 CFR Appendix A to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... capacity (14.2 liters) or less for the freezing and storage of ice. 1.3 “Anti-sweat heater” means a device... on the exterior or interior surfaces of the cabinet. 1.4 “Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5...

  14. 10 CFR Appendix B1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Freezers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... defined in HRF-1-1979 in cubic feet, times (2) an adjustment factor. 1.2“Anti-sweat heater” means a device... surfaces of the cabinet. 1.3“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.4“Automatic Defrost” means a system in...

  15. 10 CFR Appendix B1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Freezers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... defined in HRF-1-1979 in cubic feet, times (2) an adjustment factor. 1.2“Anti-sweat heater” means a device... surfaces of the cabinet. 1.3“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.4“Automatic Defrost” means a system in...

  16. 10 CFR Appendix A1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... less for the freezing and storage of ice. 1.3 “Anti-sweat heater” means a device incorporated into the... interior surfaces of the cabinet. 1.4 “Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5 “Automatic defrost” means a...

  17. 10 CFR Appendix A to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... capacity (14.2 liters) or less for the freezing and storage of ice. 1.3“Anti-sweat heater” means a device... on the exterior or interior surfaces of the cabinet. 1.4“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5...

  18. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  19. Effect of Random Thermal Spikes on Stirling Convertor Heater Head Reliability

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Halford, Gary R.

    2004-01-01

    Onboard radioisotope power systems being developed to support future NASA exploration missions require reliable design lifetimes of up to 14 yr and beyond. The structurally critical heater head of the high-efficiency developmental Stirling power convertor has undergone extensive computational analysis of operating temperatures (up to 650 C), stresses, and creep resistance of the thin-walled Inconel 718 bill of material. Additionally, assessment of the effect of uncertainties in the creep behavior of the thin-walled heater head, the variation in the manufactured thickness, variation in control temperature, and variation in pressure on the durability and reliability were performed. However, it is possible for the heater head to experience rare incidences of random temperature spikes (excursions) of short duration. These incidences could occur randomly with random magnitude and duration during the desired mission life. These rare incidences could affect the creep strain rate and therefore the life. The paper accounts for these uncertainties and includes the effect of such rare incidences, random in nature, on the reliability. The sensitivities of variables affecting the reliability are quantified and guidelines developed to improve the reliability are outlined. Furthermore, the quantified reliability is being verified with test data from the accelerated benchmark tests being conducted at the NASA Glenn Research Center.

  20. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  1. Nonlinear numerical analysis and experimental testing for an electrothermal SU-8 microgripper with reduced out-of-plane displacement

    NASA Astrophysics Data System (ADS)

    Voicu, Rodica-Cristina; Zandi, Muaiyd Al; Müller, Raluca; Wang, Changhai

    2017-11-01

    This paper reports the results of numerical nonlinear electro-thermo-mechanical analysis and experimental testing of a polymeric microgripper designed using electrothermal actuators. The simulation work was carried out using a finite element method (FEM) and a commercial software (Coventorware 2014). The biocompatible SU-8 polymer was used as structural material for the fabrication of the microgripper. The metallic micro-heater was encapsulated in the polymeric actuation structures of the microgripper to reduce the undesirable out-of-plane displacement of the microgripper tips, and to electrically isolate the micro-heater, and to reduce the mechanical stress as well as to improve the thermal efficiency. The electro- thermo-mechanical analysis of the actuator considers the nonlinear temperature-dependent properties of the SU-8 polymer and the gold thin film layers used for the micro-heater fabrication. An optical characterisation of the microgripper based on an image tracking approach shows the thermal response and the good repeatability. The average deflection is ~11 µm for an actuation current of ~17 mA. The experimentally obtained tip deflection and the heater temperature at different currents are both shown to be in good agreement with the nonlinear electro-thermo-mechanical simulation results. Finally, we demonstrate the capability of the microgripper by capture and manipulation of cotton fibres.

  2. Chapter 7:Mineral Scale Management

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2012-01-01

    Mineral scale problems are not new to pulp mills and bleach plants. The liquor recovery system ensures that white liquor is saturated in calcium carbonate, and this mineral will precipitate when heated to cooking temperatures in the digester [1,2]. The original single-vessel continuous digesters sold by Kamyr had an extra liquor heater as standard equipment to enable...

  3. Pretest reference calculation for the Heated Axisymmetric Pillar (WIPP Room H in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the Heated Axisymmetric Pillar or Room H experiment is presented in this report. The Heated Axisymmetric Pillar is one of several large scale in situ experiments currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). This test is an intermediate step in validating numerical techniques for design and performance calculations for radioactive waste repositories in salt. The test consists of a cylindrically shaped pillar, centrally located in an annular drift, which is uniformly heated by blanket heaters. These heaters produce a thermal output of 135 W/m/sup 2/.more » This load will be supplied for a period of three years. Room H is heavily instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room H will eventually be compared to the calculation presented in this report to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used in the calculation represents the state of the art at the present time. A large number of plots are included since an appropriate result is required for every Room H gauge location. 56 refs., 97 figs., 4 tabs.« less

  4. Heat transfer in hybrid fibre reinforced concrete-steel composite column exposed to a gas-fired radiant heater

    NASA Astrophysics Data System (ADS)

    Štefan, R.; Procházka, J.; Novák, J.; Fládr, J.; Wald, F.; Kohoutková, A.; Scheinherrová, L.; Čáchová, M.

    2017-09-01

    In the paper, a gas-fired radiant heater system for testing of structural elements and materials at elevated temperatures is described. The applicability of the system is illustrated on an example of the heat transfer experiment on a hybrid fibre reinforced concrete-steel composite column specimen. The results obtained during the test are closely analysed by common data visualization techniques. The experiment is simulated by a mathematical model of heat transfer, assuming the material data of the concrete determined by in-house measurements. The measured and calculated data are compared and discussed.

  5. Development of Technologies on Innovative-Simplified Nuclear Power Plant using High-Efficiency Steam Injectors

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji

    A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.

  6. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  7. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  8. Thermohydrologic modeling of the large-block test in partially saturated fractured tuff at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.

    2002-12-01

    In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a statistical analysis to compare model and field temperatures, and found that heat flow in the block was dominated by conduction.

  9. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters.

    PubMed

    He, Xin; He, Ruihui; Lan, Qiuming; Wu, Weijie; Duan, Feng; Xiao, Jundong; Zhang, Mei; Zeng, Qingguang; Wu, Jianhao; Liu, Junyan

    2017-02-23

    A transparent and flexible film heater was fabricated; based on a hybrid structure of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowires (Ag NWs) using a screen printing; which is a scalable production technology. The resulting film integrates the advantages of the two conductive materials; easy film-forming and strong adhesion to the substrate of the polymer PEDOT:PSS; and high conductivity of the Ag NWs. The fabricated composite films with different NW densities exhibited the transmittance within the range from 82.3% to 74.1% at 550 nm. By applying 40 V potential on the films; a stable temperature from 49 °C to 99 °C was generated within 30 s to 50 s. However; the surface temperature of the pristine PEDOT:PSS film did not increase compared to the room temperature. The composite film with the transmittance of 74.1% could be heated to the temperatures from 41 °C to 99 °C at the driven voltages from 15 V to 40 V; indicating that the film heater exhibited uniform heating and rapid thermal response. Therefore; the PEDOT:PSS/Ag NW composite film is a promising candidate for the application of the transparent and large-scale film heaters.

  10. Mechanical Property Allowables Generated for the Solid Rocket Booster Composite Note Cap

    NASA Technical Reports Server (NTRS)

    Hodge, A. J.

    2000-01-01

    Mechanical property characterization was performed on AS4/3501-6 graphite/epoxy and SC350G syntactic foam for the SRB Composite Nose Cap Shuttle Upgrades Project. Lamina level properties for the graphite/epoxy were determined at room temperature, 240 F, 350 F, 480 F, 600 F, and 350 F after a cycle to 600 F. Graphite/epoxy samples were moisture conditioned prior to testing. The syntactic foam material was tested at room temperature, 350 F, and 480 F. A high-temperature test facility was developed at MSFC. Testing was performed with quartz lamp heaters and high resistance heater strips. The thermal history profile of the nose cap was simulated in order to test materials at various times during launch. A correlation study was performed with Southern Research Institute to confirm the test methodology and validity of test results. A-basis allowables were generated from the results of testing on three lots of material.

  11. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  12. Comparison of three systems of solar water heating by thermosiphon

    NASA Astrophysics Data System (ADS)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  13. Characterization of Emissions from Heaters Burning Leaded Diesel Fuel in Unvented Tents

    DTIC Science & Technology

    1999-06-01

    ultrafine particles . On the other hand, emissions from burning liquid fuels can be substantial in terms of both gas pollutants and particles. For...2.5) and the distribution of ultrafine particles can be estimated. The real-time particle and gas concentration can also be monitored. The...heaters produced fine and ultrafine particles . 19 Chemical Elemental Analysis Twenty-seven test runs were made under the various conditions. The air

  14. Data Analysis for Ocean Thermal Energy Conversion (otec)

    DTIC Science & Technology

    1979-11-01

    the OTEC system consisted of copper heater cylinders which were press fitted to the outside of the heat exchanger tubes. Voltage to the heaters was...INFORMATION The Heat Exchanger Heating task was sponsored by the Department of Energy under Interagency Agreement ET-78-I-O1-3218, Task Number 13218, Work...Panama City, Florida. Test site characterization, cleaning systems, and the physical structure of the OTEC system are discussed briefly. Data sampling

  15. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOEpatents

    Brady; Michael Patrick , Horton, Jr.; Joseph Arno , Vitek; John Michael

    2010-03-23

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  16. Excavation Induced Hydraulic Response of Opalinus Clay - Investigations of the FE-Experiment at the Mont Terri URL in Switzerland

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Müller, H. R.; Garitte, B.; Sakaki, T.; Vietor, T.

    2013-12-01

    The Full-Scale Emplacement (FE) Experiment at the Mont Terri underground research laboratory in Switzerland is a full-scale heater test in a clay-rich formation (Opalinus Clay). Based on the Swiss disposal concept it simulates the construction, emplacement, backfilling, and post-closure thermo-hydro-mechanical (THM) evolution of a spent fuel / vitrified high-level waste (SF / HLW) repository tunnel in a realistic manner. The main aim of this experiment is to investigate SF / HLW repository-induced THM coupled effects mainly in the host rock but also in the engineered barrier system (EBS), which consists of bentonite pellets and blocks. A further aim is to gather experience with full-scale tunnel construction and associated hydro-mechanical (HM) processes in the host rock. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors (state-of-the-art sensors and measurement systems as well as fiber-optic sensors). The sensors are distributed in the host rock's near- and far-field, the tunnel lining, the EBS, and on the heaters. The heater emplacement and backfilling has not started yet, therefore only the host rock instrumentation is installed at the moment and is currently generating data. We will present the instrumentation concept and rationale as well as the first monitoring results of the excavation and ventilation phase. In particular, we investigated the excavation induced hydraulic response of the host rock. Therefore, the spatiotemporal evolution of porewater-pressure time series was analyzed to get a better understanding of HM coupled processes during and after the excavation phase as well as the impact of anisotropic geomechanic and hydraulic properties of the clay-rich formation on its hydraulic behavior. Excavation related investigations were completed by means of inclinometer data to characterize the non-elastic and time-dependent deformations. In addition, we evaluated the effect of drainage and suction processes during the ventilation phase on the pressure distribution in the host rock. Based on our results the conceptual models of HM processes and hydraulic behavior of clay rich formations during excavation and ventilation phases could be improved.

  17. Subsurface heaters with low sulfidation rates

    DOEpatents

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  18. A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings

    PubMed Central

    LaBarre, Paul; Hawkins, Kenneth R.; Gerlach, Jay; Wilmoth, Jared; Beddoe, Andrew; Singleton, Jered; Boyle, David; Weigl, Bernhard

    2011-01-01

    Background Molecular assays targeted to nucleic acid (NA) markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS) where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR) instrumentation (another is sample preparation). Methodology/Principal Findings In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heater's equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented. Conclusions/Significance We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA) heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes. PMID:21573065

  19. Active Protection of an MgB2 Test Coil

    PubMed Central

    Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu

    2011-01-01

    This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754

  20. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  1. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  2. MAP Propulsion System Thermal Design

    NASA Technical Reports Server (NTRS)

    Mosier, Carol L.

    2003-01-01

    The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.

  3. Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater

    NASA Astrophysics Data System (ADS)

    Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun

    2010-06-01

    For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.

  4. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  5. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  6. Evaluating Embedded Heater Bonding for Composites

    NASA Astrophysics Data System (ADS)

    Carte, Casey

    Out-of-autoclave bonding of high-strength carbon-fiber composites structures can reduce costs associated with autoclaves. Nevertheless, a concern is whether out-of-autoclave bonding results in a loss of delamination toughness. The main contribution of this paper is to comparatively evaluate the delamination toughness of adhesively bonded composite parts using carbon fiber embedded heaters and those bonded in an autoclave. Carbon Fiber Reinforced Polymer (CFRP) adherends were bonded by passing an electrical current through a layer of carbon fiber prepreg embedded at the bondline between two electrically insulating thin film adhesives. The delamination toughness was evaluated under mode I dominated loading conditions using a modified single cantilever beam test. Experimental results show that the delamination toughness of specimens bonded using a carbon fiber embedded heater was comparable to that of samples bonded in an autoclave.

  7. Geoscience Laser Altimeter System (GLAS) Final Test Report of DM LHP TV Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    Two loop heat pipes (LHPs) are to be used for thermal control of the Geoscience Laser Altimeter System (GLAS), planned for flight in 2001. One LHP will be used to transport 100 W from a laser to the radiator, the other will transport 210 W from electronic boxes to the radiator. In order to verify the LHP design for the GLAS application, an LHP Development Model has been fabricated, and ambient and thermal vacuum tested. Two aluminum blocks of 15 kg and 30 kg, respectively, were attached to the LHP to simulate the thermal masses connected to the heat sources. A 20 W starter heater was installed on the evaporator to aid the loop startup. A new concept to thermally couple the vapor and liquid line was also incorporated in the LHP design. Such a thermal coupling would reduce the power requirement on the compensation chamber in order to maintain the loop set point temperature. To avoid freezing of the liquid in the condenser during cold cases, propylene was selected as the working fluid. The LHP was tested under reflux mode and with adverse elevation. Tests conducted included start-up, power cycle, steady state and transient operation during hot and cold cases, and heater power requirements for the set point temperature control of the LHP. Test results showed very successful operation of the LHP under all conditions. The 20 W starter heater proved necessary in order to start the loop when a large thermal mass was attached to the evaporator. The thermal coupling between the liquid line and the vapor line significantly reduced the heater power required for loop temperature control, which was less than 5 watts in all cases, including a cold radiator. The test also demonstrated successful operation with a propylene working fluid, with successful startups with condenser temperatures as low as 100 C. Furthermore, the test demonstrated accurate control of the loop operating temperature within +/- 0.2 C, and a successful shutdown of the loop during the survival mode of operation.

  8. Ice Detection and Mitigation Device

    NASA Technical Reports Server (NTRS)

    Gambino, Richard J. (Inventor); Gouldstone, Christopher (Inventor); Gutleber, Jonathan (Inventor); Hubble, David (Inventor); Trelewicz, Jason (Inventor)

    2016-01-01

    A method for deicing an aerostructure includes driving a sensing current through a heater element coated to an aerostructure, the heater element having a resistance that is temperature dependent. A resistance of the heater element is monitored. It is determined whether there is icing at the heater element using the monitored resistance of the heater element. A melting current is driven through the heater element when it is determined that there is icing at the heater element.

  9. In Situ Microstructural Control and Mechanical Testing Inside the Transmission Electron Microscope at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Baoming; Haque, M. A.

    2015-08-01

    With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.

  10. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  11. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  12. The Calipso Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  13. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  14. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  15. Extending the Range of a BEV - Early Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, John; Agathocleous, Nicos; Kang, SH

    The 2015 BEV Kia Soul is available with either a Positive Temperature Coefficient (PTC) heater only or an air-source R134a heat pump with PTC heater combination. Hanon, HATCI, and NREL are jointly, with financial support from the DoE, working towards extending the driving range of the heat pump vehicle. This presentation will focus on the early findings of the project, including test data of the baseline vehicle, early data from a modified vehicle, and range extension goals of the project.

  16. Cooling techniques for turbojet pre-heater channels

    NASA Astrophysics Data System (ADS)

    Desaulty, M.; Troullot, P.; Coutor, S.

    1985-09-01

    Increases in the performance of turbojets with pre-heating are dependent upon technological research in the area of protection of the wall in pre-heater channels. The procedures used to cool the thermal protection jackets have undergone important improvements which have optimized performance, reduced weight and improved cooling efficiency. This report presents a comparison of the thermal protection jackets for several SNECMA engines, as well as the principal stages of development for the jacket from the design stages through static engines tests.

  17. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  18. Thermal testing techniques for space shuttle thermal protection system panels

    NASA Technical Reports Server (NTRS)

    Cox, B. G.

    1972-01-01

    An experimental system was developed for evaluation of the effects of aerodynamic heating and cooling, vacuum, and pressure loading on candidate insulation packages proposed for use on the space shuttle. The system includes a number of design features which facilitate rapid recycle times. This is necessary to efficiently conduct extensive thermal cycling tests on these insulation packages to determine their reuse capabilities. The heart of the system is a 26-inch graphite element radiant heater. A susceptor plate functions as a uniform-temperature intermediate radiating surface. The susceptor also forms the lid of an inert atmosphere enclosure which separates the heater from the oxidizing test atmosphere. In some tests the plate properly simulates the heating from an actual flight heat-shield panel. Although other materials were used at lower required test temperatures, 2500 F was routinely achieved using a coated columbium susceptor plate.

  19. Assessment of exposure to indoor air contaminants from combustion sources: methodology and application.

    PubMed

    Leaderer, B P; Zagraniski, R T; Berwick, M; Stolwijk, J A

    1986-08-01

    A methodology for assessing indoor air pollutant exposures is presented, with specific application to unvented combustion by-products. This paper describes the method as applied to a study of acute respiratory illness associated with the use of unvented kerosene space heaters in 333 residences in the New Haven, Connecticut, area from September 1982 to April 1983. The protocol serves as a prototype for a nested design of exposure assessment which could be applied to large-scale field studies of indoor air contaminant levels. Questionnaires, secondary records, and several methods of air monitoring offer a reliable method of estimating environmental exposures for assessing associations with health effects at a reasonable cost. Indoor to outdoor ratios of NO2 concentrations were found to be 0.58 +/- 0.31 for residences without known sources of NO2. Levels of NO2 were found to be comparable for homes with a kerosene heater only and those with a gas cooking stove only. Homes with a kerosene heater and a gas stove had average two-week NO2 levels approximately double those with only one source. Presence of tobacco smokers had a small but significant impact on indoor NO2 levels. Two-week average levels of indoor NO2 were found to be excellent predictors of total personal NO2 exposure for a small sample of adults. Residences with kerosene space heaters had SO2 levels corresponding to the number of hours of heater use and the sulfur content of the fuel. Formaldehyde levels were found to be low and not related to unvented combustion sources. NO2, SO2, and CO2 levels measured in some of the residences were found to exceed those levels specified in current national health standards.

  20. Varying properties along lengths of temperature limited heaters

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Xie, Xueying [Houston, TX; Miller, David Scott [Katy, TX; Ginestra, Jean Charles [Richmond, TX

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  1. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the FMA. It reduces the risk of X-ray attenuation caused by the heater harness. Its adjustable set point capability eliminates the need for survival heater circuits. The operating mode heater circuits can also be used as survival heater circuits. In the non-operating mode, a lower set point is used.

  2. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains themore » final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.« less

  3. Apparatus facilitates high-temperature tensile testing in vacuum

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.

    1964-01-01

    An apparutus for heating refractory materials to high temperatures during tensile testing includes a water-cooled stainless steel vacuum chamber. This contains a resistance heater consisting of a slit tube of tantalum or tungsten to enclose the tensile test rod.

  4. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  5. Performance testing and analysis results of AMTEC cells for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Barkan, A.; Hendricks, T.J.

    1998-01-01

    Testing and analysis has shown that AMTEC (Alkali Metal Thermal to Electric Conversion) (Weber, 1974) cells can reach the performance (power) levels required by a variety of space applications. The performance of an AMTEC cell is highly dependent on the thermal environment to which it is subjected. A guard heater assembly has been designed, fabricated, and used to expose individual AMTEC cells to various thermal environments. The design and operation of the guard heater assembly will be discussed. Performance test results of an AMTEC cell operated under guard heated conditions to simulate an adiabatic cell wall thermal environment are presented.more » Experimental data and analytic model results are compared to illustrate validation of the model. {copyright} {ital 1998 American Institute of Physics.}« less

  6. Temperature limited heaters using phase transformation of ferromagnetic material

    DOEpatents

    Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN

    2009-10-06

    Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.

  7. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  8. Thermal convection of liquid metal in the titanium reduction reactor

    NASA Astrophysics Data System (ADS)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  9. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Hydrostatic test. 61.30-10 Section 61.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new...

  10. Loop Heat Pipe Operation with Thermoelectric Converters and Coupling Blocks

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Nagano, Hosei

    2007-01-01

    This paper presents theoretical and experimental studies on using thermoelectric converters (TECs) and coupling blocks to control the operating temperature of a miniature loop heat pipes (MLHP). The MLHP has two parallel evaporators and two parallel condensers, and each evaporator has its own integral compensation chamber (CC). A TEC is attached to each CC, and connected to the evaporator via a copper thermal strap. The TEC can provide both heating and cooling to the CC, therefore extending the LHP operating temperature over a larger range of the evaporator heat load. A bi-polar power supply is used for the TEC operation. The bipolar power supply automatically changes the direction of the current to the TEC, depending on whether the CC requires heating or cooling, to maintain the CC temperature at the desired set point. The TEC can also enhance the startup success by maintaining a constant CC temperature during the start-up transient. Several aluminum coupling blocks are installed between the vapor line and liquid line. The coupling blocks serve as a heat exchanger which preheats the cold returning liquid so as to reduce the amount of liquid subcooling, and hence the power required to maintain the CC at the desired set point temperature. This paper focuses on the savings of the CC control heater power afforded by the TECs when compared to traditional electric heaters. Tests were conducted by varying the evaporator power, the condenser sink temperature, the CC set point temperature, the number of coupling blocks, and the thermal conductance of the thermal strap. Test results show that the TECs are able to control the CC temperature within k0.5K under all test conditions, and the required TEC heater power is only a fraction of the required electric heater power.

  11. Diesel-fired self-pumping water heater

    NASA Astrophysics Data System (ADS)

    Gertsmann, Joseph

    1994-07-01

    The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.

  12. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  13. Impact of kerosene heater usage on indoor NO/sub 2/ exposures in 50 East Tennessee homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudney, C.S.; Hawthorne, A.R.; Monar, K.P.

    1988-01-01

    As part of a study of indoor air quality in 300 houses in Roane County, Tennessee, a special study was made on kerosene heater usage and indoor pollutant levels, with emphasis on NO/sub 2/. Owners of 45 homes with kerosene heaters deployed pairs of passive NO/sub 2/ monitors on a weekly basis for ten weeks and recorded the weekly amount of heater use. Without correcting for house-specific factors, such as air exchange rate, indoor NO/sub 2/ levels were found to increase about 0.3 ppB per h/week of homeowner-reported heater use. In the absence of heater use, NO/sub 2/ levels weremore » about 10 ppB in houses with and without kerosene heaters. In four houses with kerosene heaters and one house without, continuous measurements were made of NO, NO/sub x/, SO/sub 2/, and CO. CO and SO/sub 2/ levels increased threefold and tenfold, respectively, when the heater was operated compared to when it was off. Mean SO/sub 2/ levels during heater operation were 57, 46, and 110 ppB in three houses with radiant heaters and 13.5 ppB in one house with a convective heater. 5 refs., 8 figs., 3 tabs.« less

  14. Temperature Oscillation in a Loop Heat Pipe with Gravity Assist

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Ottenstein, Laura; Robinson, Frank

    2014-01-01

    ATLAS Laser Thermal Control System (LTCS) thermal vacuum testing where the condenser-radiator was placed in a vertical position, it was found that the loop heat pipe (LHP) reservoir required much more control heater power than the analytical model had predicted. The required control heater power was also higher than the liquid subcooling entering the reservoir using the measured temperatures and the calculated mass flow rate based on steady state LHP operation. This presentation describes the investigation of the LHP behaviors under a gravity assist mode with a very cold radiator sink temperature and a large thermal mass attached to the evaporator. It is concluded that gravity caused the cold liquid to drop from the condenser-radiator to the reservoir, resulting in a rapid decrease of the reservoir temperature. When the reservoir temperature was increasing, a reverse flow occurred in the liquid line, carrying warm liquid to the condenser-radiator. Both events consumed the reservoir control heater power. The fall and rise of the reservoir temperature also caused the net heat input to the evaporator to vary due to the release and storage of the sensible heat of the thermal mass. The combination of these effects led to a persistent reservoir temperature oscillation and a repeated influx of cold liquid from the condenser. This was the root cause of the extraordinary high control heater power requirement in the LTCS TV test. Without gravity assist, such a persistent temperature oscillation will not be present.

  15. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  16. First heated jettison test on the Centaur standard shroud

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The first in a planned series of heated jettison tests on the Centaur Standard Shround was conducted at NASA Plum Brook Station's Space Power Facility on November 19, 1973. The first 250-second portion of the test sequence involved heating the shroud with a specially-built fixture designed to provide a simulation of the heating environment encountered by the shroud during its ascent through the earth's atmosphere. The two heater halves, which were mounted on a rail system, were then retracted. This was followed by the jettison of the two shroud halves into catch nets positioned at 90 deg to the heater rails. The condition which made this test unique compared to the planned subsequent tests was the location of the maximum thermal line at 32 deg from the shroud separation plane. Information on the test hardware, configuration, and sequence is presented. Shroud thermal and deflection data encountered during the heating portion of the test sequence is compared with free-skin design temperatures in various graphical formats.

  17. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Automatic control and safety tests. 61.30-20 Section 61... TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-20 Automatic control and safety tests. Operational tests and checks of all safety and limit controls, combustion controls...

  18. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    NASA Astrophysics Data System (ADS)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of a bubble growing over the TFTC junction on both the sapphire and fused silica heater surfaces. When the fused silica heater produced a temperature drop of 1.4°C, the sapphire heater produced a drop of only 0.04°C under the same conditions. These results verified that the lack of temperature drops present in the sapphire data was due to the thermal properties of the sapphire layer. By observing the bubble departure frequency and site density on the heater, as well as the bubble departure diameter, the contribution of nucleate boiling to the overall heat removal from the surface could be calculated. These results showed that bubble vapor generation contributed to approximately 10% at 1 W/cm2, 23% at 1.75 W/cm2, and 35% at 2.9 W/cm 2 of the heat removed from a fused silica heater. Bubble growth and contact ring growth were observed and measured from images obtained with the high-speed camera. Bubble data recorded on a fused silica heater at 3 W/cm2, 4 W/cm2, and 5 W/cm 2 showed that bubble departure diameter and lifetime were negligibly affected by the increase in heat flux. Bubble and contact ring growth rates demonstrated significant differences when compared on the fused silica and sapphire heaters at 3 W/cm2. The bubble departure diameters were smaller, the bubble lifetimes were longer, and the bubble departure frequency was larger on the sapphire heater, while microlayer evaporation was faster on the fused silica heater. Additional considerations revealed that these differences may be due to surface conditions as well as differing thermal properties. Nucleate boiling curves were recorded on the fused silica and sapphire heaters by adjusting the heat flux input and monitoring the local surface temperature with the TFTCs. The resulting curves showed a temperature drop at the onset of nucleate boiling due to the increase in heat transfer coefficient associated with bubble nucleation. One of the TFTC locations on the sapphire heater frequently experienced a second temperature drop at a higher heat flux. When the heat flux was started from 1 W/cm2 instead of zero or returned to zero only momentarily, the temperature overshoot did not occur. In these cases sufficient vapor remained in the cavities to initiate boiling at a lower superheat.

  19. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  20. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  1. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  2. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  3. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  4. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  5. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  6. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  7. Macroscopic time and altitude distribution of plasma turbulence induced in ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, H.; Dubois, D.; Russell, D.

    1996-03-01

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflectionmore » altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.« less

  8. Development of micro-heaters with optimized temperature compensation design for gas sensors.

    PubMed

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.

  9. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  10. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  11. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  12. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  13. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  14. Measure Guideline: Transitioning to a Tankless Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, bothmore » natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.« less

  15. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  16. Household wood heater usage and indoor leakage of BTEX in Launceston, Australia: A null result

    NASA Astrophysics Data System (ADS)

    Galbally, Ian E.; Gillett, Robert W.; Powell, Jennifer C.; Lawson, Sarah J.; Bentley, Simon T.; Weeks, Ian A.

    A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses. The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in winter in all houses in Launceston.

  17. Thermoelectric Converter for Loop Heat Pipe Temperature Control: Experience and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    2010-01-01

    This paper describes the theoretical background and implementation methodology of using a thermoelectric converter (TEC) for operating temperature control of a loop heat pipe (LHP). In particular, experimental results from ambient and thermal vacuum tests of an LHP are presented for illustrations. The most commonly used state-of-the-art method to control the LHP operating temperature is to cold bias its compensation chamber (CC) and use an electrical heater to maintain the CC at the desired set point temperature. Although effective, this approach has its shortcomings in that the electrical heater can only provide heating to the CC, and the required power can be large under certain conditions. An alternative method is to use a TEC, which is capable of providing both heating and cooling to the CC. In this method, one side of the TEC is attached to the CC, and the other side is connected to the evaporator via a thermal strap. Using a bipolar power supply and a control algorithm, a TEC can function as a heater or a cooler, depending on the direction of the current flow. Extensive ground tests of several LHPs have demonstrated that a TEC can provide very tight temperature control for the CC. It also offers several additional advantages: (1) The LHP can operate at temperatures below its natural operating temperature at low heat loads; (2) The required heater power for a TEC is much less than that for an electrical heater; and (3) It enhances the LHP start-up success. Although the concept of using a TEC for LHP temperature control is simple, there are many factors to be considered in its implementation for space applications because the TEC is susceptible to the shear stress and yet has to sustain the dynamic load under the spacecraft launch environment. The added features that help the TEC to withstand the dynamic load will inevitably affect the TEC thermal performance. Some experiences and lessons learned are addressed in this paper.

  18. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... all accessible parts under pressure. The thermal fluid may be used as the hydrostatic test medium. ... 46 Shipping 2 2010-10-01 2010-10-01 false Hydrostatic test. 61.30-10 Section 61.30-10 Shipping... INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new...

  19. Programmable Thermostat Module Upgrade for the Multipurpose Logistics Module

    NASA Technical Reports Server (NTRS)

    Clark, D. W.; Glasgow, S. d.; Reagan, S. E.; Presson, K. H.; Howard, D. E.; Smith, D. A.

    2007-01-01

    The STS-121/ULF 1.1 mission was the maiden flight of the programmable thermostat module (PTM) system used to control the 28 V shell heaters on the multi-purpose logistics module (MPLM). These PTMs, in conjunction with a data recorder module (DRM), provide continuous closed loop temperature control and data recording of MPLM on-orbit heater operations. This Technical Memorandum discusses the hardware design, development, test, and verification (DDT&V) activities performed at the Marshall Space Flight Center as well as the operational implementation and mission performance.

  20. Programmable Thermostat Module Upgrade for the Multi-Purpose Logistics Module

    NASA Technical Reports Server (NTRS)

    Clark, Dallas; Glasgow, Shaun; Reagan, Shawn; Presson, Keith; Howard, David; Smith, Dennis

    2007-01-01

    The STS-121/ULF1.1 mission was the maiden flight of the Programmable Thermostat Module (PTM) system used to control the 28 V shell heaters on the Multi-Purpose Logistics Module (MPLM). These PTMs, in conjunction with a Data Recorder Module (DRM), provide continuous closed loop temperature control and data recording of MPLM on-orbit heater operations. This paper will discuss the hardware design, development, test and verification (DDT&V) activities performed at the Marshall Space Flight Center (MSFC) as well as the operational implementation and mission performance.

  1. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    NASA Astrophysics Data System (ADS)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach based on energy equations was performed. Considering the entire water amount and the total area of the cone, the amount of water (facing the sun per unit absorbing area in the two symmetrical parts of the system) is found to increase, which is expected to reach a maximum water temperature at a high performance. Our experimental findings show that the daily performance is around 32% and the highest water temperature of about 45°C is obtained in the system at 4 pm, according to seasons and weather conditions. An efficient and simple mathematical simulation approach for the new conical solar water heater is described then validates using experimental data.

  2. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  3. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  4. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  5. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  6. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  7. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  8. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  9. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  10. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  11. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  12. Evaluation of a dual-chamber kerosene-heater combustion technology. Topical report, June-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardas, A.

    1987-10-01

    A kerosene heater equipped with a dual-chamber combustor was procured, tested, and technically evaluated to determine its applicability to natural gas combustion. The kerosene heater was found to have nitric oxide (NO), nitrogen dioxide (NO/sub 2/), and carbon monoxide (CO) emissions of 0.0)2, 0.006 and 0.02 lb/10/sup 6/ Btu input, respectively, much lower than those of blue-flame natural-gas combustors. A basic study was conducted to understand the interaction between kerosene combustion and the surrounding metal sleeves forming the dual chamber. Combustion characteristics of kerosene and natural gas were compared to formulate potential designs of low-emitting natural gas combustors. Three conceptsmore » were developed for low-emitting burners: an atmospheric burner to replace the kerosene wick in the dual chamber; the same concept with a powered vent; and a two-stage system equipped with a powered vent.« less

  13. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  14. Geothermal switch heater installation, testing and monitoring : phases 1 & 2.

    DOT National Transportation Integrated Search

    2016-07-01

    Transportation Technology Center, Inc. (TTCI), Norfolk Southern (NS), and John A. Volpe National Transportation Systems Center (Volpe) completed Phases 1 and 2 of a project on a working prototype geothermal switch heating system designed to test the ...

  15. Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.

    1996-01-01

    An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.

  16. Full-scale flight tests of aircraft morphing structures using SMA actuators

    NASA Astrophysics Data System (ADS)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration, electrical power, controls, data acquisition, and engine operability are discussed. Furthermore the authors layout a road map for the next stage of development of SMA aerospace actuators. A detailed look at the requirements and specifications that may define a production SMA actuator and the technology development required to meet them are presented. A path for meeting production requirements and achieving the next level of technology readiness for both autonomous and controlled SMA actuators is proposed. This path relies strongly on cross functional and organizational teaming including industry, academia, and government.

  17. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Automatic control and safety tests. 61.30-20 Section 61.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-20 Automatic control and safety tests. Operational tests and check...

  18. Solar heater/cooler for mass market

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes project to design, build, and test simple and affordable solar systems. Four combinations of heating, cooling, and domestic hot water supply systems were developed and installed. Test sites, plan for systems and components, and performance are discussed; text is complimented by detailed drawings and test data.

  19. Heat Pump Water Heater Durabliltiy Testing - Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10more » years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed significantly higher efficiencies than conventional electric water heaters (EWH). DOE Simulated Use Tests conducted prior to starting the durability testing resulted in energy factors (EF) of about 2.3 for the integral design and 1.4 for the add-on design compared to the minimum value of 0.86 prescribed for EWHs. Based on the experience from this and the previous durability testing, there is no evidence that strongly suggests that any of the HPWHs suffered significant performance degradation after undergoing over 7000 water heat cycles.« less

  20. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  1. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected metals...

  2. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Are any boilers or process heaters not..., and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  3. Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm{sup 2} break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondariesmore » was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less

  4. Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm[sup 2] break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondariesmore » was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less

  5. Comparison of pollutant emission rates from unvented kerosene and gas space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, M.G.; Traynor, G.W.

    1986-05-01

    In this paper the pollutant emission rates of all five types of unvented space heaters are compared. Pollutant emission rates for carbon dioxide, carbon monoxide (CO), nitric oxide, nitrogen dioxide (NO/sub 2/), formaldehyde, and submicron suspended particles were measured. Special emphasis is placed on CO and NO/sub 2/ emissions. Pollutant measurements were made in a 27-m/sup 3/ environmental chamber and emission rates were calculated using a mass-balance model. Emission rates for propane and natural gas space heaters were similar. Emissions from the various types of heaters fall into three distinct groups. The groups are better characterized by burner design thanmore » by the type of fuel used. Radiant kerosene heaters and infrared UVGSHs constitute one group; convective kerosene heaters and convective UVGSHs the second, and two-stage kerosene heaters the third group. When groups are compared, emission rates vary by an order of magnitude for carbon monoxide and for nitrogen dioxide. The two-stage kerosene heaters emitted the least CO and also the least NO/sub 2/ per unit of fuel energy consumed. The radiant/infrared heaters emitted the most CO, and the convective heaters emitted the most NO/sub 2/. The effects of various operation parameters such as the wick height for kerosene heaters and the air shutter adjustment for gas heaters are discussed. Convective UVGSHs operating at half input were found to have lower emission rates on average than when operating at full input. Some maltuned convective UVGSHs were capable of emitting very high amounts of CO. Kerosene heaters were found to emit more CO and NO/sub 2/ on average when they were operated with lowered wicks.« less

  6. Three-phase heaters with common overburden sections for heating subsurface formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  7. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  8. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    PubMed

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  9. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  10. 46 CFR 61.35-3 - Required tests and checks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... heaters without water level controls) must be tested by interrupting the feed water supply. Manual reset... alarm and visible indicator must be verified. The shutdown times must be verified. (3) Fuel supply... draft loss interlock switch must be tested to ensure proper operation. The draft limit control must...

  11. Performance test for a solar water heater

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.

  12. Posttest analysis of MIST Test 320201 using TRAC-PF1/MOD1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebe, D.A.; Steiner, J.L.; Boyack, B.E.

    A posttest calculation and analysis of Multi-Loop Integral System Test 320201, a small-break loss-of-coolant accident (SBLOCA) test with a scaled 50-cm{sup 2} cold-leg pump discharge leak, has been completed and is reported herein. It was one in a series of tests, with leak size varied parametrically. Scaled leak sizes included 5, 10, (the nominal, Test 3109AA), and 50 cm{sub 2}. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, interruption of loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vesselmore » vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator (SG) secondaries was used after SG-secondary refill; and symmetric SG pressure control was also used. The sequence of events seen in this test was similar to the sequence of events for much of the nominal test except that events occurred in a shorter time frame as the system inventory was reduced and the system depressurized at a faster rate. The calculation was performed using TRAC-PFL/MOD 1. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. We believe that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less

  13. Posttest analysis of MIST Test 320201 using TRAC-PF1/MOD1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebe, D.A.; Steiner, J.L.; Boyack, B.E.

    A posttest calculation and analysis of Multi-Loop Integral System Test 320201, a small-break loss-of-coolant accident (SBLOCA) test with a scaled 50-cm[sup 2] cold-leg pump discharge leak, has been completed and is reported herein. It was one in a series of tests, with leak size varied parametrically. Scaled leak sizes included 5, 10, (the nominal, Test 3109AA), and 50 cm[sub 2]. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, interruption of loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vesselmore » vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator (SG) secondaries was used after SG-secondary refill; and symmetric SG pressure control was also used. The sequence of events seen in this test was similar to the sequence of events for much of the nominal test except that events occurred in a shorter time frame as the system inventory was reduced and the system depressurized at a faster rate. The calculation was performed using TRAC-PFL/MOD 1. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. We believe that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less

  14. Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.

  15. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  16. Evaluation of the Improved Flameless Ration Heater

    DTIC Science & Technology

    2001-12-01

    THROUGH SCIENCE TECHNICAL REPORT NATICKjTR.02/004 AD. _____ _ EVALUATION OF THE IMPROVED FLAMELESS RATION HEATER by Wendy K. Johnson and F...From- To) 21-12-2001 Final August 2000 - August 2001 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER EVALUATION OF THE IMPROVED FLAMELESS RATION HEATER...was conducted at Fort Wainwright, AK to evaluate two prototype heaters and a modified version of the current Flameless Ration Heater (FRH). The

  17. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  18. Thermal energy storage evaluation and life testing

    NASA Astrophysics Data System (ADS)

    Richter, R.

    1983-01-01

    Two thermal energy storage (TES) units which were built under a previous contract were tested with a Hi-Cap Vuilleumier cryogenic cooler in the facility of the Hughes Aircraft Corporation. The objective of the program was the evaluation of the behavior of the TES units as well as the determination of the temperature history of the three cold stages of the Vuilleumier cryogenic cooler during cyclic charging and discharging of the TES units. The test results have confirmed that thermal energy storage can provide the necessary thermal power to the hot cylinders of the Vuilleumier cryogenic cooler at the required operating temperatures. Thereby the continuous cooling capability of the cooler during an eclipse when no electrical power is available is being assured. The cold stage temperature amplitudes during a complete charge discharge cycle of the TES units were only about 10% of the amplitudes which were observed when the Hi-Cap Vuilleumier cryogenic cooler was operating without thermal energy storage backup in a simulated orbit of 54 minutes sun exposure and 18 minutes eclipse time. The themal conductivity of the molten thermal energy storage salt was apparently only a fraction of the thermal conductivity which had been assumed for the prediction of the upper heater temperatures. A redesign of the heater temperatures below 1480 degrees F which is now required for full charging of the TES units within 54 minutes with the present heater design.

  19. Thermal performance demonstration of a prototype internally cooled nose tip/forebody/window assembly

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Carl J.; Brooks, Lori C.; Teal, Gene; Karu, Zain; Kalin, David A.; Jones, Gregory W.; Romero, Harold

    1996-11-01

    Internally liquid cooled apertures (windows) installed in a full size forebody have been characterized under high heat flux conditions representative of endoatmospheric flight. Analysis and test data obtained in the laboratory and at arc heater test facilities at Arnold Engineering Development Center and NASA Ames are presented in this paper. Data for several types of laboratory bench tests are presented: transmission interferometry and imaging, coolant pressurization effects on optical quality, and coolant flow rate calibrations for both the window and other internally cooled components. Initially, using heat transfer calibration models identical in shape to the flight test articles, arc heater facility thermal test environments were obtained at several conditions representative of full flight thermal environments. Subsequent runs tested the full-up flight article including nosetip, forebody and aperture for full flight duplication of surface heating rates and exposure ties. Pretest analyses compared will to test measurements. These data demonstrate a very efficient internal liquid cooling design which can be applied to other applications such as cooled mirrors for high heat flux applications.

  20. Efficacy of the heater probe in peptic ulcer with a non-bleeding visible vessel. A controlled, randomised study.

    PubMed Central

    Jaramillo, J L; Carmona, C; Gálvez, C; de la Mata, M; Miño, G

    1993-01-01

    A controlled, randomised study was performed to evaluate the efficacy of treatment with heater probe in the prevention of rebleeding from peptic ulcer with a non-bleeding visible vessel. One hundred and one patients were randomised into two groups: patients to be treated by heater probe (n = 51) and controls without active treatment (n = 50). In the heater probe group rebleeding occurred in five patients (10%) v 13 (26%) in the control group (p = 0.03), with a comparative risk of 0.38 in favour of the heater probe group. The difference in proportions of successful treatment for each group was 16.2% in favour of the heater probe (95% CI = 2 to 31%). Haemorrhage directly related to heater probe treatment occurred in four patients. In three of them bleeding was easily controlled by further heater probe pulses. There were no other complications and no death in the heater probe group. One patient in the control group died of pulmonary embolism. No significant differences in the length of stay in hospital, blood transfusions, surgical rates, or death were found; the design of the study, however, precluded an adequate assessment of these variables, because the heater probe was an optional rescue treatment when high surgical risk patients rebled. These results suggest that the heater probe is an effective and safe procedure in the prevention of recurrent haemorrhage in peptic ulcer with a non-bleeding visible vessel. PMID:8244132

  1. Tests Of A Stirling-Engine Power Converter

    NASA Technical Reports Server (NTRS)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  2. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity & Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J.

    2001-01-01

    One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.

  3. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology

    NASA Astrophysics Data System (ADS)

    Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei

    2014-12-01

    A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.

  4. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  5. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  6. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  7. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  8. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  9. Three-Dimensional Printable High-Temperature and High-Rate Heaters.

    PubMed

    Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing

    2016-05-24

    High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.

  10. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... methodological changes designed to increase accuracy while reducing testing burden. DOE's review suggests that... Act), Public Law 94-163 (42 U.S.C. 6291-6309, as codified) sets forth a variety of provisions designed... test procedures prescribed or amended under this section shall be reasonably designed to produce test...

  11. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  12. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  13. Alternate energy source usage methods for in situ heat treatment processes

    DOEpatents

    Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E

    2014-10-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.

  14. Plasma line overshoot Observations during the July 2017 HF campaign at the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Coster, A. J.; Nossa, E.; Kendall, E. A.; Bhatt, A.

    2017-12-01

    In the 1970's and 80's, enhanced plasma waves were frequently detected by the 430 MHz radar at the Arecibo Observatory within 2 to 8 msec after the HF heater had been turned on (Showen, 1975). This phenomenon is best described as an increase in the return power level of the plasma line by one or two orders of magnitude, followed by a slow decay back to its steady-state value. The formation of short scale striations has frequently been cited as a plausible explanation of the plasma line overshoot. The idea is that as the striations form, they absorb or scatter energy from the HF heater wave. This diminishes the amount of power available to excite the plasma waves detected. Short scale striations are thought to form at the altitude where the frequency of the HF wave matches the upper hybrid resonance - below the altitude of HF reflection. In 1981, the decay of the plasma line overshoot was correlated with the rise of the short scale striations utilizing an HF pulse rate of 4 seconds on/off, with the HF transmitter tuned to 5.1 MHz, and an estimated E.R.P. of 38 MW (Coster et al., 1984). In July 2017, a new series of experiments were performed using the new Arecibo HF facility to reexamine the enhanced plasma line issue, and utilizing the superior diagnostic capabilities available in 2017. These experiments were designed to study possible mechanisms responsible for the formation and decay of the plasma line overshoot. In the experiment, the HF heater was cycled on and off at various sequences including: 8 min on/off, 4 min on/off, and 2 min on/off. The enhanced plasma line was detected throughout the experiment. We will summarize the observations of this experiment, report on the significant findings, and provide suggestions for future experiments.

  15. Sodium reflux pool-boiler solar receiver on-sun test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, C E; Moreno, J B; Diver, R B

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the formmore » of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.« less

  16. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  17. Solar air heaters and their applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  18. In situ conversion process systems utilizing wellbores in at least two regions of a formation

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Hsu, Chia-Fu [Granada Hills, CA

    2011-09-27

    A system for heating a subsurface formation is described. The system includes a plurality of elongated heaters located in a plurality of openings in the formation. At least two of the heaters are substantially parallel to each other for at least a portion of the lengths of the heaters. At least two of the heaters have first end portions in a first region of the formation and second end portions in a second region of the formation. A source of time-varying current is configured to apply time-varying current to at least two of the heaters. The first end portions of at least two heaters are configured to have substantially the same voltage applied to them. The second portions of at least two heaters are configured to have substantially the same voltage applied to them.

  19. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  20. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  1. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  2. Characterization of kerosene-heater emissions inside two mobile homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, R.M.; Seila, R.A.; Wilson, W.E.

    1990-03-01

    In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less

  3. Unvented kerosene-heater emissions in mobile homes: Studies on indoor air particles, semivolatile organics, carbon monoxide, and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, J.L.; Lewtas, J.; Burton, R.M.

    1990-01-01

    The study was conducted to assess human exposure to air pollutants resulting from the use of kerosene heaters in mobile homes. It has been estimated that 15-17 million unvented kerosene heaters have been sold in the United States, and 33% of these heaters have been sold to mobile home residents. The emissions from kerosene heaters can result in high pollutants levels in mobile homes that have a small air volume and low ventilation rate. Indoor air exchange rate, temperature, and humidity were measured. Chemical analyses, including polycyclic aromatic hydrocarbon (PAH) and nitro PAH, also were performed on the indoor airmore » samples from a selected home with the kerosene heater on and off. Increases in CO and organic concentrations resulting from the use of kerosene heaters were found in most homes monitored. Chemical analysis data also suggested the presence of evaporated, unburned kerosene fuel present in semivolatile organics collected in the XAD samples. When kerosene heaters were on, 56% of the sampling days (in all homes) showed dose-response mutagenic activity and 19% showed mutagenic activity on the heater-off days. In comparison with the U.S. national ambient air standards, four out of the eight heaters investigated in this study emitted pollutants that exceeded the ambient air standards some days. These data suggested that emissions from unvented kerosene heaters can significantly impact indoor air quality in mobile homes and that these emissions contain carcinogenic compounds and can be potentially carcinogenic in humans.« less

  4. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  5. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  6. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  7. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  8. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  9. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials. If a tank is divided into compartments, a separate system shall be provided for... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12...

  10. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  11. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  12. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  13. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  14. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  15. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  16. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  17. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  18. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  19. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  20. Thermal conductivity measurement of fluids using the 3ω method

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Min

    2009-02-01

    We have developed a procedure to measure the thermal conductivity of dielectric liquids and gases using a steady state ac hot wire method in which a thin metal wire is used as a heater and thermometer. The temperature response of the heater wire was measured in a four-probe geometry using an electronic circuit developed for the conventional 3ω method. The measurements have been performed in the frequency range from 1 mHz to 1 kHz. We devised a method to transform the raw data into well-known linear logarithmic frequency dependence plot. After the transformation, an optimal frequency region of the thermal conductivity data was clearly determined as has been done with the data from thin metal film heater. The method was tested with air, water, ethanol, mono-, and tetraethylene glycol. Volumetric heat capacity of the fluids was also calculated with uncertainty and the capability as a probe for metal-liquid thermal boundary conductance was discussed.

  1. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    NASA Technical Reports Server (NTRS)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  2. Assessment of radioisotope heaters for remote terrestrial applications

    NASA Astrophysics Data System (ADS)

    Uherka, Kenneth L.

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  3. 78 FR 7394 - Notification of Proposed Production Activity; GE Appliances; Subzone 29C (Electric Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Activity; GE Appliances; Subzone 29C (Electric Water Heaters), Louisville, KY GE Appliances, operator of... using certain foreign components. The current request involves the production of electric water heaters... procedures that applies to electric hot water heaters (free) for the foreign status inputs noted below...

  4. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...

  5. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...

  6. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...

  7. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.

  8. Simulated nuclear reactor fuel assembly

    DOEpatents

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  9. Simulated nuclear reactor fuel assembly

    DOEpatents

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  10. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with the lower superheat was sensitive to the thermal environment around the compensation chamber, while the LHP with the higher superheat (similar in design to DM LHP) was not. In response to the test results the placement of the starter heater will be optimized for the flight instrument testing for higher achieved superheat. This presentation discusses startup behavior, overall conductance of a radiator system, low power operation, high power operation, temperature control stability, and control heater power requirements as measured during this acceptance thermal vacuum test. A brief summary of 'lessons learned' will be included.

  11. Magnetic emissions testing of the space station engineering model resistojet

    NASA Technical Reports Server (NTRS)

    Briehl, Daniel

    1988-01-01

    The engineering model resistojet intended for altitude maintenance onboard the space station was tested for magnetic radiation emissions in the Radio Frequency Interference (RFI) facility at the Goddard Space Flight Center. The resistojet heater was supplied with power at 20 kHz and low voltage through a power controller. The resistojet was isolated from its power supply in the RFI enclosure, and the magnetic emission measured at three locations around the resistojet at various heater currents. At a heater current of 18.5 A the maximum magnetic emission was 61 dBpt at a distance of 1 m from the resistojet and at a location at the rear of the thruster. Calculations indicate that the case and heat shields provided a minimum of 4 dB of attenuation at a current of 18.5 A. Maximum radiation was measured at the rear of the resistojet along its major axis and was thought to be due to the magnetic radiation from the power leads. At a distance of 37 cm from the resistojet the maximum magnetic radiation measured was 73 dBpt at a current of 11.2 A. The power input leads were also a source of magnetic radiation. The engineering model rssistojet requires about 20 dB of additional shielding.

  12. One- and two-dimensional Stirling machine simulation using experimentally generated flow turbulence models

    NASA Technical Reports Server (NTRS)

    Goldberg, Louis F.

    1990-01-01

    Investigations of one- and two-dimensional (1- or 2-D) simulations of Stirling machines centered around experimental data generated by the U. of Minnesota Mechanical Engineering Test Rig (METR) are covered. This rig was used to investigate oscillating flows about a zero mean with emphasis on laminar/turbulent flow transitions in tubes. The Space Power Demonstrator Engine (SPDE) and in particular, its heater, were the subjects of the simulations. The heater was treated as a 1- or 2-D entity in an otherwise 1-D system. The 2-D flow effects impacted the transient flow predictions in the heater itself but did not have a major impact on overall system performance. Information propagation effects may be a significant issue in the simulation (if not the performance) of high-frequency, high-pressure Stirling machines. This was investigated further by comparing a simulation against an experimentally validated analytic solution for the fluid dynamics of a transmission line. The applicability of the pressure-linking algorithm for compressible flows may be limited by characteristic number (defined as flow path information traverses per cycle); this warrants further study. Lastly the METR was simulated in 1- and 2-D. A two-parameter k-w foldback function turbulence model was developed and tested against a limited set of METR experimental data.

  13. The LASSII Program: Objectives, Spacecraft Design, and Mission Scenarios for Full-Scale, Shuttle-Launched, Free-Flyer Operations.

    DTIC Science & Technology

    1982-06-16

    5.6- 1 are the resulting heat flows through the MLI thermal protection sys- tem on the RAM surface of the spacecraft when it is exposed to direct...vii PARTICIPANTS IN PLANNING MEETINGS AND MISSION DEFINITION ........................... viii 1 . INTRODUCTION...94 * Electrical Heaters ........................................................................................... 94 " Thermal Control in the

  14. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters.

    PubMed

    Brown, Stephen K; Mahoney, K John; Cheng, Min

    2004-01-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO's Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally "low-emission". The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically approximately 6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nitrogen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure or slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heaters changed little after continuous operation for up to 2 months. Unflued gas heaters have been popular as primary heating sources in Australian homes for many years due to their ease of installation and energy efficiency, with approximately 600,000 now installed in housing and schools. However, with concerns over potential health impacts to occupants, manufacturers have reduced the nitrogen dioxide emissions from unflued gas heaters in Australia over recent years. They have done so with a target level for nitrogen dioxide in indoor air of 300 p.p.b. This is somewhat higher than the ambient air (and WHO) guideline of 110 p.p.b. Several studies of child respiratory health show an impact of unflued gas combustion products. A full characterization of the combustion products is needed under conditions that simulate heater operation in practice-this study was undertaken to provide such characterization. Key findings are that the focus needs to be on total gas emissions (not just nitrogen dioxide), and that heater installation can be very sensitive to small faults which lead to very high levels of toxic pollutants. These findings have influenced current government proposals for emission limits for these heaters.

  15. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    NASA Technical Reports Server (NTRS)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  16. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  17. Thermal Vacuum Testing of a Novel Loop Heat Pipe Design for the Swift BAT Instrument

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Ku, Jentung; Feenan, David

    2003-01-01

    An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.

  18. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  19. ATLAS LTCS Vertically Challenged System Lessons Learned

    NASA Technical Reports Server (NTRS)

    Patel, Deepak; Garrison, Matt; Ku, Jentung

    2014-01-01

    Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.

  20. 10 CFR 434.404 - Building service systems and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specification. 404.1.2Unfired Storage Tanks. The heat loss of the tank surface area Btu/(h·ft2) shall be based... the potential benefit of using an electric heat pump water heater(s) instead of an electric resistance water heater(s). The analysis shall compare the extra installed costs of the heat pump unit with the...

  1. Mountain Plains Learning Experience Guide: Appliance Repair. Course: Heater-Type Appliances.

    ERIC Educational Resources Information Center

    Ziller, T.

    One of two individualized courses included in an appliance repair curriculum (see CE 027 767), this course covers minor and major heater-type appliances. The course is comprised of six units: (1) Irons, (2) Roasters, (3) Space Heaters, (4) Water Heaters, (5) Electric Ranges, and (6) Gas Ranges. Each unit begins with a Unit Learning Experience…

  2. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  3. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Coit, William George [Bellaire, TX; Griffin, Peter Terry [Brixham, GB; Hamilton, Paul Taylor [Houston, TX; Hsu, Chia-Fu [Granada Hills, CA; Mason, Stanley Leroy [Allen, TX; Samuel, Allan James [Kular Lumpar, ML; Watkins, Ronnie Wade [Cypress, TX

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  4. Results from a scaled reactor cavity cooling system with water at steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representingmore » a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)« less

  5. Variable power distribution for zoned regeneration of an electrically heated particulate filter

    DOEpatents

    Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

    2012-04-03

    A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

  6. LARGO hot water system thermal performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  7. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions

    NASA Astrophysics Data System (ADS)

    Litunovsky, N.; Gervash, A.; Lorenzetto, P.; Mazul, I.; Melder, R.

    2009-04-01

    The paper describes the experimental technique and preliminary results of thermal fatigue testing of ITER first wall (FW) water-cooled mock-ups inside the core of the RBT-6 experimental fission reactor (RIAR, Dimitrovgrad, Russia). This experiment has provided simultaneous effect of neutron fluence and thermal cycling damages on the mock-ups. A PC-controlled high-temperature graphite ohmic heater was applied to provide cyclic thermal load onto the mock-ups surface. This experiment lasted for 309 effective irradiation days with a final damage level (CuCrZr) of 1 dpa in the mock-ups. About 3700 thermal cycles with a heat flux of 0.4-0.5 MW/m 2 onto the mock-ups were realized before the heater fails. Then, irradiation was continued in a non-cycling mode.

  8. Test and Evaluation Report of the IMED Volumetric Infusion Pump Model 960A

    DTIC Science & Technology

    1992-02-01

    tested Ambient tempera- ture was out of test lim- its. Windshield anti-ice X Pitot heat X Vent blower X Windshield wiper X Heater X APU X Generator #1 X...Patterson John A. Dellinger, Air Force Base, OH 45433 Southwest Research Institute P. 0. Box 28510 Henry L. Taylor San Antonio, TX 78284 Director

  9. 40 CFR 63.7520 - What stack tests and procedures must I use?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7520... representative operating load conditions while burning the type of fuel or mixture of fuels that has the highest... measured hydrogen chloride concentrations, and the measured mercury concentrations that result from the...

  10. Development of an Ultra-Low-Cost Solar Water Heater: Cooperative Research and Development Final Report, CRADA Number CRD-12-487

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrigan, Tim

    2016-02-17

    NREL and RhoTech will collaborate to bring long-lived, ultra-low-cost, high-performance solar water heaters (SWH) to market readiness. An existing RhoTech design uses seam-welded polymer thin films to make an unglazed thermosiphon, and this design will be modified to improve durability through ultraviolet and overheat protection, and to improve performance by adding a glazing to the collector. Two generations of the new glazed systems will be tested in the field, resulting in a robust market-ready SWH design that can be installed for under $1,000 without rebates.

  11. Initial steps toward automation of a propellant processor

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Ramohalli, Kumar

    1990-01-01

    This paper presents the results from an experimental study aimed at ultimately automating the mixing of propellants in order to minimize unintended variations usually attributed to human error. The water heater and delivery system of a one-pint Baker-Perkins (APV) vertical mixer are automated with computer control. Various innovations are employed to introduce economy and low thermal inertia. Some of these include twin heaters/reservoirs instead of one large reservoir, a compact water mixer for achieving the desired temperature quickly, and thorough insulation of the entire water system. The completed system is tested during two propellant mixes. The temperature uniformly is proven through careful measurements employing several local thermocouples.

  12. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  13. Programmable Thermostats for MPLM Shell Heater Control ULF1. 1; Thermal Performances

    NASA Technical Reports Server (NTRS)

    Glasgow, Shaun; Clark, Dallas; Trichilo, Michele; Trichilo, Michele

    2007-01-01

    The Multi-Purpose Logistics Module (MPLM) is the primary carrier for "pressurized" logistics to and from the International Space Station (ISS). The MPLM is transported in the payload bay of the Space Shuttle and is docked to the ISS for unloading, and reloading, of contents within the ISS shirt sleeve environment. Foil heaters, controlled originally with bi-metallic thermostats, are distributed across the outside of the MPLM structure and are utilized to provide energy to the structure to avoid exposure to cold temperatures and prevent condensation. The existing bi-metallic, fixed temperature set point thermostats have been replaced with Programmable Thermostats Modules (PTMs) in the Passive Thermal Control Subsystem (PTCS) 28Vdc shell heater circuits. The goal of using the PTM thermostat is to improve operational efficiency of the MPLM on-orbit shell heaters by providing better shell temperature control via feedback control capability. Each heater circuit contains a programmable thermostat connected to an external temperature sensor, a Resistive Temperature Device (RTD), which is used to provide continuous temperature monitoring capability. Each thermostat has programmable temperature set points and control spans. The data acquisition system uses a standard RS-485 serial interface communications cable to provide digital control capability. The PTM system was designed by MSFC, relying upon ALTEC support for their integration within the MPLM system design, while KSC performed the installation and ground checkout testing of the thermostat and RS-485 communication cable on the MPLM FM1 flight module. The PTMs were used for the first time during the STS-121/ULF1.1 mission. This paper will describe the design, development and verification of the PTM system, as well as the PTM flight performance and comparisons with SINDA thermal model predictions.

  14. Pretest reference calculation for the 18-W/m/sup 2/ Mockup for Defense High-Level Waste (WIPP Room A in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the 18-W/m/sup 2/ Mockup for Defense High-Level Waste (DHLW) or Room A experiment is presented in this report. The mockup is one of several large scale in situ experiments currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). The 18-W/m/sup 2/ test is an in situ experiment developed to simulate closely the Reference Repository Conditions (RRC) for DHLW in salt. The test consists of three long, parallel rooms (A1, A2, A3) which are heated by canister heaters placed in the floor of each room. These heaters producemore » thermal loading which simulates an areal heat output of 18-W/m/sup 2/ for Room A2, which is the focus of the experiment. This load will be supplied for a period of three years. Rooms A1, A2, and A3 are heavily instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room A2 will eventually be compared to the results for Room A2 presented here to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used here represents the state-of-the-art at the present time. A large number of plots are included since an appropriate result is presented for every Room A2 gauge location. 55 refs., 70 figs., 4 tabs.« less

  15. Resistance Heater Helps Stirling-Engine Research

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    Stirling engine heater head consists of 18 double-turn coils of tubing, each of which is tightly wrapped with resistance-heating element, through which working gas flows. Coils form a toroid about periphery of heater-head body. With new resistance heater, total circuit resistance can be selected independently of tube geometry by changing size of wires and/or number of wire wraps around each tube.

  16. 88. ARAIII. "Petrochem" heater is hoisted over south exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. ARA-III. "Petro-chem" heater is hoisted over south exterior wall of heater pit in GCRE reactor building (ARA-608). Printing on heater says, "Petro-chem iso-flow furnace; American industrial fabrications, inc." Camera facing north. January 7, 1959. Ineel photo no. 529-124. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  18. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  19. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  20. Indoor air pollutants from unvented kerosene-heater emissions in mobile homes: Studies on particles, semivolatile organics, carbon monoxide, and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, J.L.; Williams, R.W.; Walsh, D.B.

    1991-01-01

    The study was conducted to assess human exposure to air pollutants resulting from the use of kerosene heaters in mobile homes. It has been estimated that 15-17 million unvented kerosene heaters have been sold in the United States, and 33% of these heaters have been sold to mobile home residents. The emissions from kerosene heaters can result in high pollutants levels in mobile homes that have a small air volume and low ventilation rate. Eight totally electric mobile homes with no smokers living in the homes were monitored for indoor air particles < 10 micrometer (PM10), semivolatile organics, carbon monoxidemore » (CO), and mutagenicity of semivolatile and particle-phase organics in Salmonella typhimurium TA98 without S9 using a microsuspension reverse-mutation assay. Each home was monitored for an average of 6.5 h/day, 3 days/week, for 4 weeks (2 weeks with the heater on and 2 weeks with the heater off) during the heating season of 1989. Indoor air exchange rate, temperature, and humidity were measured. Chemical analyses, including polycyclic aromatic hydrocarbon (PAH) and nitro PAH, also were performed on the indoor air samples from a selected home with the kerosene heater on and off. Increases in CO and organic concentrations resulting from the use of kerosene heaters were found in most homes monitored. Chemical analysis data also suggested the presence of evaporated, unburned kerosene fuel present in semivolatile organics collected in the XAD samples. In comparison with the U.S. national ambient air standards, four out of the eight heaters investigated in the study emitted pollutants that exceeded the ambient air standards some days. These data suggested that emissions from unvented kerosene heaters can significantly impact indoor air quality in mobile homes and that these emissions contain carcinogenic compounds and can be potentially carcinogenic in humans.« less

  1. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.

  2. Understanding the Residential Wood Heater Rules

    EPA Pesticide Factsheets

    Information on the components of the current wood heater new source performance standards (NSPS) and proposed updates to the NSPS including which types of heaters are covered under the rules and the benefits.

  3. Measure Guideline. Transitioning to a Tankless Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  4. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... source and the heater. (13) “Tell-tale” indicators. Heaters subject to paragraph (c)(14) of this section and not provided with automatic controls shall be provided with “tell-tale” means to indicate to the...

  5. Energy transfer from a pulsed thermal source to He II below 0.3 K.

    NASA Technical Reports Server (NTRS)

    Pfeifer, C. D.; Luszczynski, K.

    1973-01-01

    Results of measurements of the angular distribution of the energy flux radiated from a pulsed heater immersed in He II at low temperatures (around 230 mK). It is shown that the energy transfer from a pulsed carbon heater at a relatively high temperature to ambient liquid helium maintained at low temperature cannot be adequately described by the phonon-coupling models. The experimental data on the velocity and angular distribution of the energy flux radiated from the plane of the heater indicate that the energy from the heater is transferred to a layer of hot helium adjacent to the surface of the heater and that this layer acts as the effective source of excitations radiated into the ambient liquid helium. The extent and shape of this source depend on the total energy flux produced by the heater.

  6. Performance Study of Fluidized Bed Dryer with Immersed Heater for Paddy Drying

    NASA Astrophysics Data System (ADS)

    Suherman, S.; Azaria, N. F.; Karami, S.

    2018-03-01

    This paper investigated the performance of fluidized bed dryer with immersed heater for paddy drying. The influence of drying temperature and the temperature of immersed heater on drying curve, thermal efficiency, and quality of paddy was investigated. The fixed operating conditions are drying time of 60 minutes, paddy weight of 200 grams and the air velocity of 0.4 m/s. The variables are drying temperature and the temperature immersed heater namely 50, 60, 70, 80, 90 (°C). The results show addition immersed heater will increase drying rates. No constant drying rate was found. Increasing the temperature will decrease the utilized energy. The thermal efficiency decreases with increasing temperature. The increasing temperature and use immersed heater will decrease the residual moisture content, increase damaged and yellow paddy grain, and increase red paddy grain.

  7. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit corrosion of certain potential NTR fuel forms. Additional diagnostic upgrades included in the present NTREES set up include the addition of a gamma ray spectrometer located near the vent filter to detect uranium fuel particles exiting the fuel element in the propellant exhaust stream to provide additional information any material loss occurring during testing. Other aspects of the upgrade included reworking NTREES to reduce the operational complexity of the system despite the increased complexity of the induction heating system. To this end, many of the controls were consolidated on fewer panels. As part of this upgrade activity, the Safety Assessment (SA) and the Standard Operating Procedures (SOPs) for NTREES were extensively rewritten. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can be accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements.

  8. Thermometry of Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Matthew; Zutter, Brian; Regan, B. C.

    2018-01-01

    Current thermometry techniques lack the spatial resolution required to see the temperature gradients in typical, highly scaled modern transistors. As a step toward addressing this problem, we measure the temperature dependence of the volume plasmon energy in silicon nanoparticles from room temperature to 1250 °C , using a chip-style heating sample holder in a scanning transmission electron microscope (STEM) equipped with electron energy loss spectroscopy (EELS). The plasmon energy changes as expected for an electron gas subject to the thermal expansion of silicon. Reversing this reasoning, we find that measurements of the plasmon energy provide an independent measure of the nanoparticle temperature consistent with that of the heater chip's macroscopic, dual-function heater-and-thermometer to within the 5% accuracy of the thermometer's calibration. Thus, silicon has the potential to provide its own high-spatial-resolution thermometric readout signal via measurements of its volume plasmon energy. Furthermore, nanoparticles can, in general, serve as convenient nanothermometers for in situ electron-microscopy experiments.

  9. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  10. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to operate the near-infrared spectrometer and GC-MS instruments during ETU testing. Ray will be working with Modified Commercial off the Shelf (MCOTS) instruments and characterizing their analytical behavior for optimization. Ray will be offered the opportunity to suggest testing modifications or configuration changes at any time to improve the experimental effectiveness. He will gain many skills needed for working in a technical team setting requiring flexibility and critical thinking.

  11. Multi-step heater deployment in a subsurface formation

    DOEpatents

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  12. Non-ferromagnetic overburden casing

    DOEpatents

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  13. 10 CFR 434.404 - Building service systems and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...

  14. 10 CFR 434.404 - Building service systems and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...

  15. 10 CFR 434.404 - Building service systems and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...

  16. 10 CFR 434.404 - Building service systems and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ratio Btuh/gal Test Method a Energy factor Thermal efficiency Et% Standby loss %/HR NAECA all electric... Loss. (a) When testing an electric storage water heater, the procedures of Z21.10.3-1990 (RS-39... manufacturer with smoke no greater than 1 and the fuel pump pressure within ±1% of the manufacturer's...

  17. Effects of orientation and downward-facing convex curvature on pool-boiling critical heat flux

    NASA Astrophysics Data System (ADS)

    Howard, Alicia Ann Harris

    Photographic studies of near-saturated pool boiling on both inclined flat surfaces and a downward-facing convex surface were conducted in order to determine the physical mechanisms that trigger critical heat flux (CHF). Based on the vapor behavior observed just prior to CHF, it is shown for the flat surfaces that the surface orientations can be divided into three regions: upward-facing (0-60°), near-vertical (60-165°), and downward-facing (165-180°) each region is associated with a unique CHIP trigger mechanism. In the upward-facing region, the buoyancy forces remove the vapor vertically off the heater surface. The near- vertical region is characterized by a wavy liquid-vapor interface which sweeps along the heater surface. In the downward-facing region, the vapor repeatedly stratifies on the heater surface, greatly decreasing CHF. The vapor behavior along the convex surface is cyclic in nature and similar to the nucleation/coalescence/stratification/release procedure observed for flat surfaces in the downward-facing region. The vapor stratification occurred at the bottom (downward-facing) heaters on the convex surface. CHF is always triggered on these downward-facing heaters and then propagates up the convex surface, and the orientations of these heaters are comparable with the orientation range of the flat surface downward-facing region. The vast differences between the observed vapor behavior within the three regions and on the convex surface indicate that a single overall pool boiling CHF model cannot possibly account for all the observed effects. Upward-facing surfaces have been examined and modeled extensively by many investigators and a few investigators have addressed downward-facing surfaces, so this investigation focuses on modeling the near-vertical region. The near-vertical CHF model incorporates classical two-dimensional interfacial instability theory, a separated flow model, an energy balance, and a criterion for separation of the wavy interface from the surface at CHF. The model was tested for different fluids and shows good agreement with CHF data. Additionally, the instability theory incorporated into this model accurately predicts the angle of transition between the near-vertical and downward-facing regions.

  18. Transient nucleate pool boiling in microgravity: Some initial results

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.

    1994-01-01

    Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.

  19. Workshop proceedings: U-bend tube cracking in steam generators

    NASA Astrophysics Data System (ADS)

    Shoemaker, C. E.

    1981-06-01

    A design to reduce the rate of tube failure in high pressure feedwater heaters, a number of failed drawn and stress relieved Monel 400 U-bend tubes removed from three high pressure feedwater heaters was examined. Steam extracted from the turbine is used to preheat the boiler feedwater in fossil fuel fired steam plants to improve thermal efficiency. This is accomplished in a series of heaters between the condenser hot well and the boiler. The heaters closest to the boiler handle water at high pressure and temperature. Because of the severe service conditions, high pressure feedwater heaters are frequently tubed with drawn and stress relieved Monel 400.

  20. Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1986-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve engine performance. The Lewis nodal-analysis Stirling engine computer simulation was used for this investigation. Results for the heater-bypass concept showed no significant improvement in the indicated thermal efficiency for the P-40 Stirling engine operating at full-power and part-power conditions. Optimizing the heater tube length produced a small increase in the indicated thermal efficiency with the heater-bypass concept.

  1. Electrochemical cell has internal resistive heater element

    NASA Technical Reports Server (NTRS)

    Colston, E. F.; Ford, F. E.; Hennigan, T. J.

    1968-01-01

    External source supplies power to electrochemical cells containing internal resistive heater element. Each cell plate is individually contained in its own Pellon bag, enabling the heater element to be arranged in a continuous, parallel circuit.

  2. 73. SECOND FLOOR, HEATER ROOM, BAY 31/5 SOUTH, WITH FANFORCED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. SECOND FLOOR, HEATER ROOM, BAY 31/5 SOUTH, WITH FAN-FORCED HOT AIR HEATER; TO SOUTHEAST - Ford Motor Company Edgewater Assembly Plant, Assembly Building, 309 River Road, Edgewater, Bergen County, NJ

  3. 10 CFR 429.14 - Residential refrigerators, refrigerator-freezers and freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... anti-sweat heater control (in which case, manufacturers must also report the values of heater Watts at the ten humidity levels 5%, 15%, through 95% used to calculate the variable anti-sweat heater...

  4. 10 CFR 429.14 - Residential refrigerators, refrigerator-freezers and freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... anti-sweat heater control (in which case, manufacturers must also report the values of heater Watts at the ten humidity levels 5%, 15%, through 95% used to calculate the variable anti-sweat heater...

  5. 10 CFR 429.14 - Residential refrigerators, refrigerator-freezers and freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... anti-sweat heater control (in which case, manufacturers must also report the values of heater Watts at the ten humidity levels 5%, 15%, through 95% used to calculate the variable anti-sweat heater...

  6. An electronic scanner of pressure for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  7. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot-water heater in a solar simulator. The objective of the test was to determine basic performance characteristics of a traditional type of flat-plate collector, with and without side reflectors (to increase the solar flux). Due to the fact that collector testing in the solar simulator permits control of the variables that affect collector performance, it was possible to obtain information on each of the following: (1) the effect of flow and incidence angle on the efficiency of a flat-plate collector (but only without side reflectors), (2) transient performance under flow and nonflow conditions, (3) the effectiveness of reflectors in increasing collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning, and (4) the limits of applicability of a collector efficiency correlation based on the Hottel-Whillier equation (1958).

  8. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  9. Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.

  10. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters

    NASA Astrophysics Data System (ADS)

    Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete

    2018-04-01

    In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.

  11. Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films.

    PubMed

    Cao, Minghui; Wang, Minqiang; Li, Le; Qiu, Hengwei; Yang, Zhi

    2018-01-10

    To optimize the performance of silver nanowire (Ag NW) film heaters and explore the effect of graphene on a film, we introduced poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and graphene modified with ethyl cellulose (graphene-EC) into the film. The high-quality and well-dispersed graphene-EC was synthesized from graphene obtained by electrochemical exfoliation as a precursor. The transparent film heaters were fabricated via spin-coating. With the assistance of graphene-EC, the stability of film heaters was greatly improved, and the conductivity was optimized by adjusting the Ag NW concentration. The film heaters exhibited a fast and accurate response to voltage, accompanied by excellent environmental endurance, and there was no significant performance degradation after being operated for a long period of time. These results indicate that graphene-EC plays a crucial role in optimizing film stability and heat dispersion in the film. The Ag NW/PEDOT:PSS-doped graphene-EC film heaters show a great potential in low-cost indium-tin-oxide-free flexible transparent electrodes, heating systems, and transparent film heaters.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southface Energy Institute (Southface) partnered with owners and/or builders with various market constraints and ultimate goals for three projects in different climate zones: Savannah, GA (CZ 2), Clemson, SC (CZ 3), and LaFayette, GA (CZ 4). This report documents the design process, computational energy modeling, construction, envelope performance metrics, long-term monitoring results, and successes and failures of the design and execution of these high performance homes. The three bedroom/two bathroom test home in Savannah Gardens on an elevated slab foundation has a semi-conditioned, encapsulated attic. A neighboring home built to EarthCraft specifications was also monitored as a control for exteriormore » foam insulation and a heat pump water heater (HPWH). For the JMC Patrick Square, a single-story project in Clemson, the small-scale production builder wanted to increase their level of energy efficiency beyond their current green building practices, including bringing ducts into conditioned space. Through a combination of upgrade measures the team met this goal and achieved many Zero Energy Ready Home requirements. LaFayette Housing Authority undertook a development of 30 affordable rental housing units in 15 duplexes in LaFayette, GA. Because they would be long-term owners, their priorities were low utility bills for the residents and durable, maintainable buildings. The team employed BEopt to optimize building envelope and systems choices, including 2x6 advanced framed walls, insulated slab, and heat pump water heater in a utility closet which was ducted to/from an encapsulated attic.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.K.

    Corrosion data have been obtained for tub is exposed for 1500--2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility to conditions representative of superheater and intermediate temperature air heater (ITAH) components. The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, were corroded more than in most pulverized coal fired superheater service, but much less than the highly aggressive liquid phase attack encountered in conventional plants with certain coals and temperatures. Results indicated that, with parabolic corrosion kinetics, type 310 and 253MA stainless steels should be usable to 1400F at hot end of ITAH. At final superheater temperatures, 2.25 andmore » 5 Cr steels were indicated to have parabolic corrosion rates generally below a 0.5 mm/yr criterion, based on corrosion scale thickness. However, unknown amounts of scale loss from spallation made this determination uncertain. Stainless steels 304H, 316H, and 321H had parabolic rates variably above the criterion, but may be servicable under less cyclic conditions. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. Implications of results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.« less

  14. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    NASA Astrophysics Data System (ADS)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  15. Mycobacterium chimaera and cardiac surgery.

    PubMed

    Stewardson, Andrew J; Stuart, Rhonda L; Cheng, Allen C; Johnson, Paul Dr

    2017-02-20

    There is an ongoing investigation into infections with non-tuberculous mycobacteria associated with contaminated heater-cooler units used in cardiac surgery. The overall risk is low, but surgical site and disseminated infections have been reported, including one possible case in Australia, mainly with surgery involving implantation of prosthetic material. Mycobacterium chimaera infection should be considered in patients who have previously undergone surgery with cardiopulmonary bypass and who present with cardiac or disseminated infection or sternal wound infection unresponsive to standard antibiotic therapy. Where cases are suspected, patients should be investigated and managed in consultation with an infectious diseases physician and/or clinical microbiologist. If cases are confirmed or heater-cooler devices are found to be contaminated, details should be reported to the hospital infection control team, the jurisdictional health department, the Therapeutic Goods Administration and the Australian distributor of the affected heater-cooler unit(s). Measures to manage risk should include communicating with relevant hospital departments, ensuring that the manufacturer's updated instructions for use are followed, regular testing of machines, and reviewing the location of machines when in use.

  16. [Hygienic evaluation of direct heating of the air delivered to the shaft].

    PubMed

    Velichkovskiĭ, B T; Malikov, Iu K; Troitskaia, N A; Belen'kaia, M A; Sergeeva, N V; Shirokova, O V; Kashanskiĭ, S V; Slyshkina, T V; Simonova, O V; Zykova, V A

    2011-01-01

    The paper gives the results of exploring a test pre-heating system for the air (APHS) delivered to the shaft. The system has been first used in the Urals. The supply air is heated by burning natural gas in the air current. The APHS system with a RG air heater (000 "Gas-Engineering") is equipped in addition to the existing heaters to enhance heat supply reliability in northern conditions. The data of the studies show that in all periods of the heating season (interseason, moderate frosts, the coldest month), the concentrations of hazardous substances, such as nitric oxides, nitric dioxide, sulfur dioxide, carbon dioxide, benz(a)pyrene, solid aerosol in the shaft-delivered air, do not exceed those given in the existing regulation provided that the design operating conditions are met. With the maximum gas consumption, the coldest month only was marked by the nitric dioxide content being greater than the standard values, causing the maximum projected natural gas consumption to be lower in the APHS system. The air level of nitric dioxide proved to be a major hygiene indicator while using this air heater.

  17. Development of a Prototype Military Field Space Heater

    DTIC Science & Technology

    1983-04-01

    COMBUSTION HEATERS TENT HEATERS LIQUID FUELS LIQUID FUEL BURNERS 2&< ABSTRACT rCamrtbmum «o rarerem ataT» ft namteaamry mod Identity by block...M1941 heater. This prototype features a large triple stage burner obtained from Holland that uses staged combustion to achieve clean burning with...M1941. This Dutch burner features staged combustion , which results in complete and very clean burning of diesel fuel. This report covers fabrication and

  18. Structural Analyses of Stirling Power Convertor Heater Head for Long-Term Reliability, Durability, and Performance

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Shah, Ashwin; Arya, Vinod K.; Krause, David L.; Bartolotta, Paul A.

    2002-01-01

    Deep-space missions require onboard electric power systems with reliable design lifetimes of up to 10 yr and beyond. A high-efficiency Stirling radioisotope power system is a likely candidate for future deep-space missions and Mars rover applications. To ensure ample durability, the structurally critical heater head of the Stirling power convertor has undergone extensive computational analyses of operating temperatures (up to 650 C), stresses, and creep resistance of the thin-walled Inconel 718 bill of material. Durability predictions are presented in terms of the probability of survival. A benchmark structural testing program has commenced to support the analyses. This report presents the current status of durability assessments.

  19. New type of heating system for clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, K.; Itoh, C.

    1995-12-01

    The basic technology to improve serviceability and reliability of the electric clothes dryer relies on the heater and heat exchanger. This paper describes the status of stress analysis and the evaluation of reliability for semiconductors consisting of BaTiO{sub 3} for disk-type heat exchangers/heaters with honeycomb openings. If the authors could keep the Curie temperature of the semiconductor lower than the ignition temperature of clothing during the drying cycle, installation of two legally limited thermostats would no longer be required and reliability of the control system could be further improved due to its simplified structure. The heater can be made moremore » compact by designing a honeycomb-type heater/heat exchangers but the structural requirements for the heat exchanger and the heater would conflict. An approximate solution to heater/heat exchanger stress is being sought as a thermal stress issue for an equivalent solid compound disc.« less

  20. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

Top